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Abstract 

 

ADHD is one of the most commonly diagnosed disorders during adolescence.  Recently, 

significant increases in the diagnosis of ADHD have caused the prescription of the ADHD 

medication methylphenidate (MPH) to increase.  MPH is a psychostimulant that blocks the 

dopamine transporter, which is responsible for dopamine reuptake at the synapse.  The blockade 

of the dopamine transporter results in an increase in the availability of dopamine in the synaptic 

cleft.  This increase of dopamine accounts for the addictive properties of a MPH due to strong 

effects on portions of the brain’s drug-reward pathway, including the striatum and nucleus 

accumbens.  In this study, we hypothesized that dopamine D2 receptor antagonism would block 

MPH-induced conditioned place preference.  We also hypothesized this will be more effective in 

adolescent male rats as compared to adolescent female rats based on evidence that has shown a 

higher density of dopamine D2 receptors in the brain’s reward areas of adolescent male rats.  The 

effects of MPH on the associative effects of MPH was analyzed using the conditioned place 

preference (CPP) behavioral paradigm.  Results showed that MPH-induced CPP was not blocked 

by the dopamine D2 receptor antagonist, likely due to its effects on the inhibitory presynaptically 

located dopamine D2 autoreceptor.  The importance of these findings is discussed relative to the 

role of the D2 receptor in MPH addiction. 

 Keywords: Methylphenidate, MPH, dopamine, D2 receptor, antagonist 
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Analysis of the role of D2 receptors in methylphenidate-induced conditioned place preference 

 

Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed 

disorders in adolescence, and is characterized by increased impulsivity, hyperactivity, and 

inattentiveness (Goldman, Genel, Bezman, & Slanetz, 1998).  It is suspected that this disorder 

affects from two to sixteen percent of school-aged children, and effects three to five percent of 

children globally (Rader, McCauley, & Callen, 2009; Nair, Ehimare, Beitman, Nair, & Lavin, 

2006).  Children who are affected by ADHD will have difficulties with decision making, 

motivational issues, behavioral inhibition, temporal rewards, and may engage in riskier activities 

when compared to their peers (Toplak, Jain, & Tannock, 2005; Nikolas & Nigg, 2013).  As can 

be understood, ADHD can prove to be a significant impairment for adolescent children if it is not 

properly treated.  As such, a number of different treatment options have come into existence, but 

the most prevalent form of therapy for ADHD is by medication through psychostimulants 

(Swanson, Baler, & Volkow, 2011). 

 One of the most commonly prescribed medications for ADHD is the psychostimulant 

methylphenidate (MPH) (Trade name: Ritalin; Wu et al., 2012).  MPH has a therapeutic effect on 

ADHD symptoms as a product of working on the dopamine system by blocking the dopamine 

transporter, a protein that is implicated in the reuptake of the dopamine neurotransmitter from the 

synaptic cleft for their return to the presynaptic neuron (Schweri et al., 1995).  Similarly, MPH 

also produces slight effects on the levels of another neurotransmitter, norepinephrine, by 

blocking the norepinephrine transporter (Solanto, 1998).  This transporter behaves similarly to 

the dopamine transporter relative to the norepinephrine system.  In the case of blockade of either 

of these two transporters that MPH effects, the result is an excess of the neurotransmitter in the 
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synaptic cleft, resulting in a diminished synaptic clearance of these neurotransmitters.  This 

diminished clearance leaves abnormally high amounts of these neurotransmitters in the synaptic 

cleft.  As with MPH, and many other drugs, this can lead to unwanted or deleterious effects for 

the person who is using these agents. 

  Dopamine plays a central role in modulating the brain’s reward and pleasure systems, 

while norepinephrine plays a role in regulating mood.  Additionally, dopamine is closely 

associated with the presentation of reward-seeking behaviors including approach, consumption, 

and addiction (Nestler, 2005).  Drugs that are commonly abused by humans such as opiates, 

ethanol, nicotine, amphetamine, and cocaine show an increase in the dopamine levels within the 

mesolimbic system, with especially high concentrations found in the nucleus accumbens (Di 

Chiara & Imperato, 1988).  Additionally, there are five identified dopamine receptors: D1, D2, 

