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Abstract 
 

Aliskiren is a non-peptide, orally active renin inhibitor with poor absorption and low 
bioavailability (~2.6%). In order to improve the current drug delivery system, a commercially 
available, biodegradable copolymer, poly(lactide-co-glycolide) (PLGA), was employed for a 
nanoparticle (NP) reformulation of aliskiren. An emulsion-diffusion-evaporation technique was 
implemented where aliskiren and PLGA were dissolved in dichloromethane, ethyl acetate, or 
ethyl acetate/acetone. To an aqueous phase containing 0.25% w/v didodecyldimethylammonium 
bromide (DMAB) as stabilizer, the previously prepared organic phase was added drop-wise. 
Following sonication, NP diffusion was expedited with the addition of water, and the organic 
phase was evaporated to form a suspension. Centrifugation was performed at 10,000 rpm, and 
the supernatant was analyzed for drug entrapment efficiency via ultraviolet-visible spectroscopy 
as well as particle morphology with the use of a transmission electron microscope (TEM). 
Having the highest entrapment efficiency (82.68 ± 1.18 %), ethyl acetate was used as the organic 
solvent in further testing, such as examining the effects of variation in DMAB stabilizer 
concentration (0.10, 0.25, 0.50, or 1.00% w/v) and centrifugation speed (10,000 or 12,000 rpm). 
The optimum formulation was ascertained through observing certain NP characteristics, such as 
entrapment efficiency particle size, zeta potential, and polydispersity index (PDI). A NICOMP 
Particle Sizer was used to measure particle size, zeta potential, and PDI. The smallest NP size 
(67.27 ± 0.87 nm) was accomplished with 0.50% w/v DMAB concentration using a 
centrifugation speed of 12,000 rpm, while the highest zeta potential (18.73 ± 0.03 mV) was 
detected with the 1.00% w/v DMAB concentration and a 10,000 rpm centrifugation speed. 
Further, the best entrapment efficiency and PDI (82.68 ± 1.18 % and 0.15 ± 0.03, respectively) 
were accomplished with 0.25% w/v DMAB and centrifugation at 10,000 rpm. The most 
favorable formulation yielding the highest zeta potential (18.73 ± 0.03 mV) was observed when 
DMAB stabilizer was 1.00% w/v and centrifuged at 10,000 rpm. Particle size and entrapment 
efficiency for this formulation were 75.67 ± 0.89 nm and 71.62 ± 0.11 %, respectively.  
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1. Introduction 
 

Worldwide, approximately 25% of people live with hypertension, a risk factor for 

cardiovascular disease; therefore proper treatment of this potentially serious condition is 

paramount [1]. A diagnosis of hypertension is conferred when a patient, exhibiting neither 

diabetes mellitus nor kidney disease, presents with a blood pressure in excess of 140/90 mm Hg. 

Blood pressure is mainly controlled by the renin-angiotensin-aldosterone system (RAAS) 

through angiotensin II which is produced via the angiotensin-converting enzyme (ACE) from 

angiotensin I [2]. Increased blood pressure is correlated with elevated blood levels of angiotensin 

II, a vasoconstrictor which restricts blood flow thereby increasing vascular resistance [3]. The 

rate-limiting step of RAAS is the process by which renin is secreted due to low plasma volume, 

decreased blood flow through the kidneys, or increased sympathetic central nervous system 

activity. When angiotensinogen, the only known renin substrate in plasma, is cleaved by renin, 

an inactive peptide, angiotensin I, is formed [2]. ACE then transforms angiotensin I into the 

active peptide angiotensin II, which interacts with angiotensin II type 1 (AT1) receptors inducing 

vasoconstriction and the release of catecholamines.  

Although ACE inhibitors block the formation of angiotensin II, angiotensin I continues to 

be produced and may still be converted to angiotensin II via other metabolic pathways [4]. 

