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Screening of Siderophore Producers from Soil 

 

By 

 

Rana Elgazzar 

 

 

ABSTRACT 

 

Iron is a vital nutrient for the maintenance of enzymatic function, electron transport, DNA 

synthesis, and other metabolic processes. Thus, bacteria and other microorganisms cope with 

iron deficiency by secreting high-affinity iron chelators called siderophores. This investigation 

aimed to characterize siderophore-producing soil bacteria. The soil provides the most complex 

ecological environment where one can look for promising siderophores to be used for treating 

either iron overload conditions or to be used as an antibiotic carrier. 
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INTRODUCTION 

 

1. Iron and bacteria  

 

As science illuminates greater understanding of the microbial world, identification of 

regulatory bioactive compounds uncovers new targets for antibiotic drugs and allows us to tackle 

the greatest challenges in infectious diseases. Better understanding of how bacteria obtain and 

process essential nutrients is central to this cause. Iron, essential for all living organisms, except 

for the genus Lactobacilli and Streptococcus sanguis, is among such vital nutrients and is 

especially critical to the growth of microorganisms in which iron deficiency is certainly lethal 

[1]. Iron is necessary for the maintenance of enzymatic function and many metabolic processes. 

Specifically, iron serves as a component of iron-sulfur centers of cytochromes in the electron 

transport chain. In anaerobic bacteria, iron may also serve as a terminal electron acceptor in 

energy producing pathways [2]. Iron is also an integral cofactor in many enzymes such as 

nitrogenases of nitrogen fixing bacteria and in reductases that convert ribonucleotides to 

deoxyribonucleotides, and thus is required for DNA synthesis [3].  

Iron is the fourth most abundant element on the earth’s crust, following oxygen, silicone, 

and aluminum. Despite its abundance in nature, iron is not readily available in the reduced 

ferrous form (Fe2+). In aerobic conditions and physiological pH, ferrous iron is oxidized to its 

ferric form (Fe3+) which hydroxylates to form insoluble Fe(OH)3 polymers, rendering it 

inaccessible for acquisition by microbes [4]. The concentration of ferric iron in the environment 

is about 10-18 M, meanwhile, bacteria maintain an internal iron concentration near 10-6 M [5]. 

Therefore, microorganisms in iron-limiting conditions must utilize a mechanism to maintain a 

sufficient supply of usable iron. To circumvent this limitation, bacteria produce and secrete low-

molecular-weight iron chelators known as siderophores. Greek for “iron bearer,” siderophores 
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have a high affinity for Fe3+ and thus capture extracellular ferric iron and shuttle it across the 

cellular membrane for productive use. In fact, the association constant of siderophores for ferric 

iron lies between 1012 - 1052 [6]. Siderophore-mediated iron transport involves a complex system 

of membrane proteins and transporters. The action of these systems is regulated by external iron 

concentration and expressed only when bacteria are deprived of iron [7]. Most commonly, 

siderophore biosynthesis is negatively controlled by intracellular iron concentrations. In 

particular, the Fur (ferric uptake regulator) repressor protein is responsible for regulating 

synthesis [8].  

2. Siderophores 

Siderophores are as diverse as the microorganisms which produce them. This diversity is 

thought to be due to evolutionary pressures of bacteria that facilitated the development of 

siderophores which could not be utilized by other organisms [9]. Although over 500 different 

compounds provide iron transporting functions, four major classes chemically characterize 

siderophores in relation to metal binding sites [4]. These iron-binding functional groups, derived 

from modified amino acids, include catecholates, hydroxymates, carboxylates, and mixed types. 

