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Abstract

The study of cardiac action potentials has many medical appli-
cations. Dr. Dennis Noble first used mathematical models to study
cardiac action potentials in the 1960s. We begin our study of car-
diac action potentials with one form of the Fitzhugh-Nagumo partial
differential equation. We use the non-classical method to produce a
closed form solution for the decoupled Fitzhugh Nagumo equation.
Using voltage recording data of action potentials in a cardiac myocyte
and in purkinje fibers, we estimate parameter values for the closed
form solution with standard linear and non-linear regression methods.
Results are limited, thus leading us to perturb the solution to obtain
a better fit. We turn to singular perturbation theory to justify our
pole-based approach. Finally, we test our model on independent ac-
tion potential data sets to evaluate our model and to draw conclusions
on how our model can be applied.
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2 Introduction

Cardiac arrhythmias occur commonly in the general population. Arrhyth-
mias are defined as any change in the normal sequence of the heart’s electrical
impulses that lead to abnormal heart rhythms [2]. While some people are
affected by a short, non-threatening period of an arrhythmia, other people
suffer from prolonged arrhythmias that lead to discomfort and in some cases
death. For example, the American Heart Association reports that 2.2 million
Americans suffer from atrial fibrillation. Atrial fibrillation occurs when the
heart’s electrical conduction system falters, and instead of being regulated by
the sinoatrial node, both atria are subject to erratic electrical impulses. This
causes the atria to essentially quiver, preventing the ventricles from filling
completely. Atrial fibrillation and other arrhythmias can lead to more serious
and life-threatening heart conditions [3]. Additionally, arrhythmias can lead
to sudden cardiac death [4]. Consequently, much effort and resources have
been put into researching cardiac arrhythmias.

One tool for better understanding these arrhythmias is mathematical
models of cardiac action potentials which may be used to study the interplay
of the different ions responsible for conducting electrical impulses throughout
the heart. In addition to leading to advances in the etiology and treatment
of cardiac arrhythmias, mathematical models have the potential to aid in the
testing of new pharmaceutical drugs that target proteins involved in cardiac
repolarization. These drugs can have fatal arrhythmic side-effects [5].

We begin by examining the physiology of cardiac action potentials. We
then briefly look at the history of mathematical cardiac action potential
models before building our own mathematical model.
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Figure 1: Potential across cell membrane. The difference in ion concentra-
tion, or electrical charge, enables the cell to communicate with the rest of
the body via action potentials [6].

3 Cardiac Action Potential

Cardiac cells, similar to neurons and muscular cells, are excitable cells. That
is, they can generate and respond to electrical impulses. This is possible
because of the membrane potential across their cell membranes. The cell
membrane is composed of a semipermeable phospholipid bilayer, enabling
the cell to control which substances, such as ions, can pass into and out of
the cell. At any given time, there is a different concentration of ions and,
consequently, an electrical charge inside and outside of the cell (see Figure
1). Thus, the cell has a membrane potential and the cell membrane can be
thought of as an electrical capacitor that can hold a charge. This electrical
charge can be discharged by movement of ions across the cell membrane.
This movement of ions and change in membrane potential is called an action
potential. Action potentials enable cells to communicate with each other and
send information throughout the body [7, 1].

The membrane potential is calculated relative to the charge inside the
cell as Vi, — V,ut, where Vj, is the charge due to ions inside the cell and V,;
is the charge due to ions outside the cell. Table 1 shows the most common
ions associated with cardiac cells and their concentrations inside and outside
the cell. Note that sodium (Na™), potassium (K7T), and calcium (Ca®") are
responsible for the action potential as will be described below. Also note the



Table 1
Ion | Extracellular (mM) | Intracellular (mM) | Nernst Potential (mV)
Na™* 145 15 60
Cl~ 100 S -80
K+ 4.5 160 -95
Ca?* 1.8 0.0001 130
HT 0.0001 0.0002 -18

Table 1: Ton concentrations in most cardiac cells [1].

particular importance of calcium, which stimulates the actual contraction of
the cardiac cell during a heartbeat [8].

It is also important to note the difference between pacemaker cardiac cells
and non-pacemaker cardiac cells. Pacemaker cells make up the sinoatrial
node and pace the heart. They have a slower rate of depolarization and their
action potential is carried out via a slightly different pathway [10]. We will
focus on non-pacemaker cardiac cells in our model. From here on, when we
say cardiac cell, we are referring to non-pacemaker cells.