Angiotensin receptor blockers specifically block the AT1 receptors[2]. While multiple steps may 

be inhibited to prevent angiotensin II formation, the rate-limiting step is ideal for inhibition as 

renin is the first enzyme in the pathway [5]. Because angiotensin receptors are not activated 

when renin is inhibited, the specific metabolic pathway is not affected [2]. Inhibition at this step 

increases the amount of renin in circulation; however, inhibitors, such as aliskiren, block enzyme 

activity. 
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 Aliskiren (Fig. 1) is a non-peptide, orally active renin inhibitor with attractive properties, 

such as low molecular weight, and was discovered using X-ray crystallographic structure 

analysis and molecular modeling [5]. On March 6, 2007, aliskiren became the first of its drug 

class to receive approval from the United States Food and Drug Administration (FDA) as an 

antihypertensive drug which reduces plasma renin activity through high affinity binding and 

specificity via aromatic side chains [3, 6]. The renin active site is able to accommodate seven 

substrate amino acid units with high affinity [7]. When the production of angiotensin I and 

angiotensin II is decreased, plasma renin concentration is increased, yet plasma renin activity 

(PRA) is decreased [6]. The reduction in PRA is beneficial to cardiovascular health through 

reducing cardiovascular risk factors [3]. Studies have shown that aliskiren is effective as either a 

monotherapy or in combination with other antihypertensive drugs such as hydrochlorothiazide 

[4, 6]. Aliskiren has a half-life of approximately 23 to 36 hours making it suitable for once daily 

dosing, typically 150 or 300 mg. Side effects including headache, diarrhea, and dizziness were 

reported in less than 3% of patients [8]. 
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Figure 1. Chemical structure of aliskiren [9]. 

 
 Although aliskiren has many positive attributes in regard to lowering blood pressure, 

such as reaching maximum plasma concentrations within 2 to 4 hours following administration, 

drug bioavailability has been found to be an extremely low (2.6%) with approximately 91% of 

the drug excreted unmetabolized from the body in feces and urine ( > 0.6%) [2, 4, 5, 8]. 

Aliskiren exhibits high aqueous solubility (low lipophilicity) conferring greater resistant to 
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intestinal degradation [4, 6]. Synthetic polymer nanoparticle (NP) formulations are becoming 

prominent in nanomedicine in an attempt to enhance drug delivery systems through improving 

bioavailability, systematic absorption, and/or minimizing effective dosage [10, 11]. Since the 

current average wholesale cost of aliskiren is $70.20 for a 150 mg dose and $88.60 for a 300 mg 

dose, NP formulations could bring about a reduction in cost and become an appealing option for 

patients who suffer from hypertension [12]. 

 NPs, defined by a range of size from 10 nm to 1000 nm, have the potential to modify 

particle size and surface characteristics which may in turn have a significant effect on drug 

pharmacokinetics and pharmacodynamics [13]. Nanoencapsulation can influence drug stability, 

specificity, efficacy, and/or tolerability [14, 15]. Further advantages include improvement of 

intracellular penetration and oral bioavailability along with the option of targeting drug delivery 

to specific tissues and organs. This is attained by either binding the drug to the exterior surface of 

the NPs or by encapsulating the drug internally [16, 17]. Particle size also plays a role in the 

modifiability of a NP such in the obtaining of certain surface properties which affect degradation 

time, elimination processes, and intracellular uptake. When the diameter of NPs are reduced to 

below 100 nm, degradation in the mononuclear phagocytic system (MPS) can be avoided, 

enabling them to stay in the circulatory system thereby increasing the probability of reaching the 

targeted delivery site [18]. Also, if the drug exhibits a hydrophilic surface, the chances of eluding 

the MPS is greatly decreased. If the MPS does not recognize a particle, macrophages will 

quickly attempt to rid the system of the particle [19]. By altering the NP characteristics, this 

important biological defense can be overcome. 

Particle charge is a characteristic which has a significant effect on NP distribution [11, 

20]. Adherence of cationic charged NPs to the negatively charged cell membrane essentially 
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increases cellular uptake. Lastly, particle shape consisting of short spheres with narrow size 

distribution exhibits effective delivery of the drug because as particle length increases, NP 

binding to the drug decreases [10, 17]. This approach is also advantageous because it can reduce 

drug toxicity and side effects associated with a drug due to the ability of targeting specific organs 

and tissues.   

