
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

12-2015

Logic Gates Using the Digilent Basys3
Austin H. Duncan
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/honors

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Duncan, Austin H., "Logic Gates Using the Digilent Basys3" (2015). Undergraduate Honors Theses. Paper 311. https://dc.etsu.edu/
honors/311

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Logic Gates Using the Digilent Basys3

Thesis submitted in partial fulfillment of Honors

By

Austin Duncan
The Honors College

East Tennessee State University

December 2, 2015

Austin Duncan, Author

Hugh Blanton, Faculty Mentor

Paul Sims, Faculty Reader

Karen Kornweibel, Faculty Reader

Table of Contents

Introduction………………………………………………………………………………………1
Methods…………………………………………………………………………………………...2
Results…………………………………………………………………………………………….3
Discussion………………………………………………………………………………………...4
References………………………………………………………………………………………...5
Acknowledgements………………………………………………………………………………5
Appendix A……………………………………………………………………………………….6
Appendix B……………………………………………………………………………………...14
Appendix C……………………………………………………………………………………...22
Appendix D……………………………………………………………………………………...30

 1

Introduction

 In the field of electronics few things are as important as logic gates. Logic gates form the

basis of various circuits, devices, and techniques that are important to understanding electrical

principles. Currently, logic gates are taught at ETSU with an analog board and physical chips.

These devices can be difficult to understand. One solution is replacing the analog devices with a

digital device. With the acquisition of the Digilent Basys3 this became a reality.

 The Digilent Basys3 was designed to be an entry level Field Programmable Gate Array

(FPGA) board. The board can be programmed to model many different things. This is

accomplished by utilizing the various switches, LEDS, pushbuttons, and 7-segment displays that

are built onto the board. The Basys3 was specifically built to interface with the Vivado Design

Suite, which is regarded as one of the highest quality design tools used by modern engineers

(Basys™3 Artix-7 FPGA Board, n.d.).

 I was tasked with designing three basic lab activities utilizing the Basys3 board. The

activities were to model three basic logic gates: AND, OR, and NAND. These three gates are the

basis of digital circuitry. It is important to start with the basics when teaching something as

complicated as digital circuits. However, these labs barely scratch the surface as to what the

Basys3 is capable of. The hope is that labs will continue to be developed using this board and

that more complicated designs will be implemented.

 In recent years medical technology has moved away from analog devices in favor of

smaller, simpler, digital designs. This is due to the small size and programmability that is

inherent with digital devices. According to RTC Magazine, digital devices have greatly

improved healthcare. Advances in digital microcontrollers allow medical devices to be smaller,

require less power, have fewer parts, and are just as powerful as their analog counterparts

 1

(Sankman, 2010). Because digital devices have become so prominent within healthcare, it is

important that Biomedical Engineering Technology are exposed to them. The Basys3 is a perfect

introduction to digital devices.

Methods

 I began by researching how to program the Basys3. This was difficult at first because the

Basys3 is a relatively new product. Over time more information was published by people on the

Digilent forums (Digilent Forum, n.d.). This is where I started learning the basics of

programming the Basys3. The forums provided little help to me because they were discussing

more complex programs than the ones I was attempting to create. The most relevant information

I was able to find was in YouTube videos. Digilent produced an introductory tutorial video

which I watched. This showed me the basic steps needed to program the Basys3 with a

preexisting file (Diglent, Inc, 2014). However, the video failed to show the process of how to

write an original program. Another useful YouTube video was one by a man named Andrew

Danowitz, his video showed me how to correctly indicate the inputs in Vivado as well as how to

correctly write the program (Danowitz, 2015). After viewing these videos I was able to develop

my own programs for the Basys3. The programs I developed modeled the basic AND, OR, and

NAND logic gates on the Basys3.

After the programs were developed I wrote lab activities to be used in the ENTC 3370

Digital Circuits class. These lab activities will more than likely be the students’ first exposure to

digital circuits. The labs were designed to be easy to follow and reproduce. In order to better

illustrate the steps that had to be followed screen shots were used. If the lab activities are

 2

followed exactly the student should be able to model the gates with ease. The step by step nature

of the labs make it simple to return to a previous step if needed.

