5-2016

Identification of N-acylethanolamine Hydrolyzing Enzyme in Solanum lycopersicum

Derek A. Stuffle

East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Biochemistry Commons, Biology Commons, Molecular Biology Commons, and the Plant Biology Commons

Recommended Citation

This Honors Thesis - Withheld is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
IDENTIFICATION OF N-ACYLETHANOLAMINE HYDROLYZING ENZYME IN TOMATO (*Solanum lycopersicum*)

Honors Thesis

By

Derek A. Stuffle

Aruna Kilaru, Ph.D., Mentor

East Tennessee State University
ABSTRACT

Identification of N-acylethanolamine Hydrolyzing Enzyme in Tomato (*Solanum lycopersicum*)

by

Derek A. Stuffle

N-acylethanolamines (NAEs) are fatty acid derivatives that occur naturally in plant and animal systems. In mammals, they regulate physiological functions, including neurotransmission, immune responses, vasodilation, embryo development and implantation, feeding behavior, and cell proliferation. NAEs are metabolized by fatty acid amide hydrolase (FAAH), which belongs to the amidase signature (AS) family. It is hypothesized that putative FAAH functions as the catalyst in the metabolism of N-acylethanolamine in tomato plants. To test the hypothesis, FAAH protein homologs were identified in tomato via *in silico* analysis. Among the six homologs identified, FAAH1 and FAAH2 were selected for further validation. This study is focused on 1) *in silico* analyses of *SlFAAH2*, 2) quantification of transcript levels for *SlFAAH2*, 3) determination of FAAH activity at various developmental stages of tomato, and 4) isolation of and synthesis of *SlFAAH2* cDNA for cloning. Putative *SlFAAH2* showed high homology to Arabidopsis FAAH1. Transcript levels, as measured by qPCR using RNA extracted from various developmental stages, were highest at 0 days and lowest at 4 days. Enzyme activity at certain developmental stages coincided with *SlFAAH2* transcript levels. In order to confirm that putative *SlFAAH2* encodes for an enzyme that hydrolyzes NAEs, *SlFAAH2* gene was isolated from total RNA of tomato, cDNA was synthesized by reverse transcription and the gene was amplified by PCR for further cloning in a heterologous expression system for biochemical characterization. To gain better molecular and biochemical understanding of FAAH and determine its broader functions, it is pertinent to characterize FAAH in other plant species.
ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Aruna Kilaru, Department of Biological Sciences, for her willingness to aid me in any issues I had and motivate me at every turn during my time in her laboratory. I was honored to have her as a mentor for two years and will be forever grateful for the many skills I have learned during this time. I would also like to thank all my lab members, especially Vijay Tiwari, for their help and support in reaching my research goals. Furthermore, I greatly appreciate Dr. Hugh Miller, Department of Biological Sciences and Dr. Michael Kruppa, Department of Biomedical Sciences for their constructive criticism and advice.

Additionally, I want to thank the ETSU Honors College for their Student-Faculty Collaborative Grant, Midway Honors Scholarship, and the travel grant to present my research at the 2016 National Conference on Undergraduate Research. I also want to thank Dr. Joy Wachs, Director, University and Midway Scholars Program, for her letters of support. Lastly, I also appreciate the Department of Biological Sciences, ETSU, for the opportunity to conduct undergraduate research.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>6</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>Lipid Signaling Pathway</td>
<td>6</td>
</tr>
<tr>
<td>N-acylethanolamines</td>
<td>6</td>
</tr>
<tr>
<td>Fatty Acid Amide Hydrolase (FAAH)</td>
<td>9</td>
</tr>
<tr>
<td>Significance of Solanum lycopersicum as Model System</td>
<td>11</td>
</tr>
<tr>
<td>Hypothesis and Objectives</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>13</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>13</td>
</tr>
<tr>
<td>Identification of FAAH protein in tomato via in silico analysis</td>
<td>13</td>
</tr>
<tr>
<td>Plant Material</td>
<td>13</td>
</tr>
<tr>
<td>Total Protein Extraction</td>
<td>14</td>
</tr>
<tr>
<td>Quantitative PCR</td>
<td>15</td>
</tr>
<tr>
<td>FAAH Activity Assay</td>
<td>16</td>
</tr>
<tr>
<td>cDNA synthesis for SlFAAH2</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>18</td>
</tr>
<tr>
<td>RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>In Silico Analysis of Fatty Acid Amide Hydrolase</td>
<td>18</td>
</tr>
<tr>
<td>Quantification of Transcript Levels</td>
<td>23</td>
</tr>
<tr>
<td>Protein Assay</td>
<td>25</td>
</tr>
<tr>
<td>SlFAAH2 Gene Amplification</td>
<td>27</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>30</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>31</td>
</tr>
<tr>
<td>CONCLUSIONS AND FUTURE WORK</td>
<td>31</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. Structure of common saturated and unsaturated N-acyethanolamines. 8
Figure 2. Metabolic pathway of NAPE in plants ... 9
Figure 3. Alignment of AtFAAH with putative SlFAAH homologs.. 21
Figure 4. Phylogenetic tree between tomato and Arabidopsis FAAH... 21
Figure 5. Stop and start codons from full length coding sequence for SlFAAH2.......................... 22
Figure 6. Structure of putative SlFAAH and Arabidopsis FAAH.. 23
Figure 7. RNA content at various stages of seed development ... 24
Figure 8. Transcript levels of SlFAAH2 at various stages of seed development............................ 25
Figure 9. Protein content at various stages of seed development.. 26
Figure 10. Radiometric scanner results for protein assay ... 26
Figure 11. Concentration of extracted RNA .. 27
Figure 12. Concentration of synthesized cDNA .. 28
Figure 13. Gel electrophoresis result for tomato FAAH2.. 28
INTRODUCTION