 The FDA-approved, biodegradable, linear copolymer poly (lactide-co-glycolide) (PLGA) 

is favorable for NP formulation for many reasons, including commercial availability, exceptional 

biocompatibility, and low toxicity [11, 21]. Secondly, when this polyester copolymer undergoes 

hydrolysis (Fig. 2), water diffuses into the sample and causes the acidic end groups on each 

monomer to autocatalyze drug release [22, 23]. The mobility of the polymer chains is then 

greater due to a drop in PLGA molecular weight. The monomers are permitted to diffuse and 

water molecules occupy the newly accessible space causing polymer erosion. Degradation of 

PLGA continues releasing the drug through the porous features at a slow rate, and the acidic 

monomers are then consumed via the Krebs cycle with marginal toxicity [15, 22, 24]. 

Degradation time is affected by the ratio of lactic acid and glycolic acid where the optimum 

degradation time is achieved with a 50:50 ratio [23]. Typically, particle size ranges from 50-500 

nm, which allows smaller size diameters to consistently be obtained [17]. With the use of PLGA 

and other biodegradable polymers, particle size, shape, and charge can be manipulated via 

specific synthetic processes. In order to increase bioavailability, a smaller particle size and 

increased surface charge are optimum characteristics. 
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Figure 2. PLGA copolymer undergoing hydrolysis [14, 25-27]. 

 
The current study will employ an emulsion-diffusion-evaporation technique with an 

organic solvent, didodecyldimethylammonium bromide (DMAB) as the stabilizer, and PLGA as the 

synthetic copolymer. Variations in organic solvent, stabilizer concentration, or centrifugation 

speed will be employed and analyzed in order to assess optimum conditions. Following each 

formulation with various solvents, dichloromethane, ethyl acetate, or ethyl acetate/acetone, 

entrapment efficiency and morphology of NPs will be evaluated, while particle size, zeta 

potential, polydispersity index (PDI), and entrapment efficiency for each formulation with 

varying stabilizer concentration (0.10, 0.25, 0.50, or 1.00% w/v) and centrifugation speed 

(10,000 or 12,000 rpm) will also be studied. 

2. Materials and Methods 

2.1 Materials 

 Aliskiren hemifumarate powder was purchased from ChemScene, LLC (Monmouth 

Junction, NJ, USA). Dichloromethane, DMAB, and PLGA (50:50 copolymer compositions; MW 

30,000–60,000 Da) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Acetone, ethyl 

acetate, high-performance liquid chromatography (HPLC) grade water and acetonitrile were 

purchased from Fischer Scientific Laboratory (Fair Lawn, NJ, USA). 
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2.2 Preparation of Nanoparticles 

NP formulations were prepared based on a previously described method using a variety 

of solvents, stabilizer concentrations, or centrifugation speeds [28].  

2.2.1 Effect of Varying Organic Solvents 

 The method of emulsion-diffusion-evaporation was employed with slight alterations for 

NP formulation. In brief, 50 mg of PLGA was completely dissolved in 3 mL of dichloromethane, 

ethyl acetate, or ethyl acetate/acetone. To the organic solvent, 10 mg of aliskiren was added 

under moderate stirring. Simultaneously, 0.25% w/v of DMAB was placed in water (6 mL) and 

allowed to fully dissolve under moderate stirring. While the aqueous phase was under moderate 

stirring, organic phase was added drop-wise. The suspension was sonicated for 5 minutes at 20 

kHz, then the contents were allowed to stir under a hood for 30 to 40 minutes so evaporation of 

ethyl acetate could occur. Upon completion, each solution was centrifuged at 10,000 rpm using a 

Sorval Biofuge Stratos centrifuge equipped with a Heraeus fixed angle rotor (#3335)(Thermo 

Fisher Scientific Inc, Waltham, MA, USA) for 5 minutes. The supernatant was collected to 

measure entrapment efficiency as well as capture transmission electron microscope (TEM) 

images. 

2.2.2 Effect of Varying Stabilizer Concentration and Centrifugation Speed 

 The variations of stabilizer concentrations for DMAB included 0.10, 0.25, 0.50, or 1.00% 

w/v, while the centrifugation speeds were 10,000 or 12,000 rpm. This allowed for detection of 

the optimum centrifugation speed and DMAB concentration in terms of zeta potential, particle 

size, and entrapment efficiency. 
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2.3 Nanoparticle Characteristics 

 Formulations were evaluated based upon various NP criteria, entrapment efficiency, 

particle morphology, size, zeta potential, and PDI.   

