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Abstract 

Plants produce a vast array of secondary metabolites.  A group of phenolic 

compounds, the flavonoids, are metabolites ubiquitous among plants and are known to 

aid in processes such as plant reproduction, UV defense, pigmentation and development.  

In relation to human health, flavonoids have been found to possess anti-inflammatory, 

anti-cancer, and antioxidant properties. Flavonoid’s ability to participate in so many 

interactions is due in part to their subclass variation and further chemical 

modification.  One such modification is glucosylation, where a glucose molecule is added 

to the flavonoid substrate.  The enzymes that catalyze these reactions are known as 

glucosyltransferases (GT).  Citrus paradisi contains a glucosyltransferase that is specific 

for adding glucose to the 3-O position of flavonols (Cp-F3-O-GT). To further understand 

the reactions it catalyzes, Cp-F3-O-GT structure was modeled against an 

anthocyanidin/flavonol 3-O-GT found in Vitis vinifera to identify candidate amino acids 

for mutations.  Mutants were then generated using site-directed mutagenesis, and one 

mutant, D344P, was constructed by an aspartate being replaced with a 

proline.  Biochemical characterization of the mutant D344P protein was performed in 

order to determine whether the mutation has an effect on the substrate specificity of Cp3-

O-GT.  An initial quick-screening assay using radioactive UDP-glucose as a sugar donor 

suggested there may have been an expansion of substrate acceptance. The time course 

assays did not support observation. Additionally, results show that D344P protein has 

decreased activity with flavonols as compared to the wild-type Cp3-O-GT. with no 

expansion of substrate specificity. Homology models supported experimental results.   
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Introduction  

Plants produce a myriad of chemical molecules known as secondary metabolites.  

The major groups of these molecules are phenolics, alkaloids, and terpenoids.  The 

phenolics contain an important subgroup of molecules known as flavonoids.  Composed 

of 15 carbons, flavonoids are synthesized through a series of chemical reactions starting 

with phenylalanine (Figure 1). The biosynthesis pathway can lead to nine subclasses of 

flavonoids (Owens and McIntosh, 2011).  Flavonols, flavanones, anthocyanidins, 

flavones, and the rest of the nine subclasses can be distinguished by varying oxidation 

levels in the heterocyclic ring structure (Figure 2).  The over 10,000 known natural 

flavonoids exist due to these subclasses as well as varying substituents such as hydroxyl, 

methyl, and sugar groups on the rings (Owens and McIntosh, 2011).  Not all plants make 

all subclasses and many plants have specific flavonoid composition (Owens and 

McIntosh, 2011). 

 Flavonoids have a wide array of functions in plants. They have been found to 

play a role in UV defense (Owens and McIntosh and reference therein, 2011).  Their role 

in UV defense was confirmed when Arabidopsis thaliana mutants that produced lower 

amounts of flavonoids became over sensitive to UV light (Li et al, 1993).  In addition to 

UV defense, flavonoids play a role in fruit pigmentation. Anthocyanins are common red 

and blue pigmenting agents in plants.  They are responsible for the red coloration in 

grapes and blood orange (Owens and McIntosh, 2011). Flavonoids also affect many 

different interactions such as plant-microbe interactions, plant-insect interactions and 

allelopathy (Simmonds, 2003; Steinkellner et al, 2007; Treutter 2005; Weir et al, 2004).   
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One notable example of these interactions is the involvement of flavonoids in the 

attraction of nitrogen-fixing bacteria to legume root nodules (Peters et al, 1986).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Biosynthesis pathway of flavonoids in citrus (adapted from Owens and 
McIntosh, 2011). PAL:  phenylalanine ammonia-lyase; C4H:  cinnamate-4-hydroxylase; 
4CL: 4-coumarate: CoA ligase; CHS: Chalcone synthase; CHI:  Chalcone isomerase; 
FNS:  Flavone synthase; F3H:  Flavanone 3-hydroxylase; FLS: Flavonol synthase; DFR: 
Dihydroflavonol 4-reductase; ANS:  Anthocyanidin synthase; GTs:  Glucosyltransferase. 