Lipid Signaling Pathway

Lipids are commonly recognized as the structural components of cells and for their role in the cellular metabolism. However, it has been recently discovered that lipids function as mediators in plant responses such as abiotic stresses, plant-microbe interactions, and they regulate plant growth and development (Chapman, 2004). Lipid-signaling enzymes, such as phospholipase D (PLD), are crucial in not only regulating lipid messengers, but also cytoskeletal rearrangement, membrane trafficking, and degradation (Wang, 2004). Lipid signaling is a vital part of cell signaling, which is now known to occur via activation of G protein-coupled receptors (Tang and Insel, 2004). Activators of G protein-coupled receptors include fatty acid ethanolamides, or N-acylethanolamines (Schmid et al., 1990; Chapman, 2000) that regulate growth, cell proliferation, defense, channel regulation, sugar sensing, and some hormonal responses (Urano et al., 2013).

N-acylethanolamines

N-acylethanolamines (NAEs) are fatty acid derivatives that occur naturally in plant and animal systems (Chapman, 2004). These lipid mediators were first discovered in the 1950s and were thought to have anti-inflammatory effects in vertebrates (Kuehl et al., 1957). They are expressed as NAE X:Y, in which X denotes the number of carbon atoms of the acyl chain and Y signifies the number of double bonds present in the acyl chain (Figure 1). Depending on the degree of saturation of their acyl chain, NAEs are classified as saturated or unsaturated. In eukaryotes, NAEs are synthesized from hydrolysis of N-acylated phospholipid precursor, N-acylphosphatidylethanolamine (NAPE) (Schmid 1998; Chapman 2000). The metabolic pathway
for NAEs is highly conserved in animal (Schmid, 2000) and plant systems (Shrestha et al. 2002) (Figure 2).

N-acylethanolamines in Mammals

In mammals, NAEs regulate physiological functions, including neurotransmission, immune responses, vasodilation, embryo development and implantation, feeding behavior, and cell proliferation (Chapman, 2004). In mammalian systems, the most widely studied NAE is anandamide (NAE 20:4), an endocannabinoid ligand, which upon receptor binding, triggers a series of signaling events that include pain sensation, fear, energy, anxiety, balance, appetite and memory (Alger, 2004). In addition to anandamide, other endogenous NAEs, independent of the cannabinoid receptors, exist in the mammalian systems whose therapeutic properties have been discovered (Sasso et al, 2013). These include the saturated *N*-stearoylethanolamine (NAE 18:0), and *N*-palmitoylethanolamine (NAE 16:0) and monounsaturated *N*-oleoylethanolamine (NAE 18:1) (Calignano et al, 1998; Rodríguez De Fonseca et al, 2001).

N-acylethanolamines in Plants

In plants, NAEs function as lipid mediators in defense signaling, inhibitors of PLD α activity (Pappan et al, 1998), regulate seedling growth and development, and regulation of other plant-signaling pathways while only comprising of a small fraction of total lipid content. The NAE content and composition of the plants varies with the tissue type, developmental stage and pathological condition (Chapman, 2004: Kilaru et al, 2007). Like in animal systems, NAEs are formed in plants from NAPEs, and they are hydrolyzed by an amidase to yield ethanolamine and free fatty acids (FFA). Among various plant tissues, NAEs were found to be most prevalent in desiccated seeds of various plant species (Chapman et al, 1999; Chapman, 2004; Venables et al, 2005; Kilaru et al, 2007). Among seeds NAE 18:2, NAE 16:0 and NAE 18:1 are present in
higher concentration with NAE 18:2 being the most abundant. Additionally, NAE 12:0, NAE 14:0, and NAE 18:0 are found in lower concentrations and likely differ from species to species (Chapman et al, 1999; Venables et al, 2005).

