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ABSTRACT 

Antibiotic resistance is an ever-growing topic of concern within the medical field causing 
researchers to examine the mechanisms of resistance to develop new antimicrobials. Bacteria’s 
ability to form biofilms is one mechanism which aids in antimicrobial resistance. Staphylococcus 
aureus is of special interest as it is one of the most frequent biofilm-forming bacteria found on 
medical devices causing infections and posing dangerous threats in a clinical setting. A recently 
developed antimicrobial gel has been shown to have profound effects on treating bacterial 
infections and wound healing. This research is centered upon examining the antimicrobial effects 
of this gel on the three different stages of biofilm formation in clinical and laboratory strains of S. 
aureus. Through a series of experiments examining the effects this gel has on S. aureus at the 
stages of biofilm attachment, maturation, and dispersion, the gel has shown significant levels of 
inhibition. These findings indicate that the novel gel disrupts biofilm forming processes of S. 
aureus, which provides useful information for fighting infections in the medical field. Further 
research on the uses and effects of this new gel could lead possibility using the antimicrobial 
compound for a variety of clinical purposes. 
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I.  INTRODUCTION 

Biofilms 

 The resistance of bacteria to antibiotics continues to be a threat on human health, killing 

thousands of people each year as a result of infections. A major contribution to antibiotic resistance 

is bacteria’s ability to form biofilms. Biofilms are colonies of microorganisms which are held 

together by an extracellular matrix, providing homeostasis and allowing them to withstand extreme 

and fluctuating environments (1). Biofilm development occurs in three phases: attachment, 

maturation, and dispersion. Through a series of reactions, free floating bacterial cells attach and 

adhere to a selected surface (2). Upon attachment, bacterial growth of the biofilm occurs as the 

cells divide and form micro colonies which cover the surface area (2). As multiple layers of 

bacteria are formed on the surface, the biofilm becomes mature and creates a matrix for cell 

signaling and distribution (2). Dispersion occurs in response to changes within the environment, 

such as a lack of nutrients, allowing bacterial cells to detach to preserve the biofilm (2). Dispersed 

cells become free floating cells that can reattach and begin the biofilm development process again 

(3). The maintenance of biofilms is due to their extracellular matrix of polymeric substances which 

compromises over 80% of the biofilm and is responsible for keeping it intact (2). The matrix has 

many roles within the biofilm, most importantly acting as a diffusion barrier, protecting the 

organism from harmful substances such as antibiotics (2). This barrier, along with several other 

features of the biofilm increases antibiotic resistance and allows infections to persist. 
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Staphylococcus aureus 

 Biofilms, being a leading cause of acute and chronic infections, pose a serious threat in 

clinical settings as they are commonly found on medical devices. The leading cause of biofilm 

infections is understood to be the Staphylococcus species, as staphylococci make up much of the 

normal flora and are found on the surface of the skin (4). Specifically, Staphylococcus aureus can 

persist on medical devices through interactions with the surface and human proteins which coat 

the device, creating an increasing infection control problem in the healthcare field (5). The 

regulation of several key factors has an important role in S. aureus biofilm formation such as the 

regulation of attachment factors, exopolysaccharide synthesis, and the accessory gene regulator 

quorum sensing system (agr) (4). 

 S. aureus contains attachment factors which contribute to the attachment of bacteria during 

the beginning stages of infection and allow for biofilm development (4).  These attachment factors 

bind to human proteins like fibrinogen and fibronectin, which cover indwelling medical devices, 

increasing colonization of bacteria (4). As the bacterial cell density increases, an agr quorum-

sensing system recognizes these factors are no longer needed and terminates the expression of 

these factors (4). 

 As staphylococcal biofilms mature, aggregation and structuring of the bacteria occur (4). 

Intercellular aggregation within staphylococci is due to the molecule polysaccharide intercellular 

adhesion (PIA), which combined with other molecules make up the extracellular matrix of the 

biofilm (4). PIA synthesis is of great importance in biofilm formation as it increases the integrity 

of the biofilm, resulting in increased virulence of infections (6). Research has found that anaerobic 
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conditions significantly increase the production of PIA in S. aureus, therefore increasing PIA 

production in biofilms as well due to decreased oxygen levels within the biofilm. (4,6). 

