
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

5-2018

File Fragment Classification Using Neural
Networks with Lossless Representations
Luke Hiester

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Artificial Intelligence and Robotics Commons, Information Security Commons, and
the Other Computer Sciences Commons

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Hiester, Luke, "File Fragment Classification Using Neural Networks with Lossless Representations" (2018). Undergraduate Honors
Theses. Paper 454. https://dc.etsu.edu/honors/454

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=dc.etsu.edu%2Fhonors%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=dc.etsu.edu%2Fhonors%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=dc.etsu.edu%2Fhonors%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

File Fragment Classification Using Neural

Networks with Lossless Representations

Luke Hiester

May 2018

Abstract

This study explores the use of neural networks as universal models
for classifying file fragments. This approach differs from previous work
in its lossless feature representation, with fragments’ bits as direct input,
and its use of feedforward, recurrent, and convolutional networks as clas-
sifiers, whereas previous work has only tested feedforward networks. Due
to the study’s exploratory nature, the models were not directly evaluated
in a practical setting; rather, easily reproducible experiments were per-
formed to attempt to answer the intial question of whether this approach
is worthwhile to pursue further, especially due to its high computational
cost. The experiments tested classification of fragments of homogeneous
file types as an idealized case, rather than using a realistic set of types,
because the types of interest are highly application-dependent. The recur-
rent networks achieved 98 percent accuracy in distinguishing 4 file types,
suggesting that this approach may be capable of yielding models with suf-
ficient performance for practical applications. The potential applications
depend mainly on the model performance gains achievable by future work
but include binary mapping, deep packet inspection, and file carving.

i

Acknowledgements

I would like to thank Dr. Brian Bennett and Dr. Jeff Knisley for their
feedback and attention to detail; the Honors College and the University
Honors Scholars program for their support of undergraduate research;
and Dr. Jay Jarman for providing continued guidance since before the
inception of this particular study through its completion, and for inspiring
my interest in machine learning.

ii

Contents

1 Introduction 1

2 Background 1
2.1 Early Work . 2
2.2 Survey of Techniques . 3
2.3 Roussev and Garfinkel’s Case for Specialized Approaches 5
2.4 Conti et al.’s Case for Generalized Approaches 7
2.5 Rationale of This Study’s Approach 8

3 Resources and Tools 11
3.1 Govdocs1 . 11
3.2 Python . 13
3.3 Keras . 13
3.4 Theano . 13

4 Methods 14
4.1 Dataset Extraction . 14
4.2 Feature Representation . 15
4.3 Models . 16
4.4 Model Tuning . 16
4.5 Experiments . 17

5 Results 18
5.1 Experiment A . 18
5.2 Experiment B . 22

6 Discussion 25
6.1 Relative Performance of Network Architectures 25
6.2 Improving Model Performance 26
6.3 Applicability . 27
6.4 Practical Considerations for a Binary Mapping Tool 27

7 Conclusion 28

References 29

iii

1 Introduction

This study investigates a novel approach for applying neural networks to file
fragment classification. File fragments are small, isolated segments of files, and
file fragment classification is the task of identifying the type or format of a
fragment, which may be a primitive encoding such as UTF-8 text, a file type
such as JPEG, or some other type, based on the application. This problem
initially gained interest due to its potential applications in digital forensics.

The approach employed in this study has two core components. First, the
fragments’ individual bits are used directly as model input—no previous work
was found using this or any other lossless feature representation. Second, mul-
tiple neural network architectures are explored—previous work has only tested
feedforward networks, but this study also tests recurrent and convolutional net-
works. One of the fundamental differences of this approach from existing work
is that practically all of the previous models were constrained to consider only
specific patterns, but these models are constructed to be capable of recognizing
arbitrary patterns.

One major school of thought in file fragment classification research is that
classifiers should be specialized and should consider the most specific patterns
possible in order to maximize performance in terms of both accuracy and speed.
This is based largely on the needs of specific applications where the performance
of generalized models constructed in the past has been inadequte. However,
none of the past models were truly universally generalizable, which may have
negatively impacted their performance and also represents an unmet need for
other applications where generalized models are necessary. This study seeks to
address both of these issues.

This paper is organized as follows. Section 2 establishes some context, sur-
veying prior research in file fragment classification and highlighting influencing
works for this study. Section 3 discusses the resources and tools used, and sec-
tion 4 outlines the experimental procedure. Section 5 presents the results of the
experiments. Section 6 explores the results and discusses potential applications
of this work. Section 7 concludes.

2 Background

The research area of file fragment classification originated as an extension of
content-based file type identification. In this context, “content-based” refers to
using the patterns in the body of a file in order to assign it a type, rather than
internal metadata such as headers or external metadata such as file extensions.
These normal signatures may be unreliable for several reasons—file extensions
may easily be changed [25], and file signatures located in headers or other fixed
locations may be missing for several reasons [22]. Neither of these signatures
can be used in file fragment classification, where both the file name/extension
and the location of the fragment within the file are unknown.

1

2.1 Early Work

In his 2001 master’s thesis, McDaniel presented the first formal examination
of content-based techniques for file type identification [24]. Shortly afterwards,
McDaniel and Heydari’s seminal 2003 paper [25] presented the same techniques
in a more accessible medium, quickly inspiring work by other researchers.

McDaniel and Heydari presented three approaches for classifying files based
on their content. All three are distance-based models, with a file classified by
computing various measures for it and assigning it the type having the closest
average values of the same measures precalculated on a set of reference files, with
the comparison weighted inversely by the observed variance of each measure.
In byte frequency analysis (BFA), the features used to represent a file are the
frequencies of all 256 possible byte values within it. In byte frequency cross-
correlation (BFC), the features are the pairwise differences between the byte
frequencies. In file header/trailer (FHT), the features are the frequencies of
each value for each byte within a given distance from the beginning or end of
the file.

Li, Wang, Stolfo, and Herzog presented a similar file type identification
model in 2005, which they termed the “fileprint” model [22]. Although some-
times described as an extension of McDaniel and Heydari’s BFA technique, it
was actually a repurposed version of the model Wang and Stolfo had previ-
ously applied to network packet analysis [35]. The fileprint model is similar to
the BFA technique in that it uses comparisons of byte frequencies weighted by
variance—although in a slightly different form—but it differs by using multiple
byte frequency distributions per file type, with the byte frequencies of a set of
reference files for each type clustered using the k-means algorithm and then
averaged together to form one centroid of byte frequencies per cluster.

Li et al.’s paper was the first to address the case of classifying arbitrary frag-
ments of files, making a comment about classification techniques needing to be
generalizable to fragments of files contained in individual network packets and
thus not being able to rely on header information or signatures at specific loca-
tions. However, they did not test this; in their experiments they only classified
full files or the first n bytes of files for various values of n.

Karresand and Shahmehri’s studies in 2006 were the first to test classification
of file fragments [19,20]. Their first model [19] was similar to Li et al.’s fileprint
model using one byte frequency distribution per file type, and they used it to
classify 4,096-byte fragments with a focus on identifying fragments of JPEG files.
Their second model [20] introduced the distribution of the difference between
consecutive bytes, or the “rate of change.”

These early works inspired many other researchers to explore file fragment
classification, and the approaches presented within them were emulated with
slight adjustments in many ways. In particular, models using byte frequency dis-
tribution and/or distance-based classification techniques have remained highly
popular since.

