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Abstract 

The Relationship of Strength and Body Composition to Vertical Jump Ability in Division 1 Female 

Volleyball Players 

Alyssa Shedlarski, Michael Ramsey, Ashley Kavanaugh, Mike Israetel 

Jump ability is important in volleyball; therefore analysis of factors that influence jump performance is 

necessary to ensure maximal jump ability. Purpose: To analyze how strength characteristics associated 

with jumping are affected by percent body fat, lean body mass and free fat mass. Methods:  Data from 

eleven female NCAA DI volleyball players as part of an ongoing athlete monitoring program collected 

from 2007-2010 was analyzed.  Data was separated into weakest and strongest based on isometric peak 

force allometrically scaled.  In all cases the weakest data corresponded to testing during the athletes 

first year at ETSU. Body composition was measured using air displacement plethsmography (BodPod). 

Maximum strength (isometric peak force – IPF) and strength characteristics (peak force -F@ 50ms, 

90ms, and 250ms; rate of force development, 0-200ms –RFD) were measured with isometric mid-thigh 

pulls on a force plate, and countermovement jumps with 0, 11 and 20 kg . Allometric scaling of the 

different force values (IPFa, F@50a, F@90a, F@250a) was used to normalize differences in the body 

mass of the athletes (absolute force/ (body mass (kg0.67)).  Pearson correlations were used to determine 

the relationship strengths. Results:  In weaker test results, there are moderate and small inverse 

correlations between CMJ and PF (r=-0.34) and PFa (r= -0.19), and strong inverse correlations between 

CMJ and percent body fat (r=-0.67). In stronger test results there are small correlations between CMJ 

and PF (r=0.23), PFa (r= 0.26), and moderate inverse correlations between CMJ and percent body fat (r=-

0.40). There is a significant change in jump ability and strength between both groups. Conclusion: As an 

athlete becomes stronger, there is a significant correlation between CMJ strength, PF, PFa, F250, and 

F250a. The relationship between CMJ and strength characteristics decreases as BF increases.  
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Introduction  

 Resistance training has important impact on the success of males and females in many sports. 

However, a female athlete’s commitment to strength and conditioning programs can be influenced by 

the fear of developing a masculine build (Swedan, 2001). Resistance training in females will not cause an 

increase in muscle size to the same extent as in males (Lydiard & Gilmour, 2000) due to testosterone 

levels being lower in women than men (Lippa, 2005). Testosterone stimulates muscle hypertrophy by 

stimulating the secretion of growth hormone, and stimulating protein synthesis, both in response to 

resistance training(Vander, Sherman, & Luciano, 2001) (Rhoades & Bell, 2009) and without resistance 

training (Pearl, 2001). Therefore, women rarely experience severe muscular development from weight 

training unless anabolic steroids are being used (Pearl, 2001). However, it has been noted that better 

volleyball players are older, stronger, larger, and are able to jump higher (Fry, et al., 1991).  

The ability to quickly and forcefully use strength is essential in jumping. The amount of work 

done per unit of time produced by a muscle is represented as power. Improved performance cannot be 

achieved without an increase in power (Adams, O'Shea, O'Shea, & Climstein, 1992). The ability of an 

athlete to obtain a high vertical jump (VJ) quickly is critical for success in volleyball (Powers 1996). The 

sport uses jumping during the jump set, jump serve, block and spike. To be successful in these tasks, a 

player must be able to not only jump high, but also reach that height quickly.  To increase athletic 

performance, and therefore obtain the demands of the sport, it is necessary to not only increase 

strength, but also increase speed (Powers 1996).  Increasing speed, strength, and power can be achieved 

through training based around fast, explosive movements. Through neuromuscular adaptation, the rate 

of force development in type II muscle fibers can be enhanced through explosive training.  Theoretically, 

this would reduce the movement time during a jump (Tant, Lamack, & Greene, 1993), therefore, 

explosive training should increase the amount of power produced (Powers 1996). Resistance training 

has also shown to improve jump ability in athletes (Fry, et al., 1991). In women, peak power is most 
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closely associated to vertical jump (VJ) performance. The quantity and efficiency in the development of 

force produced through the hip, knee, and ankle determine jump performance (Ashley & Weiss, 1994). 

Therefore, is could be beneficial to examine the forces produced through the lower body in athletes.   

Body composition is a factor often examined as it relates to female athletes and athletic 

performance. However, there are some arguments as to why body composition should be a major focus 

of training. It is a common fallacy that continued weight loss will ensure improvements in athletic 

performance (Wilmore, Bownell, Rodin, & Wilmore, 1992). Another reason why body composition 

should not be overemphasized is that methods of measuring body composition may not be precise, and 

therefore, can give inaccurate data.  While increases in fat mass can have negative effects on sport 

performance(Rickenlund, Carlstrom, Ekblom, Brismar, Von Schoultz, & Linden Hirschberg, 2004) 

following body composition measures too closely and holding an athlete to a standard for body fat 

percentage can have serious consequences, including the female athlete triad (Yeager, Agostini, Nattiv, 

& Drinkwater, 1993). The female athlete triad is comprised of anorexia, amenorrhea, and osteoporosis. 

This disorder is listed as being more prevalent in athletes than non athletes, as well as more prevalent in 

female sports that involve prominence on low body fat (Sundgot-Borgen & Torstveit, 2005).  The 

presence of the triad increases the risk of morbidity, as well as greatly increases the risk of mortality 

(Sundgot-Borgen & Torstveit, 2005). While a diet and conditioning program’s primary goal may be fat 

loss, muscle mass can be lost as well which can lead to deteriorating performance. Extreme caloric 

restriction can cause maximal weight loss and lead to fatigue, anemia, electrolyte abnormalities and 

depression. All of these factors can negatively affect athletic performance (Yeager, Agostini, Nattiv, & 

Drinkwater, 1993). 
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 The body composition of a female athlete as well as the ability of the athlete to perform a 

vertical jump has a large impact on the performance of the athlete. It is ideal for the athlete to improve 

in strength as training progresses. Therefore, the purpose of this study is to analyze the relationship 

between vertical jump performance and body composition as the athlete becomes stronger.  