 

 
Figure 2:  Some basic flavonoid subclass structures. 
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bacterial, and anti-oxidant properties (Middleton et al, 2000; Jarial et al, 2016; Cushnie 

and Lamb, 2011).  Additionally, HIV inhibition using flavonoids is being investigated 

(Cole et al, 2016).   

Chemical modification is common among flavonoid compounds.  These 

modifications include processes such as methylation, hydroxylation, and many others 

(Dixon and Pasinetti, 2010, Owens and McIntosh, 2011).  One common flavonoid 

modification that occurs in nature is glucosylation.  Glucosylation is the biochemical 

process in which a glucose molecule is added to an acceptor molecule (Figure 3). 

Enzymes known as glucosyltransferases (GTs, EC 2.4.1. x) catalyze these glucosylation 

reactions. Among these GTs, the largest group, GT1, uses UDP-sugars as donor 

substrates (Vogt and Jones, 2000; Yonekura-Sakakibara and Hanada, 2011). These 

enzymes are characterized by a 44 amino acid motif referred to as the plant secondary 

product glycosyltransferase (PSPG) box that constitutes the UDP-sugar-binding domain 

on the N-terminal portion of the enzyme (Hughes and Hughes, 1994; Vogt and Jones, 

2000; Devaiah et al, 2016).  The presence of a PSPG box can be used to identify putative 

GT genes in plants. 

Figure 3: Citrus paradisi flavonol-specific 3-O-glucosyltransferase reaction (Owens and 
McIntosh 2009). 
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Though these GT enzymes share motifs and some similarities, they can have very 

different substrate specificities.  Some GTs have very strict substrate specificities and can 

only glucosylate one subclass of flavonoid or even one particular molecule.  For example, 

the flavonol-specific glucosyltransferase from Citrus paradisi, Cp-F3-O-GT, will only 

glucosylate flavonols and only at the hydroxyl group at the third carbon (Owens and 

McIntosh, 2009). In contrast to Cp-F3-O-GT, the well-studied, crystallized GT from Vitis 

vinifera (VvGT1) is able to glucosylate both flavonol and anthocyanidin substrates at the 

3-OH position and thus has a broader specificity (Offen et al, 2006).   

While these two enzymes, Cp-F3-O-GT and VvGT1, are relatively similar for 

GTs, 56% sequence identity and 87% homology, they vary in substrate specificity.  The 

high percentage of similarity suggests that the difference is not solely caused by the 

primary amino acid sequence but is affected significantly by tertiary structure. When 

looking at the structures of these enzymes, several differences can be seen even though 

they have relatively the same shape (Figure 4). Understanding the effects of enzyme 

structure and function can provide valuable insight into the workings of enzyme substrate 

specificity. The effects of structure on enzyme function can be analyzed through point 

mutation analysis (Devaiah et al, 2017).   

  In the case of this research, the amino acid sequences and tertiary structures of 

Cp-F3-O-GT and VvGT1 were compared to identify potential residues for point 

mutation.  At position 344, Cp-F3-O-GT contains an aspartate while VvGT1 contains a 

proline at the equivalent position (Figure 5).  Because aspartate is a negatively charged 

amino acid and proline contains a cyclic structure which does not allow for 

conformational freedom in the protein backbone, a mutation at this position could cause a 
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structural change in the grapefruit enzyme. Using site directed-mutagenesis, a Cp-F3-O-

GT mutant was generated with the aspartate in Cp-F3-O-GT changed to the proline as in 

the VvGT1 and given the name D344P.  The hypothesis tested in this research is that the 

mutation D344P will change the substrate specificity of the Cp-F3-O-GT.  The change of 

aspartate to a proline could affect the enzyme’s ability to glucosylate flavonoid substrates 

through a change in structure.  The results will provide key information to the field by 

showing how a change in structure can modify this enzyme’s ability to glucosylate and its 

specificity.   

 

          

Figure 4:  The crystal structure of VvGT1 (left) (Offen et al, 2006) and homology model 
of Cp-F3-O-GT (right). Arrows point to differences found in the Cp-F3-O-GT structure, 
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Figure 5: A) Amino acid structures of aspartate (left) and proline (right). B) Sequence 
alignment between Cp-F3-O-GT (GQ141630), VvGT1 (AAB81683), and the mutant 
D344P.  Arrows indicate location 344 where the mutation was located.   