![Figure 1. Structure of common saturated and unsaturated N-acylethanolamines.](image)

Metabolism of N-acylethanolamines

The metabolic pathway for NAEs is functionally conserved in plant (Shrestha et al, 2002) and animal systems (Schmid, 2000) (Figure 2). In animals, NAEs are generated by the hydrolysis of a minor membrane lipid constituent NAPE by NAPE-specific phospholipase D (NAPE-PLD) (Schmid, 2000). The physiology of NAEs is terminated in eukaryotes by two mechanisms: hydrolysis and oxidation. Hydrolysis catabolizes both saturated and unsaturated NAEs but alternatively, oxidation can occur on PU-NAEs to yield NAE-oxylipins. In mammals, NAEs are hydrolyzed into FFA and ethanolamine by a fatty acid amide hydrolase (FAAH), which is an amidase with broad substrate specificity (Cravatt et al, 1996; McKinney and Cravatt, 2005;
Shrestha et al, 2003; Wang et al, 2006). *In vivo* and *in vitro* experiments have indicated that plant NAEs are also hydrolyzed to FFA and ethanolamine by a membrane-associated hydrolase FAAH (Shrestha et al, 2003), functionally analogous to the enzyme in mammalian tissues (Schmid et al, 1996).

![Metabolic pathway of NAPE in plants. N-acyl-phosphatidylethanolamine (NAPE) is hydrolyzed by N-acyl-phosphatidylethanolamine phospholipase D (NAPE-PLD) into N-acylethanolamine (NAE). NAE is broken down into free fatty acids (FFA) and ethanolamine (EA) by fatty acid amine hydrolase (FAAH). NAE can also be broken down by Lipoygenase (LOX) into NAES and oxylipins.](image_url)

Fatty Acid Amide Hydrolase (FAAH)

Like other chemical transmitters, lipid messengers are also regulated by enzymes to ensure tight control over their signaling activity. For example, FAAH mediates the termination of endocannabinoid signaling in animal systems by reducing anandamide into ethanolamine and FFA (Mckinney and Cravatt, 2005).

FAAH Structure

FAAH is an integral membrane enzyme, thus making it unusual compared to other AS enzymes. Sequence comparisons identified a predicted N-terminal transmembrane domain
(amino acids 9–29) that was not present in other AS enzymes (Cravatt et al, 1996), thus indicating a rather simple mechanism for membrane binding. However, deletion of FAAH's first 30 amino acids produced a catalytically active mutant (ΔTM-FAAH) that was still bound to membranes even in the presence of strong base, indicating that FAAH is capable of various modes for membrane integration. While the majority of other amidase signature enzymes are soluble proteins, FAAH behaves as an integral membrane enzyme, regardless of its single predicted N-terminal transmembrane domain (Patricelli et al, 1998). Analysis of the ΔTM-FAAH structure showed an arrangement of three α helixes (α18 and α19, amino acids 410–438) that disrupts the AS fold and consists primarily of hydrophobic residues with a small number of basic amino acids interspersed throughout (Mckinney and Cravatt, 2005).

FAAH in Plant Systems

In plants, NAE levels in seeds decline dramatically during germination and continue to be low throughout seedling growth. This sudden depletion of NAEs suggests their catabolism, which is achieved by FAAH (Chapman et al, 1999), results in the mediators being broken down into FFA and ethanolamine (Mckinney and Cravatt, 2005). The levels of NAE increase in response to stress and negatively affect growth. Thus, the breakdown of NAE results in enhanced seed growth while compromising stress response (Mckinney and Cravatt, 2005). When FAAH is overexpressed, the seeds are able to break down more NAEs at a faster rate and show enhanced growth. Alternatively, when exogenous NAE is present in the absence of FAAH, the seeds grew at much lesser rate (Wang, 2006). FAAH overexpressors also showed increased susceptibility to bacterial pathogens (Kang et al, 2008), as well as unexpected phenotypes such as hypersensitivity to ABA (Teaster et al, 2007), which cannot be explained on the basis of NAE depletion by FAAH overexpressor alone. Various FAAH homologues have been recently
identified in other plant species, although most of the enzyme’s characterization has been limited to *Arabidopsis*. To gain comprehensive understanding of plant FAAH, it is pertinent to characterize FAAH in additional species.