 In addition to reducing the expression of surface proteins, the agr quorum-sensing system 

of S. aureus produces many virulence factors which contribute to staphylococcal growth and 

infections (7). Among these is the expression of phenol-soluble modulins (PSM), which are 

involved in the development and detachment of biofilms and have fatal effects on the human 

immune system (8). The regulation of each of these factors, along with several others, contribute 

to the growth of S. aureus biofilms and their persistence in infections.  

Previous Research 

 As technology in the healthcare industry has grown using more medical devices, there has 

been a rise of infection rates causing researchers to study biofilm function to develop anti-biofilm 

strategies and treatments. Several treatments have shown to prevent and inhibit biofilm growth, 

but there has yet to be developed a treatment which eliminates biofilm activity entirely. Previous 

research on current antibiotics, the resistance of biofilms to disinfectants, the antimicrobial 

properties of hydrogels and topical agents, and new biofilm eradication strategies has added 

valuable information to the discussion. 

 While a vast number of antibiotics exist, few are effective at targeting bacteria within 

biofilms. Currently, oxazolidinones and tetracyclines are being used to treat staphylococcal 

biofilms as they inhibit protein synthesis (9). Linezolid, the only oxazolidinone approved for 

clinical use, works by disrupting the assembly of ribosomes during protein synthesis (9). When 

combined with rifampicin, linezolid had bactericidal effects, however it was fount to only be 

effective against biofilm infections when administered for long periods of time (9). Research 
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discovered tetracycline antibiotics are most effective in preventing infections, as they prevent the 

binding of tRNA during protein synthesis (9). Clinical trials revealed that catheters coated with a 

combination of tetracyclines and additional antibiotics had only an 8% colonization, compared to 

a 25% colonization of those untreated (9). Despite preventing bacterial growth, gram positive 

bacteria have developed a resistance to tetracyclines, thus reducing their effectiveness (9). 

 In addition, lipopeptides and glycopeptides are antibiotics being used to target the cell 

membrane of biofilm bacteria (9). Daptomycin, a lipopeptide which depolarizes bacterial cell 

membranes and causes cell death is an alternative antibiotic as S. aureus is becoming resistant to 

vancomycin (9). Research studies revealed that daptomycin is more effective in treating 

staphylococcal biofilm infections than other antibiotics including clindamycin, linezolid, and 

vancomycin as it effectively killed 96% of biofilm bacteria (9). Although S. aureus resistance to 

vancomycin is increasing, it continues to be a commonly used antibiotic in treating such infections 

(9). The glycopeptide vancomycin inhibits cell wall synthesis by binding to peptidoglycan and 

preventing cross-linking (9). The effects of vancomycin eventually lead to cell death, but due to 

resistance mechanisms it does not result in complete eradication of biofilm-associated bacteria (9).  

 Research has also been conducted on the antimicrobial properties of hydrogels and 

disinfectants against biofilms as potential treatment options. A study was conducted on the inner 

gel of the Aloe barbadensis plant, commonly known as Aloe vera, to examine its antimicrobial 

properties as a possible treatment for biofilms. Aloe vera is a common ingredient in many 

medicinal products, having over 75 active ingredients found in the inner gel alone, while the leaf 

is known to have antibacterial and bactericidal properties (10). The study tested the effects of the 

Aloe vera inner gel on Shigella flexneri, a popular bacterium in gastrointestinal illnesses and 

Streptococcus pyogenes (10). Research revealed that the bacteria was susceptible to the inner gel 
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of Aloe vera, indicating that these ingredients could be vital for the future development of 

antimicrobial products that effectively treat biofilms (10). 