 

Operational Definitions 

1. Countermovement jump (CMJ): A vertical jump that is preceded by a rapid stretch-shorten 

or pre-stretch cycle. This type of jump provides information on an individual’s ability to 

utilize the stretch shortening cycle.   

2. Flight Time:  The point in which the individual leaves the force plate to the point in which 

contact is regained (i.e. time in the air).  

3. Jump Height (JH):  Derived from flight time. It is an estimate of the total vertical 

displacement of the individual’s center of mass during a vertical jump. 

4. Explosive strength: The ability for an individual to rapidly produce force. Often measured 

with the vertical jump or rate of force development during an isometric mid-thigh clean pull. 

5. Isometric Mid-Thigh Clean Pull: A method of measuring strength. Isometric force is 

generated while an individual stands on a force plate while pushing vertically downward on 

the force plate and pulling up an immovable bar. The subject is placed in a position with the 

angle of the knee between 120°-130°, and the position of the hip between 170°-180° (i.e. 

trunk is upright). 

6. Isometric force characteristics: Measures of strength obtained during an isometric mid-thigh 

clean pull. 
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a. Isometric Peak Force (IPF): The highest positive value achieved during an isometric 

mid-thigh clean pull. Measured in Newton’s. 

b. Isometric Rate of Force Development (IRFD): A measure of explosive strength during 

an isometric mid-thigh clean pull, measured beginning at the onset of the pull and 

ending at 200ms. Measured in Newton x s-1. 

c. Instantaneous Force (IF): Force measured at a specified time during the isometric 

pull. Examples include Force at 50, 90, and 250 ms. 

7. Stretch-shortening cycle: The combination of eccentric and concentric muscle actions. A 

type of action in which an eccentric phase or action immediately precedes the concentric 

phase of movement. 
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Review of Literature 

 Athletic performance is an area of increasing research. A variety of factors influence 

improvements in performance, and studying these factors has a large impact on the ability of athletes to 

gain strength characteristics. Initial increases in strength characteristics are products of increased neural 

adaptation (Hamill & Knutzen 2009). The stretch-shortening cycle (SSC), maximal force and power 

output, and rate of force development are several factors influencing the ability of an athlete to increase 

performance.  The stretch-shortening cycle (SSC) is a series of lengthening and shortening of the muscles 

as an athlete begins a vertical jump (Komi, Strength and Power in Sport, 2003).  The first phase, the 

lengthening phases, puts the muscle on a stretch and stores a large amount of potential energy to be 

used in the following phase, which is the shortening phase (Komi, Strength and Power in Sport, 2003).  

This cycle allows a maximum amount of explosive power to be produced through the jump.  Plyometrics 

is a form of conditioning that trainers use to harness and improve this explosive power (Kraemer & 

Newton, 1994). In plyometric training, increased muscle tension allows power output to be increased 

(Hamill & Knutzen 2009).   Ballistic power training and heavy strength training are also used to target 

increases in power output (Cormie, McGuigan, & Newton, Adaptations in Athletic Performance after 

Ballistic Power versus Strength Training, 2010). It is suggested to include not only ballistic training, but 

plyometric depth training to elicit improvements in vertical jump (Gehri, Ricard, Kleiner, & Kirkendall, 

1998).  A major distinguishing factor between athletes is their ability to generate a considerable amount 

of power.  The highest possible power generated in a performance can occur once force and velocity are 

at optimum values; this is known as peak power (PP) (Stone, O'Bryant, McCoy, Coglianese, Lehmkuhl, & 

Schilling, 2003). Maximum strength is a basic unit of power output (Stone, O'Bryant, McCoy, Coglianese, 

Lehmkuhl, & Schilling, 2003); it can therefore be assumed that by achieving maximum strength, the 

highest possible power output will also be achieved.  Athletic trainers often make intuitive leaps, and 

assume that larger athletes require more energy and power than their lighter counterparts. Often, it 
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becomes theorized that lighter athletes would be able to jump higher than a heavier athlete, and 

therefore, decreased the amount of strength training done (Kraemer & Newton, 1994).  However, 

Ashley et al found no relationship between jump performance and body weight (Ashley & Weiss, 1994) 

and Weiss et al found a negative relationship between the peak force and percent body fat (Weiss, 

Relyea, Ashley, & Propst, 1997).   

 Volleyball uses a multitude of movements. A crucial one being a countermovement jump (CMJ). 

A counter movement jump is characterized by a beginning in erect positioning, followed by a downward 

movement, then a push off (Bobbert, Gerristen, Litjens, & Van Soest, 1996). This movement is typically 

done because the participant is able to achieve the highest jump by allowing the muscle to build up an 

active state. At the beginning of countermovement, the muscle is said to be in a pre-stretch, which 

allows for maximum energy absorption, which is temporarily absorbed in the series elastic elements in 

the muscle; as time elapses with the held pre-stretch, the energy potential decreases. As the muscle 

stimulation increases during the pre-stretch, the ability to produce a larger force increases, which also 

leads to an increase in work done during this concentric movement (Bobbert, Gerristen, Litjens, & Van 

Soest, 1996).  However, if the stretch is held for too long, the potential energy will be lost.  