I based the lab activities on a lab sample provided by my thesis mentor, Dr. Hugh

Blanton. This sample can be viewed in Appendix D. I used the basic step by step structure of the

lab activity and applied the steps used to program the Basys3. These labs use an experimental

learning approach to education. By performing the lab the student is more inclined to learn the

material than if that student simply read material (Teaching Strategies, n.d.). I believe that

experimentation is a very effective learning tool in the field of Engineering Technology. In my

personal experience I did not truly grasp the concepts I was taught in class until I performed a lab

activity such as the labs developed. This is why the lab activities were designed in this way.

Results

After the programs were developed I wrote lab activities to be used in the ENTC 3370

Digital Circuits class. The goal of this class is to introduce students to the concepts of digital

circuits. Because of this, these lab activities will more than likely be the students’ first exposure

to digital circuits. The labs were designed to be easy to follow and reproduce. In order to better

illustrate the steps that had to be followed pictures were used. If the lab activities are followed

exactly the student should be able to model the gates with ease. The step by step nature of the

labs make it simple to return to a previous step if needed.

 I asked one of my classmates to test the lab activities to see if they would be successful in

a classroom setting. He was able to reproduce the desired results after following the procedures.

However, he did suggest that I rephrase some of the definitions of the gates. The terms I had

 3

used previously led to confusion. After this test I updated the definitions of the gates to be more

easily understood. The lab activities can be viewed in the appendices.

Discussion

 Various problems were encountered during this process. A lack of information was one

of the hardest things to overcome. Because the Basys3 had been recently released when I started

my research it was difficult to find basic information about programming it. This led to a lot of

trial and error in order to find a solution. I also had trouble determining what computer

programming language the program needed to be written in. Vivado can produce files with either

the Verilog or VHDL languages. For this project I used VHDL. The commands AND, OR, and

NAND are preprogrammed keywords within the language so writing the code for the logic gates

was a simple process. I discovered near the end of this process that I had been selecting the

wrong part number. In order to program the device the specific part number of the FPGA has to

be entered into Vivado. This made it impossible for the program to be loaded onto the Basys3.

After this was corrected the project was able to be finalized.

 In a classroom setting the labs require very little previous knowledge of logic gates to

perform. However, Vivado can be difficult to operate for beginners. The labs are designed to be

a good introduction to programming within Vivado. Previous labs used Protoboards to model the

logic gates. Although the Protoboard is faster and more user friendly than the Basys3, the Basys3

is far less limited in its possible applications. Because of this, moving from Protoboards to the

Basys3 would allow more complicated lab activities to be designed.

 4

References

Basys™3 Artix-7 FPGA Board. (n.d.). Retrieved from Digilent:
https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

Danowitz, A. (2015, July 9). vivado and basys3 getting started. Retrieved from Youtube:
https://www.youtube.com/watch?v=nV-Dn9cw1R8

Digilent Forum. (n.d.). Retrieved from https://forum.digilentinc.com/
Diglent, Inc. (2014, September 18). Getting started with Vivado and Basys3. Retrieved from

Youtube: https://www.youtube.com/watch?v=6_GxkslqbcU
Sankman, J. (2010, September). Transitioning From Analog to Digital in Medical Designs.

Retrieved from RTC Magazine: http://www.rtcmagazine.com/articles/view/101784
Teaching Strategies. (n.d.). Retrieved from Merlot Pedagogy:

http://pedagogy.merlot.org/TeachingStrategies.html

Acknowledgements
Dr. Hugh Blanton

Dr. Karen Kornweibel

Dr. Paul Sims

Caleb Taber

 5

Appendix A

Lab 1

ENTC 3370

 AND Gate

Objective:

To familiarize the student with the Basys3 board and to introduce him or her to basic logic gates.