 Chitosan/dextran based (CD) hydrogels exhibit antimicrobial properties due to chitosan’s 

polycationic structure which disrupts the cell membrane of bacteria (11). These hydrogels were 

found to lose their bactericidal activity in neutral conditions, so a modified hydrogel was used to 

determine how they affected varying types of bacteria (11). The modified hydrogel was created 

using N-succinyl chitosan (SC) and dextran aldehyde (DA), which allowed the chitosan to be 

soluble at neutral conditions (11). Results showed that the CD hydrogel had bactericidal effects 

against E. coli, S. aureus, S. pyogenes, and C. perfringens, and DA was found to be the more 

antimicrobial component than SC (11). P. aeruginosa and C. albicans were not affected by the CD 

hydrogel, but both were inhibited by high concentrations of the DA component (11). The study 

found the binding of the DA component with amino groups of bacterial cell walls was the 

mechanism for antimicrobial activity in the hydrogel (11). The DA component contributed to the 

research of biofilm treatment and further developed the field, but was not effective against all 

bacteria. 

 Biofilms increased resistance to disinfectants and other antimicrobials has prompted 

research to examine what properties of bacterial biofilms contribute to their resistance. 

Disinfectants are used on nonliving objects to destroy all bacteria, while antibiotics are used to 

treat internal infections and only target specific bacteria (12). While disinfectants can kill all 

pathogenic microorganisms, the complex structure of biofilms inhibits biocides from penetrating 

through the multiple layers of bacteria, reducing their efficacy (12). A study on the use of chlorine 

on P. aeruginosa and K. pneumoniae revealed that only 20% of the chlorine penetrated the core of 

the biofilm (13). Also, the components of bactericides are reactive molecules which interact 
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differently with varying bacteria, making them inefficient as a solution for treating all biofilms 

(12). The success of disinfectants requires targeting the extracellular matrix to break down these 

diffusion and interaction barriers in biofilms, and the use of enzymes is one possible way this could 

be done (12). 

 As the efficacy of antibiotics and hydrogels treating biofilms continues to be a challenge, 

new treatment options aimed at eradicating biofilms are being researched. Among the new 

strategies being tested is the use of enzymatic treatments to degrade the extracellular matrix and 

weaken biofilm structure (9). When this occurs, the bacteria disperse from the biofilm and 

antibiotics become more effective at targeting the bacteria (9). Several enzymes including 

dispersin B, DNases, and lysostaphin have properties which degrade the polysaccharide matrix, 

suggesting that they have the potential to be used as a treatment to prevent and clear biofilm 

infections (9). 

 Another strategy attempting to disrupt biofilms causing them to regain sensitivity to 

treatment options is targeting the agr quorum sensing system (9). The agr system is a cellular 

communication system that allows the bacteria to share information regarding cell density to 

regulate the formation and dispersal of staphylococcal biofilms (9). Research has shown that 

activation of the agr system has inhibitory effects on biofilm formation, resulting in increased 

levels of proteases and disrupting cell-cell interactions which causes cells to detach from the 

biofilm and return to a planktonic state (9). While this approach has proved successful in treating 

staphylococcal biofilm infections, it is still being studied as there is a concern that this system may 

cause S. aureus to become more invasive (9). 
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Antimicrobial Growth Compound 

 While many strategies and treatments for biofilm prevention and eradication have been 

studied, the complexity of their resistance has made it difficult to develop a treatment that is 

entirely successful. A newly developed antimicrobial growth compound (AGC), composed of 

antioxidants (vitamin C and E) and zinc, has shown profound effects in pain relief and wound 

healing. Due to its incredible results, it is believed that this novel gel could have many applications 

in the healthcare field, such as being used as an antimicrobial to treat bacterial infections. Previous 

research revealed the AGC was not susceptible to Staphylococcus aureus, however these studies 

were only performed in liquid cultures. Figure 1 shows the susceptibility of S. aureus to the AGC 

compared to other bacteria. 

 

Figure 1: Incubation of bacteria with 4% Antimicrobial Growth Compound revealing 
Staphylococcus aureus most susceptible 
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 Additional research is needed to study the effects of the AGC on biofilms. As biofilms 

contribute greatly to antibiotic resistance, the mechanism of action of how AGC could affect the 

development and maturation of biofilms is under investigation. My research is focused on studying 

the antimicrobial effects of the novel gel on the three stages of biofilm development, specifically 

in Staphylococcus aureus. The results of my research provide new information about this 

antimicrobial compound, which can lead to the progression of developing new antimicrobials to 

fight antibiotic resistance. 
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II.  MATERIALS AND METHODS 

 The effects of the AGC were examined on the attachment, maturation, and dispersion 

phases of S. aureus biofilm development via different methods and assays by measuring the optical 

density, crystal violet staining, MTT reduction, and calculating colony forming units. All tests 

were performed in triplicate. 