 A large component of the countermovement jump is the stretch-shortening cycle (SSC) which 

occurs during the countermovement (Komi, Stretch-Shortening Cycle: A Powerful Model t Study Normal 

and Fatigued Muscle, 2000). The stretch-shortening cycle is composed of two phases: lengthening and 

shortening. The lengthening phase acts eccentrically (Komi, Strength and Power in Sport, 2003); during 

this phase, the active muscle is forcibly stretched, which produces a large amount of potential energy 

which is stored to be later used in the next phase (Komi, Strength and Power in Sport, 2003) and very 

little electromyogram activity (Finni, Komi, & Lepola, 2000).  The shortening phase acts concentrically 

(Komi, Strength and Power in Sport, 2003), and produces the greatest work (Kawakami, Muraoka, Ito, 
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Kanehisa, & Fukunaga, 2002).  These two phases complete important aspects of the stretch-shortening 

cycle: preactivation, and activation of the muscle following the phases of the movement. The purpose of 

SSC is to obtain an enhancement of performance during the concentric phase, compared to a static 

jump. Many studies have been conducted monitoring the work output conducted by SSC. Finni et al 

studied the triceps surae and the quadriceps femoris muscles and their function in a CMJ. They found 

that tendon undergoes a SSC, and thus, has the prospective for elastic energy storage and utilization 

(Finni, Komi, & Lepola, 2000). Pretension generated isometrically as opposed to an active stretch can 

generate significantly greater work output during the first 500 ms of the shortening phase after a pre-

stretch (Walshe, Wilson, & Ettema, 1998). When the muscle fibers during a SSC movement are 

minimally displaced, the fibers operate at almost optimal length and can therefore produce more force. 

In the eccentric phase of SSC movements, the muscle spindles become mechanically deformed, which 

activates reflex mechanisms. This then causes the stretch reflex to increase muscle stimulation. This 

results in an increased contraction force in the concentric phase, ultimately contributing to enhanced 

maximal power output (Cormie, McGuigan, & Newton, Influence of Strength on Magnitude and 

Mechanisms of Adaptation to Power Training, 2010). Avela et al examined various activities that created 

a reduced SSC reflex sensitivity. They found that a prolonging SSC exercises can result in reduction in 

performance (Avela & Komi, Reduced Stretch reflex Sensitivity and Muscle Stiffness after Long-Lasting 

Stretch-shortening cycle exercise in humans, 1998).  

Most sports encompass explosive force to accelerate the body in a given direction (Kraemer & 

Newton, 1994). Athletic performance is often assessed by the strength and power of the athlete (Brown 

& Weir, 2001), and because of this, athletic coaches often focus on strength building exercises. 

Plyometrics and ballistic power training are two popular strength and power building exercises. 

Plyometrics puts the muscle on a quick prestretch, followed by a concentric muscle action leads to 

maximum facilitation; the purpose is improving velocity and power output during athletic performance 
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(Hamill & Knutzen 2009).  Plyometrics improves power output through facilitation of neurological input 

and through increased muscle tension. The type 1a sensory neuron is utilized through the stretch reflex 

and forms the basis for neurological input.  The rapid stretching excites alpha motoneurons which 

increase with the velocity of the stretch (Hamill & Knutzen 2009). The restitution of elastic energy 

accounts for most of the increases in output due to plyometrics training (Avela, Kyrolainen, Komi, & 

Rama, 1999). During the eccentric action of the muscle, elastic potential energy is stored in the 

connective tissue; as long as the stretch is short term, there is maximal recovery of the stored elastic 

potential energy, and is then used during the contraction of the muscle. Because of the vigorous 

eccentric actions done during plyometrics, focus should be on the number of exercises, and the load 

imposed. It is suggested that plyometrics be done on a level surface, and be done no more than two 

days a week. It is also recommended that strength base exercises should be induced before the 

beginning of plyometrics training to reduce the risk of injury (Hamill & Knutzen 2009). Examples of 

plyometric exercises include: single leg bounds, depth jumps, use of surgical tubing and medicine balls.  

Ballistic power training and heavy strength training are commonly used to bring about 

significant improvements in athletic performance and target improvements in power output (Cormie, 

McGuigan, & Newton, Adaptations in Athletic Performance after Ballistic Power versus Strength 

Training, 2010). Ballistic power training focuses on explosive movements, which leads to an increase in 

strength. Naturally, there are biomechanical sticking points in which the use of one muscle group 

transitions to the next. Ballistic training uses explosive movements to push past the sticking points. 

Ballistic training focuses on acceleration, and forces your body to use fast-twitch muscle fibers. These 

fibers have the greatest potential for strength improvements, and because the ballistic movements 

force high power output, the fast-twitch fibers are trained to respond with increased strength output. It 

is recommended that ballistic exercises use 30 to 50 percent of the 1RM for that exercise because this is 

when optimal power is produced. Three to five repetition maximum should be used for all ballistic 
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exercises to prevent fatigue, and reach maximal effort at each repetition. To prevent fatigue, it is 

suggested to take three minute breaks between repetitions (Stoppani, 2006). Common ballistic exercises 

are bench press throws and jump squats. Ballistic power training has been proven throughout literature 

to bring about improvements in athletic performance and often increase maximal power output, rate of 

force development, movement velocity, jump height, and sprint performance (Cormie, McGuigan, & 

Newton, Adaptations in Athletic Performance after Ballistic Power versus Strength Training, 2010).  

Ballistics training and strength training have both proven to elicit improvements in athletic performance 

even after short-term exposure when coupled with sports-specific movements (Cormie, McGuigan, & 

Newton, Adaptations in Athletic Performance after Ballistic Power versus Strength Training, 2010). 

Focusing on sports-specific movements, ballistics power training increases the rate of EMG rise during 

jumping, which helps to optimize the functions of SSC (Cormie, McGuigan, & Newton, Adaptations in 

Athletic Performance after Ballistic Power versus Strength Training, 2010).  Through this power training, 

subjects are able to achieve greater acceleration and movement velocity in shorter periods, therefore, 

increasing athletic performance (Cormie, McGuigan, & Newton, Adaptations in Athletic Performance 

after Ballistic Power versus Strength Training, 2010).  