There are two main types of non-pacemaker cardiac cells, see Figure 3:
Purkinje fiber cells and myocardial cells. Purkinje fiber cells are used to
quickly conduct electrical signals throughout the heart in order to activate
the myocardium to contract. Myocardial cells are the muscle cells of the
heart that actually contract during heart beats. Both cell types have similar
action potentials that last approximately 500 msec [1].

The resting potential of cardiac cells is approximately -90 mV, as seen in
Figure 2. That is, there is more positive charge outside the cell than inside,
as depicted in Figure 1. Like all other excitable cells, a cardiac cell will not
have an action potential until the membrane potential reaches a threshold
value. This prevents small, random electrical impulses from triggering an
excitable cell. For cardiac cells, the threshold voltage potential is -70 mV.
A cell is depolarized to its threshold when a neighboring cell has an action
potential and sends an electrical impulse to the cell. Once a cell hits the
threshold, Na™ channels in the cell’s phospholipid bilayer open up allowing
Na™ ions to rush into the cell along the electrical gradient, as seen in Phase



0 in Figure 2. At the same time, the Kt channels are closed, preventing
K™ ions from leaving the cell. The cardiac cell continues to depolarize until
the membrane potential is approximately +25 mV. At this point, the Na*
channels close, and the K channels open back up, allowing some of the
positively charged potassium ions to leave the cell and reduce the membrane
potential, as illustrated by Phase 1 in Figure 2. This is the start of repo-
larization. However at the same time K+ leaves the cell, slow inward Ca?*
channels open, allowing positive Ca?" ions to flow into the cell. This leads
to the signature plateau phase of cardiac action potentials: the in-flowing
Ca?* cells slow down the repolarization effect of the out-lowing K ions for
approximately 200 ms, which is denoted as Phase 2 in Figure 2 [8]. Repolar-
ization is completed as the C'a®* channels are inactivated and the outflowing
K™ ions lower the membrane potential to its resting value, which is Phase
3 in Figure 2. The cardiac cell is then ready to wait for the next electrical
impulse from neighboring cells. Finally, we note that cardiac cells have an
effective refractory period, consisting of phases 0,1,2 and part of 3, in which
the cell cannot be stimulated by a neighboring cell to produce another action
potential. The effective refractory period serves as a safety check, ensuring
that the chambers of the heart have enough time to fill with and then pump
blood [9].

4 Cardiac AP vs Neuron AP

In general, when one hears the term action potential he or she associates the
term with a neuron. Here we point out the difference in action potentials in
the two cell types. Figure 4 clearly shows how much shorter a neuron AP
is compared to a myocyte AP. This is due to the unique plateau phase in
myocytes caused by the slow Ca®* ion channels. Functionally, it is sensible
that a myocyte AP would be longer than a neuron AP. Consider, for example,
two individuals, A and B, standing at opposite ends of a football field with
other people standing in between them. If person A sees that the scoreboard
is about to fall on person B, both of them want individual A to pass that
information to individual B as quickly as possible. Conversely, if person A
is selling cups of lemonade on a hot, fall afternoon, then person B wants to
get his lemonade in a timely manner but person B is fine with people slowly
passing his lemonade to him so that it does not spill. Similarly, neurons are
responsible for quickly sending information between the brain and body and
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Figure 2: Action potential in a ventricular myocyte. The plot denotes when
specific ion channels are open during an action potential [9)].
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Figure 3: During each heart beat, electrical impulses originate in the SA node
and then travel through the heart as seen in the image. Purkinje fibers are
responsible for quickly conducting electrical impulses around both ventricles,
stimulating the ventricles to contract at the same time. Myocardial cells
make up the heart wall and contract in order for the heart to pump blood
throughout the body [11].
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Figure 4: On the left is an action potential from a single guinea pig ventricular
myocyte [12]. On the top right is an action potential from a motor neuron
[19]. The myocyte AP is approximately 225 msec compared to the neuron
AP which lasts less than 5 msec. Also note the lack of a plateau phase in
the neuron AP.

speed is of the essence. While myocytes also need to propagate electrical
signals with speed, their action potentials must also last long enough for
cellular contraction and for the atria and ventricles to have enough time to
completely fill with blood in diastole and empty during systole.

As discussed earlier, the heart is composed of several cell types - nodal
cells, Purkinje Fibers, myocardial cells, and more. FEach of these have a
slightly different function and, consequently, slightly different action poten-
tials. This diversity coupled with the many different ionic channels found in
cardiac cells make it challenging to model cardiac action potentials. Thus,
like most mathematical models, there is a fine line that one must evaluate
between modeling every detail of the process and leaving out inconsequential
components of a myocyte action potential [1].