2.3.1 Entrapment Efficiency 

 A 1:3 ratio dilution of collected supernatant to HPLC-grade acetonitrile was performed, 

and the corresponding absorbance values were measured employing the same instrumentation. 

These values were employed for the calculation of entrapment efficiency utilizing the following 

equation: Entrapment efficiency (%)  =  (Amount of aliskiren entrapped in NPs/Total amount of 

aliskiren used for formulation) × 100. 

 For all measurements of entrapment efficiency, a calibration curve was constructed using 

solutions of known aliskiren concentrations (10,000-1,000,000 ng/mL) and measuring their 

absorbance values using ultraviolet–visible spectroscopy (Eppendorf Biophotometer, 

Hauppauge, NY, USA) with a wavelength set at 260 nm.  

2.3.2 Particle Morphology 

To assess aliskiren loaded PLGA-NP shape and surface morphology under varied organic 

solvent conditions, TEM (Tecnai Philips Transmission Electron Microscope; FEI, Hillsboro, 

Oregon, USA) was employed. After vortex mixing, 2 µL aliquots of the NP suspensions were 

positioned on a 200 mesh copper grid containing Formvar film (Electron Microscopy Sciences, 

Hatfield, Pennsylvania). Examination was performed at 80 kV once the samples had air dried for 

1 hour. 
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2.3.3 Particle Size, Zeta Potential, and Polydispersity Index  

 A NICOMP Particle Sizer (Particle Sizing Systems, Port Richy, FL, USA) was used to 

evaluate particle size via dynamic light scattering, while zeta potential was approximated under 

an electrical field with a foundation of electrophoretic mobility. PDI, as an indicative of particle 

size distribution, was also measured by NICOMP Particle Sizer. 

2.4 Data Treatment and Statistical Analysis 

 Each experiment was carried out in triplicate, and the resulting data is presented as mean 

± SD. Variation in centrifugation speeds were compared with the use of a Student's t-test, with a 

p-value < 0.05 indicating a significant difference. * indicates a significant difference between 

two groups. 

3. Results and Discussion 

3.1 Effect of Varying Organic Solvents 

 Different organic solvents were examined in order to determine which solvent would 

yield better results in terms of drug entrapment efficiency and particle morphology.  

3.1.1 Entrapment Efficiency 

 For each known concentration of aliskiren formulation, the absorbance value was 

measured in triplicate, and the average value was plotted against the known concentration of 

aliskiren solution. With an R2 value of 0.99716 (Fig. 3), this calibration curve was employed for 

all entrapment efficiency measurements. 
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Figure 3. Standard calibration curve for drug entrapment efficiency. 

It was imperative to choose an organic solvent, which could sufficiently dissolve 

hydrophilic aliskiren as well as produce a desired entrapment efficiency for the PLGA-NP 

formulation. The three readily available and cost effective choices were dichloromethane, ethyl 

acetate, and ethyl acetate/acetone due to their high solubility for many compounds. Additionally, 

solvent toxicity was considered, including the high volatility of dichloromethane as well as its 

toxic tendencies in humans; however, since the method of emulsion-diffusion-evaporation is 

inclusive of complete evaporation of the organic phase upon formation of the PLGA-NP, the 

toxicity is not an issue [29]. On the contrary, ethyl acetate and acetone both show lower toxicity 

than dichloromethane; however, each evaporates at a more rapid rate. Thus, when using these 

solvents, the method of preparing PLGA-NPs had to be performed in a timely manner [30, 31]. 

As shown in Table 1, entrapment efficiency was highest (82.68 ± 1.18 %) for PLGA-NPs that 

were formulated employing ethyl acetate as the organic solvent, 0.25% w/v DMAB, and 10,000 
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rpm centrifugation speed. The higher value for entrapment efficiency is indicative of an 

increased amount of aliskiren encapsulated in the particular PLGA-NP formulation, which is 

preferable. 