While ballistic training is heavily studied, some suggest other approaches to improving athletic 

performance. Gehri et al suggest that it is vital to include plyometric depth jump training to a current 

program in order to improve vertical jump ability (Gehri, Ricard, Kleiner, & Kirkendall, 1998). Behm and 

Sale suggest that it may be the intention to move quickly, and not the actual speed moved that would 

elicit a velocity specific response (Behm & Sale, Velocity specificity of resistance training, 1993). In other 

words, it may not be the movement speed that is important, as long as an explosive movement is 

produced. However, McBride et al did not support this theory in their investigation (McBride, Triplett-

McBride, Davie, & Newton, The Effect of Heavy-Vs. Light- Load Jump Squats on the development of 

Strength, Power, and Speed, 2002). McBride et al argued that in their investigation, Behm and Sale did 
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not as the participants to accelerate the resistance as quickly as possible. There are no known studies 

which compared heavy and light load training in which both groups attempted to move the loads as 

quickly as possible without a deceleration phase, which is typical of traditional weight training (McBride, 

Triplett-McBride, Davie, & Newton, The Effect of Heavy-Vs. Light- Load Jump Squats on the development 

of Strength, Power, and Speed, 2002). Kraemer et al suggests formatting an exercise program around 

competition days, with the loads varying on the proximity to a competition (Kraemer & Newton, 1994); 

the training program is divided into three phases that have loading variations. The preparation phase is 

marked by weight training to increase muscle mass and strength (Kraemer & Newton, 1994). The pre-

competition phase requires heavier and more specific weight training; often a base of more explosive 

weight training, emphasizing rate of force development, the stretch-shortening cycle, and high 

contraction velocities (Kraemer & Newton, 1994). The competition phase involves maintain of vertical 

jump performance and emphasizes removal of plyometrics, reduced heavy weight training, and not 

ceasing exercise until five to six days prior to competition(Kraemer & Newton, 1994). 

 An area of concern for athletic coaches is improvements in not only the weaker athletes, but 

also, stronger athletes. Cormie et al proved that an experimental training regime can improve athletic 

performance in both stronger and weaker individuals, and the practical differences between the two 

groups was distinct at 5 weeks and lessened within 10 weeks of the study (Cormie, McGuigan, & 

Newton, Influence of Strength on Magnitude and Mechanisms of Adaptation to Power Training, 2010). 

This suggests that both stronger and weaker individuals receive rapid improvements from ballistic 

power training (Cormie, McGuigan, & Newton, Adaptations in Athletic Performance after Ballistic Power 

versus Strength Training, 2010). While improving the athletic performance of weak athletes is 

imperative for trainers and coaches, it is equally important to continue to strengthen already strong 

athletes. However, in order to improve the athletic performance of well-trained athletes, it is necessary 

to develop a sophisticated resistance training program that has specificity and variability(Cormie, 
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McGuigan, & Newton, Adaptations in Athletic Performance after Ballistic Power versus Strength 

Training, 2010). 

For the lower body, vertical jump ability is often used to assess explosive strength (Kraemer & 

Newton, 1994)(Channell & Barfield, 2008). Vertical jump strength is dependent on strength, power, and 

the ability of the muscle to use SSC (Channell & Barfield, 2008), therefore it can be determined that a 

visible increase in vertical jump strength would lead to an increase in athletic performance. Several 

studies focus on building vertical jump ability in weak and strong groups to provide proof of an increase 

in athletic performance. Cormie et al assessed studied the influence of strength on mechanisms of 

adaption to power training, and found that athletic performance was improved through their 

experiment by testing the power output during CMJ (Cormie, McGuigan, & Newton, Adaptations in 

Athletic Performance after Ballistic Power versus Strength Training, 2010).  

Power can be defined as work divided by time (Stone, O'Bryant, McCoy, Coglianese, Lehmkuhl, 

& Schilling, 2003). One of the major separating factors of athletes is their ability to generate great power 

(Stone et al 2003). An athlete is able to achieve peak power (PP) when force and velocity are at optimum 

values; this is the highest possible power generated in a performance. Maximum strength is the basic 

factorial unit of power output (Stone, O'Bryant, McCoy, Coglianese, Lehmkuhl, & Schilling, 2003); 

therefore it can be assumed that by achieving maximum strength, an athlete will achieve the highest 

possible power output. In a study about power relationships during jumps, Stone et al concluded that as 

one rep max (1RM) percentages  increased in trained, and untrained individuals, the rate at which peak 

power occurs also increases (Stone, O'Bryant, McCoy, Coglianese, Lehmkuhl, & Schilling, 2003).  This 

leads to the assumption that in order to improve jumping power output, improving maximum strength 

would be the primary concern (Stone, O'Bryant, McCoy, Coglianese, Lehmkuhl, & Schilling, 2003). When 

estimating explosive power in the lower limbs, CMJ and SJ are the most reliable and valid field tests 
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(Markovic, Dizdar, Jukic, & Cardinale, 2004); and CMJ has proven to produce power greater than SJ 

(Stone, O'Bryant, McCoy, Coglianese, Lehmkuhl, & Schilling, 2003).   

It is not uncommon for athletes to be weight conscious, especially in sports that involve a lot of 

power. While a heavier athlete would require a higher power output to perform an explosive 

movement, such as a vertical jump, a lighter counterpart would require substantially less power 

(Kraemer & Newton, 1994).  Many athletic trainers take intuitive leaps, and theorize that a lighter 

athlete would be able to jump higher; therefore, strength training should be diminished (Kraemer & 

Newton, 1994). Schmidtbleicher et al suggests that an increase in the cross sectional area of the muscle, 

by increasing muscle size, would lead to an increase in strength. This would lead to a preferred, and 

improved, power-to-weight ratio (Schmidtbleicher,D.,1992. Training for power events. In: P.V. Komi 

(ed.) Strengthand Power in Sport. Boston: Blackwell Scientific Pub., pp. 381-395). Body fat percentage, 

as well as body mass, is an area of concern in many explosive sports. Although athletic trainers, and 

athletes, may seek low body fat percentages in hopes of increasing jump height, Ashley et al found no 

significant correlation between jumping performance and body weight (Ashley & Weiss, 1994).  