5 Mathematical Models of Action Potentials

5.1 Hodgkin-Huxley

The first mathematical model of action potentials was completed by Alan
Lloyd Hodgkin, Andrew Fielding Huxley, and Bernard Katz. They measured
the ionic current in a giant axon of a squid using a voltage clamp and new



techniques they developed. They made two key assumptions. First, Hodgkin
and Huxley assumed “that the initial inward current is carried almost entirely
by Na—+ ions, while the outward current that develops later is carried largely
by K+ ions” [1]. Second, they inferred that “the potassium channels are
unaffected by the change in extracellular sodium concentration” [1]. Their
data suggested that the action potential consisted of four processes: change in
membrane potential v(t), potassium activation n(t), sodium activation m(t),
and sodium inactivation h(t), where ¢ is the time [1]. Analyzing these four
processes, Hodgkin and Huxley developed four ordinary differential equations
(ODEs) to mathematically describe the action potential [1]:

C’mcz = —ge(v =)' = gna(v — vva)m’h — gr(v —vp) 4 Ly (1)
dm
= an(l—m) = fum @)
dn
== aul=n) =B (3)
dh
o = an(l—h) =Gl @

where v is the change in membrane potential, m is the Na™ channel activation
rate, n is the K channel activation rate, h is the Na* channel inactivation
rate, and ¢ is the conductance of the denoted ion channel.

5.2 Cardiac Models

After Hodgkin and Huxley’s work was published, mathematicians and scien-
tists began working to model other excitable cells, including cardiac cells. In
1962, Denis Noble published the first mathematical model of cardiac action
potentials. His model was an extension of the Hodgkin-Huxley system of
differential equations. His extension was based on a discovery that he and
Otto Hunter made concerning potassium channels in purkinje fibers. This
highlights the great extent of intellectual exchange between biochemistry
and mathematics. Throughout the last 50 years of modeling myocyte ac-
tion potential, and even longer for excitable cells in general, biologists have
shared their experimental discoveries with mathematicians, who improved
their models and offered insights into what areas the biologists should ex-
plore next. This integration of the sciences has led to remarkable leaps in
the field of cardiac electrophysiology [5, 20].
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Numerous experimental results, including Reuter’s discovery of the Ca?*
in the late 1960s greatly improved mathematical models of cardiac action
potentials. These developments led to the McAllister-Noble-Tsien Purkinje
fiber model in 1975, the Beeler and Reuter model of a ventricular myocyte
in 1977, and eventually, after other experimental discoveries, the Luo-Rudy
models of guinea pig ventricular myocytes in the early 1990s. Later the
discovery of a Na*t and Ca?* exchanger led to the DiFrancesco-Noble model
of Purkinje fiber cells in 1985 and the Hilgemann-Noble model of atrial cells
in rabbits in 1987. These two models became the basis for modern models of
excitation-contraction coupling. In addition to guinea pig and rabbit models,
mathematical models of cardiac action potentials have been developed for
humans, canines, and rats, since the late 1990s [5, 21].

As a final note, we point out that many of these mathematical models were
expressed as ODEs. We choose to express our model as a partial differential
equation (PDE).

5.3 Fitzhugh-Nagumo

The Hodgkin-Huxley system of ODEs provide a physiologically accurate por-
trait of the action potential since they are obtained from actual measure-
ments. However, they are not trivial to work with when modeling because
they are highly nonlinear with sensitive dependence on the individual values
of their many parameters. For this reason, scientists looked for a simpler
model that retains the qualitative features of the Hodgkin-Huxley equations.
In the 1960s, Richard Fitzhugh, a biophysicist, developed such a mathe-
matical model based on the fast-slow phase-plane of the Hodgkin-Huxley
system. Concurrently, Nagumo built an electrical circuit that modeled the
phenomenon that Fitzhugh described mathematically. His electrical circuit
consisted of a capacitor, a tunnel diode as a non-linear current-voltage device,
and a resistor, inductor, and battery in series [1].

Fitzhugh and Nagumo were able to describe an action potential with
two equations and two variables — a fast, excitation variable v and a slow,
recovery variable w. Their model can be derived in several different ways,
but we chose to start with the following two PDEs [1]. We next derive the
single Fitzhugh-Nagumo PDE that we will use to build our model of a cardiac
action potential.



ov , 0

€5 = e@—l—y(l—y)(a—u)—w (5)
0
a—t; = Vv—w-—1 (6)

where 14 is the resting membrane potential and ¢, y, and a are positive con-
stants. Note t is time and x is the distance along the myocyte membrane
from a given starting point. We assume 1y = 0. We will see later that this is
justified because we can use a linear transformation to make the membrane
voltage be between 0 and 1.