Catecholates contain phenolate groups and are commonly produced by organisms such as Vibrio 

cholerae, Streptomyces, and most Enterobacteriacae. In contrast, hydoxymates are classified by 

the presence of hydroxamic acids and are widely found in opportunistic pathogens and most 

fungi. In fact, pyoverdine, the most complex siderophore known to date, is a hydroxymate which 

gives fluorescence to Pseudomonads. Hydroxymate siderophores are more prevalent in lower pH 

while catecholates are found in more neutral or alkaline pH [10]. Additionally, the mixed class of 

siderophores are hybrids of hydroxymates and catecholates. A complete siderophore constitutes a 



 6 

large multi-enzyme structure containing a peptide backbone including one of three iron-

coordinating ligands which surround Fe3+ in an octahedral configuration [11].  

 

Figure 1. Examples of siderophore structure: hydroxymate (A), catecholate (B), and mixed type 

(C) siderophores  

3. Transport 

In low-iron states, newly synthesized siderophores are exported from the cell via transport 

pumps to scavenge for ferric iron. The siderophore-Fe3+ complex is too large to enter the cell 

through porins; therefore, internalization of the complex requires special outer membrane 

receptor proteins. The crystal structures of a few such receptors, FhuA, FecA, and FepA, have 

been identified [12]. Many of these share common structural components including a 22 

antiparallel ß-barrel domain and an N-terminal globular domain which acts as a plug to occlude 

A 

C B 

A A B 
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the ß-barrel. Furthermore, a conformational change in these domains leads to the passage of 

siderophore-Fe3+ [13]. These receptors require an energy source to transport the large complex 

through the periplasm and inner membrane. In gram-negative bacteria, the energy required for 

this function is provided by the coordination of an outer membrane protein, TonB, with two 

inner membrane proteins, ExbB, and ExbD, which presumably together catalyze active transport 

of the siderophore complex by creating proton-motive force [14]. The role of TonB, ExbB, and 

ExbD in energizing the siderophore uptake process has been extensively studied in E. coli [6]. 

After reaching the periplasm, the complex attaches to a periplasmic binding protein, then passes 

through the inner membrane via ABC transporters or permeases. In contrast, gram-positive 

bacteria which lack an outer membrane, instead have lipoproteins attached to the external side of 

the cytoplasmic membrane which channel the complex to ABC transporters. Cytoplasmic 

subunits of the ABC transporter undergo conformational change due to NTP hydrolysis, 

ultimately providing the energy for this process [15]. Once the siderophore-iron complex is 

delivered to the cell’s interior, Fe3+ is reduced to soluble Fe2+ after which it is released from the 

siderophore and made available for metabolic use. The large difference in binding constants for 

Fe2+ and Fe3+ is what drives the oxidation-reduction potential, facilitating the efficient release of 

Fe2+ inside the cell [16]. Meanwhile, the unbound siderophore is either degraded or recycled by 

efflux pumps into the external medium, as is the case with pyoverdine [17]. 

4. Soil Bacteria 

The study of siderophores has been advanced in part due to the successful isolation of 

siderophores from plant bacteria. Nitrogen-fixing microorganisms found in soil, such as the 

genus Rhizobacterium, must effectively compete with their plant hosts and other soil inhabitants 

for iron. Rhizobacterium produce rhizobactin, a mixed type of siderophore, among other iron 
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chelators with varying specificities [18]. Consequently, soil bacteria utilize efficient iron-

transport systems and are known to secrete siderophores to satisfy their iron needs. In soil 

bacteria, iron is also involved in the nitrification process and has immense implications for the 

symbiotic interaction between nodular bacteria and their plant hosts. For these reasons, plant 

bacteria are especially useful in the analysis of siderophore mechanisms.  

5. Applications 

Because iron is an essential nutrient for the survival of bacteria, their uptake mechanisms 

contribute an important piece of the puzzle in bacterial physiology. Growing knowledge of iron 

chelators also presents many productive applications in human and environmental health. First, 

in mammalian hosts, siderophores secreted by pathogens serve as virulence factors. Siderophores 

can sequester iron from host lactoferrin and transferrin in order to proliferate throughout the 

body. It has also been shown that siderophores are critical to the full maturation of biofilms, an 

important virulence factor for organisms like Psuedomonas. This is thought to be due to the role 