However, Weiss et al also found a negative relationship between peak force and percent body fat, and 

as body fat percentage increased, the ability to generate a high force velocity decreased (Weiss, Relyea, 

Ashley, & Propst, 1997).  

Explosive strength has been proven to be one and the same with maximal power (McBride, 

Triplett-McBride, Davie, & Newton, A Comparison of Strength and Power Characteristics Between Power 

Lifters, Olympic Lifters, and Sprinters, 1999). The development of muscular power is influenced from a 

multitude of factors, including maximal strength (Cormie, McGuigan, & Newton, Influence of Strength 

on Magnitude and Mechanisms of Adaptation to Power Training, 2010). Strength is defined as maximal 

force production (Newton R. W., 1996)and a positive relationship between maximal strength and 
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maximal power production (Baker & Nance, 1999). The ability of an athlete to generate high power 

output is characterized by the muscle actions and high movement velocities generated by the muscle 

(Newton R. W., 1996). Because many sports involve high force generation movements over a short 

period of time (McBride 1999), the ability to achieve maximal force and power is beneficial.  Wisloff et al 

determined that achieving maximal strength in half squats determines jump height in high level soccer 

players. A focus on maximal strength training, with an emphasis on mobilization of concentric 

movements, will improve jumping performance (Wisloff, Casagna, Helgerud, Jones, & Hoff, 2004). Since 

jumping performance is a derivative of maximal strength (Wisloff, Casagna, Helgerud, Jones, & Hoff, 

2004), it can be determined that improving maximal strength will improve vertical jump ability 

(Gourgoulis, Aggeloussis, Kasimatis, Mavromatis, & Garas, 2003). Physiologically, initial improvements in 

strength after strength training are greater and largely driven by neural adaptations (Cormie, McGuigan, 

& Newton, Influence of Strength on Magnitude and Mechanisms of Adaptation to Power Training, 

2010). These neuromuscular characteristics form the foundation for superior maximal power production 

(Cormie, McGuigan, & Newton, Influence of Strength on Magnitude and Mechanisms of Adaptation to 

Power Training, 2010). Individuals with greater levels of strength have larger whole-muscle cross 

sectional area, and a greater number of Type I and Type II muscle fibers (Hakkinen, Komi, & Tesch, Effect 

of combined concentric and eccentric strength training and detraining on force-time, muscle fibre and 

metabolic characteristics of leg extensor muscles, 1981).  Through comparisons of cross sectional areas, 

stronger individuals have superior power production compared to their weaker counterparts (Bourque, 

2003). 

Rate of force development (RFD) is the ability to rapidly develop muscular force, and is 

determined by the slope torque-time curve (Aagaard, Simonsen, Andersen, Magnusson, & Dyhre-

Poulsen, 2002). Rate of force development is defined as the rate of rise of contractile force at the 

beginning of a muscle action (Ebben, Flanagan, & Jensen, 2007), and is a major contributor to vertical 
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jump performance (Kraemer & Newton, 1994).   Another importance of RFD is the ability to use it to 

determine the force generated at the beginning of a muscle contraction (Aagaard, Simonsen, Andersen, 

Magnusson, & Dyhre-Poulsen, 2002). The maximal rate of force development (mRFD) is determined 

from the maximal portion of a time curve taken during maximal strength tests (Kraemer & Newton, 

1994). Ebben et al suggests that RFD is manifested within the short and long term components of the 

stretch-shortening cycle (Ebben, Flanagan, & Jensen, 2007). The short component occurs during the 

initial 100-250 ms of muscle activation when small angular displacements occur in the lower body during 

sprinting or quick jumping (Ebben, Flanagan, & Jensen, 2007) (Schmidtbleicher,D.,1992. Training for 

power events. In: P.V. Komi (ed.) Strengthand Power in Sport. Boston: Blackwell Scientific Pub., pp. 381-

395). The long component occurs in muscle activation that lasts longer than 250 ms when large angular 

displacements of the lower body occur, typically during maximal vertical jumps (Haff GG, 1997).  

Maximal rate of force development is primarily expressed in movements that occur less than 250 ms; 

maximal strength often occurs in movements that last longer than 250 ms (Ebben, Flanagan, & Jensen, 

2007). Haff et al. demonstrated that countermovement jump generates greater time to peak RFD and 

time to peak force than isometric and loaded mid-thigh pulls (Ebben, Flanagan, & Jensen, 2007). This 

suggests that there are other factors to the time course of RFD than maximal strength and external load 

(Ebben, Flanagan, & Jensen, 2007). Ebben et al. found through their investigation an absence of 

correlation between RFD and countermovement jump height (Ebben, Flanagan, & Jensen, 2007). This 

leads to the question if RFD is useful in measuring an athlete’s maximal vertical jump abilities (Ebben, 

Flanagan, & Jensen, 2007). Ebben et al. suggest this is due to variability in which the countermovement 

jump is a high force or a high velocity activity (Ebben, Flanagan, & Jensen, 2007). Through further 

investigations, it has been determined that body mass and training status does not affect the 

relationship between RFD and jump height (Ebben, Flanagan, & Jensen, 2007).  
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Strength and power are often used to assess an athlete’s performance (Brown & Weir, 2001)and 

athletic coaches often focus on strength building exercises because of this. The ability to generate 

power is a major separating factor between athletes (Stone, O'Bryant, McCoy, Coglianese, Lehmkuhl, & 