Significance of Solanum lycopersicum as Model System

The United States ranks second as the world’s largest producer of tomatoes (USDA, 2013). Tennessee ranks fourth in the country for fresh market tomatoes and has vegetable industry worth $75 million, according to the U.S. Department of Agriculture statistics (USDA, 2013). The main threat to tomato crops is adverse weather conditions (Irazoque, 2014). Understanding the role of NAE metabolism and its ability to mediate growth and stress response are expected to develop molecular tools essential to minimize crop loss.

Tomato is a member of the *Solanaceae* family, an economically important family of flowering plants, which also includes potatoes, eggplants, and peppers. With the wide spread use of transgenics, genomic tools, and mutants, the characterization of the NAE pathway in tomato would be a vital factor in yielding highly stress tolerant cultivar. With a short generation time, a sequenced genome, and economical importance, tomato is an excellent choice for studying NAE metabolic pathway. Furthermore, a better understanding of lipid-mediated stress response in tomato will potentially result in increased productivity and sustainable agriculture.

Hypothesis and Objectives

In plants, FAAH homologue has been characterized only for model plant *Arabidopsis*; under normal growth conditions, *Ar*FAAH overexpressor seedlings showed enhanced growth (Wang et al, 2006). These results suggested that FAAH might act as a modulator of endogenous NAE levels and regulate growth in plants. Since NAE metabolic pathway is highly conserved
and NAEs have been reported in tomatoes (Venables et al., 2005), it is hypothesized that a putative FAAH functions as the catalyst in the metabolism of NAEs in tomato plants. To test the hypothesis, four specific objectives were developed:

1.) Identification of homologs of FAAH protein in tomato by *in silico* analysis using *ArFAAH1* as a template.

2.) Quantification of transcript levels for *SlFAAH2* at various developmental stages of tomato by quantitative-PCR (qPCR).

3.) Determination of FAAH activity at various developmental stages of tomato by using radiolabeled substrate.

4.) Isolation of and synthesis of *SlFAAH2* cDNA for cloning and heterologous expression.
CHAPTER 2
MATERIALS AND METHODS

Identification of FAAH Protein in Tomato Via In silico Analysis

Tomato genome has been fully sequenced and available through NCBI database. Therefore, using Arabidopsis FAAH (AED97893) as a template, the database was searched for putative proteins in tomato using BLASTp. Six homologs with the highest homology to AtFAAH were converted to FASTA format and a sequence alignment was carried out using ClustalOmega. From this alignment, conserved catalytic sites were noted and relatedness of homologs to AtFAAH was determined by generating a phylogenetic tree. Full-length putative SlFAAH2 was translated using ExPASy translate tool and the largest reading frame with start and stop codons was determined. The 3D protein models for SlFAAH2 and AtFAAH were predicted with SWISS-Model tool and compared to further analyze functional homology.

Plant Material

For this research, Micro-Tom tomato plants were chosen as the model system. Micro-Tom plants share some key advantages with Arabidopsis in that the plants have a short life cycle, small size, and can be grown under fluorescent lights. Tomato plants were watered daily and stored in a growth chamber under fluorescent lighting at 23°C. Once the fruit was matured, seeds were extracted, washed, and stored at 4°C. To obtain plant material at various developmental stages, desiccated seeds were germinated between layers of autoclaved paper towels in a petri dish and saturated with distilled water and were harvested and weighed after 0, 2, 4, 6 and 10 days.
Extraction of Total RNA

Total RNA was extracted from Micro Tom plant material was harvested at 0, 2, 4, 6 and 10 days post germination (Ambion PureLink kit). About 50 mg of plant material was weighed on an analytical balance and ground to a powder in a mortar and pestle with liquid nitrogen as needed. The homogenate was incubated in 1 mL of TRIzol reagent (Ambion) at room temperature for 5 minutes, after which, 200 µL of chloroform was added per milliliter of TRIzol and incubated for 3 minutes. The homogenate was centrifuged in microfuge tube at 12,000 g for 15 seconds. About 375 mL of the colorless upper phase was transferred to a new centrifuge tube and equal volume of 70% ethanol was added. The liquid was transferred to a RNA-binding column (Ambion PureLink) with a collection tube and centrifuged at 12,000 g for 15 seconds and the flow through was discarded. About 700 µL of wash buffer I was added and centrifuged for 12,000 g for 15 seconds. The flow through was discarded and 500 µL of wash buffer II was added to the column and centrifuged at 12,000 g for 15 seconds. This step was repeated once. The column was centrifuged for 1 minute to dry the membrane before adding 30 µL of RNase free water directly to the membrane. The spin cartridge was placed in a recovery tube and centrifuged for 2 minutes at 12,000 g. The quality and quantity of RNA extracted was determined by Nanodrop-1000 at 280 nm (Thermo Scientific) and stored at -80 °C until further use.

