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ABSTRACT 
 

Venom Peptide Induced Inhibition of Escherichia coli ATP synthase 
By  

Sofiya Azim  
 
 
 

ATP is the main cellular energy generated by the enzyme ATP synthase in almost all 

organisms from bacteria to vertebrates. While malfunction of the ATP synthase complex is 

responsible for several disease conditions, the enzyme itself can be used as a potent molecular 

drug target to combat many diseases including microbial infections, cancer, tuberculosis, and 

obesity. Recent widespread escalation of antibiotic resistant microbes in general and E. coli in 

particular demands novel alternative approaches to combat microbial infections. Inhibition of 

ATP synthase by inhibitors such as peptides is known to deprive microbes of required energy, 

resulting in microbial cell death. Therefore, we have examined the venom peptide induced 

inhibition of E. coli ATP synthase. It was found that venom peptides completely inhibited E. coli 

ATP synthase and the process of inhibition was found to be fully reversible. This study also links 

the antimicrobial properties of peptides in part to the inhibition of ATP synthase.  Thus, selective 

use of ATP synthase as a molecular drug may have an important impact on biology and 

medicine.  
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CHAPTER 1 

INTRODUCTION 

ATP synthase is the major source of energy production for all organisms from bacteria to 

vertebrates. Both the synthesis and hydrolysis of ATP occur on the catalytic sites of ATP 

synthase. This enzyme synthesizes ATP from ADP and Pi as well as hydrolyzes ATP depending 

on the physiological needs of the cell. ATP synthase works similarly to a motor and is actually 

the smallest known biological nanomotor found in living organisms. The clockwise rotation of 

ATP synthase generates ATP while hydrolysis of ATP occurs during counterclockwise rotation 

(1,2).   

  

 

 

 

 

 

 

 

 

 

ATP synthase (Figure 1) is a highly conserved enzyme among different species (3). In E. 

coli, ATP synthase has two sectors, F1 and Fo. The F1 sector has five different subunits, α3, β3, 

γ, δ, and ε. The Fo sector has three subunits, a, b2, and c10-14 (4). 

	  
Figure 1. Overall structure of ATP synthase 
modified from (3) 
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In total, ATP synthase has six nucleotide binding sites on its F1 sector. Three of them are 

noncatalytic while the other three are catalytic sites which are contributed by the α/β interface 

residues. ATP synthesis and hydrolysis takes place on the three catalytic sites. A proton gradient 

across the cell membrane moves protons through the Fo sector, which in turn rotates the γ-

subunit. Rotation of the γ-subunit causes the conformational changes in the α and β-subunits 

allowing them to bind or release nucleotide reactants (ATP, ADP, or Pi).  Functional 

significance of ATP synthase can be determined by the energy requirement of living organisms. 

For example, the total amount of ATP produced by a sedentary 70 kg human in about a 75 year 

life span is nearly 2 million kg. Such energy needs are fulfilled by the uninterrupted motor and 

catalytic function of ATP synthase (5).  

 

ATP synthase plays an exceptionally important role in human health and diseases. 

Malfunction of ATP synthase is known to result in life threating and debilitating diseases such 

as cancer, tuberculosis, obesity, neuropathies, Alzheimer’s, microbial infections, mitochondrial 

diseases, immune deficiency, cystic fibrosis, diabetes, ulcers, and Parkinson’s. The functional 

importance of ATP synthase also makes it a potential molecular target for anti-bacterial and 

anti-cancer drugs (6,7).  
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Figure 2.  Effect of ATP synthase inhibition on cell survival 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 2, the inhibition of ATP synthase can lead to cell death. When ATP 

synthase is functional, it can synthesize ATP from ADP and Pi. This will then allow the cell to 

grow because it has its required energy. In the event that ATP synthase is inhibited, the reaction 

between ADP and Pi does not occur and ATP is not generated. This will cause cell death 

because the cell will be deprived of its required energy (8). There are a variety of natural and 

synthetic compounds that are known to inhibit ATP synthase, including peptides, such that it 

has potential as a therapeutic drug target (8-10).  