Schilling, 2003).  The ability of an athlete to achieve maximal force and power is beneficial because many 

sports involve high force movements within a short period of time (McBride, Triplett-McBride, Davie, & 

Newton, A Comparison of Strength and Power Characteristics Between Power Lifters, Olympic Lifters, 

and Sprinters, 1999).  Focusing on maximal strength training can improve jumping performance (Wisloff, 

Casagna, Helgerud, Jones, & Hoff, 2004). Improving maximal strength can improve vertical jump ability 

(Gourgoulis, Aggeloussis, Kasimatis, Mavromatis, & Garas, 2003)since jumping performance is a 

derivative of maximal strength (Wisloff, Casagna, Helgerud, Jones, & Hoff, 2004). Often in explosive 

sports, body fat percentage and body mass are an area of concern among athletes.  It is a common 

misconception that extreme weight loss will elicit improvements in athletic performance (Wilmore, 

Bownell, Rodin, & Wilmore, 1992). Increases in fat mass can have a negative implication on sports 

performance (Rickenlund, Carlstrom, Ekblom, Brismar, Von Schoultz, & Linden Hirschberg, 2004) 

however; following body composition measures too closely can have negative consequences on an 

athlete such as the female athlete triad (Yeager, Agostini, Nattiv, & Drinkwater, 1993). Studies have also 

elicited results that prove either no correlation, or negative correlation between jumping performance 

or peak force, and body weight or percent body fat (Ashley & Weiss, 1994) (Weiss, Relyea, Ashley, & 

Propst, 1997).  
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Methods 

Subjects 

 Data from eleven female NCAA DI volleyball players collected from 2007-2010 as part of an 

ongoing athlete monitoring program was analyzed. Athlete (n = 11) characteristics are listed in Table 1. 

These athletes had limited participation in strength training programs prior to competing at the 

intercollegiate level.  Data was separated into weakest and strongest based on allometrically scaled 

isometric peak force, using the same eleven participants.  In all cases the weakest data corresponded to 

testing during the athletes first year at ETSU. The strongest data corresponds to testing during the most 

recent year (2010) of data collection for athletes. Athletes in the strongest group had an average of 1.8 

years of training when their data was collected.  In accordance with the guidelines of East Tennessee 

State University’s Institutional Review Board, participants read and signed written informed consent 

documents pertaining to the long-term athlete monitoring program and all testing procedures. 

Experimental Design 

Data was collected as a part of a voluntary long-term athlete-monitoring program of East 

Tennessee State University, analyzed and then evaluated for relationships. Athletes were familiarized 

with all testing procedures prior to taking part in the monitoring program. Testing included SJ, CMJ, and 

isometric mid-thigh pulls; bar heights were measured prior to testing day. Maximal effort testing was 

conducted in one session. Each session began with biometric data collected upon arrival, followed by 

the vertical jumps, a three-minute rest period, and isometric mid-thigh clean pulls.  
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Subject Characteristics 

 Biometric data was obtained prior to vertical jump and isometric mid-thigh clean pulls. 

Biometric data included: height (cm), body mass (Kg) and body composition. Height was measured to 

the nearest 0.1 cm using a stadiometer. Body mass was measured using an electronic scale. Body 

composition was measured using BodPod air displacement plethsmography instrumentation (Life 

Measurement Incorporated, Concord, CA), with standard procedures using an estimated thoracic gas 

volume. 
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Testing Methods 

Vertical Jump Testing Procedures 

 Prior to vertical jump and strength testing procedures, a standardized warm-up was followed for 

all participants. The warm-up consisted of twenty five jumping jacks, a series of clean pulls (one set of 

five clean pulls at mid-thigh with an empty barbell and three sets of clean pulls at mid-thigh with 40 Kg). 

Then a series of jumps, either static jump (SJ) or countermovement jump (CMJ) followed. Each jump was 

performed with 0 Kg using a PVC pipe or 20 Kg barbell placed upon the athletes’ shoulders between the 

seventh cervical vertebrae and the third thoracic vertebrae. Before the maximal effort tests began, 

athletes performed two unloaded practice jumps, one at 50 % effort, and one at 75% perceived effort. 

CMJ and SJ jumps were performed, with approximately one minute rest in between.  

 Vertical jump testing began with SJ conditions. Prior experimentation within the laboratory has 

proven no significance difference between the orders of a SJ or CMJ (Kinser et al 2008). Athletes 

performed all jumps on a force plate (Rice Lake, WI) that had a sampling rate of 1000 Hz. Once stepping 

on the force plate, the athlete was instructed to obtain the “ready position” which consisted of holding 

the PVC pipe (0 Kg) or the barbell (20 Kg) and assuming the squat position with a 90° knee angle. The 

knee angle was measured with a hand held goniometer. Once the athlete is in the position, a countdown 

of “3, 2, 1, Jump” was given to initiate jump time. To eliminate use of the stretch-shortening cycle, a 

three second hold at the bottom position was used (Haff 1997). Two sessions of each jump (SJ with 0 Kg, 

SJ with 20 Kg) with a one minute rest between were completed. After completion of the SJ sessions, 

athletes were given a three minute rest before beginning CMJ procedure.  

 CMJ were performed using procedures from prior research (Haff 1997). Athletes were allowed 

two practice weighted jumps. CMJ were completed without a pause after self-selected 

countermovement depth. Athletes completed two trials for both conditions (CMJ with 0 Kg and CMJ 
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with 20 Kg) with a one minute rest between each repetition. If the athlete, or investigator, perceived 

any jump (SJ or CMJ) as not maximal effort, the jump was repeated. 