Attachment Assay 

 To observe the effects of the AGC on the attachment phase of S. aureus biofilm 

development, a 10% solution of AGC broth was initially added to a 96 well plate containing either 

clinical and laboratory strains of S. aureus in lysogeny broth (LB) at an optical density (OD600) 

of 0.01 which is equivalent to 1x106 cells/mL. The 10% solution of AGC was prepared by 

weighing 10g AGC, adding it to a bottle, and raising the volume to 100mL using LB broth. 

Controls of clinical and lab strains of S. aureus in LB without AGC were also added to the well 

plate for comparison. The plate was placed in an incubator at 37℃ for 24 hours to allow for biofilm 

development. After 24 hours, the plates were removed from the incubator and assayed for OD600, 

OD595 after crystal violet staining, OD550 after MTT reduction, and observed for the presence of 

colony forming units (CFU). 

Optical Density 

 The OD assay was used to determine the effects of the AGC on S. aureus biofilm density. 

To find the OD of the samples, 200 µl of the sample from a well was added to 800 µl of phosphate-

buffered saline (PBS), and the absorbance of this solution was measured at 600 nm wavelength. 

LB containing 10% AGC was used as the blank. 
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Crystal Violet 

 Crystal violet staining was performed to determine the effects of the AGC on S. aureus 

biofilm mass. The liquid from each well was carefully discarded, and then the remaining biofilm 

in each well was washed with PBS. Upon removal of PBS, 0.01% crystal violet (200 µl) was added 

to each well and removed after 10 minutes. Lastly, 30% acetic acid (200 µl) was added to each 

well, and the OD at 595 nm wavelength was measured using a microplate reader. LB only and LB 

containing 10% AGC served as the controls. 

MTT Reductase 

 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay determined 

the effects of the AGC on the viability of cells, comparing the S. aureus biofilm treated with AGC 

to the controls. Viable cells can reduce MTT to formazan, producing a purple color, indicating 

how much metabolic activity is present within the biofilm. MTT (20 µl) was added to the biofilm 

in each well, and the plate was placed in the incubator at 37℃ for 30 minutes. After 30 minutes, 

the plate was removed, and acidic isopropanol (100 µl) was added to each well to stop the reaction 

of MTT. A microplate reader was used to measure the OD at 550 nm wavelength of the samples, 

with LB only and LB containing 10% AGC as the controls. 

Colony Forming Units 

 The number of colony forming units (CFU) was determined to assess the viability of cells, 

or their ability to reproduce. Viable cells, when placed on a culture under special conditions, will 

aggregate and reproduce to form colonies of bacteria. To determine the number of colony forming 

units present in the AGC treated S. aureus biofilm compared to the untreated, the well contents of 

each sample were mixed, and 100 µl of each sample was removed and added to separate mannitol 
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salt agar (MSA) plates. The plates were incubated at 37℃ for 24 hours. After 24 hours, the plates 

were removed from the incubator and examined to count the number of colonies present. 

Maturation Assay 

 The effects of AGC on the maturation phase of S. aureus biofilms was examined using the 

previously explained technique in the attachment assay, except the 10% AGC broth was added 

after the clinical and laboratory strains of S. aureus were added to the well plate and incubated at 

37℃ for 2 hours to allow for the development of biofilms. Upon addition of 10% AGC, the well 

plate was placed in the incubator at 37℃ for 24 hours. After 24 hours, the OD at 600 nm 

wavelength, crystal violet staining, MTT reduction, and colony forming unit assays were 

performed using the same methods as described in the attachment assay. 

Dispersion Assay 

 The dispersion phase of S. aureus biofilms and their reaction to the AGC was studied using 

the same methods as previously mentioned, but the 10% AGC broth was added after the clinical 

and laboratory strains of S. aureus were added to the well plate and incubated at 37℃ for 24 hours. 

