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Abstract 
 

 In squamate reptiles, the evolutionary transition from oviparity to viviparity 

is accompanied by loss of the calcareous outer eggshell, which suggests significant 

implications for the role of calcium during embryonic development (Packard et al., 

1977).  An experiment was designed to evaluate the impact of reduced calcium 

availability during development in the oviparous corn snake, Pantherophis guttatus 

(Stewart and Ecay, 2013). Results from that study showed significant decreases in 

the mass and length of hatchling corn snakes when the outer calcareous eggshell 

layer was removed during development.  In vertebrates, variation in total body 

length reflects skeletal differences---primarily differences in the number or sizes of 

vertebrae and/or differences in length of the skull.   Skeletal components obviously 

are affected by the availability of calcium during development.  My study was 

designed to determine the anatomical and developmental bases for the smaller size 

observed in hatchling snakes subjected to reduction of eggshell calcium during 

embryonic development.   

My hypotheses were, as follows:  1) Differences in mass reflected differences 

in overall length of hatchlings; 2) Differences in length resulted from decreased size 

of vertebrae---rather than decreased number---and/or decreased length of skulls in 

hatchlings with reduced calcium.  Hatchlings were prepared for skeletal analysis via 

clearing-and-staining. Vertebrae of each hatchling were counted and size 

measurements obtained for separate spinal regions (cervical, thoracic, and caudal).  

Results demonstrate a significant treatment effect on size of vertebrae in the 

thoracic and anterior caudal regions, as well as length of the skull.  These findings 

suggest that reduced developmental calcium, comparable to the condition in 

viviparous species, impacts ossification and growth of skeletal elements in late 

development. 
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Introduction 

In 1977, Packard et al. proposed that the evolutionary transition from 

oviparity to viviparity in squamate reptiles had significant implications for the role 

of calcium.  Studies have shown that 14—36% of embryonic calcium is mobilized 

from the calcareous eggshell during development in oviparous snakes (Stewart and 

Ecay, 2010).  However, viviparous squamates greatly reduce or eliminate the 

calcareous eggshell layer, which allows for maternal/embryonic exchange of organic 

and inorganic nutrients.  As a consequence, data for viviparous squamate embryos 

show that no calcium is mobilized from the eggshell during development (Stewart 

and Ecay, 2010).   

If embryos are dependent on eggshell calcium, the loss of this calcium source 

may affect development in viviparous species. To test the potential impact of 

reduced calcium during development, experiments were designed to reduce the 

availability of embryonic eggshell calcium in an oviparous reptile, the corn snake 

Pantherophis guttatus.  The results of these experiments showed decreases in the 

mass and length of hatchling corn snakes when the outer calcareous eggshell layer 

was removed during development (Stewart and Ecay, 2013).  The study reported 

here was designed to investigate the morphological basis for the decreased size in 

hatchlings with reduced developmental calcium.  

Vertebrate species vary in length, due primarily to morphological differences 

in the axial skeleton and, in particular, to differences in the vertebral column (i.e., 

both the number and size of vertebrae).  Among vertebrates, there is a large range of 

variation in vertebral numbers; e.g., frogs have 6-10 vertebrae, and snakes may have 
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over 300 (Gomez et al., 2008).  Within snakes, differences in length found among 

related species primarily reflects differences in number of vertebrae.  However, 

adults of some snake species may differ in number of vertebrae across populations 

or even between genders (Shine, 2000).  Variation in vertebral number may also 

reflect environmental conditions; e.g., within some fish species, vertebral number is 

affected by differences in water temperature during development (Fowler, 1970).  

In general, increased number of vertebrae is highly correlated with increased body 

length in both snakes and fishes---a correlation referred as pleomerism (Lindell, 

1994; Gomez, 2008).  However, in snakes, for any individual undergoing growth 

(post-hatching), increased length of the vertebral column results from growth and 

not from addition of new vertebrae (Polly et al., 2001). 

Understanding the processes by which vertebrae are formed is essential to 

determine how reduction in developmental calcium could cause either variation in 

vertebral size or number.  The first major developmental process involved in the 

production of vertebrae is somitogenesis. This process establishes the initial 

somites or body segmentation and directly reflects the number of vertebrae formed 

during development (Gomez et al., 2008; Gomez and Pourquie, 2009; Polly et al., 

2001).  