of intracellular iron concentration in the formation of biofilms. Conversely, the iron binding 

action of molecules like transferrin can limit the availability of iron in the blood for pathogenic 

bacteria and thus contribute to innate immunity [19]. Another important characteristic of 

siderophores is their capacity to chelate metals other than iron. This ability, coupled with high 

affinity of specific ions, make siderophores an effective alternative for phytoextraction of toxic 

substances from the environment that may be harmful to crops. Similarly, siderophores that are 

secreted near roots can suppress plant diseases by limiting iron supplies for surrounding 

pathogens [20]. Siderophores are also being explored as drug delivery agents in the battle against 

infectious diseases. Antimicrobial resistance is a serious problem plaguing the medical 

community. In the United States, each year two million people are infected with antibiotic 
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resistant bacteria and, of that number, 23,000 people die [21]. To facilitate evolutionary 

advantage, some bacteria can recognize and internalize the siderophore-iron complexes produced 

by other species. This “thievery” is further manipulated by some bacteria to attach toxic 

compounds to siderophores. This form of natural antibiotic delivery is mediated by siderophore-

drug conjugates known as sideromycins. For example, Klebsiella pneumoniae produce microcins 

which are the first members of a class of antimicrobial peptides with siderophore-like post-

transcriptional modification [22]. This model of natural antibiotic delivery is being used to 

design synthetic drugs through the “Trojan Horse” method. In this process, biomimetic 

siderophore moieties with optimal iron complexing capacity are synthesized, then conjugated to 

drugs like ß-lactams, cephalosporins, and carbapenems. Eventually, a drug that is unable to 

permeate the membrane barrier can gain access to the cell by being recognized by a receptor as a 

part of a siderophore complex. These conjugates serve a dual purpose as well: providing needed 

iron and transporting the antibiotic that is attached [23]. In addition, the mechanism of efficient 

iron acquisition guided by siderophores offers a hopeful cure for human iron overload diseases. 

Currently, the siderophore desferrioxamine (DFO) is used clinically in the treatment of iron 

overload diseases such as haemochromatosis and β-thalassemia. However, DFO has multiple 

disadvantages; it is expensive, orally inactive, and has a short serum half-life. As a result, 

treatments using DFO require long periods of subcutaneous infusion which often cause swelling 

and pain in patients. Therefore, more efficient, novel iron chelators that are economical, orally 

active, and better absorbed through the gastrointestinal tract are being sought as alternatives to 

DFO for the treatment of iron overload diseases [24]. 
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Research goals 

With all of these valuable applications, greater clarity of how siderophores operate in the 

natural environment is necessary. Although many siderophores have been isolated from various 

bacterial species, little has been done to find trends and unifying characteristics that bind 

siderophores from bacteria of similar origin. We do know that in addition to external iron 

concentrations, environmental factors such as pH, temperature, carbon source, and the presence 

of other metals, affect siderophore synthesis [10]. Further studies may elucidate factors which 

explain why some microbes from similar environments produce more siderophores than others. 

In the study of soil bacteria, in particular, depth, moisture, salinity, and the concentration of other 

metals in the soil may impact accessibility of iron and, ultimately, the siderophores employed for 

iron acquisition. Furthermore, geographical and chemical differences in the environment can 

impact the diversity of microorganisms. By identifying the dominance of certain bacteria in 

unique environments and analyzing their iron uptake systems, we may increase our ability to 

predict the nature of siderophores based on the biological identities of the bacteria which secrete 

them. For instance, gram negative and gram positive organisms differ widely in their outer 

membrane structures. Because siderophore function significantly depends on the transmembrane 

shuttling mechanism, such as that afforded by the TonB/ExbB/ExbD system, variations in 

surface structure directly impact the efficiency and biological nature of iron uptake. 