                  

A	

B	



11	

Materials and Methods 

Materials: 

Materials purchased from Sigma (St. Louis, Mo, USA) included quercetin, 

quercetin 3-O-glucoside, kaempferol 3-O-glucoside, naringenin and dihydroquercetin, 

acid washed glass beads (pore size-0.5 mm), and ethidium bromide (EtBr).  Kaempferol, 

naringenin-7-O-glucoside, hesperetin, eriodictyol, isosakuranetin, apigenin, luteolin, 

diosmetin, scutallerein, fisetin, myricetin, gossypetin, cyanidin chloride, and 4’-acetoxy-

7-hydroxy-6-methoxyflavonol were purchased form Indofine (Hillsborough, NJ, USA).  

Phenylmethylsulfonyl fluoride (PMSF) was purchased from MP Biomedicals (Solon, 

OH).  Materials purchased through Perkin Elmer included UDP-[U-14C] glucose 

(specific activity 293mCi/mol).  UDP-glucose was purchased from Calbiochem 

(Gibbstown, NJ, USA).  

Scale Up Expression of Recombinant Cp-F3-O-GT (WT) and Mutant D344P: 

 All media were prepared with recipes found in Kandel, 2016. A 3ml volume of 

yeast extract peptone dextrose medium (YPD) (Kandel, 2016) containing 100 µg/mL 

zeocin was prepared and a glycerol stock stored at -80°C of either WT or D344P mutant 

containing yeast, Pichia pastoris, was added to media.  The inoculated media was 

allowed to incubate overnight in a shaker for 16-18 hours at 30°C and 250 rpm. After 

incubation, a 500-mL sample was placed in a 1 L flask containing 200 mL of buffered 

glycerol-complex medium (BMGY) (Kandel, 2016). The culture bearing flask was then 

incubated at 30°C and 250 rpm until the O.D.600 was 2-6, typically 18-24 hours.  Once an 

O.D.600 of 2-6 was achieved, the culture was transferred into different sterile 50 mL tubes 

and the cell pellets were collected by centrifuging for 10 min at 2800 xg.  Cell pellets 



12	

were resuspended in buffered methanol-complex medium (BMMY) (Kandel, 2016) to 

wash and then centrifuged for 10 min at 2800 xg to collect cell pellets.  These cell pellets 

were resuspended in 50 mL BMMY and were then placed in a 1 L baffled flask, sealed 

with cheesecloth, and allowed to incubate at 30°C in a shaker at 250 rpm until a given 

time for optimal protein content as determined by time course SDS PAGE and western 

blot analysis, 12 hr and 18 hr for D344P and WT, respectively.  The cultures were 

harvested by centrifuging for 10 min at 2800 xg and cells were stored at -80°C until use.   

Enzyme Purification: 

The cell pellets collected from the scale up procedure were resuspended in 5 mL 

of breaking buffer (50mM sodium phosphate buffer at pH 7.5, 1mM EDTA, 5% glycerol, 

5 mM βME, and 1 mM PMSF).  A French press was used to lyse the cells at 1120 psi 

pressure.  Before use, French press was washed with water.  Cells were lysed for a 

minimum of 4 times and were kept on ice the entire time.  Lysed cultures were 

centrifuged at 13,000 xg for 20 min at 4°C, and the supernatant was collected and kept on 

ice. All purification chromatography was performed at 4°C.  A 2.5 ml volume of crude 

protein extract was added to a 8.3 ml bed volume PD-10 column, previously equilibrated 

with 25 mL of equilibration buffer (50 mM sodium phosphate buffer at pH 7.5, 300mM 

sodium chloride and 5 mM βME), and the flow-through was discarded. The protein was 

then eluted and collected using 3.5 mL of equilibration buffer.  This process was repeated 

again to obtain 7.0 mL of eluted protein.  Next, a 2 mL bed volume TALON IMAC 

cobalt metal affinity resin column was precisely equilibrated with 25 mL of equilibration 

buffer, and the 7.0 mL of eluted protein was run through the column with the flow 

through being discarded.  The column was then washed with equilibration buffer until 
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O.D. 280 of the eluate was less than 0.09 mg/ml. Once a low enough O.D. was obtained, 

the bound protein was eluted in 2 mL fractions using elution buffer (50mM sodium 

phosphate buffer pH 7.5, 300mM sodium chloride, 5mM βME, and 150 mM imidazole).  