After 24 hours, the 10% AGC was added to each well and the plate was incubated for another 24 

hours. The same tests were performed as described in the attachment and maturation assays. 
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III.  RESULTS 

 Among all three biofilm phases, the AGC significantly reduced viability of clinical and 

laboratory strain S. aureus by assessment through biofilm density, mass, and viability. The AGC 

was tested on the attachment phase of biofilm formation by initially adding the gel to clinical and 

laboratory strains of S. aureus and evaluating biofilm formation after 24 hours. Image 1 shows the 

resulting biofilms established in the well plate after 24 hours. There is a clear visible reduction in 

biofilm growth of both the clinical and laboratory strains of S. aureus that were treated with the 

AGC at the attachment phase of biofilm formation. The optical density assay showed that the AGC 

reduced clinical S. aureus biofilm density by 72% and laboratory S. aureus biofilm density by 66% 

at the attachment phase, as shown in Figure 2. The crystal violet assay results shown in Figure 3 

revealed that the AGC reduced clinical S. aureus biofilm mass by 96% and laboratory S. aureus 

biofilm mass by 87% at the attachment phase. 

	

Image 1: Attachment Phase S. aureus Biofilms (clinical and lab) 
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Figure 2: Attachment Phase Optical Density 

	

Figure 3: Attachment Phase Crystal Violet Staining 

	

 S. aureus biofilm viability was greatly reduced by the AGC at the attachment phase as 

shown by the MTT reduction and CFU assays in Figures 4 and 5. The MTT reduction revealed a 

91% reduction of clinical S. aureus and a 54% reduction of laboratory strain S. aureus, while the 

amount of CFU decreased by 96% in the clinical S. aureus and 83% in the laboratory S. aureus 

when treated with the AGC. These results indicate that the AGC greatly prevented biofilm 

formation of S. aureus at the attachment phase. 
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Figure 4: Attachment Phase MTT Reduction 

	

Figure 5: Attachment Phase Colony Forming Units 

	

Image 2: Attachment Phase Colony Forming Units (top–Clinical S. aureus, bottom-Clinical S. 
aureus+AGC)  
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The effects of the AGC on the maturation phase of biofilm formation in S. aureus were 

tested by adding the AGC after biofilms established for two hours. The reduction effects of the 

AGC were not as effective on established biofilms as were preventing biofilm growth by being 

adding during the attachment phase, but the results still prove to be significant. The optical density 

assay revealed that the AGC caused a 49% reduction of clinical S. aureus biofilm density and 58% 

reduction in laboratory S. aureus biofilm density, as shown in Figure 6. The results of the crystal 

violet staining (Figure 7) show that the AGC reduced the biofilm mass of clinical S. aureus by 

45% and laboratory S. aureus biofilm mass by 37%. 

	

Figure 6: Maturation Phase Optical Density 
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Figure 7: Maturation Phase Crystal Violet Staining 

	

	 Cell viability was reduced by the AGC significantly when added during the maturation 

phase of biofilm formation, as shown by the results in Figures 8 and 9. The MTT reduction assay 

showed that the AGC had an 85% reduction in biofilm viability of clinical S. aureus and 86% 

reduction for the laboratory S. aureus when added to already established biofilms. When plated on 

MSA, the colony forming units revealed the AGC had a 46% reduction in cell viability of clinical 

S. aureus and a 37% reduction in the laboratory S. aureus.  

	

Figure 8: Maturation Phase MTT Reduction 
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Figure 9: Maturation Phase Colony Forming Units 

	

 The effects of the AGC on the dispersion phase of biofilm formation in S. aureus were 

tested by adding the gel after biofilms were established and matured for 24 hours. While there was 

not a great reduction in the biofilm density of S. aureus after being treated with the AGC, the AGC 

significantly reduced the biofilm viability when added during the dispersion phase. The AGC had 

a 47% reduction in clinical S. aureus biofilm density and 32% reduction in laboratory S. aureus 

biofilm density when added during the dispersion phase of biofilm formation, shown in Figure 10. 