Notice in Equations 5 and 6 that € is independent of time ¢ and position
x. Hence, we can rewrite the equations placing € in the differential:

8(2;6) = 8(?1:/2)2 +rv(l—v)(a—v)—w (7)
%: = V—w (8)

Next, let T'=1t/e and X = z/e.

ov 0%
T - 3% +v(l—v)(a—v)—w (9)
g;i = e(v—w) (10)

Because € is not on the left side of Equation 8, we multiply the right side of
Equation 10 by e.

Ow

As € — 0 in Equation 10, 57 — 0. Thus, w is a constant, and we let
w = 0, arriving at the single Fitzhugh-Nagumo PDE, Equation 11. Physio-
logically, this assumption is valid since the recovery variable is non-existent
at the beginning of an action potential.

ou  O%*u

5%~ 57 +u(l —u)(a—u) (11)
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When we derive our model of a cardiac action potential below, we will
begin with this PDE. The single Fitzhugh-Nagumo PDE describes the fast
currents of the action potential, but we will have to modify the equation in
order to model the entire action potential.

6 Methods

There is much interest in mathematical models of cardiac action potentials
because of the insight they give into the interaction between fast and slow
ion currents that generate the action potential. The robust nature of cardiac
myocytes, evidenced in Figure 5, makes them good candidates for study by
deterministic mathematical models. Since the interaction between the fast
currents and slow currents occur in the same region in each AP, we can use
models to study how the currents work, that is, when does each current turn
on and off and which current overrides another. The goal of this study is
to generate a mathematical model for cardiac AP’s and then use the model
to determine what causes the plateau phase that is unique to cardiac AP’s
and what ends the plateau phase, bringing the myocyte back to its resting
potential.

Cardiac action potentials have been mathematically modeled for forty
years; however, little work has been attempted in modeling cardiac AP’s
with partial differential equations. We build our mathematical model based
on the Fitzhugh-Nagumo partial differential equation:

ou  J’u

5 _@—l—u(l—u)(a—u) (12)

It has been shown that a solution to the fast part of the Fitzhugh-Nagumo
PDE, corresponding to the sharp depolarization in action potentials (See
phase 0 in Figure 2), is given by [18]:

Ae*' + aBe*

Uz, t) = e £ Bem 1 O (13)

where U is the voltage at position x and time ¢, z; = % + (% —a)t, zp =
% +a(§ —1)t, and A, B, and C are arbitrary constants.

11
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Figure 5: Superposition of 10 consecutive action potentials in a single guinea
pig ventricular myocyte measured under standard conditions [12].

We verified that Equation 13 is indeed a solution to the Fitzhugh-Nagumo
PDE in the mathematics software program Maple 14. In order to model the
slow ion currents responsible for the repolarization of myocytes, we use a
singular perturbation approach, outlined below and given in detail in the
Appendix, to justify a more general form of Equation 13, which we derive
below.

6.1 Data

We used three different sets of cardiac myocyte data in building our math-
ematical model. The first data set, shown in Figure 6, was obtained from a
left ventricular myocyte of a pig. The sccond AP data was simulated from
Noble’s Purkinje Model and is shown in Figure 7. The third AP data was
from a single guinea pig ventricular myocyte and was shown in Figure 5.
These three data sets were chosen based on their robustness, the credibility
of their source, and their span of different types of non-pacemaker cardiac
cells.

12
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Figure 7: Simulated action potential from Noble’s model of action potentials
in purkinje fibers [14].
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Figure 8: Action potential from a canine myocyte [15].

After building our mathematical model, we tested the model on a ca-
nine action potential, shown in Figure 8. We chose to independently test
our model on the canine data set because of the sharp turn between the
plateau phase and the repolarization phase, which signifies a distinct change
in the dynamics of the ion currents. We hope to learn something about the

interaction between the Ca?* and K+ currents at this point in the action
potential.

Finally, we ran our model with data from a failing canine myocyte to see

if any of our parameters might preventively indicate a problem in a myocyte.
The failing canine data set is shown in Figure 9.

Note, we converted the data sets into units of millivolts and milliseconds
if they were not already in these units. Additionally, all of our analysis was
completed in these units. We also rescaled the data sets such that membrane
voltage was between 0 and 1. Since this is a linear transformation, the
information we derive from the rescaled data in our model can be applied to
the original data via the inverse of our linear transformation.

14
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Figure 9: Action potential from a failing canine myocyte [15].