D3, D4, and D5 (Niznik & Van Tol, 1992).  These receptors come in two different subtypes: the 

D1-like subtype, comprised of D1 and D5 receptors, and the D2-like subtype, comprised of the D2, 

D3, and D4 receptors (Vallone, Picetti & Borrelli, 2000).  Subsequent findings have revealed that 

the main distinction between the two different subtypes is based on the effects these receptors 

have on the second messenger cyclic adenosine monophosphate, as well as their differences in 

pharmalogical profiles (Kebabian & Caine, 1979).  Despite having differing pharmalogical 

properties, both families of dopamine receptors are affected when using MPH (Swanson & 

Volkow, 2003). Due to the fact that MPH enhances dopamine activity, the two families of 

dopamine receptors should be studied to further the understanding about the effects of MPH on 

the dopamine system, as well as their effect on the reinforcing behaviors. 

Whereas it is widely accepted that MPH is an effective treatment for ADHD and 

pervasive developmental disorders, investigations on the effects of MPH are critically important 
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(Reichow, Volkmar, & Bloch 2013).  This is because MPH has been shown to have addictive 

liabilities, due to increases in available synaptic dopamine (Bogle & Smith, 2009). Furthermore, 

the use of a dopamine transporter blockade gives MPH a neuropharmacological profile that is 

similar to that of cocaine (Volkow et al., 1999).   In addition to cocaine, MPH interacts with and 

activates the same drug-reward pathway that drugs such as nicotine and amphetamine do 

(Swanson & Volkow, 2002; Yang, Swann, & Dafny, 2006).  The interaction with the drug-

reward pathway that results in the increase of dopamine-related activity is prevalent in two 

particular brain regions, the striatum and nucleus accumbens.  Additionally, MPH has also been 

shown to produce significant increases in locomotor activity, a behavior that is mediated by the 

nucleus accumbens and striatum (Salamone & Correa, 2002).  Locomotor activity can simply be 

defined as the movement from one place to another, and, in experimental contexts, it may be 

measured to gauge reward-seeking behavior. The similarities in the properties and effects of 

commonly abused rewarding drugs, such as cocaine and amphetamine, to the properties of MPH, 

show the addictive potential of MPH. 

 It has been shown that MPH is used recreationally as an addictive agent.  This is due to 

the fact that this drug is a stimulant.  When taken recreationally, MPH is typically taken orally or 

snorted (Teter, McCabe, LaGrange, Cranford, & Boyd, 2006).  In the case of snorting MPH, this 

route avoids the body’s first pass metabolism by the liver, which delivers higher concentrations 

of the drug to the brain when compared to taking the drug orally.  The results of avoiding first 

pass metabolism will be a more intense drug effect that typically has a faster onset. Due to the 

fact that people both frequently use and abuse this drug, one could consider it a major concern 

for public health due to a possibility that long-term effects on the brain could be present 

(Carlezon & Konradi, 2004).  Consequently, further studies on the long and short-term effects of 
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MPH use are desperately needed to ensure that using medication with MPH is not having a 

damaging effect on the brain. 

 Additionally, our laboratory has also shown the use of MPH causes an increase in 

neurotrophic factors (Brown et al., 2012).  Neurotrophic factors are cellular growth factors that 

are important for synaptic maintenance and growth, and they have been separated into three main 

families: the neurotrophins, the glial-cell derived neurotrophic factor (GDNF) family, and the 

neuropeptidic cytokines (Boyd & Gordon, 2003).  For example, in vivo studies using 

neurotrophic factors have been responsible for neurogenesis of mammalian neurons in two 

different brain regions (Hagg, 2009).   However, despite the fact that neurotrophic factors 

facilitate the proper functioning and efficiency of neurons, significant increases of neurotrophic 

factors does not always correlate with flourishing and healthy neurons.  In fact, elevated 

neurotrophic factor levels appear to play a role in the drug craving response, especially when 

these elevated levels are found within the mesolimbic pathway (Pickens et al., 2011).  For 

example, increased neurotrophic factors in the mesolimbic pathway have been shown in people 

who use cocaine, attesting to the idea that this increase plays a role in addiction (Grimm et al., 

2003).  