Total Protein Extraction

Total protein was extracted from plant material harvested at 0, 2, 4, 6 and 10 days post germination. Samples of 50 mg were weighed out on an analytical balance and ground to powder in a mortar and pestle with liquid nitrogen. Homogenized powder was transferred into glass test tubes containing 2 mL of homogenization buffer and 4 µL of DDM (Kim, 2013). Buffer was prepared with the following concentrations: 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 1 mM...
MgCl₂, 400 mM sucrose, 100 mM potassium phosphate, and an adjusted pH of 7.2. The tubes were vortexed every 5 minutes for 30 minutes before centrifugation for 20 minutes at 600 rpm and 4 °C. The supernatant was transferred to a clean tube and the concentration was determined by Nanodrop-1000 at 280 nm and stored at -80 °C until further use.

Quantitative PCR

Using the RNA extracted from samples harvested at 0, 2, 4, 6 and 10 days post germination, qPCR was performed with KAPA SYBR FAST One-Step qRT-PCR kit (KAPA Biosystems). Transcript levels for SlFAAH2 at all five developmental stages were quantified against actin, a housekeeping gene. Primers for SlFAAH2 and Actin were designed using Primer3 Design software to generate an approximate product size of 150 bp and with Tm around 60 °C (Table 1). The reaction mix was prepared by adding, 2 µL of forward and 2 µl of reverse primer (both 10µM), 5 µL of KAPA master mix, 3.2 µL of RNase free water and 2 µL of KAPA reverse transcriptase enzyme. A master reaction mix was prepared for 30 reactions (two technical replicates for each sample) and 9 µL of mix was pipetted into each well on a 48-well plate before adding the appropriate RNA. To each reaction, 1 µL of RNA was added to each well so that the concentration was 40 ng/µL of RNA per reaction. The reaction plate was sealed and centrifuged briefly. Using an Illumina Eco qPCR System, the thermal profile was set to 42 °C for 5 minutes for reverse transcriptase reactions and for further amplification it was set for 95 °C for 3 minutes, 95 °C for 3 seconds, and 60 °C for 20 seconds for a total of 40 cycles.
Table 1. Designed primers for SIFAAH2 and Actin (control).

<table>
<thead>
<tr>
<th>SIFAAH2</th>
<th>Tm</th>
<th>GC content</th>
<th>Exp Product Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Primer</td>
<td>TGCTTCTTCATTGCTATATGTCG</td>
<td>59.4 °C</td>
<td>39.1 %</td>
</tr>
<tr>
<td>Reverse Primer</td>
<td>CCGGCAGCATTACTTGTATT</td>
<td>60.1 °C</td>
<td>45.0 %</td>
</tr>
<tr>
<td>SIAActin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Primer</td>
<td>GCTGGATTTGCTGGAGATGATGA</td>
<td>61.7 °C</td>
<td>43.7 %</td>
</tr>
<tr>
<td>Reverse Primer</td>
<td>TCCATGTCATCCCAATTGCTAAC</td>
<td>61.1 °C</td>
<td>46.1 %</td>
</tr>
</tbody>
</table>

FAAH Activity Assay

Approximately 50 μg/μl of each extracted protein sample, 4 μL of radio labeled [14C] radio labeled NAE substrate (24:0, 16:0), and 400 μL of 50 mM BTP buffer (pH 9.0) were added to individual test tubes. Bis-tris propane (BTP) buffer was prepared by dissolving 1.41 g of BTP powder in 100 mL of water and adjusting the pH to 9.0. The reaction was incubated in a water bath at 30 °C for 30 minutes while shaking at 120 rpm. Isopropanol was preheated to 70 °C and 2 mL were added to the mixture to stop the reaction (Kim, 2013). The tubes were cooled to room temperature and 1 mL of chloroform was added, vortexed thoroughly, and stored overnight at 4 °C. The following day, subsequent to bringing the tubes to room temperature, 1 mL of chloroform and 2 mL of 1 M KCl were added to the mixture and vortexed. Addition of salt solution induces phase separation subsequent to which the tubes were centrifuged at 1000 g for 5 minutes and the upper phase was discarded. The previous step was repeated twice before adding 2 mL of deionized water to wash the lipids. The remaining organic phase was transferred to 4 mL vials and the solvent was evaporated with N2 gas. Once all the solvent was evaporated, the lipids were dissolved in 40 μL of chloroform and the total lipid was loaded on a silica gel-coated TLC plate. The TLC plate was developed in a chamber containing a solvent mixture of hexane, ethyl acetate, and methanol (60:40:5, v/v/v) until the solvent reached approximately 2 inches.
from the top (Kim, 2013). The plate was allowed to dry and analyzed by radiometric scanning
(BioScan system AR2200 imaging scanner).