 

Previously, ATP synthase inhibition has been used in a variety of beneficial ways. For 

example, Streptococcus mutans is a microbial agent that plays a major role in the pathogenesis 

of dental cavities by biofilm formation and acid production. Inhibition of S. mutans ATP 

synthase also inhibits biofilm formation and acid production, thus preventing the formation of 

cavities (11). It is the second largest killer after cancer. There are two mutations in the c-subunit 
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of ATP synthase of the Mycobacterium which make the bacteria resistant to most tuberculosis 

drugs. These mutations, D32V and A63P can occur together or individually (12,13). In 2012, 

the FDA approved an anti-tuberculosis drug, Bedaquiline. It is extremely selective in its 

inhibition of the Fo sector of the ATP synthase in Mycobacterium tuberculosis. This drug 

eradicates the infection quickly and effectively (14).  ATP synthase inhibition also plays a role 

in angiogenesis. Angiogenesis is the process that involves the growth of new blood vessels from 

pre-existing vessels. This process is essential for tumor growth, and ATP synthase on the 

surface of endothelial cells is essential to angiogenesis in such cells. When non-mitochondrial 

endothelial cell surface ATP synthase is inhibited, formation of new vessels is prevented, 

thereby inhibiting tumor growth (15,16). 

 

Inhibition by peptides was first described in insects as an inducible system of protection 

against bacterial infections (17). Peptides are known to have powerful activity against bacteria, 

fungi, parasites, and viruses as well as selective anticancer activity (18,19). Currently, 

antimicrobial peptides (AMPs) are being used in several clinical trials with mixed success (8,20-

22). Widespread antibiotic-resistant microbial pathogens require new, alternative antimicrobial 

treatment choices (8,22). Some positively charged AMPs have been used against multidrug-

resistant microbes such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-

resistant enterococci (VRE), and multidrug resistant Pseudomonas aeruginosa (23-25). Cancer 

cells also exhibit numerous membrane protein targets including ectopic ATP synthases which 

peptide inhibitors could bind to as possible therapeutic molecules (6,26).   
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Figure 3 peptide binding βDELSEED-motif taken from reference (10) 

	  

  

 

 

 

 

 

 

 

Previously, it was found that melittin, melittin related peptide (MRP), and several 

structurally similar peptides inhibit the growth of E. coli cells by binding and inhibiting its ATP 

synthase. These cationic peptides were shown to bind at the βDELSEED-motif of ATP synthase 

(Fig. 3) (9,10).  

 

In this study we examined the two cationic venom peptide (VP1 and VP2) induced 

inhibitions of E. coli ATP synthase. Based on VP1 and VP2 induced inhibitory profiles of ATP 

synthase, we present direct evidence that ATP synthase is a potent molecular drug target for 

antimicrobial peptides. 

 

Hypothesis 

We hypothesized that venom peptides will inhibit the E. coli ATP synthase due to the fact 

that cationic peptides should bind at the peptide bind βDELSEED-motif of ATP synthase.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

Source of peptides: 

 Both venom peptides (VP1 and VP2) were purchased from Biomatik 

(http://www.biomatik.com).  The peptides were determined to have greater than 95% purity by 

HPLC. Lyophilized powder was stored at -20 oC upon receipt and resuspended in deionized 

water for use as needed.  

 

Chemicals: 

ATP disodium salt, glucose, uracil, TES, TRIZMA, 4-aminobenzamidine 

dihydrochloride (PAB), and Sodium dodecyl sulfate (SDS) were all purchased from Fisher 

Scientific or Sigma–Aldrich Chemical Company.  

 

Reagents:  

50 mM Tris-H2SO4 pH 8 (T8), Taussky and Shorr Reagent (T&S), 10% SDS, STEM, 

TES 50, and TES5 +PAB were prepared as described (10). 

 

Experimental Methods 

Preparation of membrane bound E. coli ATP synthase 

Grow wild-type E. coli in minimal media at 37oC and 250 rpm 

▼ 

Pellet at 9500 rpm for 15 min 

▼ 



 12 

Resuspend pellet in STEM and spin at 9500 rpm for 25 min 

▼ 

Resuspend pellet in 2 ml Stem/g wet cells 

Add DNase and conduct Cell lysis by French press at 2000 psi 

▼ 

Spin at 22K rpm for 20 min 

▼ 

Spin supernatant at 60K rpm for 2 hours at 2oC 

▼ 

Resuspend pellet in TES 50 and spin at 60K rpm for 2hrs at 2oC 

▼ 

Resuspend pellet in TES 5 + PBA and spin at 60K rpm for 2 hours at 2oC 

(Repeat this step and store at - 70 oC 

 

The wild type E. coli strain used in this study was pBWU13.4/DK8 (27).  