The protein concentrations of the fractions were determined through use of a Nanodrop 

spectrophotometer at 280nm.  Fractions with higher concentrations were pooled and then 

were concentrated and desalted using Amicon Centricon 30 MWCO centrifugal filters 

(Millipore, Billerica, MA, USA) and centrifuging at 2800 xg at 4°C for 10 minutes or 

until volume reached 500 µL.  After the desired volume was reached, 2 mL of assay 

buffer (50 mM sodium phosphate buffer pH 7.5, 14 mM βME) was added in the Amicon 

and was centrifuged again at 2800 xg at 4°C for 10 minutes.  The final concentrated 

protein, 250 µL, was collected and the concentration was determined.  Enzyme was 

stored on ice throughout and samples were collected throughout the process for SDS-

PAGE and western blot analysis.  

Glucosyltransferase Activity: 

Activity of glucosyltransferase was assayed by determining incorporation of 14C-

glucose by the enzyme as previously described (McIntosh et al, 1990).  For initial 

substrate screening, 0.025 µCi of UDP-[U-14C] glucose diluted to 20,000 cpm/10µL in 

water was used.  The reaction mixture consisted of 5 µL of flavonoid aglycone 

(50nmol/5µL) in ethylene glycol monomethyl ether, 10 µL of UDP-14C glucose, 50 µL of 

50 mM phosphate buffer containing 14 mM βME, and 10 µL of enzyme (3 µg/10 µL) for 

a total reaction volume of 75 µL.  Reactions were placed in a 37 °C water bath for 5 

minutes.  After 5 minutes, reactions were terminated by adding 15 µL of 6N HCl to the 

reaction and vortexing.  The reaction product was extracted by adding 250 µL EtOAc to 
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the reaction, thoroughly mixing, centrifuging for a few seconds and placing a 150 µL 

aliquot of the top layer into 2 mL of CytoScint scintillation cocktail (Thermo Fisher).  

Results were measured by a Beckman LS 6500 scintillation counter. Incorporation was 

corrected for by setting up a ratio of 150/250 = cpm measured/ x, where x is the 

incorporation occurring.    

Time course assays were conducted with 5 µL of flavonoid aglycone 

(50nmol/5µL) in ethylene glycol monomethyl ether, 10 µL of UDP-glucose (100nmol/10 

µL) having 50,000cpm/10 µL, 50 µL of 50 mM phosphate buffer containing 14 mM 

βME, and 10 µL of enzyme at concentrations of 1.0 µg/reaction and 0.5 µg/reaction.  

Reaction mixtures were placed in a 37 °C water bath and were run for time points of 0, 5, 

10, 15, 30, and 60 minutes.  Incorporation was determined through the same methods as 

the screening assay.  Pico-moles of product was calculated by (cpm 

incorporated/500)*1000. 

SDS-PAGE and Western Blot Analysis: 

For visualization of protein samples, 10% SDS-PAGE gels were run as described 

in McIntosh et al, 1990.  Western blot analysis was run using antibody against C-Myc 

tags as described in Devaiah et al, 2016.  

Homology Modeling and Docking: 

The crystal structure of the Vitis vinifera flavonoid-3-O-glucosyltransferase 

(Offen et al. 2006) was used as a template for homology modeling.  Three-dimensional 

structures were generated using UCSF Chimera and EasyModeller 4.0 was used to 

generate models with different molpdf (molecular probability distribution), DOPE 

(discrete optimized protein energy), and Ga341 scores.  Docking analysis was performed 
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on the model with the lowest DOPE score.  Swiss PDB viewer was used to refine for 

energy minimization for molecular docking.  PyRx was used to dock protein with desired 

ligands and models were analyzed using Autodock 1.5.6 MGL tools software.   
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Results and Discussion 

To test the hypothesis that the mutation D344P would broaden the substrate 

specificity of Cp-F3-O-GT, several experiments were performed.  First, a screening assay 

was performed to identify the mutant protein’s potential activity with different substrates.  