After somites have been formed, further tissue differentiation ensues, 

chondrification begins, and ossification completes the formation of the final 

vertebral structure. Chondrification first converts the mesenchymal somites into 

cartilaginous blocks that are immediate precursors to the ossified vertebrae. 
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Ossification breaks down and replaces the cartilaginous precursor with the 

hydroxyapatite matrix of bone (Reipel, 1994).   

Therefore, if hatchlings with reduced developmental calcium were found to 

have fewer vertebrae, one could suggest that reduction in developmental calcium 

impacted the process of somitogensis and segmentation. However, a study defining 

the developmental timing of calcium mobilization for corn snake embryos found 

that greater amounts of calcium are pulled from the eggshell later in development 

(Stewart et. al., 2004).  The timing of somitogenesis in snakes has not been reported 

by age or description of developmental stage.  I made a comparison of two studies 

on snakes, one describing developmental stages (Zehr, 1962) and a second 

describing somitogenesis (Gomez, 2007).  Based on these studies, I concluded that 

the process of somitogenesis begins prior to Stage 16 and continues until at least 

Stage 27.  Oviposition of eggs in Pantherophis guttatus occurs when embryos are 

typically Stage 27--29 (Zehr, 1962). When the timing of somitogenesis is compared 

to the time at which eggs were peeled (Stage 28), I hypothesized that reduction in 

developmental calcium by peeling should have no impact on the number of 

vertebrae. 

A previous study based on specimens from a similar experiment with corn 

snakes showed that reduction in developmental calcium had no impact on the 

pattern or timing of ossification by late development (i.e., Stage 36; Trotter-Ross et 

al., 2010).   It was found that not only the vertebrae, but also skull bones, 

commenced and completed ossification at the same rate in both control and 

experimental embryos (Trotter-Ross et al., 2010).  However, this study was 
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concerned with determining the developmental stage at which bones began 

ossification and the pace of that ossification.  The study was confined to embryonic 

development of vertebrae and skull bones, and did not assess differences in 

numbers or sizes of vertebrae.  Therefore, it is entirely plausible that differences in 

number of vertebrae, or even continued vertebral growth after initial ossification, 

could account for possible variation in the mass and lengths of treatment and 

control hatchlings. 

The amount of calcium that squamate embryos recover from the yolk 

compared to the eggshell is generally correlated with the relative abundance of 

calcium in each (Stewart and Ecay, 2010).  For corn snakes, the majority of calcium 

the embryo takes up during development (72%) will come from the egg yolk.  Thus, 

corn snake embryos rely on the eggshell for roughly 28% of overall developmental 

calcium (Stewart and Ecay, 2010).  Removal of the calcareous layer of eggshell 

significantly reduced the overall calcium available during embryonic development, 

which resulted in decreased hatchling length and mass in these experiments.  

However, the timing of the removal of the eggshell calcium is critical to 

understanding the developmental basis of reduced size in hatchlings.   

 In the previous experiments, the calcareous layer of eggshell was removed 

shortly after oviposition, and embryos continued development with only calcium 

from yolk available for uptake.  The timing of eggshell manipulation is significant for 

two reasons. The first is that, as previously mentioned, the process of somitogenesis 

is mostly complete prior to oviposition.  Because somitogenesis determines 

vertebral number, it is unlikely that reduced calcium availability after somitogenesis 
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would impact number of vertebrae. Secondly, previous studies have shown that the 

majority of calcium mobilized from eggshell occurs later in development (Stage 34--

Hatch; Stewart et. al., 2004).  Chondrification and ossification are developmental 

processes that occur after oviposition and thus, are candidates for disruption of 

normal development by reduced calcium.   

The study described here was designed to test the hypothesis that the 

decreased size of hatchlings subjected to reduced calcium availability during 

development resulted from formation of smaller vertebrae and skulls—as opposed 

to fewer number of vertebrae.  To test this idea, data on both sizes and numbers of 

skeletal elements were obtained.    