Parts and Equipment:

● Basys3 board
● USB cable
● Computer
● Vivado Design Suite

Introduction:

In this lab the Basys3 FPGA board will be used to model a basic AND gate. For an AND gate
the output should be 0 if any input is 0 and 1 only if both inputs are 1. The inputs in this lab will
be represented by switches 0 and 1 on the Basys3. The output will be represented by LED 0.

Procedure:

First the Basys3 must be configured in the correct way. The jumper in the top left corner has to
be set to the USB setting. This allows the Basys3 to be powered using USB. The top right jumper
must be set to the JTAG setting. This is the way the program will be loaded onto the board.
Make sure the included USB cable is connected to the board and also to the computer.

Then, load Vivado and click new project.

A pop up will appear on the screen, click next. Name the file lab_1 and click next. Make sure to
save the file in a place where it can be accessed later, such as the Z drive.

 6

Figure 1: Naming the Project

Next, specify the type of project that will be made. Select the RTL Project option as illustrated in
Figure 2. RTL stands for register-transfer level.

Figure 2: Project Type

Because the sources will be specified at this time, leave the dialog box “Do not specify sources at
this time” unchecked.

Then, create a new source. Click the green + and select create new source. Name the source
ORgate. Make sure the File type VHDL is selected.

 7

Figure 3: Adding Sources

IP does not need to be added. Click the next button

Next, the constraints will be added. The constraint file is the master XDC file provided by
Digilent. This will be provided by the professor or on the Basys3 homepage:
https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

Figure 4: Adding Constraints

Next, the type of chip that is used must be selected. The Basys3 uses an Artix-7 FPGA chip.
Enter the information as it is displayed in Figure 5 (this is important) and then click next:

 8

https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3
https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

Figure 5: Default Part

After all of these steps are followed a screen resembling figure 6 will be displayed. This is the
project summary. It provides a preview of what is being created. Click finish when ready to
move on.

Figure 6: Project Summary

The next step is to indicate inputs and outputs. This is how the Basys3 knows which pins are the
inputs and outputs for the project. Enter the information located in Figure 7.

 9

Figure 7: Inputs and Outputs

After these steps are accomplished the program must be written.

Double click the file name ANDgate.

Within this file insert the information in Figure 8 that is below the phrase “begin”:

Figure 8: AND gate file

 10

This is the code that the program reads to implement the AND gate. The inputs and outputs
should be automatically inputted into the file so all that needs to be written is the code that will
program the gate. Led0 is the output. The “<=” means ‘gets’ in VHDL. This basically means that
the output will be 1 (led on) when the condition within the parentheses is met. Programming the
actual gate is very simple. The “and” function is a preprogrammed command within the
language. All that needs to be done is to indicate that the inputs Sw0 and Sw1 will be involved
with the “and” function.

Next go to the master XDC file. Rows of text that are greyed out with “#” at the beginning of
each row can be seen. The “#” indicates that the row is a comment and not a piece of code.
Comments are nonessential to the program and can be used to give information or indicate a
heading.

The rows that say sw[0], sw[1], and led[0] must all be uncommented to allow them to be
recognized as ports for the Basys3. This can be done by removing the “#” in front of each row.

Next, make sure that the pins indicated in the master XDC match the names given to the inputs
and outputs. Change sw[0] to Sw0, sw[1] to Sw1, and led[0] to Led0. If done correctly the file
will look like Figure 9.

Figure 9: Master XDC

After the correct rows have been uncommented, the program is ready to be loaded onto the
Basys3.

 11

First, make sure that the correct file is generated. Click the Bitstream settings button in the lower
left hand corner. The option -bin_file should be selected. This ensures that the file generated will
be compatible with the Basys3. This is shown in Figure 10.

Figure 10: .bin File settings

Then, click the run Bitstream button in the lower left hand corner.

There will be a dialog box that says that there are no implementation results available (Figure
11).

Figure 11: Implementation

All this means is that the design has to be implemented before the bitstream can be produced.
This process could take a few minutes. After the bitstream is generated, the program must be
loaded onto the Basys3.

Make sure that the power is turned on and the green LED is illuminated.