With the goal of better characterizing siderophores from various microbes, an exploratory 

study will be conducted for analysis of different soil samples with the goal of screening for 

siderophore producers. Due to the geochemical complexity and the competitive nature of its 

biosphere, soil presents one of the best sources for siderophore-producing organisms. First, a 

variety of soil samples will be collected from the region and the population of microbes will be 
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cultured. Among those which produce siderophores, the second objective is to genetically 

identify the organisms. Lastly, these findings will be reevaluated along with consideration for the 

origin of the soil sample, and to potentially identify novel iron uptake systems.  

 

MATERIALS AND METHODS 

1. Soil collection 

With help from the Geosciences Department at East Tennessee State University, soil was 

collected from two separate sites following a day of rain at the ETSU Eastman/Valleybrook 

Campus. The sites were assessed to ensure distinctions in geographical and chemical properties. 

The two varieties of soil included bare and forest soil. Bare soil is eroded and drained, has been 

removed of aluminum and silica, and has little to no organic matter. This soil is dry and orange 

in color. In sharp contrast, forest soil is rich and dense in organic content, retains more moisture, 

and is characterized with a dark earthy color. Three samples were taken from each site for a total 

of six soil samples.  

2. Culturing organisms from soil 

In order to sample the microorganisms contained in the bare and forest soil, for each of the 6 

samples, 0.2g of soil was weighed and suspended in distilled water. For each liquid soil 

suspension, 10 µL of supernatant was used to inoculate 5 ml of nutrient broth. The nutrient 

broths were incubated for 24 hours at 30°C. After 24 hours, turbidity was examined to analyze 

growth using a spectrophotometer to measure optical density of 1 ml from each nutrient broth at 

600 nm. The six samples were then returned to the incubator for another 24 hours. Optical 

density was measured again after 48 hours. Unused soil was frozen in -20°C for future use. 
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3. Siderophore detection 

The Chrome Azurol S (CAS) assay was used for detection of siderophore production 

throughout experimentation. The CAS assay is a universal chemical test that detects siderophore 

production. The assay is based on siderophore ability to bind to ferric iron with high affinity. The 

agar contains Chrome Azurol S (CAS) dye which, when complexed with Fe3+, is blue in color. If 

the inoculated organisms secrete siderophores, ferric iron is stripped from the dye, causing the 

media to change colors from blue to orange or yellow. Therefore, the presence of siderophores is 

indicated by coloration surrounding the inoculation site.  

 

Fe3+-dye (blue) + siderophore  Fe3+-siderophore + dye (orange) 

 

To identify siderophore producers in the six soil samples, 10 µl of supernatant from the 

initial soil suspension was inoculated onto a CAS plate by spreading the liquid evenly over the 

surface of the media. The CAS plates were kept in a 30°C incubator for 48 hours.  

4. Isolation of siderophore producers 

After 48 hours of growth, the CAS plates were examined for any areas of coloration. Areas 

of growth on the plates, which were surrounded by orange halos, were drawn with a sterile loop 

and streaked on a Luria Broth (LB) agar plate for isolation of the organism using the streak plate 

method. This step allows for isolation of a pure strain for further identification. The LB agar 

plates were then incubated at 30°C for 24 hours. After growth, isolated samples were given a 

number for tracking in later analysis. Purified colonies were also used to determine the 

organisms’ gram reaction and physical morphology by traditional gram staining technique. This 

allows for distinction between gram positive and gram negative bacteria, as well as bacilli and 

cocci.  
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Figure 2. Streak plate isolation on LB plate 

5. Confirmation and comparative analysis of siderophore production 

In order to confirm siderophore production and identify the single organism responsible for 

the color change observed in the initial CAS assay, an additional CAS plate was inoculated from 

the streak plates. Using aseptic technique, a loop was used to pick up a single colony from the 

LB plate. Subsequently, the inoculum was spotted onto a sectioned CAS plate and the section 

was labeled accordingly with the sample number. A total of 34 samples were inoculated. After 

48 hours in 30°C, the sectioned and labeled CAS plates were removed from the incubator and the 

zone of coloration was analyzed. The diameter (in mm) of the halo surrounding growth, as well 

as the degree of clarity were noted. The size of coloration is an indication of the amount of 

siderophore secreted, while the clarity is related to the efficiency and strength of iron chelation. 