 

Methods & Materials 

 Forty-five hatchling corn snakes obtained from a colony in ETSU’s animal 

care facility were examined (JR Stewart, Protocol #P100201, University Committee 

on Animal Care). Because maternal factors impact hatchling size, peeled and intact 

groups included representative sibling hatchlings from 

each of fifteen different mothers. Twenty-two 

hatchlings developed from eggs whose outer calcium-

rich layer was manually peeled away (treatment 

group), while twenty-three hatchlings developed from 

intact eggs (control group). Eggs were peeled by 

wetting the outer calcareous eggshell layer and gently 

removing with forceps (as shown in Figure 1). Peeling occurred between a range of 

Figure 1: Manual removal of 
outer calcareous eggshell 
layer. 
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embryonic stages (24-31) with average being stage 28. Embryonic stages were 

determined by sacrificing an embryo from each clutch at the time of peeling and 

matching its morphological features to a staging chart (Zher, 1962). Initial egg mass 

was recorded at oviposition; hatchling mass, snout-vent length (SVL), and tail length 

(Tail) were recorded at hatching (Table 1). SVL and Tail measurements were 

summed to obtain the total length of each specimen (Total). Skull length also was 

measured, but from cleared and stained specimens using the same method for 

vertebral measurements (described below).  

  
 
Table 1:  Means and ranges for initial mass and length data in intact vs. peeled 

hatchling specimens of corn snakes used in this study. 
 

Treat-
ment 

N 
SVL 

(mm) 
Tail 

(mm) 
Total 
(mm) 

Skull (mm) Mass (g) 
Initial Egg 
Mass (g) 

Intact 23 
244.4 

193--287 
48.4 

38--54 
292.8 

231--334 
12.20 

10.67--13.49 
7.34 

3.8--10.5 
9.69 

6.28--13.58 

Peeled 22 
229.6 

203--274 
45.6 

42--55 
275.3 

245--324 
12.06 

11.01--12.82 
6.3 

4.7--10.2 
9.20 

6.63--11.9 

 
 

Hatchlings were prepared using a clearing and staining protocol (Hanken 

and Wassersug, 1981). Variations to protocol are detailed in Appendix (See 

Appendix I: Modified Clearing and Staining Protocol). Data were recorded for size 

and number of vertebrae present in each hatchling.  For accurate vertebral counts, 

photographs were taken of each cleared and stained specimen using a Leica DFC 

420 camera attached to a Wild M3Z Type-S dissecting scope. Dissecting pins were 

placed between intercostal spaces to serve as landmarks among the multiple photos 

for each specimen. Most specimens required four to five separate photographs to 
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capture images of all vertebrae. An example of 

one of the photographs used for counting 

vertebrae can be seen in Figure 2. 

Magnifications for each photo varied to 

capture a clearer image, especially for the 

smaller sized caudal vertebrae. Vertebral 

counts were made directly from grayscale 

printouts of these photos. Counts for cervical, 

thoracic, and caudal regions were noted to 

compare regional differences.  

   
Photographs used for size measurements were obtained separately but with 

the same equipment. Each size photograph included a ruler in the field of view to 

provide measurement scale.  Measurements were made of the skull; the three 

cervical; first five and last five thoracic; and the 

first five and last five caudal vertebrae.  

Measurements were chosen to account for 

variation resulting from anterior to posterior 

development in snakes. Measurements were 

obtained using Adobe Premier Photoshop 12 to 

create a pixel-to-millimeter ratio with the ruler 

in each photo for scale. This ratio was then used 

to compute actual size (mm) of vertebrae based on how many pixels were between 

the distances marked on the skeletal structures. Data were recorded for both the 

Figure 2: Example of photograph 
used to count vertebrae. 
Dissecting pins placed as 
landmarks between photos. 

Figure 3: Example of photograph 
used to measure vertebral 
regions. Lines drawn indicate 
where measurements were taken. 
Ruler in background is present for 
scale. 
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number of pixels for each vertebral and skull measurement and for the 

pixel:millimeter ratio. An example of the photographs used to collect measurement 

data can be seen in Figure 3. 

 Count and measurement data were analyzed using a general linear model 

procedure  (IBM SPSS, GLM Univariate). Analyses were run with Maternal ID as a 

random effect to check for possible maternal influences on hatchling size and 

treatment effect.  Correlations of mass and body length data were analyzed as 

Pearson Correlation (IBM SPSS). 

 

Results 

Hatchling Size 

 Analyses of initial mass and length data confirm previous findings (Stewart 

and Ecay, 2013) for impact of reduced developmental calcium (Table 2). Both 

treatment and maternal source data shows significant impact on snout-vent length 

and total length of hatchlings.  

Initial egg and hatchling mass data were analyzed (Table 3). As expected, 

treatment had no effect on initial egg mass measured at oviposition. However, there 

was a strong maternal effect on initial egg mass. Hatchling mass shows a significant 

treatment and maternal effect, as well as an extremely high (92.9%) correlation 

with total hatchling length. 
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Table 2:  Comparison of hatchling size between control (N=23) and treatment 
(N=22) groups based on our samples from 15 females. 