Next, open the Hardware Manager. There will be an option to “Open target’ (Figure 12) at the
top of the screen. Click that and then click auto connect (Figure 13). This should automatically
connect the Basys3 to the computer.

 12

Figure 12: Hardware Manager

Figure 13: Auto Connect.

After these steps are completed the screen displayed in Figure 14 will be displayed on the screen.
This confirms that the program has been loaded onto the Basys3.

Figure 14: Basys3 is programmed.

Conclusion:

If everything is done correctly an AND gate should be modeled on the Basys3. When either
switch 0 or switch 1 is turned to the off position (0) LED 0 should be turned off. When both of
the switches are turned on (1) the LED should light up to indicate the output is 1.

 13

Appendix B
Lab 2

ENTC 3370

 OR Gate

Objective:

To familiarize the student with the Basys3 board and to introduce him or her to basic logic gates.

Parts and Equipment:

● Basys3 board
● USB cable
● Computer
● Vivado Design Suite

Introduction:

In this lab the Basys3 FPGA board will be used to model an OR gate. For an OR gate the output
should be 1 if any input is 1 and 0 only if both inputs are 0. The inputs in this lab will be
represented by switches 0 and 1 on the Basys3. The output will be represented by LED 0.

Procedure:

First the Basys3 must be configured in the correct way. The jumper in the top left corner has to
be set to the USB setting. This allows the Basys3 to be powered using USB. The top right jumper
must be set to the JTAG setting. This is the way the program will be loaded onto the board.
Make sure the included USB cable is connected to the board and also to the computer.

Then, load Vivado and click new project.

 A pop up will appear on the screen, click next. Name the file lab_2 and click next. Make sure to
save the file in a place where it can be accessed later, such as the Z drive.

 14

Figure 1: Naming the Project

Next, specify the type of project that is to be made. Select the RTL Project option as illustrated in
Figure 2. RTL stands for register-transfer level.

Figure 2: Project Type

Because the sources will be specified at this time leave the dialog box “Do not specify sources at
this time” unchecked.

Then, create a new source. Click the green + and select create new source. Name the source
ORgate. Make sure the File type VHDL is selected.

 15

Figure 3: Adding Sources

IP does not need to be added. Click the next button

Next, constraints must be added. The constraint file is the master XDC file provided by Digilent.
This will be provided by the professor or on the Basys3 homepage:
https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

Figure 4: Adding Constraints

Next, designate which type of chip that is being used. The Basys3 uses an Artix-7 FPGA chip.
Enter the information as it is displayed in Figure 5 (this is important) and then click next:

 16

https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3
https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

Figure 5: Default Part

After all of these steps are followed a screen resembling figure 6 will be displayed. This is the
project summary. It provides a preview of what is being created. Click finish when ready to
move on.

Figure 6: Project Summary

The next step is to specify the inputs and outputs. This is how the Basys3 knows which pins are
the inputs and outputs for the project. Enter the information located in Figure 7.

 17

Figure 7: Inputs and Outputs

After these steps are accomplished the program is ready to be written.

Double click the file name ORgate.

Within this file insert the information in Figure 8 that is below “begin”:

Figure 8: OR gate file

 18

This is the code that the program reads to implement the OR gate. The inputs and outputs should
be automatically inputted into the file so all that needs to be written is the code that will program
the gate. Led0 is the output. The “<=” means ‘gets’ in VHDL. This basically means that the
output will be 1 (led on) when the condition within the parentheses is met. Programming the
actual gate is very simple. The “or” function is a preprogrammed command within the language.
All that needs to be done is to indicate that the inputs Sw0 and Sw1 will be involved with the
“or” function.

Next go to the master XDC file. Rows of text that are greyed out with “#” at the beginning of
each row can be seen. The “#” indicates that the row is a comment and not a piece of code.
Comments are nonessential to the program and can be used to give information or indicate a
heading.

The rows that say sw[0], sw[1], and led[0] must all be uncommented to allow them to be
recognized as ports for the Basys3. This can be done by removing the “#” in front of each row.

Next, make sure that the pins indicated in the master XDC match the names given to the inputs
and outputs. Change sw[0] to Sw0, sw[1] to Sw1, and led[0] to Led0. If done correctly the file
will look like Figure 9.