2

2.2 Survey of Techniques

A large number of features have been tried in file fragment classification and
file type identification models.1 The most frequently used feature has been the
byte frequency distribution (BFD) or unigram frequencies, i.e. the frequency of
occurrence of each possible byte value [1–5,7,8,11,12,15,16,19,20,22–26,31–35].
Some studies have also utilized bigram frequencies [7, 8, 12, 15, 31–33], and one
study used trigram frequencies [15]. Another popular family of statistics have
been byte value mean [7–10,12,26,31,32], mean absolute deviation [7], standard
deviation [7, 9, 26], skewness [7], and kurtosis [7, 26]. Several features related
to complexity and information content have been popular, including Shannon
entropy [7–10, 12, 17, 31, 32, 34], compressibility [7, 8, 12, 17, 27, 34], and Lempel-
Ziv complexity [31, 32]. Other features appearing in multiple studies include
Hamming weight [7, 8, 10, 12], difference between consecutive byte values (or
“rate of change”) [7, 8, 12, 20, 31, 32], maximum length of repeated byte values
[7, 8, 12], frequency of occurrence of bytes in ASCII range [7, 9], and various
measures computed in a sliding window through the file or fragment [17, 26].
Less common features include pairwise differences between frequencies of byte
values [25], distribution of the exclusive-OR of consecutive byte values [11], chi-
square statistics [10], the NIST randomness metrics suite [27], and GIST image
processing features [36]. Multiple unique features appear in [9], including least
common substring and subsequence measures, the sum of the four highest byte
frequencies, the correlation of values of consecutive bytes, and the correlation
of frequencies of consecutive bytes.

Several studies have also experimented with feature extraction and dimen-
sionality reduction techniques. Principal component analysis [1,4,5] and autoen-
coder networks [4,5] have been used to extract features with unigram counts as
input. In [21], a genetic algorithm was used to evolve a feature extractor from
the raw contents of files using class separability in the final feature space as the
fitness metric.

For a while, the most popular classification models in this area were distance-
based or nearest-neighbors models [2,3,6,10,15,17–22,24,25,33,35,36]. However
since their first usage in this area in 2010 [23], SVM models have become more
popular [3, 5, 7, 12, 15, 31, 32, 36]. Feedforward neural networks have been used
with moderate frequency throughout the history of the field [1, 3–5, 11, 16, 27].
Linear discriminants [2,3,9,34] and decisions trees [3,36] have also been used in
multiple studies. Some studies used specially designed models for recognizing
specific types [19,20,29]. One study used a näıve Bayes classifier [36].

The previous works using neural networks are of particular interest here,
since these models are the focus of this study. In 2008, Amirani et al. used a
feedforward network to classify whole files using unigram frequencies processed
by principal component analysis and an autoencoder network [4]. In 2011,
Ahmed et al. investigated classifying whole files by unigram frequencies with
several different models, including feedforward networks [3]. In 2013, Amirani

1As no further mention is made of most of these techniques in the rest of this paper, a
thorough explanation of them is not provided here. See the cited works for more information.

3

et al. extended their previous work to file fragments, classifying fragments by
unigram frequencies and the same feature extraction pipeline as their 2008 study,
this time trying both feedforward networks and SVM models as classifiers [5].
Also in 2013, Penrose et al. used feedforward networks to differentiate fragments
of compressed and encrypted files using the NIST randomness feature suite [27].
In 2014, Aaron et al. used feedforward networks tuned by a genetic algorithm to
classify file fragments by unigram frequencies processed by principal component
analysis [1].

Two previous studies used file contents as direct input to neural network
models. Of the two, the 2005 study by Dunham et al. [11] is related less closely
to the approach in this study. They used feedforward networks to classify delta
files of encrypted data2 to identify whether they were encryped with the same
key, and to attempt to identify the file types of the original, unencrypted data.
The main features used were based on unigram frequencies within the delta
files, but the numeric values of the first 32 bytes of the delta files3 were used
as features also. This feature representation differs from the one used in this
study in that only a small portion of the contents were provided directly as
input and that, due to the nature of the objects being classified, these 32 bytes
represented a rather complicated transformation from raw bytes of actual files.
However, their study appears to be the first instance both of providing byte
content directly to a classification model and of using neural network models in
the areas of file type identification and file fragment classification.

The most closely related previous work is Harris’s study in 2007 [16]. Harris
used feedforward networks to classify file fragments, alternatively using unigram
frequency or actual byte values as input. Interestingly, this approach did not
yield good results, with all of the networks tested having less than 50 percent
accuracy on classifying five types of files, and networks using byte values as direct
input performing worse than those using unigram frequency. Perhaps these
results discouraged other researchers from exploring this approach further, but
there were several issues that likely impacted the results negatively. First, the
file types chosen were problematic for several reasons, as discussed in section 2.3,
and may have actually made the problem theoretically intractable (an issue
shared by many existing works in file fragment classification). Second, the
networks may have sufferred from slow training due to the use of mean squared
error as the training objective in a network with hyperbolic tangent units [14].
Third, and related to the previous point, the networks were not allowed to
train long enough to converge; Harris noted that they were all stopped after
20,000 epochs and none of them had yet reached convergence. Fourth, the
numeric values of the bytes were used as input—although in theory the raw
contents could be losslessly extracted from this representation, practically it
is a complicated aggregation from which the true raw contents (the bits) are
difficult to extract for any model except one specifically designed to do so, even
further complicated by the fact that the byte values were rescaled in this case.

2 In this context, a “delta file” is the sequence of corresponding bytes of two encrypted
files, combined by a bitwise exclusive-OR operation.

3I.e. the exclusive-OR of the corresponding first 32 bytes in the two encrypted files.

4

No existing work was found that shared the primary techniques of interest
in this study. The first core technique in this study is the use of multiple neural
network architectures; all existing work with neural networks in this area used
only feedforward networks, perhaps due to recurrent and convolutional networks
being relatively recent. The second core technique is the use of bits as direct
input to the classification models; only two studies were found using raw file
data as input, and both used the numeric values of bytes, perhaps due to the
notational convention of representing byte values as numbers—however, this
convention is purely for convenience and is only a true representation of the
bytes’ values when they are explicitly being used to store one-byte numbers;
in most cases, the numeric value is not an appropriate way to interpret the
contents.

2.3 Roussev and Garfinkel’s Case for Specialized Approaches

In 2009, Roussev and Garfinkel critically examined the existing work in the
area of file fragment classification [28]. They identified multiple problematic
assumptions that were common in prior studies (and have continued to be com-
mon through the time of writing of this paper), issued several challenges for the
performance and quality of file fragment classifiers, made suggestions for how
to reformulate the problem in a conceptually sound manner, and gave practical
recommendations for how to construct useful tools.

One common problem with previous work was a poor definition of “file type.”
Roussev and Garfinkel noted that most authors implicitly equated file type with
file extension, working with the assumption that files with distinct extensions
have well-defined “types,” without investigating further. In actuality, file ex-
tensions are arbitrary naming conventions that acquire meaning solely through
common usage. File extensions do not impose any constraints on the contents
of the files they name. Some file types are standardized and have well-defined
formats including standard extensions that should be used to name them, and
through implicit social contract, it is often reasonable to assume that files with
those extensions are actually files of the corresponding types. However, this
is not safe to assume because a file may have an intentionally deceptive name.
Additionally, standardized formats are themselves rarely unique, typically using
primitive formats and data encodings shared with many other file types. Thus,
in the general case a set of file extensions may not correspond to a meaning-
ful set of “types,” and even when they do, files of these types may not have
distinctive formats for their contents.

Another common issue was assuming, without specific knowledge of the for-
mats under investigation, that distinctive signatures would naturally arise from
statistics collected from files or fragments. As noted by Roussev and Garfinkel,
files are synthetic objects and contain only the patterns they are designed to
contain. In particular, statistics based on byte frequency can only reliably dif-
ferentiate several broad classes of files, certainly at a coarser granularity than
that at which previous studies have attempted to apply them.

The main effect of these flawed assumptions was the use of sets of file types

5

which are inherently impossible to classify correctly by any means other than
pure chance. Compressed file types are one such set. Many compression for-
mats yield byte distributions that are very close to uniformly random4, which
makes statistics computed from byte frequencies unable to differentiate many
sets of compressed types. An even worse recurring issue noted by Roussev and
Garfinkel was the inclusion of multiple file types that use the Deflate compression
format to encode their contents, such as PNG images and ZIP archives—when
fragments are extracted from these file types, they are impossile to distinguish
because their contents are formatted identically.