 

Preparation of the membrane bound E. coli ATP synthase 

50 mL of minimal media was inoculated with a loop full of the wild type E. coli strain 

and was grown over night at 37 °C and 250 rpm. This 50 mL of overnight starter culture was 

inoculated into 1L of minimal media and was grown at 37 oC at 250 rpm. Growth was measured 

at OD595 on an hourly basis until the late log phase was obtained. 
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Once no further growth was seen, the cells were harvested by spinning them at 9500 rpm 

at 4 oC in a super speed centrifuge for 15 minutes. The harvested cells were then resuspended in 

STEM and once again centrifuged at 9500 rpm for 25 minutes. The supernatant was discarded 

and the pellet was resuspended in 2 mL of STEM/g of cells and was stored at -80 oC overnight 

until the next step. 

 

The stored cells were thawed and mixed with DNase to digest any nucleic acids. These 

cells were then disrupted by passing them through the French press at 2000 psi twice. Next, the 

lysed cells were centrifuged at 18K rpm for 20 minutes. Subsequently, the membrane bound E. 

coli ATP synthase was obtained by spinning the supernatant at 60K rpm for 120 minutes. The 

membrane bound E. coli ATP synthase was further resuspended in TES 50 and centrifuged at 

60K rpm for 120 minutes. This pellet was then washed with TES 5 + PAB by spinning it twice at 

60K rpm for 90 minutes. Finally, the purified membrane bound E. coli ATP synthase was 

resuspended in T8 buffer and stored at -80 oC for use in biochemical assays. 

 

Membrane Bound ATP Synthase Concentration and ATPase Assay 

Membrane bound E. coli ATP synthase concentrations were determined by plotting the 

absorbance at 595 nm using Bradford reagent against the standard BSA curve. ATPase activity 

was measured by adding 1 mL assay buffer containing 10 mM NaATP, 4 mM MgCl2, and 50 

mM TrisSO4 (pH 8) to 20 µg of membrane bound E. coli ATP synthase at 37 °C. The reaction 

was stopped with SDS. The released Pi (inorganic phosphate) was measured by adding 1 mL of 

T&S reagent and was read at OD700.  
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The enzymatic reaction of ATP synthase is as follows: ATP + ATP synthase ⇌ ADP + Pi 

and Pi + T & S → blue color. The intensity of the blue color observed at 700 nm is directly 

proportional to the activity of the enzyme. 

 

Activity of ATP synthase was calculated by using the following formula 

Average of Sample OD - Average of Blank OD = …………….. µmol/min/g protein        
  Amount of protein (mg) x Time (min) 
 

Inhibition of E. coli ATP synthase by venom peptides, VP1 and VP2 

Wild-type membrane bound F1Fo ATP synthase was preincubated with different 

concentrations of VP1 and VP2 for 60 minutes at room temperature (RT) in 50 mM TrisSO4 at 

pH 8.0.  1 mL of ATPase cocktail was used to measure the enzyme activity. The reaction was 

stopped by the addition of 1 mL of SDS to a final concentration of 3.3%. 1 mL of T&S reagent 

was added to develop the blue color and was assayed at OD700 (28). Inhibitory exponential decay 

curves were generated with Sigma plot 10.0. The range of absolute specific activity for 

membrane bound F1Fo ATP synthase was 15–20 µmol/min/mg at 37 oC for different 

preparations.  Relative ATPase activity was calculated from the absolute values of wild type in 

the absence of peptides taken as 100%. 

 

Reversal of peptide inhibited ATPase activity  

 Reversibility of inhibition was checked by dilution of the membrane bound enzyme. 

Membrane bound ATP synthase was first reacted with the maximal inhibitory concentration of 

peptides for 1 hour. Next, T8 buffer was used to bring the venom peptide concentrations to non-

inhibitory levels and they were then incubated for one additional hour before measuring the 

ATPase activity.   
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Figure 4. Venom peptides (VP1 and VP2) induced inhibition of ATP synthase. 