\textit{cDNA Synthesis for SlFAAH2}

\textit{SlFAAH2} cDNA was synthesized from RNA that was extracted from four day imbibed seeds,
using the method mentioned above. A High Capacity cDNA Reverse Transcriptase (RT) Kit
(Thermofisher) was used to synthesize cDNA. 4 µL of RNA template, 10.2 µL of RNase free
water, 1 µL of RT enzyme, 0.8 µL of dNTP mix, 2 µL of 10x RT buffer, and 2 µL of 10x
random primer was added to a PCR tube at a total volume of 20 µL. The thermal profile was set
to 94 °C for 3 min, and 94 °C for 30 seconds, 58 °C for 1 minute, 72 °C for 1.5 minutes, and for
40 cycles, and 72 °C for 5 minutes. The quality and concentration of the extracted RNA (Figure
11) and cDNA synthesized (Figure 12) was analyzed using Nano-Drop spectrophotometer.
Forward and reverse primers for \textit{SlFAAH2} (1 µL each), 2 µL of cDNA, 10 µL of RNase free
water and 12 µL of PCR reaction mix (Emerald) was added to a PCR tube at a total volume of 26
µL. The same thermal profile as listed above was used. The PCR product (1854 bp) was
analyzed by gel electrophoresis (Figure 13).
CHAPTER 3

RESULTS

In Silico Analysis of Fatty Acid Amide Hydrolase

The NCBI database search revealed six homologs (Table 2) for *Solanum lycopersicum* that contained the characteristic amidase signature (AS) sequence and conserved catalytic residues. All six putative tomato FAAH shared significantly high homology to *At*FAAH. However, among the six homologs only *Sl*FAAH1 (XP_004230538.1) and *Sl*FAAH2 (XP_010315156.1) expression levels were associated with seedling development (*data not shown*). Putative *Sl*FAAH1 and *Sl*FAAH2 shown highest homology (67% and 66%, respectively) with *At*FAAH (Table 2).

Table 2. Top six results of a BLAST of Arabidopsis FAAH against tomato genome.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Max Score</th>
<th>E value</th>
<th>% Identity</th>
<th>Accession #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putative SlFAAH 1</td>
<td>836</td>
<td>0.0</td>
<td>67</td>
<td>XP_004230538.1</td>
</tr>
<tr>
<td>Putative SlFAAH 2</td>
<td>811</td>
<td>0.0</td>
<td>66</td>
<td>XP_010315156.1</td>
</tr>
<tr>
<td>Putative SlFAAH 3</td>
<td>806</td>
<td>0.0</td>
<td>64</td>
<td>XP_004230539.1</td>
</tr>
<tr>
<td>Putative SlFAAH 4</td>
<td>804</td>
<td>0.0</td>
<td>65</td>
<td>XP_010315155.1</td>
</tr>
<tr>
<td>Putative SlFAAH 5</td>
<td>801</td>
<td>0.0</td>
<td>65</td>
<td>XP_010315154.1</td>
</tr>
<tr>
<td>Putative SlFAAH 6</td>
<td>800</td>
<td>0.0</td>
<td>59</td>
<td>XP_004230544.1</td>
</tr>
</tbody>
</table>

ClustalW alignment (Figure 3) revealed conserved AS catalytic residues of Lysine (K), Serine (S) and Serine across all six putative *Sl*FAAH genes. Specifically, putative *Sl*FAAH1 and *Sl*FAAH2 were found to share the highest homology with *At*FAAH. *Sl*FAAH1 is being studied by another student, and thus this research focuses on identification of *Sl*FAAH2. The protein encoded by *Sl*FAAH2 is 618 amino acids in length and contains conserved AS catalytic residues.
at K205, S282, and S305.
Figure 3. Alignment of AtFAAH with putative SlFAAH homologs with arrows indicating conserved amidase signature sites.