 

 
 
  

Table 3:  Comparison of egg and hatchling mass between control (N=23) and 
treatment (N=22) groups based on our samples from 15 females. 

 

 Source 

Sum of 

Squares 

(Type III) 

df 
Mean 

Square 
F P 

Initial Egg 

Mass (g) 

Treatment 1.217 1 1.217 1.667 .210 

Maternal ID 87.177 14 6.227 9.805 .000 

Hatchling 

Mass (g) 

Treatment 9.449 1 9.449 10.773 .004 

Maternal ID 55.649 14 3.975 4.682 .004 

 

 Source 

Sum of 

Squares 

(Type III) 

df 
Mean 

Square 
F P 

Snout-Vent 

Length 

(mm) 

Treatment 1783.220 1 1783.220 12.039 .003 

Maternal ID 11263.823 14 804.559 5.388 .002 

Tail Length 

(mm) 

Treatment 56.235 1 56.235 4.444 .051 

Maternal ID 215.427 14 15.388 1.211 .365 

Total Length 

(mm) 

Treatment 2472.793 1 2472.793 11.802 .003 

Maternal ID 13701.357 14 978.668 4.664 .004 
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Skull and vertebral sizes were obtained from prepared cleared and stained 

specimens. Skull length showed significant treatment and maternal effects (Table 4).  

 
Table 4:  Comparison of skull size between control (N=23) and treatment 

(N=22) groups based on our samples from 15 females. 
 
 

 Source 

Sum of 

Squares 

(Type III) 

df 
Mean 

Square 
F P 

Skull 

Length 

(mm) 

Treatment .711 1 .711 5.890 .027 

Maternal ID 10.541 14 .753 6.338 .001 

 
 

Vertebral Number 

Vertebral numbers of each region (cervical, thoracic, or caudal; Table 5) were 

compared separately. Absolute number of cervical vertebrae did not differ between 

intact and peeled hatchlings. Slight differences in absolute counts for numbers of 

thoracic, caudal, and total vertebrae were found, but values were not significantly 

different between treatments.  

 
 
Table 5:  Means and ranges for vertebral number in control (N=23) and 

treatment (N=22) groups based on our samples from 15 females. 
 

Treatment 
Cervical  

# Thoracic # Caudal # Total   # 
Intact 

 
3 
 

224.6 
210--243 

71.5* 
54--78 

299.1* 
285--317 

Peeled 
 

3 
 

223.5 
213--256 

68.8 
55--78 

295.0 
279--329 

*N =21 for intact Caudal and Total numbers, owing to damage to tips of tails (n=3). 
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 Numbers of vertebrae were not significantly different between control and 

treatment groups for either total or regional counts.  Numbers of cervical vertebrae 

did not differ; means of total, thoracic and caudal vertebrae did not differ 

significantly between groups (Total: P=0.054; Thoracic: P=0.648; Caudal: P=0.150).   

 

Vertebral Size 

 Means and ranges for vertebral size data are shown in Table 6.  Except for 

last five caudal, means for vertebral size were larger in intact (control) hatchlings.  

 

Table 6:  Means and ranges for vertebral size (mm) by region in control 
(N=23) and experimental (N=22) groups based on our samples from 
15 females.  

 

*N =21 for intact Caudal number, owing to damage to tips of tails. 

 

 When analyzed, three vertebral regions (1st-5th Thoracic; Last 5 Thoracic; 

1st-5th Caudal; Table 7) showed size differences between control and treatment 

groups due to a treatment effect. Only one region (1st-5th Thoracic) showed any 

maternal impact on vertebral size. 

 
 
 
 

Treatment 
Cervical 

(mm) 

1st Five 
Thoracic 

(mm) 

Last 5 
Thoracic 

(mm) 

1st 5 
Caudal 
(mm) 

Last 5 Caudal 
(mm) 

Intact 
 

2.450 
1.923-2.880 

4.027 
3.404-
4.946 

3.953 
3.121-4.615 

3.762 
3.121-4.423 

1.928* 
0.938-3.217 

Peeled 
 

2.364 
2.0-2.857 

3.857 
3.35-4.516 

3.806 
3.491-4.24 

3.631 
3.226-3.96 

2.056 
0.838-3.182 
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Table 7: Comparison of vertebral size between control (N=23) and 
experimental (N=22) groups based on our samples from 15 females. 