Figure 9: Master XDC

 19

After the correct rows have been uncommented, the program is ready to be loaded onto the
Basys3.

First, make sure that the correct file is generated. Click the Bitstream settings button in the lower
left hand corner. The option -bin_file should be selected. This ensures that the file generated will
be compatible with the Basys3. This is shown in Figure 10.

Figure 10: .bin File settings

Then, click the run Bitstream button in the lower left hand corner.

There will be a dialog box that says that there are no implementation results available (Figure
11).

Figure 11: Implementation

All this means is that the design has to be implemented before the bitstream can be produced.
This process could take a few minutes. After the bitstream is generated the program must be
loaded onto the Basys3.

 20

Next, open the Hardware Manager. There will be an option to “Open target’ (Figure 12) at the
top of the screen. Click that and then click auto connect (Figure 13). This should automatically
connect the Basys3 to the computer.

Figure 12: Hardware Manager

Figure 13: Auto Connect.

After these steps are completed the screen displayed in Figure 14 will be displayed on the screen.
This confirms that the program has been loaded onto the Basys3.

Figure 14: Basys3 is programmed.

Conclusion:

If everything is done correctly an OR gate should be modeled on the Basys3. When both of the
switches are turned to the off position (0) LED 0 should be turned off. If either switch is
switched on (1) the LED should light up to indicate the output is 1.

 21

Appendix C
Lab 3

ENTC 3370

 NAND Gate

Objective:

To familiarize the student with the Basys3 board and to introduce him or her to basic logic gates.

Parts and Equipment:

● Basys3 board
● USB cable
● Computer
● Vivado Design Suite

Introduction:

In this lab we will be using the Basys3 FPGA board to model a NAND gate. For a NAND gate
the output will be 0 if both inputs are 1, otherwise the output is 1. The inputs in this lab will be
represented by switches 0 and 1 on the Basys3. The output will be represented by LED 0.

Procedure:

First the Basys3 must be configured in the correct way. The jumper in the top left corner has to
be set to the USB setting. This allows the Basys3 to be powered using USB. The top right jumper
must be set to the JTAG setting. This is the way the program will be loaded onto the board.
Make sure the included USB cable is connected to the board and also to the computer.

Then, must load Vivado and click new project.

 A pop up will appear on the screen, click next. Name the file lab_3 and click next. Make sure to
save the file in a place where it can be accessed later, such as the Z drive.

 22

Figure 1: Naming the Project

Next, specify the type of project that will be made. Select the RTL Project option as illustrated in
Figure 2. RTL stands for register-transfer level.

Figure 2: Project Type

Because the sources will be specified at this time, leave the dialog box “Do not specify sources at
this time” unchecked.

We will then create a new source. Click the green + and select create new source. Name the
source NANDgate. Make sure the File type VHDL is selected.

 23

Figure 3: Adding Sources

We do not need to add IP. Click the next button

Next we will add our constraints. Our constraint file is the master XDC file provided by Digilent.
This will be provided by the professor or on the Basys3 homepage:
https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

Figure 4: Adding Constraints

Next we have to designate which type of chip we are using. The Basys3 uses an Artix-7 FPGA
chip. Enter the information as it is displayed in Figure 5 (this is important) and then click next:

 24

https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3
https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

Figure 5: Default Part

After all of these steps are followed a screen resembling figure 6 will be displayed. This is the
project summary. It provides a preview of what is being created. Click finish when ready to
move on.

Figure 6: Project Summary

The next step is to specify the inputs and outputs. This is how the Basys3 knows which pins are
the inputs and outputs for the project. Enter the information located in Figure 7.

 25

Figure 7: Inputs and Outputs

After these steps are accomplished the program is ready to be written.

Double click the file name NANDgate.