An even more probematic set of file types when classifying fragments are
compound formats; not only do many file types have highly heterogeneous con-
tents, but also a significant number allow arbitrary other files or blocks of data
to be embedded within them. A fragment extracted from a file of compound
type may be another valid type and may be impossible to identify as originat-
ing from a file of the compound type by any means. Roussev and Garfinkel
specifically examined PDF files as an example of such a compound type. In a
sample of over 100,000 PDF files, they found that an average of only 9.7 per-
cent of the contents were characteristic of the PDF format, with the other 90.3
percent being embedded blocks of data encoded with non-unique formats. In
particular, they found that 49.1 percent of the contents were Deflate-encoded,
meaning that a significant number of fragments extracted from PDF files are
completely indistinguishable from fragments of other Deflate-encoded types.

Roussev and Garfinkel also made several challenges based on the inadequacy
of previous classification models for the purposes of file carving, a frequently
cited application and the main one which interested them. File carving attempts
to recover the files on a storage device that may be unreadable for several
reasons, such as being deleted. Most storage devices, such as magnetic hard
disks, are broken into discrete, equally sized segments, each of which can only
belong to one file. File fragment classification is applied by considering all
segments of the storage device as fragments and attempting to classify them
individually.

One of their challenges was providing error estimates based on large, publicly
available collections of files, in order to give realistic estimates of the models’
generalizability in a reproducible manner. Soon afterwards, they released such
a collection, as described in section 3.1.

Another of their challenges was high accuracy, arguing that file fragment
classifiers would need higher than 99 percent accuracy to be useful for file carv-
ing. This was based on the fact that that modern storage devices may contain
billions of fragments, making thorough analysis of them impossible without an
enormous labor budget or file fragment classifiers capable of mapping out the
majority of the device contents automatically. Although 99 percent was a fairly
high threshold, it was not a very radical challenge because the central goal for
classification models is to make them as accurate as possible anyway.

A slightly more radical challenge was perfect precision for classifiers. Even if

4One notable exception is the JPEG format.

6

unable to identify all fragments, Roussev and Garfinkel argued that a classifier
should not make any false predictions in order to be useful for file carving. The
primary use of file fragment classification in file carving is to partially allevi-
ate the combinatorial explosion of possible file reconstructions by eliminating
large numbers of fragments from consideration; in order for this to work, the
fragments must be eliminated conclusively. To aid in this, they suggested that
classifiers should be allowed to give a response of unknown if unable to make a
prediction with high confidence.

Their final challenge was that file fragment classifiers should be fast enough
to process fragments at the same rate at which they can be read from storage
devices. This was yet another practical consideration for making classifiers
useful for file carving; achieving this speed would be necessary to allow scaling
up to keep pace with the growth of storage device capacity.

In addition to formulating a set of practical requirements for classifiers, Rous-
sev and Garfinkel also presented a new formulation of the file fragment classifi-
cation problem based on their observations of the issues in previous work. They
stated that a classifier should identify both the primitive data type of the frag-
ment and any compound file types inside of which it contains evidence of being
embedded.

They also argued that the only way to achieve all of the practical require-
ments was for classifiers to be specialized—hand-designed to recognize one type
each based on the most specific knowledge of the format possible. This con-
trasted heavily with the previously prominent goal of constructing classifiers
to recognize as many types as possible using automatically extracted patterns.
Through several case studies as well as implementations of specialized classifiers
achieving impressive results and meeting all of their challenges, they provided
fairly convincing evidence for this argument.

2.4 Conti et al.’s Case for Generalized Approaches

In 2010, Conti et al. presented a different use case with a different set of
practical requirements for file fragment classification models [10]. Rather than
file carving, they mainly considered the application of binary mapping, in which
the goal is to automatically produce a human-readable map or index of a large
binary object—such as a very large file, a memory dump, or a storage device—
consisting of the location, size, and type of each region, to serve as a navigational
aid for manual analysis. File fragment classification is applied to binary mapping
by using a fragment classifier either after or as part of segmenting the binary
object into distinct regions, providing the types that are ultimately incorporated
into the map.

Binary objects tend to be broken into regions of similarly formatted data.
This can easily be observed through a visual that Conti et al. called a byteplot,
an example of which is shown in Figure 1. These visuals and other high-level
overviews of the structure of binary objects are highly useful aids for manual
analysis, especially due to the inherent limitations of screen space on the amount
of raw data which can be shown at once, such as when viewing the raw data

7

in a hex editor. Figure 2 shows an example of manual analysis using a hex
editor. As the objects under investigation grow in size and the relative portion
of the objects visible at once shrinks, they become progressively more difficult to
analyze manually using tools such as hex editors. For example, most consumer-
grade hard drives sold at the time of writing contain more than one billion times
the amount of data visible in Figure 2. Having high-level summaries for binary
objects of this scale is critical for finding information of interest in a timely
manner.

Conti et al.’s work is especially notable for its theoretical soundness. Like
Roussev and Garfinkel, Conti et al. noted the issues with composite file types in
previous file fragment classification research. Perhaps inspired by Roussev and
Garfinkel’s comments on the poorly defined “file types” of past work, and likely
also due to the specific needs of binary mapping, they limited the types under
consideration to primitive types and explicitly defined such types as “families
of homogeneous data with closely related binary structure.” They applied a
distance-based file fragment classification model in a sliding window in order to
produce a coarse binary map with these types.

Conti et al. envisioned a binary mapping model being embedded into a
graphical tool to produce maps tightly integrated with other components in-
cluding a raw data view and several visuals such as byteplots. Accelerating
manual analysis in this way represents a different approach from that of Rous-
sev and Garfinkel, who mainly aimed to produce high-performance automated
file carvers—tools solving a related but different task. As such, the requirements
differ between the two.

In contrast with Roussev and Garfinkel’s strong advocacy for specialized
classifiers, Conti et al. argued that generalized classification models would be
necessary for the application of binary mapping. One reason was to allow recog-
nition of undocumented types, for which specific information is not available,
to attempt to rapidly extract relevant patterns automatically and avoid the
overhead of manual reverse-engineering. Another reason was to easily allow
recognition of newly encountered types; ideally, the hypothetical binary explo-
ration program would allow a user to provide examples of an arbitrary type not
included in the initial classification model and would then attempt to identify
regions of that type in the map—specialized approaches would be impossible in
this case because the types of interest would not be known at the tool’s time of
creation.

2.5 Rationale of This Study’s Approach

One of the ideas behind this study is that generalized models constructed in the
past may have been unable to meet Roussev and Garfinkel’s accuracy challenge
due to their own limitations—they simply may not have been powerful or flexible
enough. Although Roussev and Garfinkel argue convincingly that specialized
approaches are superior for file carving and similar applications, the space of
possible generalized models is far from exhausted, so they cannot be conclusively
said to be incapable of comparable performance.

8

Figure 1: One of the byteplots constructed by Conti et al. appearing in [10],
showing the contents of a Microsoft Word 2003 document and the dissimilarity
of the patterns in different regions. Reproduced with permission.

9

Figure 2: A simple example of manual analysis using a hex editor. The visible
portion shows a JPEG image embedded in a PDF file, and the goal was
to extract the image. Noteworthy patterns revealing the nature of content
include the header of the image (highlighted), the PDF metadata for the
embedded object visible above the image header in the right pane, and the
recurring FF 00 byte pattern characteristic of the JPEG format visible in the
image body in the left pane. The program shown in this screenshot is Frhed,
a popular free hex editor. The PDF file shown is a digital copy of [10], and the
embedded JPEG image is the original copy of the image shown in Figure 1.

10

Another motivation for further exploration of generalized approaches is that
they are sometimes necessary. As noted by Conti et al., in some applications
such as binary mapping, specialized approaches are not always possible.

The goal of this study is to produce a universal file fragment classification
model, inspired primarily by the observation that, besides flawed assumptions
leading to attempts to perform impossible tasks, all file fragment classification
models in the past have been inherently limited in their pattern recognition
capacity and their ability to generalize to new types.