 Source 
Sum of Squares 

(Type III) 
df Mean Square F P 

Cervical 

(mm) 

Treatment .053 1 .053 1.166 .296 

Maternal ID 1.182 14 .084 1.829 .139 

1st-5th 

Thoracic 

(mm) 

Treatment .334 1 .334 5.305 .034 

Maternal ID 2.430 14 .174 2.848 .031 

Last 5 

Thoracic 

(mm) 

Treatment .443 1 .443 6.895 .017 

Maternal ID 1.984 14 .142 2.269 .070 

1st-5th 

Caudal 

(mm) 

Treatment .365 1 .365 5.394 .035 

Maternal ID 1.815 14 .130 1.811 .144 

*Last 5 

Caudal 

(mm) 

Treatment 558.396 1 558.396 4.335 .054 

Maternal ID 2319.936 14 165.710 1.255 .341 

*N=43 for Last 5 Caudal measurement, owing to damage to tips of tails. 
 
 
 

Maternal Effect 
 

Maternal ID was used to identify all offspring that originated from each 

female, regardless of date of birth.  All analyses tested for effects from Treatment, 

from Maternal ID, and any interaction between those factors.  The results showed no 

significant interaction between Maternal ID and treatment for any measurements of 

vertebral number or size. However, maternal effect on offspring had a significant 

independent impact on vertebral sizes in two regions (Skull, 1st-5th Thoracic, and; 

Tables 4, 7).  No maternal effect on vertebral number was found.  
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Discussion 

 Results from this study confirm findings of previous studies (Stewart and 

Ecay, 2013) that reduction in developmental calcium causes a decrease in overall 

hatchling size (Tables 2, 3), as reflected in both mass and length of hatchling corn 

snakes. Length differences in elongated vertebrates, such as snakes, may result from 

differences in either vertebral number or size (and/or skull length) or some 

combination of these factors.  To impact vertebral number, calcium reduction by 

eggshell peeling would have to affect the process of somitogenesis; conversely, a 

reduction of vertebral size would result from an impact on the chondrification 

and/or ossification processes, both of which occur later in development. 

 Vertebral number did not differ between peeled and intact eggs.  This finding 

fits in with the currently understood model of vertebral development in snakes.  

Because somitogenesis determines the number of vertebrae formed, an impact on 

somitogenesis would be necessary to decrease vertebral number.  Since corn snake 

embryos do not begin to mobilize significant amounts of calcium from eggshell until 

after somitogenesis is complete (Stage 34 or beyond; see Fig. 4, Stewart and Ecay, 

2010), removal of eggshell calcium should not affect the process of somitogenesis.  

In the experiments described here, the calcareous eggshell was removed from eggs 

of embryos in developmental stages 27-31, whereas the process of somitogenesis is 

almost entirely completed by stage 27 (Zehr 1962).  
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However, reduced developmental calcium did impact sizes of vertebrae in 

three regions (1st-5th Thoracic; Last 5 Thoracic; 1st-5th Caudal; Table 7).  Vertebral 

size was significantly decreased by peeling (Table 7).  Interestingly, the length of the 

skull was also significantly decreased by reducing eggshell calcium (Table 4).  Again, 

these findings fit very well with the current understanding of skeletal development 

and calcium mobilization in corn snakes (Stewart and Ecay 2010). Because the 

processes of chondrification and ossification occur after oviposition, they would 

coincide with the timing of the majority of calcium uptake by the developing 

embryo.  A significant increase in mobilization of calcium begins around stage 34 

and continues until hatching (Fig. 4, Stewart and Ecay, 2010).  Knowing this, it is 

more likely that reducing developmental calcium at oviposition would impact 

growth processes ocurring later in development. Therefore, when considering 

Figure 4.   Sources and timing of calcium mobilization during 
embryonic development of Pantherophis guttatus (from Stewart, 
et al., 2010). 
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smaller vertebrae along with developmental timing of calcium uptake by the 

embryo, the most likely cause of the decrease in hatchling length due to reduction of 

developmental calcium is an impact on chondrification, ossification, or both. 