Samples were given a score of 1, 2, or 3, depending on the clarity of its halo with 1 being 



 14 

“transparent” and 3 being “opaque.” Siderophore-positive samples were inoculated in cryotubes 

and frozen as stock cultures for future use.  

Preparation of the CAS medium is described as follows: 

A. CAS indicator solution:  

First, 60.5 mg of chrome azurol S was dissolved in 50 ml of ddH2O. Then, 10 ml of Fe(III) 

solution (27 mg FeCl3-6H2O and 83.3 µl of concentrated HCl in 100 ml ddH2O) along with 72.9 

mg hexadecyltrimethyl ammonium bromide (HDTMA) were dissolved in 40 ml ddH2O, 

resulting in a dark blue solution. The mixture was then autoclaved for sterilization.  

B. Basal agar medium 

In a 250 ml flask, 3 g of 0.1 M 3-(N-morpholino) propane sulfonic acid (MOPS), 0.05 g 

NaCl, 0.03 g KH2PO4, 0.01 g NH3Cl, and 0.05 g L-asparagine were combined in 83 ml ddH2O. 

Using 6 M NaOH, the pH of the solution was then brought to 6.8. To reach a total volume of 88 

ml, ddH2O was added. Finally, 1.5 g agar was added while stirring the solution over heat. The 

solution was then autoclaved for sterilization.  

C. Preparation of CAS agar plates 

The autoclaved basal agar medium and CAS indicator solution were both cooled in a 50°C 

water bath. Then, 2 ml of 50% glucose solution was added to the basal agar medium while 

stirring at low speed, along with 10 ml of the CAS indicator solution. After sufficient mixing, the 

100 ml resulting solution was poured carefully into sterile petri plates, with approximately 21-25 

ml of blue medium in each plate.  

6. Identification of siderophore producing soil isolates 

Colony PCR was used as the first step towards elucidation of biological identity of 

siderophore-producing soil isolates, as determined by a positive result on the CAS assay. Of the 
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32 positive samples, the 10 organisms with the greatest capacity to chelate iron were pursued 

further for identification. From the frozen stock cultures, selected samples were re-streaked on 

fresh LB agar plates in order to provide a fresh and pure colony for the PCR procedure. These 

plates were incubated for 24 hours at 37°C. The colony PCR protocol is described as follows 

with Table 1 showing the composition of each PCR reaction. 

 

Table 1. Composition of PCR reaction 

PCR Reaction 

Reagent Volume (µl) 

dH2O 22  

10X PCR buffer (Go Taq Flexi) 10 

25 mM MgCl2 (Promega) 3 

10 mM deoxynucleotide triphosphate mix (Promega) 1 

10X Enhancer (Eppendorf) 10 

DNA template (from single colony) 1 

20 µM Forward primer (63f)* 1.25 

20 µM Reverse primer (1387r)* 1.25 

Taq polymerase (Go Taq Flexi) 0.5 

Total volume 50 

*: Forward primer 63f was used with 1387r [25] 
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To prepare the DNA template, a single colony was picked using a sterile toothpick from the fresh 

streak plate and dispersed in 10 µl of dH2O by rotating the tip in the bottom of a 1.5 ml 

Eppendorf tube. The sequences of the primers are listed below [25]. 

 

63f: 5’-CAGGC CTAACACATGCAAGTC-3’ 

1387r: 5’-GGGCGGWGTGTACA AGGC-3’ 

PCR reactions were then cycled using the following parameters: 

1. 95°C for 3 minutes 

2. 95°C for 1 minute 

3. 55°C for 1 minute 

4. 72°C for 2 minutes 

5. repeat steps 2-4 for 29 cycles 

6. 72°C for 5 minutes 

 

To confirm DNA amplification, the PCR reactions (5 µl of each reaction) were checked on 

agarose gels using gel electrophoresis. The ladder used in this step was Lambda DNA/HindIII 

Marker (Thermofisher). The marker is used for sizing as well as approximate quantification of 

the DNA fragments.  
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Figure 3. Gel purification kit from MP Biomedicals   

To purify the DNA, gel electrophoresis was repeated, but with 20 µl of each successful PCR 

reaction. Then, gel purification was carried out using the FastDNA Spit Kit (MP Biomedicals). 