As a final note, when running our model on the data sets, we only worked
with the data from the peak of the depolarization through the return to rest-
ing potential. This is illustrated in Figure 10. We ignored the depolarization
phase for two reasons. First, the depolarization phase consists of a small
number of points, usually less than five. Second, the depolarization phase
occurs rapidly and is thus hard to model.

6.2 Deriving Our Model

An immediate goal is to obtain a fit for our data. If we multiply U by
1 _—=z
% = 1, we obtain:
A

1+ aBje?2 =

U(.T,t) = 1 + Blezg—zl + C’le—z1

(14)

where By = % and C; = %.

But zp — 2y = %(a - 1)+ (% — $)t. If we assume that the voltage is
constant over the length of the cardiac myocyte, then voltage is independent
of x and U becomes a single variable function, only depending on ¢:

15
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Figure 10: Portion of cMc data set from Figure 6 that was used to build
our model. The membrane voltage has been rescaled to be between 0 and
1. Additionally, the data points before the peak point of depolarization have
been ignored. These points are ignored because of the difficulty in fitting
the few points that compose the depolarization and because our interest
is modeling the repolarization of the action potential where the interaction
between fast and slow ion interactions occur.
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1+ aBge_pt

Ut) = 15
*) 1 4+ Boe Pt + (Chedt (15)
where By = B1evi" ™V, Gy = Cieve, p= (L — %), and ¢ = (a — 1).
In order to estimate the parameter ¢, we set By = 0, giving us:
Ut) = —— (16)
B 1+ Cgeqt

We can now fit a portion of the action potential with this equation to
estimate Csy and ¢, but first we want to make a substitution for C;. When we
initially ran a non-linear regression fit on the full action potential we saw that
the estimates for B, and Cy were very large with magnitudes of 10%° and 10?4,
respectively. In the above equation, C5 is in units of voltage and independent
of time. However, 5 is not independent of ¢q. Therefore, we introduce the
following substitution Cy = e¢~%. By writing C5 as an exponential, we get
parameter values that are more physiologically reasonable. Setting By = 0,
U is reduced to

1

U(t) = 1 + ealt—9)

(17)

Next, notice in Figure 10 that as t goes to infinity, the voltage recording
goes to zero. Correspondingly, in Equation 17, we want ¢ such that as t goes
to infinity, U(t) goes to zero. Thus, we have

1
fim U() = Jim o2 =0 (18)
only if ¢ > 0. Physiologically, we can now use Equation 17 to model the
portion of the action potential that tends to zero as time goes to infinity.
These are the data points, seen in Phase 3 of Figure 2, which directly follow

the plateau phase.

After rearranging and taking the natural logarithm of both sides, we
obtain a linear equation where y = U(t):

1—

In y_ qt — qg (19)

17



From this equation, we use a linear regression fit on the data points following
the plateau to obtain a unique estimation of the parameters ¢ and g. We use
our unique estimates of ¢ and g to find the other parameters using non-linear
estimation. Additionally, this lincar analysis gives us an additional check
when evaluating our model: if our estimate of ¢ is not positive, then our
model is wrong.

Before running a non-linear estimation, we return to Equation 15. We
choose to make a substitution for B, similar to the one we made for Cj.
Again, B, is not dependent on time, but does depend on the value of p.
Letting By = eP", where h is a constant parameter, we have

1 4 aePlert

uft) = 1+ e pt=n) 4 ealt=9)

(20)

Notice that we do not combine the two exponentials in the numerator of
Equation 20. Rather, we now introduce a small perturbation of p in order to
encompass both the fast and slow ion currents in our model. Our perturba-
tion is 7 = p + d where ¢ is a small number. This is a singular perturbation
approach; please see the Appendix for justification of this perturbation pa-
rameter. This gives us the solution U(¢) that we use to model cardiac action
potentials via non-linear estimation:

]_ _|_ e_r(t_f)
T 14 ep(t-h) + ealt—9)

U(t) (21)

We use Maple 14 to estimate ¢ and g by linear estimation and to estimate
our other parameters by non-linear regression. We give initial estimates for p
and h, along with the initial estimates of ¢ and ¢ from the linear estimation,
to run a weighted non-linear regression to estimate r, f,p, h, q, and, g in our
model, Equation 21. We use weights in our estimation because of the sharp
turn in myocyte action potentials. The weights enable us to dictate which
data points have the most influence when running the non-linear regression
to build our model. We use the following weight sequence:

weights = (val)" (22)

where val is a number between 0 and 1 and n = 1,2, ...,z where z is the
number of data points for the action potential. Thus, the earlier data points

18



have more influence in building the model then later data points of an action
potential.