Next, the substrates that showed potential activity in the screening were tested with a 

time course assay to confirm activity.  Finally homology models were obtained to analyze 

the predicted structures of the enzyme-binding sites.   

Acceptor Substrate Activity Screening: 

To test the substrate specificity broadening hypothesis, Cp-F3-O-GT (wild-type, 

WT) and D344P (mutant) proteins were reacted with radioactively labeled C14 UDP-

Glucose and 14 flavonoid substrates from 6 subclasses (Table 1).  This assay provides a 

quick method to view an enzyme’s general activity patterns.  The initial screening 

suggested that the mutant enzyme may have decreased activity when compared to the 

wild-type and the same patterns are seen in the verification (Table 1).  In terms of the 

substrate specificity, the screening suggested a potential activity with flavone diosmetin 

and flavanones isosakuranetin and hesperetin.  These activities need confirmation due to 

the sensitivity of the screening assay (Owens and McIntosh, 2009; McIntosh et al, 1990).    
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Table 1:  Acceptor Substrate Screening of wild-type Cp-F3-O-GT and Mutant D344P. 
Activity expressed as percent relative activity to wild-type quercetin for the screening 
group and expressed as percent relative activity to the mutant with quercetin for the 
verification group.  Substrates marked with a star were selected to have the activity 
confirmed.   

Flavonoid 
Subclass 

Flavonoid 
Substrate  

Screening  Verification 
D344P WT D344P 

Flavonol 

Quercetin* 41 100  100.0 
Kaempferol* 18 51  61.2 
Fisetin* 19 40  55.4 

Gossypetin* 9 22  18.3 

Flavanone 

Naringenin 2 3  3.0 
Hesperetin* 4 3  13.5 
Eriodictyol 1 2  1.8 

Isosakuranetin* 3 2  14.0 

Flavone 

Apigenin 2 2  1.4 
Luteolin 0 2  2.1 
Diosmetin* 4 2  92.6 
Scutellarin 2 5   

Dihydroflavonol Dihydroquercetin 3 2  3.4 

Isoflavone 

4’acetoxy-7-
hydroxy-6-
methoxy 
isoflavone 

5 2 

 

1.4 

Anthocyanidin Cyanidin chloride 1 4  3.6 
 
 
Time Course Confirmational Assay: 
 

Due to the sensitivity of the screening assay, some substrates which appear to 

show activity may be false positives.  The time course assay is able to confirm whether 

the screening assay results are accurate.  The use of unlimiting donor substrate UDP-

glucose allows for this confirmation.  In addition, the assay is able to provide information 

on rate of product formation.  

The assay using the WT Cp-F3-O-GT and quercetin (Figure 6) agreed with the 

original characterization, exhibiting a preference toward quercetin as a substrate (Owens 

and McIntosh, 2009; Devaiah et al, 2016).  The assay performed with D344P protein and 

quercetin supported the information shown in the screening assay.  The assay showed that 
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incorporation occurred with the mutant enzyme, but at levels below that of the wild-type 

(Figure 6). 

 The reaction with WT remained linear for 5 min. The WT had apparent specific 

activities of 2508.32 pmol/min/µg and 1598.16 pmol/min/µg for 0.5 and 1.0 micrograms 

of enzyme respectively during this time.  The higher activity for 0.5 micrograms might be 

caused by the enzyme competing against itself for donor substrate. For future kinetic 

assay 0.5 micrograms should be used.  Mutant D344P remained linear for 30 min and had 

apparent specific activities of 361.33 pmol/min/µg and 224.11 pmol/min/µg for 0.5 and 

1.0 micrograms of enzyme respectively.  The specific activity of the mutant decreased 

substantially compared to the wild-type.  Thus, results confirmed the activity for D344P 

with quercetin was reduced compared to the WT enzyme. The reduction in activity 

suggests that the mutation changed the tertiary structure of Cp-F3-O-GT in such a way 

that quercetin could still bind to the active site but in a position that prevents optimum 

usage.  It can be noted that the apparent specific activities for both WT and D344P were 

less at higher concentrations of enzyme.  This decrease could be caused by the enzyme 

competing against itself for substrate molecules.  For future kinetic analysis, 0.5 

micrograms of enzyme should be used.   