CHAPTER 3 

RESULTS 

Venom peptide induced inhibition of E. coli ATP synthase 

Figure 4 shows the inhibition of membrane bound E. coli ATP synthase in the presence 

of varied concentrations of venom peptides (VP1 and VP2). While VP1 caused approximately 

70% inhibition with 30% residual activity, VP2 completely inhibited ATP synthase with 

essentially no residual activity (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Reversal of ATPase activity of membrane ATP synthase from the venom peptide inhibition  

To test for the reversibility of venom peptide induced inhibition, membrane bound ATP 

synthase was treated with the maximum inhibitory concentrations of venom peptides for 1 hour 
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at 37 oC as shown in Figure 4. Then, the samples were diluted to non-inhibitory concentrations 

by adding T8 buffer, and ATPase activity was measured at OD700. Inhibition by both venom 

peptides (VP1 and VP2) was found to be reversible (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  

Figure 5 Reversal of VP1 and VP2 induced inhibition of 
membrane bound E. coli ATP synthase enzyme. 
(Enzyme:Enz ; Dilution:Dil)  
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CHAPTER 4 

DISCUSSION 

The purpose of this study was to examine whether or not the antimicrobial properties of 

peptides in general and venom peptides in particular, may be linked to the inhibition of ATP 

synthase. The results of this study demonstrate that both the studied venom peptides, VP1 and 

VP2, do bind and inhibit bacterial ATP synthase.  VP2 was found to be a more potent inhibitor 

causing nearly 100% inhibition while VP1 caused about 70% inhibition. Previously, a number of 

α-helical cationic peptides were shown to inhibit ATP synthase (9).  These include melittin, a 

26- residue long honeybee venom peptide, the bacterial/chloroplast ε subunit, and several AMPs 

from amphibian origin that are the most important α-helical peptide inhibitors of ATP synthase 

(6,9,29-33).  

 

Peptides bind at the β-subunit residues 380-386 of the βDELSEED- motif as shown in 

Figure 3.  It has been demonstrated that the positively charged peptide residues exert their 

inhibitory effect through electrostatic interactions with the negatively charged βDELSEED-motif 

of ATP synthase (34). Similarly, it seems that that the direct electrostatic interactions between 

the venom peptides and acidic residues of the βDELSEED-motif are responsible for the 

inhibition of membrane bound E. coli ATP synthase.  

 

The presence of 15 positively charged residues clustered in groups in a 34-residue long 

VP1 venom peptide may be the reason for partial inhibition of ATP synthase. Too many positive 

charges may cause steric hindrance for proper binding and inhibition of ATP synthase. Potent 

inhibition by venom peptide VP2 may be attributed to its 12 positively charged residues spread 
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widely in a 30-residue long peptide. It can be concluded that such dispersion not only decreases 

the repulsion among positively charged residues, but also helps in the proper orientation of the 

peptide for tighter binding and inhibition.   

 

The process of inhibition was also found to be fully reversible. Membrane bound ATP 

synthase regained activity once it was brought back to non-inhibitory venom peptide 

concentrations by dilution with T8 buffer (Figure 5). This reversible process of inhibition 

indicates a non-covalent binding of venom peptides VP1 and VP2 at the βDELSEED-motif of 

wild-type E. coli ATP synthase (9).  

 

 Peptides are known to have pharmacological uses as antimicrobial (35,36) and anticancer 

agents (37). Many mechanisms have been postulated for their mode of action including 

membrane penetration (38,39) and cytolytic membrane disintegration (40). Most peptides are 

known to affect gram-negative and gram-positive bacteria, fungi, viruses, eukaryotic parasites, 

and cancer cells (37,41). Programmed cell death through the mitochondrial pathway inhibiting 

ATP synthase as a molecular target by several natural and synthetic inhibitors has been 

previously established (42-45).  Additive effects of different α-helical AMPs have also been 

observed (46). These observations suggest that the combined effects of two or more inhibitors, or 

functional group modulation of inhibitors, may increase the extent and potency of inhibition.  

 

 Lately, the role of ATP synthase in the pathophysiology of many human disease 

conditions has become clearer (8).  Due to this, the identification and characterization of potent 

inhibitors of ATP synthase on molar scale is extremely important. We conclude that further 
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identification and characterization of venom peptides is a promising avenue for understanding 

ATP synthase as a potential drug target for peptides.  
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