6.3 Evaluation of Model

We evaluate our model for cach cardiac action potential by analyzing the
residuals. Specifically, we examine four aspects of the residuals: normality,
residual sum of squares, residual mean square, and residual standard devia-
tion.

The first aspect we check when evaluating whether our model is good or
not is the distribution of the model’s residuals by examining a histogram of
the residuals. We want a normal distribution centered around zero. That
is, we want most of our residuals to be zero or very close to zero, and we
want to have an equal number of positive and negative residuals. A residual,
e, is a measure of the distance between a model’s predicted value and the
actual value of the data. Mathematically, a residual is defined as e =y — 7,
where y is the actual value and ¢ is the predicted value. Clearly, the more
residuals which have a value of zero, the better our model is at fitting the
action potential. Similarly, if the histogram is not skewed, then our model
does not underpredict or overpredict our data.

Second, we examine the residual sum of squares, > e?. This gives us
another measure of the variability between the model’s predicted values and
the actual data. By squaring the residuals, we are summing positive values
and thus obtain a measure of the difference between predicted and actual
values. Obviously, we want the residual sum of squares to be as small as
possible. The residual sum of squares is particularly useful in comparing the
predictions of a model when we change parameter values and/or the weights.

Third, we consider the residual mean square:

> e
df
where df is the residual degrees of freedom of the model. Mathematically,

df = n—p, where n is the number of data points in the set and p is the number
of parameters in the model, which in our case is six. For our purposes, the

RMS =

(23)
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residual mean square is useful for comparing our model’s predictability from
one data set to another.

Finally, we examine the standard deviation of the residuals, which is
denoted s

Zdjf? — VRMS

s is a goodness-of-fit test and is used to evaluate which model is better at
fitting the data. The best model has the smallest value of s. Again, we can
use s to see which weights and parameter values optimize our model of a
myocyte action potential.

S =

(24)

7 Results

We first show the results of our model when applied to the guinea pig ven-
tricular myocyte AP in Figure 5. The following initial values were used to
model the action potential in Maple 14: g = 192.0,q = 0.049, p = 0.01, and
h = —20. Table 2 gives the value of each parameter when a different val is
used in the weighted non-linear regression.

Table 2: Guinea Pig Ventricular Myocyte
Val f g h p q r 1.96-RSD
0.975 | -95645.3 | 2679.5 | 29608.0 | -6.0E-02 | 1.1E-03 | 2.6E-01 | 1.9E-02
0.98 -55.9 200.3 | 2309 |-1.1E-01 | 1.0E-01 | 4.6E-02 | 1.6E-03
0.985 15.3 189.6 | 125.8 | 7.3E-04 | 6.4E-02 | 5.2E-03 | 4.4E-03
1 -394.8 | 2034 | 211.1 | -1.3E-02 | 1.6E-01 | 8.6E-03 | 2.4E-02

Note our model had a hard time obtaining a fit when val = 0.99 and
when val = 0.995. Also, the 1.96- RSD gives a rough confidence interval for
each parameter with the given val.

Table 3 gives the Residual Sum of Squares (RSS), the Residual Mean
Square (RMS), the Residual Standard Deviation (RSD), and the Degrees of
Freedom (df) of our model for each val.
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Table 3: G. Pig Vent. Myocyte

Val

RSS

RMS

RSD

df

0.975

3.01E-02

9.58E-05

9.79E-03

314

0.98

2.02E-04

6.44E-07

8.03E-04

314

0.985

1.55E-03

4.93E-06

2.22E-03

314

4.64E-02

1.48E-04

1.22E-02

314

Tables 4 and 5 show the parameter estimates and residual measures for
the single pig myocyte data, shown in Figure 6. Our initial values were
g =133.8,q = 0.047,p = 0.01, and h = —20.