 Of the three families of neurotrophic factors discussed above, the family most pertinent to 

our study is the neurotrophin family.  The mammalian neurotrophin family of growth factors 

contains four different types: nerve growth factor (NGF), brain-derived neurotrophic factor 

(BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) (Lessmann, Gottmann, & 

Malcangio, 2003).  All four different types of neurotrophins play a wide variety of roles for 

different bodily functions throughout mammalian development, and changes in the secretion 

rates and overall levels of these growth factors are implicated in a diverse array of disease states 
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including Alzheimer’s disease, depression, pain, and asthma (Allen & Dawbarn, 2006).  

Additionally, Allen and Dawbarn (2006) note that one particular growth factor, BDNF, plays a 

special role in activity-dependent synaptic plasticity, something that could be indicative of either 

learning occurring or memory formation.  Typically learning and memory formation is a sign of 

proper function of neurons, but in the context of drug addiction, it proves to be the fuel to help 

this maladaptive process set in.  This growth factor, BDNF, is of primary interest for this 

particular study. 

 BDNF is a growth factor protein that is found throughout the central nervous system that 

helps to support the survival of neurons, as well as to promote the growing of new synapses in 

the brain (Conner, Lauterborn, Yan, Gall, & Varon, 1997).  When describing the role and effect 

of BDNF, authors Robert Julien, Claire Advokat, and Joseph Comaty (2010) write, “…when 

injected into the brain of rats, BDNF not only prevents the spontaneous death of some neurons, 

but also helps to protect neurons that have been poisoned with various toxins.  Conversely, in 

animals, chronic stress decreases the production and amount of BDNF (and other neurotrophic 

substances) in the brain and increases cell death.”  This excerpt shows that BDNF is critical to 

neural functioning, so, naturally, a lack of this neurotrophic factor can be severe in consequence.  

Interestingly, Corominas-Roso et al. (2013) have also reported that, “Low BDNF levels may 

contribute to the neurodevelopmental deficits of ADHD and to the persistence of the disorder 

into adulthood.” This finding is extremely interesting because it gives more information on why 

MPH works so well as an ADHD medication.  By using MPH, you increase BDNF levels 

throughout the brain, and, with respect to these findings, this increase may also be part of the 

therapeutic action that MPH takes when alleviating symptoms of ADHD.  However, it should be 

noted that polarization of BDNF levels in either direction can cause deleterious effects on the 
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brain, and that the healthiest level of this protein can be found in the middle ground. In this 

study, we will be harvesting brain tissues from two dominant areas in the drug-reward pathway, 

the nucleus accumbens and the striatum, and we will be running a chemical analysis to determine 

the amount of BDNF in these tissue samples. 

Another interesting and important area to consider when trying to fully understand the 

effects of MPH with D2 antagonism is sex differences.  Our laboratory has shown that a 

relatively high dose of MPH (5mg/kg) (a dose which is comparable to dose taken by addicts, 

rather than medicinal users) results in robust sex differences in the behavioral response to this 

drug (Chase, Carrey, Soo, & Wilkinson, 2007; Brown et al., 2012).  This data shows that 

adolescent female rats demonstrate a 100% increase in locomotor activity compared to 

adolescent males given the same dose at peak responding, and the results from this study indicate 

that female adolescent rats sensitized to MPH, whereas males administered the same dose and 

regimen of MPH failed to produce sensitization (Brown, et al., 2012).   Drug sensitization is a 

phenomenon produced by psychostimulants when an increased behavioral effect of a drug occurs 

following repeated doses.  In essence, drug sensitization is the opposite of acquiring a drug 

tolerance, which means that the female adolescent rats may have a higher sensitivity to the 

addictive properties of MPH as compared to adolescent male rats.  These behavioral and 

pharmacological results indicate a raised probability that dopamine-dense brain areas will have 

increased sensitivity to the addictive properties of MPH (Meredith, Callen, & Scheuer, 2002).   