Time course assay results for the enzymes with kaempferol showed a similar 

trend (Figure 7).  Wild-type enzyme again produced results similar to those previously 

recorded (Owens and McIntosh, 2009).  For the D344P mutant enzyme results, 

incorporation can be observed, but at amounts much lower than the wild-type. The WT 

reaction was linear for 5 min. WT had specific activities of 831.84 pmol/min/µg for  

reaction with 1.0 micrograms of enzyme and 1336.88 pmol/min/µg for reaction with 0.5 
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micrograms of enzyme. The D344P reaction was linear for 30 minutes and had apparent 

specific activites of 86.5 pmol/min/µg and 96.6 pmol/min/µg for 1.0 and 0.5 micrograms 

of enzyme, respectivly. There is at least a 10x decrease in the apparent specific activity 

between the two enzymes. These results support the decrease of activity for kaempferol 

in the mutant observed in the initial screening and support the idea that the mutation 

affected the structure in such a way that the mutant protein’s ability to bind to and 

transfer glucose to kaempferol was affected.   

    
Figure 6:  Time course assay for quercetin.  The grey line represents 0.5 microgram of 
enzyme per reaction and the green line represents 1.0 microgram of enzyme per reaction.   
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Figure 7:  Time course assay with Kaempferol.  The grey line represents 0.5 microgram 
of enzyme per reaction and the green line represents 1.0 microgram of enzyme per 
reaction.   
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pmol/min/µg.  For 0.5 micrograms of WT enzyme, the apparent specific activity was 

655.68 pmol/min/µg.  The D344P enzyme had incorporation occur at a lower level than 

the wild-type. The reaction of the mutant was linear for 5 min.  The mutant had a specific 

activity of 99.32 pmol/min/µg for 1.0 micrograms of enzyme and 125.32 pmol/min/µg for 

0.5 micrograms of enzyme.  The activity of the mutant can be confirmed to be reduced 

for this substrate, the mutant having around 5x less activity than the WT.  

Gossypetin, the last flavonol tested in the screening, showed similar results to the 

other flavonols.  The WT was not tested for this mutant due to sufficent characterization 

in previous research (Owens and McIntosh, 2009; Devaiah et al, 2017; Kandel, 2016). 

For the mutant, the reaction was linear for 5 min, and the specific activity of 0.5 

micrograms of  mutant enzyme is 532.77 pmol/min/µg and for 1.0 micrograms of enzyme 

specific activity is 225.99 pmol/min/µg. The mutant transferred glucose from UDP at low 

levels, supporting the decrease of activity for the enzyme, meaning the change in 

structure affected the enzyme’s ability to function.   

The screening assay suggested that the mutant could act on diosmetin.  Upon 

examination of the time course assay, it became apparent that the activity of the mutant 

with diosmetin was a false positive.  No incorporation with diosmetin occurred with the 

wild-type or the mutant enzyme assay (Figure 10).  The lack of incorporation shows a 

lack of a broadened substrate specificity in the flavone subclass.  The mutation hence did 

not cause a structural change that broadened substrate specificity to include flavones.  

 

 



22	

   
Figure 8: Time course assay with Fisetin.  The grey line represents 0.5 microgram of 
enzyme per reaction and the green line represents 1.0 microgram of enzyme per reaction.   
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Figure 9: Time course assay with gossypetin.  The red line represents 0.5 microgram of 
enzyme in the reaction and the blue line represents 1.0 microgram per reaciton.  The 
reaction only goes to thirty minutes do to a loss of reaction mixture.   
 

   
Figure 10:  Time course assay with diosmetin.  Note the lack of activity. 