 
Table 1. Effect of various organic solvents at 0.25% w/v DMAB and 10,000 rpm on aliskiren 
entrapment efficiency.  

  Dichloromethane Ethyl acetate Ethyl acetate/acetone 
Entrapment efficiency (%)  73.24 82.70 58.64 

  72.45 81.50 58.12 
  72.56 83.85 60.52 

Average 72.75 82.68 59.09 
S.D. 0.43 1.18 1.26 

 

3.1.2 Particle Morphology 

Fig. 4 displays PLGA-NPs (lighter areas of image) with employment of dichloromethane 

as solvent. Although many NPs are present, the poor NP morphology and increased particle size 

makes this formulation unfavorable as drug delivery to target cells would be inhibited due to 

reduced permeability through epithelial barriers in the body [32]. The shapes of the NPs appear 

to have pointed tips as opposed to the preferred spherical shape. Fig. 5 illustrates PLGA-NPs 

using ethyl acetate as solvent, and of the three images, this formulation exhibited the most ideal 

characteristics, which included spherical morphology, decreased particle size, and the highest 

entrapment efficiency. These conditions are less complimentary to the in vivo conditions of the 

vascular and lymphatic systems, therefore decreasing their chance of clearance from the 

circulatory system [33]. The decreased particle size is related to an increased surface area on the 

NPs which allows for more interaction with the solvent [28]. Lastly, Fig. 6 is representative of 

ethyl acetate/acetone as solvent, and it is observed to have similar physical features to the NP in 

Fig. 5. As opposed to Fig. 5, the entrapment efficiency is the least desirable of all three solvents. 
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The decreased entrapment efficiency with ethyl acetate/acetone and the poor morphology with 

dichloromethane indicate that, of those organic solvents tested, ethyl acetate is the best choice for 

PLGA-NP formulations in regard to spherical shape and increased entrapment. 
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Figure 4. TEM image illustrating morphology of NPs formulated using dichloromethane. 
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Figure 5. TEM image illustrating morphology of NPs formulated using ethyl acetate. 
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Figure 6. TEM image illustrating morphology of NPs formulated using ethyl acetate/acetone. 
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3.2 Effects of Varying Stabilizer Concentration and Centrifugation Speed 
 
 The use of increasing of concentrations of stabilizer along with variation in centrifugation 

speed allows for the optimization of NP formulation. 

3.2.1 Particle Size 

When DMAB stabilizer concentrations and centrifugation speeds were varied, the first 

characteristic analyzed was particle size. Centrifugation speed alteration produced significantly 

different particle sizes for the PLGA-NP formulations containing 0.10, 0.50, and 1.00% 

stabilizer concentrations. The smallest acquired particle size (67.27 ± 0.87 nm) was found with 

the use of 0.50% w/v DMAB stabilizer and a centrifugation speed of 12,000 rpm (Fig. 7). 

Particles that measure less than 100 nm are small enough to permeate sub-mucosal membranes, 

whereas particles greater than 100 nm remain in the epithelial lining and do not reach the target 

delivery site [15]. In turn, cellular uptake is affected since the number of NPs which reach the 

cell are minimized. Even though the 1.00% w/v DMAB stabilizer spun at 10,000 rpm (75.67 ± 

0.89 nm) was the optimum formulation chosen, as opposed to the 0.50% w/v DMAB stabilizer 

with centrifugation speed of 12,000 rpm, the formulation still encompassed PLGA-NPs that were 

less than 100 nm in size. This made for NPs that also had efficient cellular uptake that bypassed 

the MPS.  
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Figure 7. Effect of DMAB concentration at 10,000 or 12,000 rpm on NP particle size. 

 

3.2.2 Zeta Potential 

For zeta potential, variation in centrifugation speed produced a significant change within 

the formulations employing 0.50 and 1.00% stabilizer concentration. When analyzed, the highest 

zeta potential (18.73 ± 0.03 mV) was seen with 1.00% w/v DMAB stabilizer and 10,000 rpm 

centrifugation speed (Fig. 8). Zeta potential directly affects cellular uptake by creating an 

attraction between the positive surface charge of the PLGA-NP and the negative surface charge 

of the cell membrane. It is desirable to have a more positive zeta potential value, around 20 mV, 

so that the NPs may adhere to the negatively charged cell membrane more adequately [17]. 