All generalized models for file fragment classification and file type identifica-
tion in the past have used lossy representations for their input—none have been
capable of using all of the information contained in the objects to be classified.
In order to be universally generalizable, the representation must be lossless—any
loss of information shrinks the space of recognizable patterns—and the individ-
ual bits are practically the only lossless representation. Additionally, the past
models have often imposed additional inherent limitations on the patterns that
may be recognized; to avoid these limitations, a model capable of recognizing
arbitrary patterns must be used. As universal function approximators, neural
networks meet this criterion.

Neural networks trained with bits as input should theoretically be able to
function as universal file fragment classifiers. Whether they are able to achieve
adequate performace in practice is the primary research question of this study.

3 Resources and Tools

This section describes the primary third-party resources and tools utilized in
this study’s experiments. The corpus from which fragments were extracted is
publicly and freely available, and all of the software used is open-source.

3.1 Govdocs1

File fragment datasets used in this study were extracted from a file corpus cre-
ated by Garfinkel et al. as part of an effort to encourage “a culture of rigor
and insistence on the reproducibility of results” within the field of digital foren-
sics [13]. In alignment with this effort, this study utilized their publicly available
Govdocs1 corpus, and care has been taken to explicitly and unambiguously de-
scribe the dataset creation procedure (see section 4.1).

The Govdocs1 corpus is comprised of nearly one million files collected from
public .gov domain websites. The files in the corpus are summarized in Table 1.
A total of 63 file extensions appear in the corpus. PDF files are the most
numerous, comprising more than one-fifth of the corpus by both size and number
of files.

Since its creation, the Govdocs1 corpus has been used for model evaluation
in many works in file fragment classification and file type identification [1, 6–8,
12,27,36].

11

Extension Count Total Size (GB)

pdf 231232 127.881

html 214567 12.311

jpg 109233 34.951

txt 78285 47.433

doc 76616 28.923

xls 62634 27.999

ppt 49702 119.787

gif 36302 2.852

xml 33458 8.093

ps 22015 26.969

csv 18360 3.267

gz 13725 8.467

log 9976 4.040

eps 5191 2.746

unk 5186 1.424

png 4125 1.054

swf 3476 1.812

dbase3 2601 0.019

pps 1619 3.544

rtf 1125 0.457

Table 1: Summary of files in the Govdocs1 corpus with the 20 most frequently
occurring extensions. The files with the 43 remaining extensions account for
only 0.7 percent of the corpus by number and 0.5 percent by size.

12

3.2 Python

All of the necessary code for the experiments was written in Python. Python
is highly popular and has an increasing market share across a wide variety of
disciplines. According to polls conducted on the website KDnuggets, the per-
centage of respondents who used Python as their main analytics, data science,
and/or machine learning platform rose from 34 percent in 2016 to 41 percent in
2017; this placed Python as the most popular platform in 2017, followed by R
at 36 percent [37].

Python was chosen especially due to the active and growing community of
machine learning researchers and practitioners who use Python as their pri-
mary software platform, as well as the wide range of open-source tools devel-
oped and supported by this community. For example, the popular open-source
scikit-learn library for Python, which provides a broad set of general-purpose
machine learning utilities and numerous implementations of machine learning
algorithms, had a lifetime total of 1,031 contributors as of the time of writ-
ing [38].

3.3 Keras

Neural network models were built and trained using Keras, an open-source deep
learning library for Python [39]. At the time of writing, Keras was the most
popular open-source Python library for neural networks5, based on the number
of “stars” on GitHub, with Keras having been bookmarked by 26,447 distinct
users. Figure 3 compares the star counts of the most popular neural network
libraries for Python.

Using Keras greatly decreased the iteration time of experiments. In com-
parison with implementations created from scratch, the premade, pre-tested
implementations of neural network components and training algorithms greatly
reduced the coding overhead and thus allowed a much larger portion of time to
be devoted to experiments themselves.

3.4 Theano

Theano was used in conjunction with Keras, as its backend library for construct-
ing models. The direct usage of Theano was limited to basic configuration.

Theano was chosen over the other two backend libraries supported by Keras—
TensorFlow and CNTK—based on simple benchmarking tests. All three were
tested, and Theano was chosen for superior performance (i.e. training speed)
with the particular combination of models, datasets, and hardware used in this
study. Extensive benchmarking was outside the scope of this study, and would
have compromised the motivating objective of completing the experiments in a
timely manner. If these experiments were to be replicated, performing simple
tests to select the highest-performing backend would be recommended.

5Excluding lower-level libraries such as TensorFlow and Theano which are more general-
purpose and provide utilities to support implementing neural networks.

13

Figure 3: Number of “stars” on GitHub for several of the most popular
Python libraries for neural networks, as of 6 March 2018.

An additional future consideration for selecting a backend is that mainte-
nance of Theano will be discontinued shortly after the time of writing [40]. For
any isolated, short-term experiments conducted fairly soon afterwards, this may
not have a large impact, but the discontinuation of support could greatly af-
fect Theano’s long-term stability. Thus, choosing one of the other supported
backends, TensorFlow or CNTK, is recommended.

4 Methods

Using these resources, two experiments were conducted. The commonalities of
their procedures are discussed in sections 4.1 through 4.4, and their differences
are discussed in section 4.5.

4.1 Dataset Extraction

File fragment datasets were sampled from the Govdocs1 corpus using the fol-
lowing procedure. First, the selection pool of files was formed by filtering out
files of insufficient size–a 512 byte fragment was extracted from each selected
file while excluding the first 512 bytes, so 1,024 bytes was the minimum file size.
From this pool, an equal number of files were randomly selected for each chosen
type. Each selected file was partitioned into fragments at 512-byte boundaries,
and a random fragment was selected from each file, excluding the first, and
excluding the last if its length was not a full 512 bytes.

The datasets were uniformly stratified by file type to avoid bias. Files and
fragments were selected as described in order to give each file in the corpus

14

equal likelihood of representation. To give each fragment equal likelihood of
selection would decrease the expected number of represented files due to the
greater chance of selection from larger files, contrary to the goal of capturing as
much diversity as possible.6

The first fragment was excluded from each file to prevent the models from
being skewed by header data, as performed in many works in file fragment
classification [7–10, 12, 23, 27]. The last fragment was excluded if shorter than
512 bytes in order to maintain a fixed fragment size, because variable-length
fragments are outside the scope of this study.

Fragments of 512 bytes were chosen because this corresponds to the smallest
common size of hard drive sectors, which are the smallest unit which may need
to be processed in isolation in file carving. The most popular fragment sizes
among previous work have been 512 bytes [6–9, 12, 16, 31, 32] and 4,096 bytes
[19, 20, 23, 27, 31, 34]. Penrose et al. argued that 4,096 bytes was a safe choice
because all hard drive manufacturers have used this as their sector size since
2011 [27]. However, as noted by Axelsson, 512 bytes is a conservative choice [6],
so this size was adopted.

Due to the exploratory nature of this study, a significantly smaller subset
of the total quantity of data available in the corpus was selected for the ex-
perimental datasets to aid reproducibility. The size of the datasets was limited
such that the total size of all feature vectors would not exceed what could fit
into memory on an average personal computer or single-user workstation at the
time of writing. This was done for the sake of computation time; samples could
be stored in memory in a much more compact form, but repeatedly generating
the feature vectors on demand would add a significant amount of time to train-
ing. Even greater overhead would result from only loading partial chunks of the
dataset into memory at once.

In the absence of actual data on the distribution of available memory, a
maximum dataset size of 1 GB was adopted. Assuming all features (8,192
per fragment) to be 32-bit floating point numbers and that features are stored
with negligible overhead (both of which were true in these experiments), this
translates to a maximum of 32,768 fragments in a single dataset.

4.2 Feature Representation

The feature representation for file fragments is a central component of this
study’s approach. The fragments are represented to the models by their bits,
i.e. each individual bit was used as a feature. Using the bits as features is a
lossless representation, unlike practically all of the representations used in prior
work.