In our present study, we intend to investigate the neurobehavioral mechanisms of the 

rewarding effects of MPH by focusing on the dopamine D2 receptor to evaluate its role in this 

phenomenon.  We will assess the role of D2 receptors in MPH-induced CPP by conditioning rats 

in a five day CPP behavioral paradigm.  By using a D2 receptor antagonist (eticlopride), we will 
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reduce the functionality of the D2 receptors, and subsequently gauge whether or not MPH-

induced CPP occurs.  Following a posttest to see whether or not CPP has occurred, brain tissues 

will be taken to be analyzed for BDNF concentrations within the nucleus accumbens and 

striatum.  Finally, group differences will be analyzed using ANOVA.  Our hypothesis is that the 

use of eticlopride, the dopamine D2 antagonist, will block CPP produced by MPH in adolescent 

rats, and that this will be more effective in adolescent male rats as compared to adolescent 

female rats.  This hypothesis is based on work by Andersen & Teicher (2000) that have reported 

a higher density of dopamine receptors in the striatum of males during adolescence when 

compared to adolescent female rats.  This study will add to the information on the underlying 

actions and mechanisms of the rewarding effects of MPH. 

Method 

Participants 

 The animals for this experiment arrived at East Tennessee State University at postnatal 

day 21 (p21) and were ordered from Harlan, Inc (Indianapolis, IN, USA).  In total, there were 45 

subjects (23 female, 22 male) in our study. All rats were housed in an AAALAC-accredited 

animal facility at East Tennessee State University with a 12 hour on/off light/dark cycle.  Food 

and water were available ad libitum. 

Research Design 

 Animals were divided into four separate experimental groups: a low dose eticlopride 

group (0.01 mg/kg), a high dose eticlopride group (0.03 mg/kg), MPH (5 mg/kg) group, and the 

saline control group.  Both eticlopride groups were administered eticlopride followed 15 minutes 

later by MPH, whereas the MPH group was first given an intraparitoneal (ip) injection dose of 
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saline followed 15 minutes later by MPH.  Approximately 10-15 minutes after MPH injection, 

animals were placed into their respective conditioning contexts, which were randomly assigned. 

Saline control groups received two injections of saline.  By analyzing two doses of eticlopride, 

we can compare the differences between the low dose and high dose of eticlopride, which will 

help discern dose-dependent effects of this drug.  The incorporation of MPH and saline groups 

will allow for the comparison of the D2 antagonist groups with MPH relative to CPP. 

Materials and Procedure 

The CPP apparatuses measure 90 cm on each side, and are divided into three equivalent 

sized compartments.  In our lab, we have two CPP apparatuses that are placed directly beside one 

another, and the three contexts are separated by removable wooden dividers.  By doing this, we 

are able to simultaneously condition multiple animals in order to help facilitate the time spent 

during conditioning trials.   

Additionally, each one of the individual compartments is separated by a removable 

wooden divider that is only removed during both the pretest and posttest of the experiment.  A 

picture of this CPP box setup can be viewed in Figure 1. Both of the far ends of this box are 

painted with black and white paint, but the painting differs in its orientation.  One of the far sides 

of the box has vertical stripes, while the other end has horizontal stripes.  The middle 

compartment is painted solid gray.  In addition to the varying visual areas, the CPP chamber also 

has different tactile surfaces along the floors of the boxes that help to make the regions more 

distinct.  One of the compartments features wire-mesh flooring, while the other has roller pin 

flooring.  The physical and perceptual differences between the compartments plays a crucial role 

in the post-conditioning test; the main measure of CPP. 
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After the pretest was conducted, we began the conditioning phase of the experiment. 

During this portion of the experiment, the wooden dividers are placed back into the CPP 

apparatus.  This setup can be viewed in Figure 2.  Throughout the next five days (the 

conditioning phase), subjects were first be administered either a dopamine D2 receptor antagonist 

(eticlopride) (0.1 mg/kg, 0.3 mg/kg) or saline (0.1 mg/kg), and, following a 15 minute period to 

ensure the drug has been distributed, the same animals will be administered a dose of either 

MPH (5 mg/kg) or saline.  Approximately ten minutes later, animals were placed into pre-

determined contexts of the CPP apparatus.  The animals spent 10 minutes in the CPP box, 

enclosed in one singular compartment so that they cannot explore the other regions of the box.  