 A previous study investigated the pattern of skeletal ossification in corn 

snake embryos whose developmental calcium was reduced (same treatment regime 

as this study).  Trotter-Ross et al. (2010) found that reducing the amount of 

developmental calcium had no impact on the timing (beginning of ossification) or 

patterns (progress) of ossification in hatchlings from eggs with reduced calcium 

(Trotter-Ross et. al., 2010).  Those findings, along with the results of this study, 

strongly suggest that the differences in size of hatchling cornsnakes arises from 

continued growth of vertebrae (i.e., after initial full ossification) enabled by a full 

complement of developmental calcium.  Cornsnake embryos that develop with 

decreased amounts of calcium available for uptake are not able to increase their 

vertebral size, nor add growth to skull elements, late in development. Conversely, 

embryos with access to the normal amounts of calcium from the eggshell are able to 

continue to grow and enlarge skeletal elements after initial development and 

ossification.  It appears that reduction of developmental calcium decreases the 

ability of embryos to continue to grow their skeleton late in development. 

 Our experimental design showed that the treatment of reducing eggshell 

calcium was significantly associated with reduced hatchling size as compared to our 

controls.  But our experimental design using siblings from the same females also 

allowed us to test for maternal effects from the same experiments.  Results showed 

(Tables 3, 4, 7) that significant differences in sizes of some thoracic vertebrae 
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showed a significant, independent (i.e., no interaction) maternal effect.  Maternal 

nutrient provisioning also plays a role in the impact on skeletal size and growth.  

Maternal source (i.e., same mother) did not impact the numbers of vertebrae in 

hatchlings, regardless of treatment.  These results parallel our findings for direct 

effect of treatments on size of skeletal elements.   

The underlying genetic and/or metabolic causes for this maternal impact on 

overall hatchling size and on skeletal size, in particular, is not fully understood.  

However, in oviparous squamates such as the corn snake used in this study, all 

calcium required for development is packaged into the yolk and calcareous eggshell 

prior to oviposition (Stewart and Ecay, 2010).  Therefore, the maternal impact on 

hatchling and skeletal size may be attributed to the fact that some mothers 

packaged more calcium (and possibly other nutrients) into the eggs prior to 

oviposition than others.  Thus, hatchlings in both control and treatment groups had 

access to differing amounts of calcium owing to maternal provisioning prior to 

oviposition.  This possible explanation is consistent with our findings of significant 

but independent effects of treatment and of maternal source on hatchling size.   

 Future studies that could strengthen the findings of this experiment could 

include allowing hatchlings to grow to mature adults.  If the impact of reduction in 

developmental calcium is just a retardation of late embryonic growth, then the 

difference in length could potentially be overcome post-hatching by growth during 

juvenile ontogeny.  Another potential avenue of investigation would be to 

investigate developmental series of corn snakes in greater detail to determine the 

time/stage at which vertebral growth is slowed or reduced when eggshell calcium is 
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eliminated.  If this time point could be determined, it would further strengthen the 

conclusion that reduction in developmental calcium impacts continued ossification 

or growth in late development.  
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Appendix: Modified Clearing and Staining Protocol 
 

This clearing and staining technique is a modified version of the one outlined by 

Hanken and Wassersug (1981). Due to the subjective nature of clearing and staining, 

this protocol was developed through experimentation with practice specimens of 

the same size, age, and species as the hatchling specimens used in the actual study to 

obtain optimum results.  Formulae for stains and enzyme solutions follow this 

stepwise description. 

 

1. Specimens were stored in 10% neutral-buffered formalin from hatch date until 

they were subjected to the clearing and staining process.  

2. Specimens were skinned, and eyes and viscera were removed.  

3. Specimens were washed in three separate changes of distilled water over the 

course of two days. The specimens were left in the first distilled water change 

for 2-4 hours, and for 12-24 hours in the second and third distilled water 

changes. The volume of distilled water used was the maximum amount the 

specimen jars would hold (approximately 500mL) in order to most efficiently 

and thoroughly flush the 10% formalin out of the specimens’ tissues. 

4. Specimens were placed in Alcian Blue stain (collagen/cartilage) for 

approximately 24 hours. Leaving specimens in Alcian Blue stain for any length of 

time over 36 hours made clearing the stain in later steps much more difficult and 

time consuming, so great care was taken to ensure each specimen stayed in 

Alcian Blue for the minimum time required to achieve sufficient cartilage 

staining.  
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5. Specimens were placed in a quick-change (2-4 hours) solution of absolute 

ethanol prior to being placed in two more baths of absolute ethanol for a 

minimum of 24 hours each. This step facilitates de-staining of the Alcian Blue. 