The bits are treated as categorical features, and are decomposed using the
standard technique for encoding categorical data as real-valued inputs: two
dummy variables are created for each bit, with one of them set to 1 and the

6 This assumes that the variance of fragment contents in all files of a specific type is higher
than the variance of the contents of fragments within a single file.

15

other set to 0, depending on the value of the bit. This is done to give the
model equal and symmetrical capacity to recognize patterns based on bits of
either value. Although neural network models of arbitrarily large size may
theoretically be able to extract the same patterns regardless of whether the bits
were split into two features, a model of fixed size would be artificially limited
by singular features. Without being decomposed, bits with a value of 1 would
have a much stronger influence on the model than bits with a value of 0. As
an example, for a unit connected to the network input, e.g. in the first hidden
layer for a feedforward network, inputs with nonzero value all have their own
parameters (weights) for influencing the unit’s activation, whereas all inputs
with a value of 0 collectively have only a single parameter (the bias) because
their weights have no effect.

With 512 bytes per fragment, 8 bits per byte, and 2 features per bit, each
fragment is represented by a total of 8,192 features. This high dimensionality
has varying impacts on networks of different architectures, as discussed in the
following section.

4.3 Models

Feedforward, recurrent, and convolutional neworks were used in order to com-
pare the performance of different network architectures. Recurrent networks
were hypothesized to have both higher accuracy and higher computational cost
than networks of the other two architectures; all three were tried to test this.
Identical feature representations are used for the input for all models, but the
input has a different shape for each architecture.

Input is provided to the feedforward networks in a flat format, i.e. as a
single vector with 8,192 entries. This network architecture does not possess
any qualities which mitigate the high dimensionality of the input data and was
expected to be impacted the most by it.

The recurrent networks process one byte of input per time step: 16 features
at a time for 512 steps. By only processing 16 features at a time, the recurrent
networks have strong built-in mitigation for the high dimensionality of the input.

The convolutional networks are provided with input in the form of a 512×16
matrix, with one byte per row. The convolution is applied in one dimesion, with
filters of size n × 16, each filter mapping each sequence of n consecutive bytes
(including overlapping sequences, i.e. with a stride length of 1) to a scalar
processed by subsequent layers of the network. Convolutional networks seemed
to be a natural fit for this task because they are designed both for handling
high-dimensional input and recognizing shift-invariant patterns. Both of these
qualities are highly desirable in this context.

4.4 Model Tuning

Each of the three network architectures also have many hyperparameters7. In
these experiments, model selection was performed through a process of trial-and-

7 I.e. parameters manually selected rather than learned.

16

error by iteratively evaluating a model with a specific set of hyperparameters
and then manually selecting a new set by attempting to make an educated guess
based on the cumulative observations. This process consumed more time than
any other activity in this study.

Each hyperparameter set was evaluated using 8-fold cross validation. The
number 8 was chosen as the closest number to the most popular choice of k = 10
for k-fold cross validation which would evenly divide all of the datasets used
in these experiments. Although not strictly necessary, having even partitions
slightly decreased the complexity of the cross-validation procedure.

Although the maximum dataset size of 32,768 samples was used for the final
performance evaluation (as described in section 4.1), separate datasets of 2,048
samples were used for the model tuning process in each experiment. Using a
smaller set greatly reduced the iteration time for hyperparameter tuning and
thus allowed a larger number of configurations to be tested. A competing ob-
jective was that the datasets needed to be of sufficient size to obtain reasonably
reliable performance estimates. The tuning set size was chosen to attempt to
balance the speed of tuning with the variance in performance.

An additional benefit of using a separate dataset for tuning was that holding
out a subset of the data for the final performance estimate was unnecessary.
The tuning and evaluation sets were sampled independently, and although they
were not ensured to be completely disjoint, the probability of them having a
significant overlap is negligible. Thus, no further action was needed to avoid
the performance metrics being artificially inflated by the tuning process due
to selecting the minimum generalization error observed on a single set; these
optimistically high generalization measures for the best model on the tuning set
were simply discarded.

The final, reported performance evaluations were obtained by using the best
hyperparameters found though the tuning procedure and retraining the models
on the previously unseen full-sized evaluation set, performing one final round of
8-fold cross validation.

4.5 Experiments

In both experiments, sets of fragment types were selected with distinctive for-
mats relative to each other, and datasets were constructed with equal numbers
of each type. The two experiments differed mainly in the set of fragment types
used for each.

In experiment A, fragments of CSV and XML files were used. This was in-
tended as a minimal experiment where achieving perfect accuracy would clearly
be possible in theory. A procedural rule-based classifier capable of perfect ac-
curacy in distinguishing these types likely could be constructed without great
difficulty.

Distinguishing CSV and XML fragments is a simple, conceptually clear task.
They are both file types with distinctive, homogeneous formats, unlike most.
These are among the few file types for which the central conceptual difficulty
of file fragment classification is avoided—a careful consideration of their data

17

encodings and how to construct meaningful groupings of their fragments into
types is unnecessary.

Experiment B used fragments of CSV, XML, JPEG, and GIF files. This
selection made experiment B a slightly more complex problem than experiment
A, but it was still relatively simple in comparison with the general case in that
fragments of these file types have mutually distinctive formats.

This set of types posessed several desirable qualities. Including CSV and
XML in this set served as a test of the model’s ability to retain its accuracy in
making easy distinctions in the presence of more difficult distinctions. Adding
JPEG and GIF to these two tested the model’s ability to distinguish high and
low entropy fragments.8 Including both JPEG and GIF tested whether the
model could separate high entropy fragments with distinctive patterns (JPEG)
from those without obvious patterns (GIF).

Although the practical complexity of experiment B was roughly equal to that
of experiment A, distinguishing these four types is a more conceptually complex
problem. All four types have mutually distinctive formts relative to each other,
but unlike CSV and XML files, JPEG and GIF files do not have homogeneous
formats. Files of both of these types contain header sections which have very
dissimilar formats from their bodies. Additionally, although GIF fragments are
distinctive relative to the other three types, the body of a GIF file does not
have a distinctive format at all in the general case—the body is encoded using
the LZW compression scheme, which is shared by other file types in addition to
being difficult to recognize due to the lack of obvious patterns. Although the
body of a JPEG file is also compressed, the compression is rather unique due
to the frequent occurrence of the byte sequence FF 00 throughout the body, as
discussed by Roussev and Garfinkel [28] and shown in Figure 2.

5 Results

This section presents the final results of the models selected for each network
type in each experiment on the evaluation datasets. Several wall clock times are
listed in the results, which are of course highly environment-dependent. The
hardware used for these experiments was a laptop with 8 GB of memory, an
Intel Core i7-6500U processor, and a NVIDIA GeForce 940MX GPU with 4 GB
of dedicated memory. The experiments were run on Ubuntu 16.04 with Python
3.5.2 in a Jupyter 4.3.0 notebook using an IPython 6.1.0 kernel. For the models,
Keras 2.0.8 and Theano 0.9.0 were used, with Theano configured to run on the
GPU.

5.1 Experiment A

Table 2 shows the accuracy and training time of the best model for each network
type in experiment A. Tables 3, 4, and 5 show the confusion matrices for the

8“Entropy” here refers to Shannon entropy; the higher the entropy of a fragment, the closer
its contents are to uniformly random.

18

predictions of the feedforward, recurrent, and convolutional networks, respec-
tively. The recurrent network was much slower, but the other two networks did
not achieve comparable accuracy.

These performance evaluations represent the combined predictions of 8-fold
cross validation on the large dataset using the hyperparameters chosen through
the model selection procedure on the small dataset. The feedforward network
had a single hidden layer of 16 hyperbolic tangent units and used an L2 regular-
ization coefficient of 0.07. The recurrent network had a single hidden layer of 32
Long Short Term Memory (LSTM) units and was trained with no regularization
and a momentum of 0.9. The convolutional network had a convolutional layer of
2 filters with a width of 1 byte followed by a standard densely connected hidden
layer with 16 hyperbolic tangent units, and it used an L2 regularization coeffi-
cient of 0.05. All three networks were trained using stochastic gradient descent
with a batch size of 256 and a learning rate of 0.01. The feedforward and convo-
lutional networks were trained until convergence, but the loss of the recurrent
network exhibited oscillating behavior during training, so it was stopped after
256 epochs of no observed improvement, and the model state that had yielded
the lowest observed loss so far was restored.