During the conditioning phase, there were two different sessions; one in the morning and one in 

the afternoon.  In the morning sessions, we give all 45 animals two injections of saline.  This is 

to pair one context with saline in the drug condition, and to provide equal exposure to all 

contexts across all groups. During the afternoon sessions, animals were given their context-

dependent drug treatments, and were placed in the CPP box to elicit proper conditioning.  On the 

sixth day, when the animals are 38 days of age (P38), we conducted a post-conditioning 

preference test where the wooden dividers are removed, and the preference of each animal was 

measured.  Throughout the entire experiment, the animal’s behavior was tracked using AnyMaze 

behavioral scanning software (Stoelting Co, Wood Dale, IL). 

The day after the posttest, brain tissue will be taken and analyzed for BDNF 

concentrations.  The first step in analyzing brain tissue is to kill the animal.  In order to preserve 

the integrity of the brain tissues that we are trying to retrieve, this death is done as a live 

decapitation.  This method, while seemingly brutal, allows for a quick and painless death while 

also preserving the brain tissue of the subjects.  Other common forms of disposal can easily 
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affect the brain regions in which we are trying to analyze, effectively defeating the purpose of 

the whole experiment.  After the rat’s head has been removed, the outer layers of hair, skin, and 

the meninges are removed from the top of the head, and the whole brain is removed after 

removal of the upper region of the skull.  Immediately following removal, the entire brain is 

submerged into Isopentain for proper storage.  Eventually, we will harvest tissues from the 

striatum and the nucleus accumbens and analyze them using an Enzyme Linked Immunosorbent 

Assay (ELISA) kit.  As previously described, the nucleus accumbens and striatum were chosen 

because of their important role in the drug reward pathway, as well as the fact that previous work 

in our laboratory using a D1 receptor antagonist also involved taking tissue from these areas.  In 

addition to tissue analysis, we will compare all of the groups in a between-groups design 

ANOVA to compare their means on a statistical level.  At the present moment, the BDNF 

analysis has not been completed, but will be analyzed at a later time to reap more information 

about D2 antagonism in the effects of MPH.  Both of these types of post-experiment analysis will 

help aid in the comparison of these two studies to help further expand the pharmacological 

profile of MPH.   

Results 

 The results from our experiment can be viewed in the appendix in Table 1 and Table 2 

and were computed using SPSS.  The most important numbers to view in Table 1, the descriptive 

statistics table, is the means column, which accords to the preference ratio.  The preference ratio 

gives us a numerical statistic to represent the strength of a CPP that is formed by the animals, 

and is calculated as time spent in their paired context divided by the time spent in both the paired 

and non-paired contexts.  This ratio can be interpreted as a description of preference, whereas 

zero shows complete indifference, and 1.00 shows a total adherence to their contextual area.  In 
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this column we see that the preference ratios that were formed between the MPH group and the 

high dose eticlopride group were similar, with the averages of these groups being 0.644 and 

0.664, respectively.  As will be discussed in the next section, these two groups both formed a 

CPP.  Additionally, we can see that the low dose eticlopride group was relatively close to saline 

controls, indicating that a CPP was not formed for either group. 

In the next table, we have the results from our ANOVA of the preference ratio.  This 

table shows us that there was a significant main effect of drug treatment (F = 5.152, p =0.004).  

This table also demonstrates that the MPH and high dose eticlopride groups were not statistically 

significant, but the low dose eticlopride group and the saline group were statistically equivalent.  

This implies that the high dose eticlopride group produced a CPP that was equivalent to that of 

MPH.  In this table we can also see that no sex differences were detected between any of the 

groups, even when sex was paired with the antagonist to check for statistical significance. 

Lastly, we harvested tissues from the nucleus accumbens and striatum to prepare the 

samples for an ELISA.  This gives us the ability to quantitatively analyze the BDNF levels 

within these areas.  Unfortunately, the ELISA results are pending at the moment, and may not be 

evaluated until later during the present year.  This is in part due to time constraints, but I intend 

to amend this paper at a later time in order to add these important results.  However, we expect to 

see comparable BDNF levels between the high dose eticlopride group and MPH group, due to 

the fact that the preference ratios between the MPH and eticlopride groups were very similar.  At 

this moment, it would be difficult to hypothesize about the BDNF concentrations in striatum and 

nucleus accumbens of the saline and low dose eticlopride groups since those groups’ means were 

not statistically significant against any other groups. 
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Despite the fact that our hypothesis was that the dopamine D2-like antagonist 

(eticlopride) would block MPH-induced CPP with greater effect in adolescent males compared to 

females, our data suggests that our hypothesis was incorrect.  In fact, the animals who were 

administered the high dose of eticlopride formed a CPP themselves, in addition to those animals 

who were given MPH.  However, despite our incorrect hypothesis, these data have important 

implications towards MPH addiction. 