Table 4: Single Pig Myocyte
Val f g h ) q r 1.96-RSD
0.975 | 869.4 | 69.9 | 362.6 | -1.9E-03 | 8.4E-03 | 1.4E-05 | 6.4E-03
0.98 | -34.1 | 143.7 | 168.5 | -1.4E-02 | 9.8E-02 | 7.1E-02 | 3.8E-03
0.985 | 15.1 | 134.8 | 37.5 | 5.9E-03 | 6.4E-02 | 1.3E-02 | 5.7E-03
0.99 | -32.7 | 144.2 | 164.8 | -1.5E-02 | 1.0E-01 | 7.5E-02 | 5.6E-03
0.995| 9.0 |136.4 | -37.5 | -2.0E-03 | 9.0E-02 | 3.9E-03 | 1.1E-02
1 -63.8 | 136.1 | -1.2 | -4.6E-03 | 9.6E-02 | 7.2E-04 | 2.0E-02
Table 5: Single Pig Myocyte
Val RSS RMS RSD df
0.975 | 3.71E-03 | 1.08E-05 | 3.28E-03 | 344
0.98 | 1.31E-03 | 3.79E-06 | 1.95E-03 | 344
0.985 | 2.94E-03 | 8.55E-06 | 2.92E-03 | 344
0.99 | 2.81E-03 | 8.16E-06 | 2.86E-03 | 344
0.995 | 1.10E-02 | 3.19E-05 | 5.65E-03 | 344
1 3.66E-02 | 1.06E-04 | 1.03E-02 | 344

Tables 6 and 7 give the parameter estimates and residual measures for
the simulated purkinje fiber data, seen in Figure 7. Our initial values were
g =340.3,¢q = 0.016, p = 0.01, and h = —20.
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Table 6: Simulated Purkinje Fiber
Val f g h p q r 1.96-RSD
0.97 |-70.9 | 313.2 | -222.0 | 3.7TE-03 | 4.1E-02 | 1.1E-02 | 2.6E-03
0.975 | -84.2 | 314.2 | -361.9 | 3.0E-03 | 3.8E-02 | 1.3E-02 | 2.8E-03
0.98 | 83.4 | 311.0 | 102.7 | 1.2E-02 | 2.9E-02 | 1.5E-02 | 2.8E-03
0.985 | -76.2 | 314.5 | -301.0 | 3.6E-03 | 3.4E-02 | 1.4E-02 | 3.5E-03
1 42.0 | 137.1 | 39.8 | -6.2E-02 | 9.6E-02 | -6.3E-02 | 1.4E-02
Table 7: Sim. Purkinje Fiber
Val RSS RMS RSD df
0.97 | 6.07E-04 | 1.70E-06 | 1.31E-03 | 354
0.975 | 7.48E-04 | 2.11E-06 | 1.45E-03 | 354
0.98 | 7.03E-04 | 1.99E-06 | 1.41E-03 | 354
0.985 | 1.12E-03 | 3.16E-06 | 1.78E-03 | 354
1 1.90E-02 | 5.37E-05 | 7.33E-03 | 354

Note our model again had a hard time obtaining a fit for the Simulated
Purkinje Fiber data when val = 0.99 and when val = 0.995.

Tables 8 and 9 show the parameter estimates and residual measures for
the healthy canine myocyte data, displayed in Figure 8. Our initial values
were g = 236.0,¢ = 0.049,p = 0.01, and h = —20.
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Table 8: Healthy Canine Myocyte
Val f g h ) q r 1.96-RSD
0.975 | 26867.8 | -507.1 | 27691.7 | -2.4E-01 | -8.7E-02 | -2.4E-01 | 3.8E-02
0.98 89.5 216.5 78.3 | -2.2E-02 | 1.1E-01 | -2.0E-02 | 2.3E-03
0.99 134.9 238.7 102.2 | -1.4E-02 | 1.3E-01 | -1.1E-02 | 4.7E-03
0.995 | 489.1 156.8 551.0 1.7E-02 | 5.4E-02 | 1.9E-02 | 3.1E-02

Table 9: Healthy Canine Myo.

Val RSS RMS RSD df

0.975 | 7.11E-02 | 3.67E-04 | 1.91E-02 | 194

0.98 | 2.58E-04 | 1.33E-06 | 1.15E-03 | 194

0.99 | 1.14E-03 | 5.86E-06 | 2.42E-03 | 194

0.995 | 4.94E-02 | 2.55E-04 | 1.60E-02 | 194




We note that our model had difficulty obtaining a fit for the healthy
canine myocyte when val = 0.985 and when val = 1.

Finally, we show the parameter estimates and residual measures for a
failing canine myocyte. Table 10 and 11 show the results when the initial
estimates of ¢ and g were obtained with a linear fit of the data points 340-355
while Table 12 and 13 display the results when ¢ and g are estimated with a
linear fit of the data points 355-370.
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Table 10: Failing Canine Myocyte (340-355)
Val f g h p q r 1.96-RSD
0.985 | 107.5 | 612.6 | 181.3 | 3.0E-03 | 6.7E-03 | 5.1E-03 | 2.4E-03
0.99 | -35.3 | 569.7 | -260.1 | 3.9E-04 | 4.4E-02 | 3.1E-03 | 3.8E-03
0.995 | 12.3 | 577.4 | -316.5 | -1.4E-04 | 8.4E-02 | 2.0E-03 | 8.4E-03