6. Specimens were transferred through a series of decreasing concentrations of 

ethanol solutions (75%, 50%, and 25%) with each step lasting at least two 

hours. After the 25% solution, the specimens were transferred through two 

more changes of distilled water (at least 2 hours for each change). 

7. Specimens were placed in a Trypsin solution until soft tissue had degraded to 

leave little to no stain visible. Another indication of readiness is a specimen that 

is easily pliable when gently manipulated with forceps, which indicates a 

complete breakdown of muscle fibers. Muscle striation should no longer be 

visible when viewed under a dissecting scope. Timing of this step was very 

unpredictable, but depending on concentration of trypsin used, specimens were 

ready around the 4-day mark. During practice runs, 1.0 g Trypsin/100 ml 

solution was used; however, this concentration proved ineffective in degrading 

soft tissue sufficiently (or quickly). For specimens used to collect data, 1.5-2.0 g 

Trypsin/100 ml of solution was used. If specimens were left in the Trypsin 

solution too long, connective tissues would completely degrade, skeletons 

disintegrate and become wholly unusable.   

8. Specimens were transferred to Alizarin Red Stain for a minimum of 24 hours. 

Special care was taken to remove them fairly close to the exact 24-hour mark 

because prolonged exposure to the stain led to difficulties sufficiently clearing 

enough of the stain for optimum vertebral visibility.  
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9. Specimens were removed from Alizarin Red Stain and put through a graded 

series of Glycerin/KOH solutions (25%, 50%, 75% glycerin,) for 24 hours each, 

ending with the specimens being placed in 100% Glycerin for storage. If 

specimens were particularly dark coming out of the Alizarin Red Stain, an extra 

step of placing them into 100% KOH for 24 hours prior to the 25% glycerin/KOH 

helped remove more of the stain. Another technique used was to add 3 drops of 

3% hydrogen peroxide to the 25% Glycerin/KOH solution. The peroxide also 

aids in bleaching some of the stain. Placing the specimen jars on a windowsill in 

direct sunlight while in the 25% plus 3% hydrogen peroxide solution enhanced 

this bleaching effect. A disadvantage of using hydrogen peroxide, however, was 

the formation of bubbles in the specimens, which could make clear observation 

and photography more challenging. The formation of bubbles was combatted 

somewhat effectively by using a vacuum oven to pull the bubbles out, but the 

glycerin in the solutions made this difficult. For these reasons, clearing without 

the aid of hydrogen peroxide was preferred in lieu of reliance on good timing in 

previous steps involving staining and tissue digestions.  

10. After 24 hours in the original 100% glycerin solution, specimens were 

transferred to fresh glycerin in order to ensure all KOH had been removed from 

the solution. Long-term storage in KOH will cause specimens to degrade and 

deteriorate. A few crystals of phenol or thymol could be added to specimens in 

100% Glycerin solution to prevent spoilage during long-term storage.  
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STAIN & ENZYME FORMULAE 
 

10% Neutral-Buffered Formalin: 
- 1000 mL 10% Formalin (37% Formaldehyde) 
- 4.0 g Sodium Acid Phosphate (Na2H2PO4 H2O) 
- 6.5 g Anhydrous Disodium Phosphate (Na2HPO4) 

 
Alcian Blue Stain: 

- 10 mg Alcian Blue 8GX 
- 70 mL absolute ethanol 
- 30 mL glacial acetic acid 
 

Stock Saturate Aqueous Sodium Borate: 
- Add sodium borate to distilled water until precipitate forms and does not 

dissolve 
 
Trypsin: 

- 1.5-2.0 g trypsin 
- 30 mL saturated sodium borate 
- 70 mL distilled water 

 
Stock 0.5% KOH Solution: 
      -     0.5 g Potassium Hydroxide (KOH) 
      -     100 mL distilled water 
 
Alizarin Red Stain: 

- 0.1 g Alizarin Red S 
- 100 mL of 0.5% KOH solution 

 
Glycerin/KOH Solutions: 

- 25%: 25 mL glycerin/ 75 mL 0.5% KOH 
- 50%: 50 mL glycerin/ 50 mL 0.5% KOH 
- 75%: 75 mL glycerin/ 25 mL 0.5% KOH 
- 100%: 100 mL glycerin 
**Optional bleaching in 25% solution: Add 2-3 drops of 3% hydrogen peroxide 
to the 25% Glycerin/KOH Solution 
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