Other flavonoids tested in time course assays were the flavanone substrates 

isosakuranetin and hesperetin.  Isosakuranetin (Figure 11) did not show any 

incorporation.  Hesperetin (Figure 12) produced the same lack of incorporation.  The 

mutant was unable to transfer glucose to either of the flavanone substrates supporting a 

lack of broadened specificity with this subclass. 
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Figure 11: Time course assay with isosakuranetin.  No activity was detected 

 

 
Figure 12: Time course assay with hesperetin.  No activity was detected. 

Overall, the time course assays were able to determine that D344P had decreased 

activity as compared to the wild-type and had no broadening of substrate specificity.  The 

mutant retained the flavonol specificity of the wild-type and had a decreased activity with 

these substrates as compared to the wild-type.  
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In Silico Analysis of Enzyme Structure 
 

To understand what is happening with substrate binding at the catalytic site, in 

silico docking analysis was used.  Using the crystallized VvGT1 structure as a base, 

homology models of the substrate binding site of the wild-type Cp-F3-O-GT and mutant 

D344P were created.  For each substrate for each enzyme, 9 models were created and 

were ranked based off of energy minimization.  The catalytic residues important to 

substrate binding in VvGT1 were found to be His 20, Ser 18, and Asp 119 (Offen et al, 

2006).  These residues can be translated into the Cp-F3-O-GT and D344P models as His 

22, Ser 20, and Asp 122.  His 22 is thought to be the key for allowing the glucosylation to 

occur at the hydroxyl group on the third carbon, Ser 20 allows for stability in the binding 

of the substrate to the active site, and Asp 122 helps the reaction with the substrate and 

His 22 to occur. Additionally, a distance of under 5 Angstroms is preferred for catalytic 

activity to occur in VvGT1, so it was used as a credential for activity (Offen et al, 2006).   

The first docking substrate used on the wild-type and mutant enzyme models was 

quercetin (Figure 13).  The wild-type is known to react with quercetin.  This reaction 

preference is supported by the distances under 5 A° between the catalytic residues and the 

quercetin substrate in the model.   

The first mutant model generated did not have distance under 5 A° for any of the 

three catalytic residues (Figure 14). The distance of Ser 20 to the substrate was 6.966 A°, 

the distance of Asp 122 to His 22 was 5.354 A°, and the distance between the 3 hydroxyl 

group of quercetin and His 22 was 6.966 A°.  Based off of these distances, it would 

appear that the model would predict no activity would occur for the mutant enzyme, but 

clear incorporation was observed by D344P with quercetin in the time course assay.  The 
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incorporation seen in the time course assay would mean that the most energy 

minimalized model does not correctly portray the reaction occurring or that factors such 

as the binding of the sugar donor or distance of the sugar donor form the acceptor 

substrate are able are such that a reaction could still occur.  

In comparison, the ninth model generated by the modeling program for D344P 

and quercetin shows at that the distance between His 22 and quercetin is 2.610 A° 

(Figure 15).  Because the His 22 distance falls under 5 A° and the Ser 20 and Asp 122 

distances are close to 5 A°, this model could potentially be a more accurate description of 

the binding occurring at the catalytic site.  Because the Cp-F3-O-GT protein is a globular, 

fluid molecule, its shape can move allowing for residue distance to fall under the 5 A° 

distance needed for reaction preference to occur.  Additionally, the distances of the 

acceptor substrate in the binding pocket could affect the reactive capabilities of the 

model.  The ability of the mutant enzyme to transfer glucose from UDP-glucose to 

quercetin at a 6-fold lower specific activity can be explained by its potentially longer 

binding distances between the catalytic residues and the substrate. Along with conditions 

such as donor substrate binding distance, the fluidity of the molecule could allow the 

reaction to occur even though two of the three the acceptor substrate binding distances 

are slightly over 5 A°.  

The enzymes docked with kaempferol revealed a similar trend (Figure 16).  WT 

contains distances under 5 A° supporting its ability to glucosylate kaempferol.  Though 

the distances are all under 5 A° for both the WT with quercetin and kaempferol, factors 

not explored in these models such as distance from UDP-glucose could explain the WT 

ability to glucosylate quercetin at a higher rate than kaempferol. 
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The first model of the mutant with kaempferol had distances over 5 A° with all 

substrates (Figure 17).  His 22 had a distance of 6.077 A°, Ser 20 6.804 A°, and Asp 122 

5.354 A°.  Enzyme fluidity could allow for the distances to fall below 5 A°, but since the 

distances between the substrate and His 22 and Ser 20 are large, catalytic activity from 

this model would most likely come from unexamined factors such as donor distance.   