 As described in previous studies, vertical jump height (JH) was calculated from flight time (FT) 

(Bosco et al 1983). SJ and CMJ force-time curve characteristics were recorded and analyzed using 

LabView 8.0 software (National Instruments, Upper Saddle River, NJ). Jump height difference was 

calculated as a percent loss from the average jump height achieved under 0 kg loading conditions; 

Percent loss = (Jump Height at 0 kg – Jump Height under 20 kg)/ Jump Height at 0 kg.  

Isometric Strength Testing Protocol 

 Athletes were given a three minute rest period after the vertical jump tests, before beginning 

the isometric mid-thigh clean pulls. All pulls were performed in a custom designed rack over a force 

plate (Rice Lake, WI) with a sampling rate of 1000 Hz. Each athlete was given two trials pulls, one at 50 % 

effort, and another at 75 % effort, with forty-five second rest in between. Athletes were then instructed 

to pull up as fast and hard as possible, which has been proven to produce optimal testing results 

(Bemben et al 1990). Athletes were instructed when to pull through a countdown “3, 2, 1”. In between 

the two maximal effort pulls, the athlete is given a one minute rest. A third attempt was performed if 

the athlete or investigator felt the pull was below maximal effort, or if there was greater than a 250 N 

difference in the initial two pulls. If a third pull was conducted, the two best isometric mid-thigh clean 

pulls were recorded for analysis.  

 Isometric peak force (IPF), isometric rate of force development (IRFD), and the forces at 50 ms 

(F50), 90 ms (F90) and 250 ms (F250) were calculated from the force-time curve, and were measured for 

each isometric mid-thigh pull. LabView 8.0 software (National Instruments, Upper Saddle River, NJ) was 

used during testing, recording, and force-time curve analysis. Maximal strength was measured in both 

absolute and normalized values.  
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Statistics 

  Allometric scaling of the different force values (IPFa, F@50a, F@90a, F@250a) was used to 

normalize differences in the body mass of the athletes (absolute force/ (body mass (kg0.67)). Pearson 

correlations were done comparing both Highest and Lowest SJ 0kg with all other variables and Highest 

and Lowest SJ 20kg with all other variables.  Strength of relationships in correlations was assessed using 

the following criteria: trivial (r < 0.001), small (r = 0.1 to 0.2), moderate (r = 0.3 to 0.4), and strong (r = 

0.5 to 0.6), very strong (r = 0.7 to 0.8), nearly perfect (r = 0.9), and perfect (r = 1.0) (Hopkins, 1997).  

Two-tailed independent T-tests were used to assess differences between variables.  
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Results 

Biometric Comparisons 

There is no significant difference in height, weight, or percent body fat data between the strong 

and weak athletes.  

Table 1: Subject Characteristics 

 Weakest Test Results Strongest Test Results 
Mean ± SD Mean ± SD 

Height (cm)  175.55 ± 4.12  175.56 ± 4.12 

Weight (kg)  69.45 ± 9.55  69.11 ± 9.53 

% BF 18.73 ± 5.96  18.68± 5.28 
 

Jump Heights and Strength Comparisons 

Differences in strength characteristics between the strongest and weakest athletes are listed in 

Table 2.  There is a significant difference (p<0.05) in CMJ, IPF, IPFa, and IPF250a between strong and 

weak athletes, and no significant difference (p> 0.05) in F250 ms and RFD between strong and weak 

athletes.  

Table 2: Jump Height and Strength Characteristics  

Weakest Test Results Strongest Test Results 
Mean ± SD Mean ± SD 

CMJ Height (cm) 26.40 ± 3.13 32.60 ± 5.00* 
IPF (N) 2396.30 ± 373.36  3067.06 ± 418.37* 
IPFa (N/kg) 141.30 ± 17.05 180.74 ± 17.46* 
IPF(N) @ 250 ms 1653.53 ± 357.06 1975.57 ± 403.45* 
IPFa (N/kg)@ 250 ms 97.41 ± 18.11 116.20 ± 20.73* 
RFD(N/s) (0-200 ms) 3505.51 ± 1141.49 4450.72 ± 1479.56* 

* There is a significant difference compared to weak athletes (p ≥ 0.05) 
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Countermovement Jump Comparisons 

 All Pearson correlations are presented in Table 3. In weaker test results, there were small 

inverse correlations between CMJ and PF (r= -0.34 CMJ Wt 0, r= -0.37 CMJ Wt 11, r=-0.12 CMJ Wt 20) 

and PFa (r= -0.19 CMJ Wt 0, r= -0.34 CMJ Wt 11, r= -0.12 CMJ Wt 20), strong inverse correlations 

between CMJ and percent body fat (r=-0.67 CMJ Wt 0, r= -0.65 CMJ Wt 11). However, during the 

weighted jumps, a moderate inverse relationship is seen between percent body fat and CMJ Wt 20 (r=-

0.35). In Stronger athletes there are small correlations between CMJ and PF (r=0.23 CMJ Wt 0, r= 0.13 

CMJ Wt 11, r=0.28 CMJ Wt 20), PFa (r= 0.26 CMJ Wt 0, r=0.15 CMJ Wt 11, r= 0.19 CMJ Wt 20), and 

moderate inverse correlations between CMJ and percent body fat (r=-0.40 CMJ Wt 0, r=-0.40 CMJ Wt 

11, r=-0.42 CMJ Wt 20).  While there is no strong correlation in the variables measured, there is a trend 

towards significant correlation between the strong and weak test results. In the stronger test results 

there is a trend towards a more significant correlation in strength variables. 
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Table 3: Correlations to Countermovement Jump 
 

       Weakest Test 
Results 

% 
Fat PF (N) PFa (N/kg) F250 (N) F250a (N/kg) RFD (N/s) 

CMJ Wt 0 -0.67 -0.34 -0.19 -0.31 -0.19 -0.03 
CMJ Wt 11 -0.65 -0.37 -0.34 -0.11 -0.03 0.18 
CMJ Wt 20 -0.35 -0.12 -0.12 0.13 0.19 0.44 