All networks in both experiments had a number of sigmoid output units equal
to the number of types they classified—2 output units for experiment A. When
producing a prediction, each output unit independently gave a probability esti-
mate in the open interval (0, 1) for the fragment belonging to the corresponding
type.9 Thus, each network may be considered as a group of binary classifiers
with shared intermediate representations. Predictions were obtained by select-
ing the type of the output unit with the maximum probability estimate. This
was essentially a simple voting scheme among the binary classifiers, taking into
account the types’ mutual exclusivity.

All networks in this study used categorical cross-entropy loss, which may
have negatively impacted the results. As discussed in section 6.2, a better
choice would have been binary cross-entropy.

As suggested by Roussev and Garfinkel [28], the possibility of classifying a
fragment as unknown was explored. This was done by imposing a minimum
confidence required to give a prediction, giving a prediction of unknown if the
maximum probability estimate fell below this threshold. This introduced a
tradeoff between precision and recall, shown for the recurrent network in Fig-
ure 4. This tradeoff is based directly on the distribution of confidence in correct
and incorrect predictions, which is shown for the recurrent network in Figure 5.

Most of the incorrect predictions were made with fairly low confidence, with a
few outliers. Using a confidence threshold of 50 percent yielded perfect precision
but a recall of only 52 percent; the confusion matrix for these predictions is
shown in Table 6. A low recall was obtained because the confidence in correct

9 This contrasts with the common practice in multiclass neural network classifiers of using
a softmax output layer that produces a single probability distribution over the types. The
rationale was to use a network architecture that could potentially support sets of types that
are not mutually exclusive, e.g. having a single network for predicting primitive types as well
as evidence of container types.

19

predictions was distributed very widely. Additionally, error bars on the required
threshold for perfect precision are not known because this was only a single
sample.

Network Accuracy Training Time

Feedforward 0.901947 0.95 hours

Recurrent 0.995789 78.75 hours

Convolutional 0.898163 7.30 hours

Table 2: Results summary for experiment A. The training time is the sum of
the individual wall clock times across all 8 folds.

CSV XML

CSV 14546 1838

XML 1375 15009

Table 3: Confusion matrix for the feedforward network in experiment A.
The rows correspond to the true type, and the columns correspond to the
predicted type.

CSV XML

CSV 16290 94

XML 44 16340

Table 4: Confusion matrix for the recurrent network in experiment A.

CSV XML

CSV 14326 2058

XML 1279 15105

Table 5: Confusion matrix for the convolutional network in experiment A.

20

Figure 4: Precision-recall curve for the recurrent network in experiment A,
obtained by varying the minimum confidence required to give a prediction.
The labelled points indicate the corresponding confidence thresholds.

Figure 5: Distribution of confidence in the recurrent network’s predictions in
experiment A.

21

CSV XML ?

CSV 5894 0 10490

XML 0 11195 5189

Table 6: Confusion matrix for the recurrent network in experiment A with a
confidence threshold of 50 percent.

5.2 Experiment B

Table 7 shows the accuracy and training time of the best model for each net-
work type in experiment B. Tables 8, 9, and 10 show the confusion matrices
for the feedforward, recurrent, and convolutional networks, respectively. As in
experiment A, the recurrent network required much more training time, but it
outperformed the others by an even larger margin in this experiment.

The feedforward network had a single hidden layer with 256 hyperbolic tan-
gent units and was trained with an L2 regularization coefficient of 0.11 and a
momentum of 0.9. The recurrent network had a single hidden layer with 32
LSTM units and was trained with a momentum of 0.9 and no regularization.
The convolutional network had a convolutional layer of 32 filters with a width of
1 byte followed by a layer of 32 hyperbolic tangent units, and it was trained with
an L2 regularization coefficient of 0.05 and a momentum of 0.9. Like experiment
A, all three were trained with stochastic gradient descent with a batch size of 256
and a learning rate of 0.01, except for the convolutional network which used a
learning rate of 0.03. The feedforward and convolutional networks were trained
until convergence, and the recurrent network’s training was stopped after 512
epochs of no observed improvement.

Like in experiment A, a varying minimum confidence threshold was applied
to obtain the recurrent network’s precision-recall curve, shown in Figure 6. Un-
like the recurrent network in experiment A, this model was not able to achieve
perfect precision while maintaining any significant portion of its recall. Com-
pared with experiment A, the confidence in its incorrect predictions was slightly
more widely distributed, and the confidence in its correct predictions was signif-
icantly lower, as shown in Figure 7. An example of the model’s predictions with
a confidence threshold of 5 percent is shown in Table 11; with this threshold,
the model had a precision of 99.5 percent and a recall of 70.6 percent.

Network Accuracy Training Time

Feedforward 0.768494 2.15 hours

Recurrent 0.980438 134.11 hours

Convolutional 0.733856 7.37 hours

Table 7: Results summary for experiment B.

22

CSV XML JPG GIF

CSV 6659 1526 1 6

XML 697 7491 2 2

JPG 59 28 6717 1388

GIF 7 5 3865 4315

Table 8: Confusion matrix for the feedforward network in experiment B.

CSV XML JPG GIF

CSV 8115 73 4 0

XML 31 8151 10 0

JPG 3 32 7906 251

GIF 0 3 234 7955

Table 9: Confusion matrix for the recurrent network in experiment B.

CSV XML JPG GIF

CSV 6887 1298 1 6

XML 1082 7106 3 1

JPG 68 27 4474 3623

GIF 9 7 2596 5580

Table 10: Confusion matrix for the convolutional network in experiment B.

23

Figure 6: Precision-recall curve for the recurrent network in experiment B.

Figure 7: Distribution of confidence in the recurrent network’s predictions in
experiment B.

24

CSV XML JPG GIF ?

CSV 6778 8 0 0 1406

XML 2 4764 1 0 3425

JPG 2 16 5788 38 2348

GIF 0 0 28 5191 2973

Table 11: Confusion matrix for the recurrent network in experiment B with
a confidence threshold of 5 percent.

6 Discussion

The results of these simple experiments are fairly promising, and they warrant
further investigation of this approach.

6.1 Relative Performance of Network Architectures

Although the two experiments in this study constitute a fairly small sample,
recurrent networks outperformed feedforward and convolutional networks by
a sufficiently large margin to suggest that recurrent architectures may be the
best suited for this task. Further work would be needed to determine this
conclusively, but recurrent networks appear to be the most promising.

Perhaps one factor contributing to their superior performance is the lesser
impact of the high dimensionality of the input on them. The recurrent net-
works only have 16 inputs for the one byte provided per time step, whereas
the feedforward and convolutional networks have 8,192 inputs. This may lead
these two types to require significantly larger training sets to achieve the same
performance. Convolutional networks possess some built-in mitigation for high
dimensionality through their shared parameters, but they appear to consistently
perform slightly worse than feedforward networks in this area; this result was
unexpected, and the reason for it is unclear.

Feedforward networks may benefit from dimensionality reduction techniques,
but dimensionality reduction is impossible to perform losslessly, countering one
of the core principles of this approach. Additionally, dimensonality reduction
techniques would be practically rather difficult to apply in this context for two
main reasons. First, fast linear techniques such as principal component analysis
would be of limited use because most of the features of interest are nonlin-
ear with respect to the bit representation. Second, nonlinear techniques such
as autoencoder networks would be highly (possibly prohibitively) expensive to
construct due to the very large number of samples required to capture most of
the true distribution of fragments.

25

6.2 Improving Model Performance

The accuracy obtained so far is promising, and several methods seem likely to
yield even better model performance. The simplest is using larger datasets,
which are readily available, e.g. by extracting larger sets of fragments from
Govdocs1. The upper bound on dataset size in these experiments was adopted
mainly to avoid the overhead of streaming partial datasets to and from storage
devices; experiments utilizing larger training sets would likely need to implement
partial loading of datasets or would need to be executed on machines with
significantly more memory than the hardware used in these experiments.