Purified samples were sent to the East Tennessee State University Molecular Biology Core 

Facility for DNA sequencing. The chromatograms received will be examined using Chromas, a 

software used to view sequence data. To identify the organisms to the genus level, corresponding 

DNA sequences along with primer codes are submitted to Ribosomal Database Project for 

detection of a “sequence match.” This comparison of test sequences to the online database of 

known 16S rRNA, will allow identification of the siderophore-producer up to the genus level by 

providing a list of possible candidates based on the degree of homology between the test and 

known sequences. The use of 16S rRNA gene sequences has become a common genetic marker 

in the study of bacterial phylogeny. Amplification of genes for bacterial 16S rRNA is desirable 
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for several reasons. It is found in almost all bacteria, random genetic changes are less common, 

and this gene sequence is often found in operons. In addition, 16S rRNA can provide genus 

identification in over 90% of cases [26]. 

 

RESULTS AND DISCUSSION 

1. Culturing soil samples for microorganisms 

Due to the fact that Bare and Forest soil differ significantly in composition and moisture, the 

presence of microorganisms from the respective environments also differed greatly. After initial 

inoculations from soil suspensions of the three Bare soil samples (B1, B2, B3) and three Forest 

soil samples (F1, F2, F3), only nutrient broths inoculated with Forest soil grew a sufficient 

density of organisms, as indicated by visible turbidity. The optical density of the six samples, 

after 24 and 48 hours of growth in 30°C are listed in Table 2 below.  

 

Table 2. Optical density of nutrient broth samples: samples inoculated from initial soil 

suspensions 

Sample OD at 24 hours OD at 48 hours 

Blank 0.000 0.000 

B1 0.190 0.307 

B2 0.015 0.139 

B3 0.015 0.117 

F1 0.400 0.821 

F2 0.371 0.653 

F3 0.283 0.870 
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Figure 4. CAS plate results: (left) Bare soil CAS assay, a negative result; (right) Forest soil CAS 

assay, a positive result with colonies surrounded by yellow colored halos.  

2. Preliminary CAS Assay 

Of the CAS plates inoculated from 48-hour nutrient broth culture, only Forest (F1, F2, F3) 

plates present growth and coloration. In contrast, Bare soil (B1, B2, B3) plates show no growth 

or coloration (Figure 4). The analysis of colonies on CAS plates is shown in Table 3 below. This 

result is consistent with the nature of the distinct soil compositions. Organisms found in 

complex, and resource-rich environments such as Forest soil tend to face competition for 

nutrients like iron and therefore have adapted mechanisms to acquire nutritional needs. For this 

reason, the forest soil samples grew many siderophore-secreting organisms. A comparison of 

CAS plate results between bare and forest soil samples is shown in Figure 4. It is important to 

keep in mind that the CAS media is limited and may not support the growth of all organisms that 

are naturally found in the soil. Therefore, the detection of colonies on CAS media does not 

exhaust the entire microbial population from these environments. This also explains why liquid 
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cultures from bare soil showed growth while the corresponding CAS plates did not. HDTMA, a 

crucial ingredient in the blue agar, can be toxic for some bacteria and therefore limits the 

culturability of many organisms. Furthermore, Fungi and gram-positive bacteria do not grow 

well in higher concentrations of HDTMA [27].  