Discussion 

 As previously described, our results indicated that both MPH and a high dose (0.03 

mg/kg) of eticlopride resulted in CPP in adolescent male and female rats.  These results, while 

not being hypothesized correctly, actually are consistent with past works on D2 receptors and the 

actions of MPH and other psychostimulants.  To explain, some D2 antagonist drugs, including 

eticlopride, will block all types of D2 receptors that are in the synaptic cleft.  In the case of D2 

receptors, there are two locations of receptors in the synaptic cleft.  Dopamine D2 receptors exist 

as both autoreceptors on the presynaptic side of the synaptic cleft, and postsynaptic receptors.  

Autoreceptors are the receptors that are found on the presynaptic side, on the presynaptic 

terminal where neurotransmitters are released into the synaptic cleft.  The D2 autoreceptors play 

a role in a feedback loop that modulates the reuptake of excess dopamine in the synaptic cleft 

(Dreyer & Hounsgaard, 2013).  Eticlopride blocks these inhibitory autoreceptors, which causes 

an increase in synaptic dopamine as a result. 

In contrast, dopamine D2 are located postsynaptically, and will bind with dopamine.  

However, using a high dose of eiclopride will block these receptors as well as the autoreceptors. 

Therefore, MPH causes an increase in the amount of dopamine released into the synaptic cleft, 
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and eticlopride prevents an increase in the availability of dopamine due to the blocking of the 

mechanism responsible for inhibition of dopamine release.  This is accomplished via delineation 

of autoreceptor functioning.  In the case that only the post synaptic D2 receptors would be 

blocked, we would expect to see very similar results to those in our D1 study, which was 

blockage of MPH-induced CPP.  However, eticlopride blocks both presynaptically as well as 

postsynaptically located D2 receptors, so we see that CPP was produced, and we can conclude 

that D1 antagonism works to block MPH-induced CPP, while D2 antagonism does not. 

 Furthermore, as can be viewed in Table 1 in the means column, the high dose, or 0.03 

mg/kg dose, produced a preference ratio of 0.63 in females, and 0.65 in males.  Interestingly, 

these numbers are virtually equivalent to the preference ratios that formed in females and males 

who were administered MPH (0.65, 0.67, respectively).  Nonetheless, the low dose of eticlopride 

resembled the results of the saline group, so at a dose of 0.01 mg/kg, the drug may have not 

caused full blockage of the D2 receptors.  These results help in ushering in the notion of a dose-

dependent effect in eticlopride-induced CPP. 

 In attempt to apply these results to real life translationally, we can argue that these results 

confirm that MPH, while being relatively safe, is still addictive in nature due to its interactions 

with dopamine.  Other studies have shown that, despite being the best available medication for 

ADHD, patients may still exhibit residual symptoms from the disorder, even after medication has 

been added.  In order to increase the quality of treatment for ADHD patients, one should first 

consider the risks of medicating using methylphenidate.  If it is decided that the patient can 

properly use MPH, then the addition of a non-pharmacological therapy may help improve their 

therapeutic effects.  Behavioral therapies such as cognitive-behavioral therapy (CBT), or even 
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just the implementation of a regular exercise regimen, have shown to have efficacy in treating 

the symptoms of ADHD.  

 CBT can be described as working with a patient to change their thinking patterns so that 

they can relieve the negative emotions that they associate with themselves.  This changing in 

self-perception and thinking patterns also helps the patient change maladaptive behaviors that 

may be exacerbating the symptoms of the disorder.  This form of therapy has been identified as 

an effective treatment option for the treatment of ADHD, but evidence shows that multimodal 

interventions seem to be the most successful for adolescents (Young & Amarsinghe, 2010).  For 

example, research has shown that CBT may be more effective for adolescents with ADHD and 

comorbid anxiety/depression, than in adolescents with ADHD and oppositional defiant disorder 

(Antshel, Faraone, & Gordon, 2012).  While CBT can often times be used as the sole therapy for 

ADHD patients, it should be recommended that pharmacological therapy be added with it to 

increase the efficacy of treatment for the patient. 