Higher bioavailability will be achieved if the PLGA-NP is capable of permeating the cell 

membrane and transported to the primary endosomes within the cell [15]. From there, the PLGA-

NPs can be separated, and selected NPs are recycled to the cell exterior in order to maintain a 

required concentration gradient of NPs in the outside medium of the cell. Without this balance, 
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exocytosis of the NPs will be activated. Inside the cell, the remaining encapsulated PLGA-NPs 

migrate to the cytoplasm where controlled release of aliskiren occurs. This characteristic is 

highly considered when choosing an optimum formulation due to its vital role in cellular uptake 

and drug release.  

 
 

 

Figure 8. Effect of DMAB concentration at 10,000 or 12,000 rpm on NP zeta potential. 

 

3.2.3 Polydispersity Index 

When the PDI of a dispersion is less than 0.1, the particles are said to be narrowly 

dispersed in size. On the contrary, a value that extends beyond 0.3 has broadly dispersed particle 

sizes [10]. In this study, the best PDI (0.15 ± 0.03) value was observed when employing 0.25% 

w/v DMAB stabilizer and 10,000 rpm centrifugation speed (Fig. 9). However, the chosen 

formulation of 1.00% w/v DMAB stabilizer at 10,000 rpm centrifugation speed displayed a value 
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of 0.321 ± 0.01 for PDI. Though not the highest value, the formulation demonstrated sufficient 

consistently dispersed PLGA-NP in the final formulation. A significant change was observed in 

PDI only in the formulation using 0.50% stabilizer concentration. 

 
 

 
 

Figure 9. Effect of DMAB concentration at 10,000 or 12,000 rpm on NP PDI. 

 

3.2.4 Entrapment Efficiency 

Although the highest entrapment efficiency (82.68 ± 1.18 %) was achieved when 0.25% 

w/v DMAB stabilizer and 10,000 rpm centrifugation speed were used (Fig. 10), we chose 

formulation of 1.00% w/v DMAB stabilizer at 10,000 rpm centrifugation speed displaying 71.62 

± 0.11 % for entrapment efficiency, due to sufficient encapsulation of aliskiren and optimized 

particle size and zeta potential values of formulation. The importance of this value relates to the 

amount of drug bound to PLGA-NP present in the resulting formulation. In order for a drug 
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delivery system to be considered successful, it is essential to have a high loading capacity in 

order to curtail the overall dosage requirement. Drug loading of NPs is accomplished by adding 

the drug of interest, aliskiren, at the time of NP production, which was done in the methods 

described in previous sections [34]. The larger entrapment efficiency value indicated that there 

was a greater amount of aliskiren bound to the NPs per total amount of aliskiren used for NP 

production. Further, the amount of drug bound to the NPs was greatly influenced by the 

copolymer PLGA and the chemical structure of aliskiren [35]. Entrapment efficiency was 

significantly different between centrifugation speed in all formulations using 0.10, 0.25, 0.50 and 

1.00% stabilizer concentration. 

 

 

Figure 10. Effect of DMAB concentration at 10,000 or 12,000 rpm on NP entrapment efficiency. 
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4. Conclusion 

It is conclusive that the optimum formulation for the aliskiren loaded PLGA-NPs 

includes ethyl acetate as the organic solvent, 1.00% DMAB stabilizer, and 10,000 rpm 

centrifugation speed. For all possible alterations, these conditions offered the highest zeta 

potential, reasonable particle size below 100 nm, agreeable entrapment efficiency, and a uniform 

distribution of NPs in the solution. With the reformulation of the aliskiren loaded PLGA-NPs, 

stability and structural improvement may have been achieved to permit distinct advantages over 

aliskiren without PLGA-NP encapsulation. Additionally, the basis formed by this optimum 

polymer synthetic NP formulation of aliskiren could be beneficial for the development of more 

effective oral dosing of aliskiren in terms of pharmacokinetic factors, such as increased 

bioavailability and systematic absorption, due to an enhanced drug delivery system. Further, 

patient compliance may be more favorable due an estimated reduction of cost for the current 

antihypertensive drug. 
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