 

Table 3. Results of CAS plates: growth and coloration after 24 and 48 hours 

 

 

 

 

 

 

 

 

3. Isolation of siderophore producers 

After colonies from preliminary CAS assays were isolated using the streak plate method 

(Figure 2), individual colonies were spotted on new, sectioned CAS plates in order to compare 

the extent of siderophore production between organisms on iron-limiting media. The results of 

those plates are shown below in Figure 5. The majority of sampled colonies confirmed the 

secretion of siderophore, yielding a total of 32 siderophore-positive isolates, as determined by 

the presence of  yellow and orange-yellow halos surrounding growth. However, not all zones are 

equal in size and clarity. Measurements of halo diameters and relative assessment of zone clarity 

is provided in Table 4. Ten of the 32 siderophore-producing isolates with the largest halo 

 No. Total Colonies No. Colonies with halos 

Plate 24 hrs 48 hrs 24 hrs 48 hrs 

B1 0 0 0 0 

B2 0 0 0 0 

B3 0 0 0 0 

F1 42 59 4 20 

F2 18 40 2 14 

F3 23 63 1 20 
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diameters and high degrees of clarity, were noted as those of special interest for further 

identification.  

 Although both orange and orange-yellow zones around growth indicate iron chelation, 

the distinction in color may indicate differences in the chemical nature of siderophores. More 

understood is the clarity of the zone of coloration and its relation to the strength of iron chelation. 

Therefore, samples with transparent halos are of particular interest because this is evidence of 

highly efficient siderophore activity. Meanwhile, zones with large diameters correlate with the 

relative amount of siderophore excretion. However, the diameter alone cannot suffice in the 

quantification of siderophore production because variations in size of the zone may also be due 

to differences in growth rates of the tested organisms. It has been indicated that slower growing 

cultures make smaller zones than faster growing cultures [28]. Therefore, further chemical 

analysis is required for precise measurement of siderophore production.  

 Although the CAS assay is a great tool for the detection of siderophores, the chemical 

class of the siderophores cannot be confirmed without characterization using colorimetric assays. 

To determine whether the siderophore being secreted is a hydroxamate or catechol type, the 

Atkins [29] and Arnows [30] tests can be used.  

 Growth conditions are also important considerations when trying to optimize siderophore 

production. With the goal of assessing the efficiency of different iron-uptake systems, bacteria 

should be studied after being cultured in iron-limited media. These may include Fiss Minimal 

Media or nutrient agar mixed with dipyridyl to scavenge free iron. Doing so ensures that if an 

organism does indeed produce siderophores, their expression and secretion is maximized for 

accurate detection and quantification.  

 



 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparative and confirmatory CAS plates: results of CAS assay to confirm and 

compare siderophore production after colony isolation from streak plates.  
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Table 4. Assessment of CAS assay zones of chelation from isolated colonies: A, B, C, isolates 

from F1, F2, F2, forest soil samples respectively. Key: Color—O=orange-yellow, Y=yellow, 

Clarity—1=transparent, 2=moderately transparent, 3=opaque. Table cells highlighted in yellow 

are to distinguish the 10 colonies of greatest interest due to their large halo diameter or high 

degree of clarity.   

 

 

 

 

 

 

4. Identification of strong siderophore producers 

Gram staining revealed that samples F2-001, F2-002, and F3-002 are all gram-negative 

bacilli. However, for further elucidation of biological identification to the genus level, Colony 

PCR and subsequent gel purification were used to isolate and purify DNA from samples of 

greatest interest. Of the attempted PCR reactions, only samples F2-001, F2-002, and F3-002 

resulted in amplification of DNA when observed under gel electrophoresis. The result of the 

colony PCR and gel is shown in Figure 6. The location of the bands matches to approximately 

1500bp in size as corresponding to the HindIII ladder that was used.  