 Additionally, another treatment that can be considered is the incorporation of physical 

activity.  Recent studies have shown that intense aerobic exercise has a positive effect on 

children with ADHD symptoms, and this is thought to be due to increases in brain structure and 

function as a product of exercise (Berwid, Halperin, 2012).    In one study by Chang, Liu, Yu, 

and Lee (2012), the effects of acute physical activity on executive functioning of children with 

ADHD were measured using the tests (the Stroop Test and the Wisconsin Card Sorting Test).  

Results from this study showed that acute aerobic activity increased ratings on both 

neuropsychological tests, and authors postulate that this is due to the brain allocating attention 

resources, via influence from the dorsolateral prefrontal cortex, resulting in dopamine release 

(Chang, Liu, Yu, & Lee, 2012).  This is evidence shows slight effects in the alleviation of ADHD 
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symptoms due to decreases in executive function, and should also be considered a viable 

treatment additive for adolescents in this category. 

 In conclusion, the results of our study showed that the dopamine D2 antagonist eticlopride 

failed to block MPH-induced CPP and that sex was not influential in the effects of this drug.  

When compared to previous work, it seems that D1 antagonism works for blocking the rewarding 

effects of methylphenidate, but D2 antagonism does not block these effects.  This would indicate 

that the D1 receptor is more important for mediating the rewarding effects of MPH.  Therefore, 

when considering implications of ecological validity, one can argue that this information adds to 

the profile of MPH, and shows even more evidence for the similarities between MPH and other 

psychostimulants.  Further research is needed to assess the role of MPH in mesolimbic system. 
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Table 1 

Descriptive Statistics 

Descriptive Statistics 

Dependent Variable: PREFRATIO 

ANTAG SEX Mean Std. Deviation N 

0.01ETIC 

F .5243845 .18281178 7 

M .5456220 .22591350 5 

Total .5332334 .19211361 12 

0.03ETIC 

F .6360676 .18056022 6 

M .6518788 .13298998 6 

Total .6439732 .15141503 12 

MPH 

F .6552301 .02406915 5 

M .6725337 .03571545 5 

Total .6638819 .03012605 10 

SAL 

F .4730559 .06908358 5 

M .4507395 .06622748 6 

Total .4608833 .06509900 11 

Total 

F .5708055 .15210493 23 

M .5775677 .15421887 22 

Total .5741115 .15142931 45 

 

Note. The differences in the numbers of individuals in each group are due to our pretest results, 

and were modified to ensure that no animals showed an initial preference.  Additionally, it 

should be noted that our previous experiments using D1 antagonism also includes MPH and 

saline data, which made it less important to have their number of participants equal to that of the 

eticlopride groups. 
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Table 2 

ANOVA Table 

Tests of Between-Subjects Effects 

Dependent Variable: PREFRATIO 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model .304
a
 7 .043 2.284 .049 

Intercept 14.726 1 14.726 773.350 .000 

ANTAG .294 3 .098 5.152 .004 

SEX .001 1 .001 .037 .848 

ANTAG * SEX .003 3 .001 .060 .981 

Error .705 37 .019   

Total 15.841 45    

Corrected Total 1.009 44    

a. R Squared = .302 (Adjusted R Squared = .170) 
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Figure 1 

Conditioned Place Preference Boxes- Pretest and Post Test  

 

Note.  The picture above shows the conditioned place preference boxes without the wooden 

dividers in.  This is how the box was set up during the pretest and posttest to allow free roam by 

the animals.  During the pretest and posttest, the behavioral counts were measured and a 

preference ratio was computed. 
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Figure 2 

Conditioned Place Preference Boxes- Conditioning Trials 

 

Note.  During the 5 days of conditioning trials the wooden dividers were inserted, and the 

animals were put into one of the four end compartments after they were given their drug 

treatment.  By doing this, we tether their surroundings with their rewarding effects, or lack 

thereof, from the drug treatment.  Additionally, the differences in tactile and visual cues, a very 

important aspect of our CPP paradigm, can be viewed above. 
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