The crystal violet staining assay revealed a 66% reduction in clinical S. aureus biofilm mass and 

60% reduction in laboratory S. aureus. Image 3 shows a photograph of the developed biofilms and 

the differences between the AGC treated and untreated, during crystal violet staining. 
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Figure 10: Dispersion Phase Optical Density 

 

Figure 11: Dispersion Phase Crystal Violet Staining 

	

Image 3: Dispersion Phase Crystal Violet Staining Plate (top – S. aureus only, bottom - S. 
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0

0.2

0.4

0.6

0.8

1

1.2

Clin	 Clin	LAV Lab Lab	LAV

O
D 6

00

Biofilm	Density,	Optical	Density

0
0.5
1

1.5
2

2.5
3

3.5
4

Clin	 Clin	LAV Lab Lab	LAV

O
D 5

95

Biofilm	Mass,	Crystal	Violet	Staining



 
	

25 

The MTT reduction assay showed a significant amount of reduction in biofilm viability 

when the biofilms were treated with AGC during the dispersion phase of development. Figure 12 

shows a 91% reduction in clinical S. aureus biofilm viability and 86% reduction in laboratory S. 

aureus biofilm viability. Biofilm viability was also reduced during the dispersion phase as seen in 

the CFU assay (Figure 13), with a 62% reduction in CFU in clinical S. aureus and 57% reduction 

in CFU in laboratory S. aureus. 

	

Figure 12: Dispersion Phase MTT Reduction 

	

Image 4: Dispersion Phase MTT Reduction (top rows - S. aureus+AGC, bottom rows - S. aureus 
only) 
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Figure 13: Dispersion Phase Colony Forming Units  
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IV.  DISCUSSION AND CONCLUSION 

 As antibiotic resistance is an ongoing problem in the medical field, the attempt to develop 

new drugs and antibiotics that successfully fight infections is crucial. Staphylococcus aureus 

biofilms are one of the leading causes of clinical infections and are highly antibiotic resistant due 

to their intrinsic properties, making them difficult to treat. A recently developed AGC has had 

profound effects when used to treat bacterial infections and wounds, causing us to question how 

the AGC would react with cells of S. aureus biofilms. Through a series of experiments testing how 

the AGC effects S. aureus biofilm development at three different stages, we discovered the AGC 

significantly reduced not only the biofilm’s mass and density, but also the viability of the cells 

present. 

 The AGC had the greatest effects on the attachment stage of biofilm development when 

added before the biofilm was able to mature. Therefore, the AGC disrupts the attachment 

mechanisms preventing the biofilm from growing and entering the maturation phase. The great 

reduction in cell viability reveals how effectively the AGC kills S. aureus cells before biofilm 

formation occurs. When the AGC was added during the maturation phase of development, it also 

had reducing effects on the biofilm but was not as effective as in the attachment phase. The effects 

of the AGC may not be as effective on already established S. aureus biofilms due to the complexity 

of the biofilm matrix preventing the AGC from reaching all the cells. The AGC also had reducing 

effects on the dispersion phase of development, indicating that the compound inhibited the 

dispersive properties. The maturation and dispersion assays which allow S. aureus to grow before 

the addition of the AGC indicate the AGC may be bacteriostatic, stopping the bacteria from 

reproducing, rather than bactericidal and killing the bacteria present.  
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 These results add new information to the discussion about infectious biofilms and antibiotic 

resistance. S. aureus biofilms are one of the strongest, most threatening group of bacterial 

microorganisms for infection, yet this newly developed AGC has shown profound reducing effects 

on their biofilm activity. This leads to the need of further research to understand what mechanisms 

of action the AGC takes against these cells and how it is successful against such a complex biofilm 

structure. Researching the bacteriostatic mechanisms of the AGC, examining the effectiveness of 

AGC against polymicrobial biofilms, and testing the AGC in combination with medical devices 

are potential future areas Further research on the uses and effects of this new gel can lead to the 

possibility of using antimicrobial compound for a variety of clinical purposes in fighting infection 

and antibiotic resistance.  
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