    Strongest Test 
Results 

% 
Fat PF (N) PFa (N/kg) F250 (N) F250a (N/kg) RFD (N/s) 

CMJ Wt 0 -0.40 0.23 0.26 0.25 0.28 0.15 
CMJ Wt 11 -0.40 0.13 0.15 0.24 0.26 0.17 
CMJ Wt 20 -0.42 0.28 0.19 0.26 0.21 0.15 

 

Strength Characteristics Comparisons 

 All Pearson correlations are presented in Table 4. In weaker test results, the inverse relationship 

between BF and CMJ becomes stronger. As test results become stronger, there is a stronger positive 

relationship between LBM and PF, PFa, F250, F250a and RFD. As test results become weaker, there is a 

stronger relationship between BF and PF, PFa, F250, F250a and RFD. As 20 kg weight is added to CMJ, 

there is a trend towards stronger inverse relationships between CMJ and BF.  

 

Table 4: Correlations to Strength Characteristics 

Weakest 
Test Results  CMJ Wt 0 CMJ Wt 11 CMJ Wt 20 PF (N) 

PFa 
(N/kg) F250 (N) F250a (N/kg) 

RFD 
(N/s) 

  LBM 0.08 0.18 0.15 0.38 -0.05 0.28 -0.003 -0.01 
  % Fat -0.67 -0.65 -0.35 0.70 0.45 0.51 0.31 0.26 

Strongest 
Test Results CMJ Wt 0 CMJ Wt 11 CMJ Wt 20 PF (N) 

PFa 
(N/kg) F250 (N) F250a (N/kg) 

RFD 
(N/s) 

  LBM 0.25 0.17 0.40 0.82 0.22 0.50 0.10 0.13 
  % Fat -0.40 -0.40 -0.42 0.12 0.26 0.33 0.11 0.19 
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Discussion 

  There are three main findings with this investigation. The first is that over the training period 

the athletes got stronger as evident by significant increases in strength measures and significantly 

increased vertical jump height.  This increase in strength and jump height was accomplished without a 

significant change in their body weight or body composition. Another finding is in the athletes’ stronger 

test results, there is a trend towards a more positive correlation with CMJ height, PF, PFa, F250, and 

F250a. The third significant finding is the relationship between body fat percentage (BF) and the 

strength characteristics. Data from athletes in the weakest group was collected during initial testing. 

These athletes were new to the conditioning program and were considered untrained. At this time, 

there tended to be a strong relationship between percent BF and CMJ height. As athletes increase 

strength levels the relationship between percent BF and VJ become less strong. 

 Stronger test results have a strong positive correlation between CMJ height and strength 

characteristics. Therefore, increasing an athlete’s strength in this study resulted in an increase in jump 

height.  These results are in agreement with other research.  In a study done on twenty four men 

examining power training found that ballistic training significantly improved power and jump height 

(Cormie, McGuigan, & Newton, 2010).   Another study examining twelve male football and track NCAA 

athletes found that multi-joint dynamic strength test are closely related to jump performance (Nuzzo, 

McBride, Cormie, & McCaulley, 2008). This suggests that increases in maximal strength could elicit 

improvements in jump performance.   

 As the correlation between CMJ and strength characteristics increase, the correlation between 

CMJ and %BF decreases. Inversely with the athletes’ weaker test results a higher percent BF is related to 

a decrease in CMJ height. When weight is added to a VJ, a steep drop in jump height is evidence of 

diminished strength characteristics(Kraska, 2008).  However the strength of the correlation decreases as 
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20 kg weight is added to CMJ. As an athlete becomes stronger, there is a stronger positive relationship 

between BM, PF and PFa; in lower levels of strength there is a stronger relationship between %BF and 

PF.  In a study measuring the association between CMJ and various musculoskeletal variables done on 

fifty healthy university women, Ashley et al found no significant correlation between jump performance 

and BF (Ashley & Weiss, 1994).  This study used females aged 18 to 23 years old, with varying activity 

backgrounds.  While we found a strong relationship in our athletic population, using a different 

population could cause explain the differences in findings.  

 These results show that strength characteristics and body composition should not be overlooked 

in athletic training.  A study conducted by Weiss et al examined restricted standing vertical jumps (RVJ) 

in healthy, college aged males and females. This study found that excessive body fat decreased the 

distance achieved (Weiss, Relyea, Ashley, & Propst, 1997).   Also, a study done on intercollegiate male 

basketball players over the course of four years  found that while body fat percentages remained 

relatively stable,  increases in body mass due to increases in muscle mass caused strength gains that 

directly increased power and jump ability performance (Hilyer, Forster, & Hunter, 1993). This study 

suggests that increases in muscle mass will elicit increases in performance, regardless of body fat. 

Therefore, it may be beneficial to focus on strength characteristics rather than body fat in promoting 

power and jump ability.  

 This study had some minor limitations. To begin with, data was collected with athletes. Athletes 

are a unique group of the population; they tend to be in better physiological shape and stronger. This 

provided the study with no means of a control group for comparisons. Due to the competitive nature of 

athletics it would be impractical to make untrained subgroups because it would hinder athletic 

performance.  Another limitation is the inability to control all physical activities prior to testing. This 

could lead to the athletes being exhausted, and therefore not being able to complete testing protocols 
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to the best of their abilities. However the testing sessions were incorporated into this overall training 

program and volume was reduced prior to testing to minimize fatigue.  Furthermore athletes and 

coaches were instructed to keep activities low the day prior and the day of testing. 
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Practical Applications 

 This data suggests that conditioning programs for female volleyball players should be focused 

around strength gains instead of fat or weight loss.  Having the correct goal behind a program will help 

improve athletic performance. This data could also be shown to female volleyball players to encourage 

them to continue their training, and proper nutrition without the concern of their body composition.  
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