The fifth model of D344P and kaempferol generated a model containing more 

favorable distances (Figure 18).  His 22 had a distance of 3.600 A° from kaempferol. Asp 

122 and Ser 20 had distance of 5.354 A° and 5.200 A°, respectively.  Enzyme fluidity 

could allow the Asp 122 and Ser 20 distances to fall under 5 A° supporting its ability to 

glucosylate kaempferol but at a lower efficiency, a 10-fold lower specific activity, than 

the WT.  These distances make the fifth model more favorable for depicting D344P’s 

binding with kaempferol.   

 
Figure 13: Homology model of Cp-F3-O-GT WT enzyme catalytic region docked with 
quercetin.   
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Figure 14: First model of the mutant D344P docked with quercetin. Though this is the 
most energy minimized model, the distances of the substrate from the residues suggests a 
lack of a reaction.   
 

 
Figure 15:  Modeling of the catalytic region of mutant D344P docked with quercetin.  
This model produced the most favorable distances for the reactivity in D344P.   
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Figure 16:  Homology model of the WT catalytic site docked with kaempferol.  

 
Figure 17: First modeling of the catalytic region of mutant D344P docked with 
kaempferol.  Though it was presented as the first possible model, distances are over the 5 
A° distance indicating a reaction does not occur.   
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Figure 18: Homology model number 5 of mutant D344P docked with kaempferol. The 
distance between His 22 and the 3 hydroxyl group of kaempferol is under A°, making it a 
more favorable model of the reaction.  
 

The results of these models reveal that the mutation likely changed the tertiary 

structure of Cp-F3-O-GT. This change is evident in the different predicted distances of 

His 22, Ser 20 and Asp122 between the WT and mutant models.  The change in structure 

did not allow for substrate specificity broadening and decreased the mutant’s activity 

with flavonols.    
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Summary and Directions for Future Research 

To understand the relationship between structure and function in GT substrate 

specificity, mutant D344P of Cp-F3-O-GT was created by comparing the amino acid 

sequences and structures of Cp-F3-O-GT and VvGT1.  It was hypothesized that mutant 

D344P would have an expanded substrate specificity due to a structural change caused by 

replacing an aspartate with a proline.  The initial screening assays suggested that the 

mutant D344P had potential expanded activity with diosmetin (flavone) and 

isosakuranetin and hesperetin (flavanones).  Time course confirmational assays revealed 

that these potential substrates identified by initial screening were false positives and that 

the mutant D344P had reduced activity with the flavonol substrates.  Homology models 

of the mutant D344P and wild-type Cp-F3-O-GT support a change in the structure that 

affected acceptor substrate binding occurred.  These results do not support the hypothesis 

originally proposed. 

Further stud of the mutant D344P can continue to reveal the information related to 

the structure/function relationship of the mutation to the enzyme Cp-F3-O-GT.  

Understanding the structure/function relationship can lead the way for the development 

of custom enzymes for novel product creation. The effects of the mutation D344P can be 

further analyzed through several methods.  First, performing high-performance liquid 

chromatography on reaction products could provide insight into the exact compounds 

being made.  Product analysis would allow for aspects of regiospecificity to be explored.   

Additionally, determination of optimum pH, optimum reaction temperature, Vmax, 

and Km can elaborate more kinetic difference of the mutant compared to the wild-type.  

Understanding kinetic properties reveal more about how the reactions occur.  For the 
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purposes of creating custom enzymes, kinetic information could determine if a product 

could be made efficiently.  

Finally, crystallization of Cp-F3-O-GT and D344P would give a definite structure 

of the Cp-F3-O-GT and mutant enzymes. Co-crystallizing the enzymes with acceptor and 

donor substrates would allow the distances of catalytic residues and desired substrate for 

a given conformation.  It would allow for a deeper analysis unobtainable with homology 

modeling.  
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