Figure 4. Phylogenetic tree between six tomato homologs and other plant FAAH, including Arabidopsis.

The phylogenetic tree revealed that the tomato FAAH2 is closely related to Arabidopsis FAAH1 (Figure 4). Tomato FAAH2 is least related to moss and rice FAAHs, except for Moss FAAH1. Of the six putative tomato FAAHs, FAAH5 and FAAH6 are least related to Arabidopsis, but more related to moss and rice FAAHs. Tomato FAAHs 1, 2, 3 and 4 are most closely related to Arabidopsis FAAH1, which is expected based on the NCBI database results (Table 2).
Figure 5. Determination of stop and start codons from full length coding sequence for SlFAAH2.

The full length coding sequence was determined from NCBI database, and analyzed using the ExPASy translate tool. The largest reading frame was determined and start and stop codons were identified from the full length coding sequence (Figure 5). Non-coding regions on the 5’ and 3’
ends are 124 base pairs and 170 base pairs, respectively. Further analysis includes a visual comparison of the predicted structures of AtFAAH and SlFAAH2 using SWISS-MODEL software (Figure 6). The spatial arrangement of the two proteins suggests the two proteins may have similar functions based on location of their catalytic residues and visual similarities.

![Figure 6. A) Structure of putative SlFAAH 2. B) Structure of AtFAAH](image)

Quantification of Transcript Levels

RNA was extracted in three biological replicates from imbibed seeds (10 days post-germination). The average RNA content at various developmental stages of seed development was measured using a NanoDrop™ spectrophotometer (Figure 7). RNA content steadily increased from imbibed seed to 10 days post-germination. Error bars represent standard deviation between the triplicates.
Figure 7. RNA content at various stages of tomato seed development.

Table 3. qPCR calculations for various stages of tomato seed development. Actin is used as a reference gene and the data was normalized against the control stage.

<table>
<thead>
<tr>
<th>FAAH2</th>
<th>ACT</th>
<th>Av ACT CtrAct</th>
<th>FAAH2</th>
<th>Av FAAH2 CtFaah2</th>
<th>ΔCt (CtFaah2-CtAct)</th>
<th>ΔΔCt</th>
<th>Relative Expression</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0D</td>
<td>24.32</td>
<td>24.32</td>
<td>23.1</td>
<td>23.14</td>
<td>-1.18</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2D</td>
<td>24.18</td>
<td>24.18</td>
<td>23.67</td>
<td>23.67</td>
<td>-0.51</td>
<td>0.66</td>
<td>0.62</td>
<td>-1.59</td>
</tr>
<tr>
<td>4D</td>
<td>22.86</td>
<td>22.86</td>
<td>23.57</td>
<td>23.57</td>
<td>0.70</td>
<td>1.88</td>
<td>0.26</td>
<td>-3.70</td>
</tr>
<tr>
<td>6D</td>
<td>23.39</td>
<td>23.39</td>
<td>24.50</td>
<td>24.50</td>
<td>1.10</td>
<td>2.28</td>
<td>0.20</td>
<td>-4.87</td>
</tr>
<tr>
<td>10D</td>
<td>23.35</td>
<td>23.35</td>
<td>23.71</td>
<td>23.71</td>
<td>0.35</td>
<td>1.54</td>
<td>0.34</td>
<td>-2.90</td>
</tr>
</tbody>
</table>

Using the following equation, the respective relative expression levels in relation to 0 day seeds were calculated (Pfaffl, 2001).

\[
RE = \frac{\Delta Ct \text{ target (control – treatment)}}{\Delta Ct \text{ reference (control – treatment)}}
\]
The threshold level was automatically assigned by the Eco real time qPCR program. Zero hour seeds served as the *control*, *SlFAAH2* was assigned as the *target*, and actin served as the *reference* in each calculation (Table 3). qPCR results revealed that *SlFAAH2* transcript levels were down-regulated in all stages i.e. 2, 4, 6 and 10 days after seed germination compared to the 0 day (Figure 8).

![Graph showing transcript levels of SlFAAH2 at various stages of seed development.](image)

Figure 8. Transcript levels of SlFAAH2 at various stages of seed development.

The relative expression for various stages was plotted to show the change in transcript levels of *SlFAAH2* during development (Figure 8). *SlFAAH2* protein activity for each developmental stage was determined in the next section.

Protein Assay

Protein was extracted in three biological replicates from each stage of development. The average protein content decreased after 48 hours and continued to stay relatively constant throughout development. Error bars represent standard deviation between the three replicates (Figure 9).
Figure 9. Protein content at various stages of seed development.