Another method for improving performance would be trying different train-
ing techniques. These experiments only used the standard stochastic gradient
descent algorithm, but neural network research has produced many other ad-
justed training algorithms and techniques which may be valuable in this task.
In particular, gradient clipping may be useful to counteract the chaotic training
behavior and unpredictable dramatic increases in loss for the recurrent net-
works [14].

Automated model selection techniques would potentially be the most expen-
sive method for improving performance but would likely be successful in finding
better models than manual tuning alone. However, simple techniques such as
grid searches should be avoided due to the very large number of hyeperparame-
ters; a grid search procedure could easily be constructed for these models with
a duration exceeding a human lifetime (without the inclusion of trivially small
differences in parameter values). More sophisticated techniques should be em-
ployed to make better use of computing resources. In particular, neural network
models selected through automated techniques based on Bayesian optimization
have been demonstrated to be capable of surpassing the performance of models
tuned manually by human experts [30].

One of the first methods of improving performance that should be tried is
replacing the categorical cross-entropy loss with binary cross-entropy loss. The
combination of sigmoid output units and categorical cross-entropy loss that was
used in these experiments is problematic because, besides not being the true
cross-entropy, incorrect predictions are not directly penalized during training.
Given each probability estimate pi for a single training example and correspond-
ing target yi ∈ {0, 1} where yi = 1 if the training example belongs to class i,
the categorical cross-entropy is defined as

−
∑
i

[
yi ln pi

]
and the binary cross-entropy is defined as

−
∑
i

[
yi ln pi + (1− yi) ln (1− pi)

]
.

Under minimization, the categorical cross-entropy drives pi towards 1 if yi = 1,
but it lacks the second term of the binary cross-entropy and thus does not
drive pi towards 0 if yi = 0. Part of the reason for this is that categorical

26

cross-entropy is typically used with softmax output layers representing a single
probability distribution over mutually exclusive classes, where increasing one
output decreases all of the others [14]. However, since sigmoid output units
were used, having no such interdependency, the probability estimates for the
incorrect classes were simply ignored during training, likely contributing to the
wide distribution in prediction confidence. This oversight was noticed after the
experiments were completed.

6.3 Applicability

The current best models do not meet all of Roussev and Garfinkel’s require-
ments for practical file fragment classifiers for file carving. The challenge of
reliable error estimates was met by using a large dataset extracted from the
Govdocs1 corpus, and the challenge of speed could be met through the use of
parallelism if models were found with adequate performance. The challenges
of perfect precision and 99 percent accuracy were not quite met; whether this
approach would be applicable to file carving depends mainly on whether models
could be found that are capable of achieving perfect precision while maintaining
high recall. The techniques discussed in the previous section should be used to
attempt to determine whether recurrent networks are capable of this.

Another potential application area for this approach is deep packet inspec-
tion. Classifying network packet payloads is a closely related problem, differing
only in the fact that the target types are a superset of those in file fragment
classification. Network intrusion detection would be the main potential appli-
cation in this area, for which researchers have used similar models to those used
in file fragment classification since before the emergence of any literature on the
latter [35]. In particular, this approach may be capable of providing powerful
heuristics for detecting malware in network traffic.

This approach does appear to be highly applicable to binary mapping, due
to its need for generalized classifiers and less strict requirements on precision
than file carving. The ability to construct universal classifiers is necessary to
fulfill Conti et al.’s vision of creating a tool that allows users to identify arbitrary
new types to be included in the mapping. Recurrent networks in particular also
have a desirable quality: they could potentially be used to classify variable-
length fragments, if a separate segmenting model were used in order to identify
exact boundaries between regions.

6.4 Practical Considerations for a Binary Mapping Tool

Due to the rather high computational cost of training recurrent networks using
this approach, several challenges would be faced in attempting to embed them
into a binary mapping tool. These challenges would be mostly mitigated by
embedding pretrained models into the tool designed to identify common types
of interest, but this would not be possible for models allowing the user to specify
new types to be included.

27

Initially, when the user has not yet requested any new types to be included in
the map, the tool could use pretrained models. Then, when the user identifies a
new type, the tool could begin constructing a new model in the background. The
model construction process could potentially be extensively parametrized to give
the user fine-grained control, or attempt to automatically select an appropriate
set of options.

Rather than only attempting to train a recurrent network for identifying
new types, the tool could try simpler models first and use them if they are able
to achieve adequate performance. This would allow substantially reducing the
cost in some cases and in other cases would provide some evidence to defend the
high costs if recurrent networks were the only option with sufficient accuracy.

Recurrent networks could be tuned in the background using an automated
procedure such as Bayesian optimization. The tuning could easily be paral-
lelized, including across multiple machines; this could be offloaded to a high
performance cluster in order to speed up model construction and to ease the
burden on the user’s workstation. Training of individual models could also
potentially be parallelized across multiple machines by sharding the training
data across nodes in a cluster, computing gradients locally and sending them
to a controller, and broadcasting parameter updates from the controller to the
gradient computation nodes.

Note that offloading computations to a model training cluster would not
necessarily require any dedicated hardware. Due to the growth of cloud com-
puting, a model training cluster could potentially be allocated, rescaled, and
deallocated dynamically and automatically in the cloud, introducing a simple
tradeoff between speed and cost. The tool could then offer the user straightfor-
ward cost management options such as only allocating model training resources
when explicitly requested and user-specified hourly price limits.

7 Conclusion

These experiments aimed to serve as a preliminary test for the ability of neural
networks using bits as input to function as generalized file fragment classifiers.
The main contributions of this study are the proposal of a novel lossless fea-
ture representation for file fragments and the introduction of neural network
architectures previously unused in this area and better suited for this task.

Future work should perhaps continue to perform simple benchmarks to com-
pare the performance of different network architectures but should probably fo-
cus on recurrent networks. These outperformed feedforward and convolutional
networks by a rather large margin.

Specific topics for future research include the following:

• Training models with binary cross-entropy to see if performance improves
as expected.

• Training models with larger datasets, including ones too large to fit into
memory.

28

• Trying adjustments to the training algorithm such as gradient clipping.

• Applying automated model tuning techniques such as Bayesian optimiza-
tion.

• Training recurrent networks for classifying variable-length fragments.

• Preparing training sets with embedded fragments including container meta-
data and adding the container formats to the models’ target types.

• Training recurrent networks for recognizing other types of fragments that
may be encountered in binary mapping, such as memory pages of target
executables.

• Training recurrent networks for identifying malware in network packets.

Promising results have been obtained for recurrent networks. Whether they
will be able to achieve sufficient performance to function as universal file frag-
ment classification models in a practical setting is an open question, but the
answer to this question seems likely to be yes.

References

[1] Aaron et al., “Distributed Autonomous Neuro-Gen Learning Engine for
Content-Based Document File Type Identification,” in Int. Conf. Cyber and
IT Service Management, South Tangerang, 2014, pp. 63-68.

[2] I. Ahmed et al., “On Improving the Accuracy and Performance of Content-
Based File Type Identification,” in Australasian Conf. Information Security
and Privacy, ACISP 2009: Information Security and Privacy, Brisbane,
2009, pp. 44-59.

[3] I. Ahmed et al., “Fast Content-Based File-Type Identification,” in IFIP Int.
Conf. Digital Forensics, DigitalForensics 2011: Advances in Digital Foren-
sics VII, Orlando, pp. 65-75.

[4] M.C. Amirani et al., “A New Approach to Content-Based File Type Detec-
tion,” in IEEE Symp. Computers and Communications, Marrakech, 2008,
pp. 1103-1108.

[5] M.C. Amirani et al., “Feature-Based Type Identification of File Fragments,”
Security and Commun. Networks, vol. 6, no. 1, pp. 115-128, Jan. 2013.