Within this file insert the information in Figure 8 that is below “begin”:

Figure 8: NAND gate file

 26

This is the code that the program reads to implement the OR gate. The inputs and outputs should
be automatically inputted into the file so all that needs to be written is the code that will program
the gate. Led0 is our output. The “<=” means ‘gets’ in VHDL. This basically means that the
output will be 1 (led on) when the condition within the parentheses is met. Programming the
actual gate is very simple. The “nand” function is a preprogrammed command within the
language. All that needs to be done is to indicate that the inputs Sw0 and Sw1 will be involved
with the “nand” function.

Next go to the master XDC file. Rows of text that are greyed out with “#” at the beginning of
each row can be seen. The “#” indicates that the row is a comment and not a piece of code.
Comments are nonessential to the program and can be used to give information or indicate a
heading.

The rows that say sw[0], sw[1], and led[0] must all be uncommented to allow them to be
recognized as ports for the Basys3. This can be done by removing the “#” in front of each row.

Next, make sure that the pins indicated in the master XDC match the names given to the inputs
and outputs. Change sw[0] to Sw0, sw[1] to Sw1, and led[0] to Led0. If done correctly the file
will look like Figure 9.

Figure 9: Master XDC

 27

After the correct rows have been uncommented, the program is ready to be loaded onto the
Basys3.

First, make sure that the correct file is generated. Click the Bitstream settings button in the lower
left hand corner. The option -bin_file should be selected. This ensures that the file generated will
be compatible with the Basys3. This is shown in Figure 10.

Figure 10: .bin File settings

Then, click the run Bitstream button in the lower left hand corner.

There will be a dialog box that says that there are no implementation results available (Figure
11).

Figure 11: Implementation

All this means is that the design has to be implemented before the bitstream can be produced.
This process could take a few minutes. After the bitstream is generated the program must be
loaded onto the Basys3.

 28

Next, open the Hardware Manager. There will be an option to “Open target’ (Figure 12) at the
top of the screen. Click that and then click auto connect (Figure 13). This should automatically
connect the Basys3 to the computer.

Figure 12: Hardware Manager

Figure 13: Auto Connect.

After these steps are completed the screen displayed in Figure 14 will be displayed on the screen.
This confirms that the program has been loaded onto the Basys3.

Figure 14: Basys3 is programmed.

Conclusion:

If everything is done correctly a NAND gate should be modeled on the Basys3. When both of the
switches are turned to the on position (1) LED 0 should be turned off. Otherwise, the LED
should light up to indicate the output is 1.

 29

Appendix D
Lab 2
ENTC 3370
Logic Gates

Objective: The objective of this lab is to introduce the student to the basic logic gates.

Parts and Equipment:

1. 7408 Quad 2-input AND gate
2. 7432 Quad 2-input OR gate
3. 7404 Hex Inverter gate
4. Logic Trainer

Procedure:

Familiarize yourself with the digital trainer, Figure 1.

 30

Figure 1. Logic Trainer.

Note that the protoboard is connected as follows.

Protoboard

 31

These pins are not
connected internally

All these pins are
connected internally

These pins are not
connected internally

These pins are not
connected internally

Figure 2. Protoboard.

 32

The protoboards are prepopulated with the following gates:

 Figure 3. Protoboard polpulation.

Given a quad two-input AND gate chip, the 7408, construct the circuit shown below in Figure 4
and verify the truth table for an AND gate.

 Figure 4. AND Circuit.

Note that we are using gate A which has one input at pin 1 (1A) and one input at pin 2 (1B). The
output (1Y) is take off of pin 3, Figure 5.

7408 7432 7404 7400 7402 7486 7410 74161

 33

 Figure 5. AND hook up.

 Figure 6. 7408 physical dimensions.

 34

Given a quad two-input OR gate chip, the 7432, construct the circuit shown below in Figure 7
and verify the truth table for an OR gate.

 Figure 8. OR hook up.

Given a hex inverter gate chip, the 7404, construct the circuit shown below in Figure 9 and
verify the truth table for an OR gate.

Figure 7. Protoboard.

 35

Explain how these gates compare to the theory and your expectations.

 36

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	12-2015

	Logic Gates Using the Digilent Basys3
	Austin H. Duncan
	Recommended Citation

	References