F1 

Colony 

Color  Clarity Diameter 

(mm) 

001 Y 3 16 

002 O 1 13 

003 O 1 11 

004A Y 3 17 

004B Y 3 16 

005 O 1 14 

006A Y 2 12 

006B Y 3 12 

007 O 1 11 

008 Y 3 16 

009 Y 3 14 

010 Y 3 14 

011 Y 2 11 

012 Y 2 11 

013A Y 3 15 

013B Y 3 16 

F2 

Colony 

Color  Clarity Diameter 

(mm) 

001 O 1 21 

002 O 2 19 

003 O 1 13 

004A Y 3 17 

004B Y 3 15 

005A Y 3 16 

005B Y 3 17 

006 Y 2 14 

007 Y 1 16 

008A O 1 20 

008B O 1 23 

F3 

Colony 

Color  Clarity Diameter 

(mm) 

002 O 1 20 

003 Y 2 16 

005 O 1 21 

006 Y 2 15 

007 O 1 16 

A C B 
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Figure 6. Gel electrophoresis of colony PCR: results from 7 different colonies, only three of 

which sufficiently amplified DNA. Clear bands are seen in wells 5, 6, and 8 (from left) 

corresponding with samples F2-001, F2-002, and F3-002 respectively. HindIII ladder is in the 

first well. The location of the three bands with respect to the ladder suggest the approximate size 

of the genome around 1500 bp.  

 

These three successful PCR reactions were re-run on 1% agarose gel for gel purification 

using the FastDNA Spin Kit (MP Biomedicals) to purify the DNA. After this step, a 

confirmatory gel was used to verify the presence of DNA. The result of that gel is shown in 

Figure 7. Although the approximate size of the DNA remains the same, the faintness of the bands 

indicates low concentration of purified DNA. Low concentrations likely explain why genomic 

1      2       3      4       5      6       7      8       9     10 
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sequencing was unsuccessful and did not yield readable sequences. Unfortunately, for this 

reason, sequence matching of 16S rRNA genes could not be pursued for identification to the 

genus level. The quality of the sequencing result depends on the quality of the starting DNA. 

Thus, the method for purification is an important process that underlines DNA purity and 

successive genomic sequencing. Obtaining pure DNA at a sufficient concentration is also critical 

to successful sequencing procedure. There is also diversity in DNA isolation kits and different 

kits can yield different results with regard to concentration and degree of purity.  

 

 

Figure 7. Gel electrophoresis of purified DNA: Very faint bands are visible in wells 3, 5, and 7. 

These correspond to DNA purified from samples F2-001, F2-002, and F3-002 respectively. 

 

1      2       3      4       5      6       7      8       9     10 
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CONCLUSION 

A more complete understanding of siderophore structure and function provides 

opportunities to manipulate iron uptake systems for therapeutic use. Already, new drug delivery 

methods using conjugated siderophores are being investigated as a means of delivering antibiotic 

drugs. As the medical community struggles to control the dramatic rise of membrane-mediated 

antibiotic resistance, such developments may offer a promising alternative. In the “Trojan Horse” 

strategy, siderophores are used as drug delivery agents; siderophore moieties are synthesized to 

resemble the natural iron-binding capacity, then subsequently conjugated to desired antibiotics 

which cannot independently cross the microbial membrane [31]. However, the efficacy of these 

drug delivery systems depends on siderophore analogs which are closely identical in structure 

and bioactivity to natural siderophores, therefore necessitating more work to identify such 

characteristics necessary to optimize siderophore-like properties. In addition to new antibiotic 

alternatives, a compound which effectively binds iron may offer treatment prospects for iron 

overload disorders like hereditary haemochromatosis or complications which arise from red 

blood cell transfusions. Iron chelating compounds which mimic siderophores can scavenge and 

remove excess iron from the body [32]. These methods can also be extended to treat 

phytopathologies. Siderophores like pyoverdine, produced by Pseudomonads, can be used to 

capture iron in the soil and subsequently limit the amount of iron available for plant pathogens to 

prevent soil-borne plant diseases [33]. The applications of siderophores are vast and promising, 

but the success of iron chelators for medical and plant therapies depends on more precise 

knowledge about the production and nature of iron uptake systems in relation to the microbial 

populations which produce them. This quest however, will require the continued biological 

identification of diverse siderophore producers and the environments that foster them.  
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