[6] S. Axelsson, “The Normalised Compression Distance as a File Fragment
Classifier,” in Digital Forensic Research Conf., DFRWS 2010, Digital Inves-
tigation 7, Portland, pp. S24-S31.

[7] N.L. Beebe et al., “Sceadan: Using Concatenated N-Gram Vectors for Im-
proved File and Data Type Classification,” IEEE Trans. Inf. Forens. Secu-
rity, vol. 8, no. 9, pp. 1519-1530, Sep. 2013.

29

[8] N. Beebe et al., “Data Type Classification: Hierarchical Class-to-Type Mod-
elling,” in IFIP Int. Conf. Digital Forensics, DigitalForensics 2016: Ad-
vances in Digital Forensics XII, New Delhi, pp. 325-343.

[9] W.C. Calhoun and D. Coles, “Predicting the Types of File Fragments,”
in Digital Forensic Research Conf., DFRWS 2008, Digital Investigation 5,
Baltimore, pp. S14-S20.

[10] G. Conti et al., “Automated Mapping of Large Binary Objects Using Prim-
itive Fragment Type Classification,” in Digital Forensic Research Conf.,
DFRWS 2010, Digital Investigation 7, Portland, pp. S3-S12.

[11] J.G. Dunham et al., “Classifying File Type of Stream Ciphers in Depth
Using Neural Networks,” in 3rd ACS/IEEE Int. Conf. Computer Systems
and Applications, Cairo, 2005.

[12] S. Fitzgerald et al., “Using NLP Techniques for File Fragment Classifica-
tion,” in Digital Forensic Research Conf., DFRWS 2012, Digital Investiga-
tion 9, Washington, DC, pp. S44-S49.

[13] S. Garfinkel et al., “Bringing Science to Digital Forensics with Standard-
ized Forensic Corpora,” in Digital Forensic Research Conf., DFRWS 2009,
Digital Investigation 6, Montreal, pp. S2-S11.

[14] I. Goodfellow et al., Deep Learning, Cambridge, MA: MIT Press, 2016.

[15] S. Gopal et al., “Statistical Learning for File-Type Identification,” in 10th
Int. Conf. Machine Learning and Applications and Workshops, Honolulu,
2011, pp. 68-73.

[16] R.M. Harris, “Using Artificial Neural Networks for Forensic File Type Iden-
tification,” M.S. thesis, Perdue Univ., West Lafeyette, IN, 2007.

[17] G.A. Hall and W.P. Davis, “Sliding Window Measurement for File Type
Identification,” ManTech Security & Mission Assurance, 2006.

[18] X. Jin and J. Kim, “A Practical Video Fragment Identification System,”
Int. J. Multimedia and Ubiquitous Eng., vol. 10, no. 6, pp. 165-176, June
2015.

[19] M. Karresand and N. Shahmehri, “Oscar—File Type Identification of Bi-
nary Data in Disk Clusters and RAM Pages,” in IFIP Int. Information
Security Conf., SEC 2006: Security and Privacy in Dynamic Environments,
Karlstad, 2006, pp. 413-424.

[20] M. Karresand and N. Shahmehri, “File Type Identification of Data Frag-
ments by Their Binary Structure,” in IEEE Information Assurance Work-
shop, West Point, 2006, pp. 140-147.

30

[21] A. Kattan et al., “GP-Fileprints: File Types Detection Using Genetic Pro-
gramming,” in European Conf. Genetic Programming, EuroGP 2010: Ge-
netic Programming, Istanbul, 2010, pp. 134-145.

[22] W.J. Li et al., “Fileprints: Identifying File Types by N-Gram Analysis,”
in Proc. Sixth Annu. IEEE SMC Information Assurance Workshop, West
Point, 2005, pp. 64-71.

[23] Q. Li et al., “A Novel Support Vector Machine Approach to High Entropy
Data Fragment Classification,” in Proc. South African Information Security
Multi-Conf, Port Elizabeth, 2010, pp. 236-247.

[24] M. McDaniel, “Automatic File Type Detection Algorithm,” M.S. thesis,
Dept. Comp. Sci., James Madison Univ., Harrisonburg, VA, 2001.

[25] M. McDaniel and M.H. Heydari, “Content Based File Type Detection Algo-
rithms,” in Proc. 36th Annu. Hawaii Int. Conf. System Sciences, Big Island,
2003.

[26] S.J. Moody and R.F. Erbacher, “SÁDI – Statistical Analysis for Data
Type Identification,” in Third Int. Workshop Systematic Approches to Dig-
ital Forensic Eng., Oakland, 2008, pp. 41-54.

[27] P. Penrose et al., “Approaches to the Classification of High Entropy File
Fragments,” Digital Investigation, vol. 10, no. 4, pp. 372-384, Dec. 2013.

[28] V. Roussev and S.L. Garfinkel, “File Fragment Classification—The Case
for Specialized Approaches,” in Fourth Int. IEEE Workshop Systematic Ap-
proaches to Digital Forensic Eng., Berkeley, 2009, pp. 3-14.

[29] V. Roussev and C. Quates, “File Fragment Encoding Classification—An
Empirical Approach,” in Digital Forensic Research Conf., DFRWS 2013,
Digital Investigation 10, Monterey, pp. S69-S77.

[30] J. Snoek et al., “Practical Bayesian Optimization of Machine Learning
Algorithms,” in Advances in Neural Information Processing Systems, Lake
Tahoe, 2012, pp. 2951-2959.

[31] L. Sportiello and S. Zanero, “File Block Classification by Support Vector
Machine,” in Sixth Int. Conf. Availability, Reliability and Security, Vienna,
2011, pp. 307-312.

[32] L. Sportiello and S. Zanero, “Context-Based File Block Classification,”
in IFIP Int. Conf. Digital Forensics, DigitalForensics 2012: Advances in
Digital Forensics VIII, Pretoria, pp. 67-82.

[33] S.J. Stolfo et al., “Fileprint Analysis for Malware Detection,” in Proc. 2005
ACM Workshop Rapid Malcode, Alexandria.

31

[34] C.J. Veenman, “Statistical Disk Cluster Classification for File Carving,”
in Third Int. Symp. Information Assurance and Security, Manchester, 2007,
pp. 393-398.

[35] K. Wang and S.J. Stolfo, “Anomalous Payload-Based Network Intrusion
Detection,” in Int. Workshop Recent Advances in Intrusion Detection, RAID
2004: Recent Advances in Intrusion Detection, Sophia Antipolis, 2004, pp.
203-222.

[36] T. Xu et al. (2014), “A File Fragment Classification Method Based on
Grayscale Image,” J. Computers, vol. 9, no. 8, pp. 1863-1870, Aug. 2014.

[37] G. Piatetsky, KDnuggets, “Python overtakes R, becomes the leader in
Data Science, Machine Learning platforms,” 2017 [Online]. Available:
http://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-
data-science.html. Accessed 6 Mar. 2018.

[38] scikit-learn, https://github.com/scikit-learn/scikit-learn. Accessed 6 Mar.
2018.

[39] F. Chollet et al., Keras, https://github.com/keras-team/keras.

[40] P. Lamblin, “MILA and the future of Theano,” 28 Sep. 2017 [On-
line]. Available: https://groups.google.com/forum/#!msg/theano-
users/7Poq8BZutbY/rNCIfvAEAwAJ

32

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2018

	File Fragment Classification Using Neural Networks with Lossless Representations
	Luke Hiester
	Recommended Citation

	Introduction
	Background
	Early Work
	Survey of Techniques
	Roussev and Garfinkel's Case for Specialized Approaches
	Conti et al.'s Case for Generalized Approaches
	Rationale of This Study's Approach

	Resources and Tools
	Govdocs1
	Python
	Keras
	Theano

	Methods
	Dataset Extraction
	Feature Representation
	Models
	Model Tuning
	Experiments

	Results
	Experiment A
	Experiment B

	Discussion
	Relative Performance of Network Architectures
	Improving Model Performance
	Applicability
	Practical Considerations for a Binary Mapping Tool

	Conclusion
	References