Figure 10. Radiometric scanner results for protein assay. A) AtFAAH control B) Tomato FAAH at 48 hours.
Protein assay results for 48 hour imbibed tomato seeds revealed catalytic activity. Using AtFAAH as a control, the lipid product from the protein assay was extracted and separated on a TLC plate. The plate was analyzed by a radiometric scanner and a positive result for 2 day imbibed seeds was obtained. The results for AtFAAH control (Figure 10.A) and for the 48 hour imbibed seeds (Figure 10.B) both had two peaks present in the graph, the highest peak is radiolabeled NAEs that were not hydrolyzed, and the smaller peak is FFA that were a product of the reaction.

SlFAAH2 Gene Amplification

Concentration of extracted RNA from 4 day (post germination) was determined to be 260 ng/µL using a NanoDrop™ spectrophotometer (Figure 11). Using the same method, the concentration of synthesized cDNA was determined to be 4598.3 ng/µL (Figure 12).

Figure 11. Concentration of RNA
Figure 12. Concentration of synthesized cDNA

Figure 13. PCR product was analyzed by gel electrophoresis.
The amplified SI/FAAH2 gene was ran on an 1% agarose gel containing ethyl bromide. The resulting band migrated just under the 2000 bp reference band. Prior in silico analysis of SI/FAAH2 revealed the gene was 1854 bp in length (Figure 13).
CHAPTER 4
DISCUSSION

Similar to the catabolism of endocannabinoids by FAAH in mammals, *Arabidopsis*
FAAH terminates NAE activity by hydrolysis (Teaster et al. 2007). *In silico* studies with putative
*Sl*FAAH2 revealed a high homology with *Arabidopsis* FAAH1 (At5g64440). The results
concluded a 66% homology to *Arabidopsis* FAAH1 and an E value of zero (table 1). The E value
describes the number of results one can expect by chance alone. Therefore, an E value of zero
indicates a significant match to *Arabidopsis* FAAH1. An alignment of putative tomato FAAH
homologs with *Arabidopsis* FAAH confirm the conserved amidase signature catalytic sites as
well as the overall homology between the genes (Figure 5). Further analysis of the predicated
structures of *At*FAAH1 and *Sl*FAAH2 show that the two proteins may have similar functions
based on their spatial arrangement (Figure 6). This illustrates the highly conserved FAAH-
mediated breakdown of NAE across different species.

Transcript levels for *Sl*FAAH2 were highest in 0 and 2 day seeds and lowest for 4 day
seeds. This agrees with the results from the protein assay in which FAAH activity was observed
at 48 hours of seed development (Figure 10). At this time, it is unclear whether *Sl*FAAH1 or
*Sl*FAAH2 is responsible for the hydrolysis of NAEs. In order to determine which enzyme, or
enzymes, are responsible for this catalytic activity, cloning of both genes into an expression
system must be carried out. The extracted RNA and cDNA from four day seeds were both of
good quality as well as quantity (Figure 11, 12). *Sl*FAAH2 was amplified by PCR and separated
by gel electrophoresis to confirm the correct gene had been transcribed (Figure 13).
CHAPTER 5
CONCLUSIONS AND FUTURE WORK

This research identified FAAH2 in tomato plants, and most importantly, in a crop plant. In silico analysis revealed that SlFAAH2 shares high homology with AtFAAH1. Sequence alignment revealed conservation of catalytically important amino acid residues found in other systems. Comparison of predicted structures for AtFAAH1 and SlFAAH2 further illustrated that SlFAAH2 serves a similar function in tomato. Further study included extraction RNA of at various developmental stages and quantification of transcript levels by qPCR. Activity of SlFAAH2 at various stages was analyzed via enzyme assay followed by cDNA synthesis and isolation of FAAH by PCR amplification. This study will lead to characterization of NAE pathway in a crop plant, which will ultimately lead to develop molecular and biochemical tools necessary to improve tolerance to abiotic stress and increase crop productivity.

To further characterize this enzyme in tomato, cloning of SlFAAH2 into a heterologous expression system will be carried out. The synthesis of cDNA from extracted RNA has been carried out and primers have been designed for cloning. SlFAAH2 cDNA will be inserted into plasmid by a ligation reaction and then cloned in-frame into bacteria vector by heat shock technique before it is then transformed into E.coli. Positive transformed colonies will be selected and the expressed protein can be extracted and purified by column chromatography to yield pure SlFAAH2.
REFERENCES

Tomato Genome. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641