Table 11: F. Can. Myo. (340-355)

Val RSS RMS RSD df

0.985 | 6.02E-04 | 1.49E-06 | 1.22E-03 | 404

0.99 | 1.52E-03 | 3.77E-06 | 1.94E-03 | 404

0.995 | 7.49E-03 | 1.85E-05 | 4.31E-03 | 404

Table 12: Failing Canine Myocyte (355-370)
Val f g h p q r 1.96-RSD
0.985 | -37.5 | 597.3 | -126.1 | 1.3E-03 | 9.2E-03 | 4.3E-03 | 2.4E-03
0.99 |-24.6 | 570.4 | -169.0 | 4.0E-04 | 4.4E-02 | 3.1E-03 | 3.8E-03
0.995 | -4.9 | 577.6 | -58.5 | -1.8E-04 | 8.5E-02 | 2.0E-03 | 8.4E-03

Table 13: F. Can. Myo. (355-370)

Val RSS RMS RSD df

0.985 | 5.99E-04 | 1.48E-06 | 1.22E-03 | 404

0.99 | 1.53E-03 | 3.79E-06 | 1.95E-03 | 404

0.995 | 7.48E-03 | 1.85E-05 | 4.30E-03 | 404




8 Discussion

As seen in the residual tables, our model does a good job fitting an action
potential in a variety of cardiac cell types. We now show a plot of actual
action potentials versus the fit from our model for each data set along with
a histogram of the residuals. Each figure below is based on the model with
Val set to the number that gives the lowest RSS, RMS, and RSD. For the
most part, Val = 0.98 gave the best fit but there were a couple of exceptions,
which are noted in the figures below.

Val=0.98 Histogram of R esiduals

-0.004-0003-0002-0001 0 0.001 0002 0003 0.004 0003

Figure 11: Action potential from a  Figure 12: The fit is from when Val =
single ventricular myocyte in a guinea (.98 in our weighted non-linear regres-
pig. sion model.

Note, although the residual measures were smaller for Val = 0.985 in the
failing canine data set, the weights were insufficient in making the fit drop
back down to the resting potential. Hence, we show the results for Val = 0.99
in Figures 19 and 20.

The plots of actual versus fits indicate that our model does a good job
of describing single myocyte action potentials. Additionally, the histograms
of residuals all show a fairly normal distribution with no skewness. This is
significant because if the residuals had been skewed, then our model would be
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Val=098

Figure 13: Action potential from a sin-
gle ventricular myocyte in a pig.

Val =097

0.8
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024

0

T T T T T T
0 e 200 300 400 500 600 700

¢
< Actual Data

Figure 15: Simulated action potential
from Noble’s model of purkinje fibers.

Histogram of Residuals
901

-0.008 -0.006 -0004 -0002 O 0002 0004 0006 0008

Figure 14: The fit is from when Val =
0.98 in our weighted non-linear regres-
sion model.

Histozram of Residuals

1000

-0.006 -0004 -0002 o 0002 0004 0006 0008 0010

Figure 16: The fit is from when Val =
0.97 in our weighted non-linear regres-
sion model.

overfitting or underfitting the action potential. These two facts, along with
the low values for RSS, RMS, and RSD, corroborate that our model does a
good job in describing the variability seen in myocyte action potentials.

But does our singular perturbation assumption hold in all of our models:
that is, is 0 a small number, where 6 = r — p? In order to evaluate this, we
calculate the relative difference between r and p for the best Val in each data
set. The relative differences are shown in Table 14. The lower the relative
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Histogram of Residuals

Val=098

\
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Fit

Figure 18: The fit is from when Val =

Figure 17: Action potential from a (.98 in our weighted non-linear regres-
healthy canine myocyte. sion model.

(340-335) Val=0 99

-0.006 -0.004 -0.002 o

Figure 20: The fit is from when Val =

Figure 19: Action potential from a (.99 in our weighted non-linear regres-
failing canine myocyte. sion model.

difference, the closer r is to p, or equivalently, the smaller the relative value
of §. For example, a relative difference of 2.5, means that r or p is 2.5 times
greater than the other. Recall, that we want § to be small.

Table 14: Relative Differences of 6 =p — r

AP

Spig

Gpig

Purkinje

Healthy

Failing (340-355)

Failing (355-370)

Rel. Diff.

5.908

3.469

2.049

0.118

6.949

6.696
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The relative difference is lowest for the healthy canine myocyte. The rel-
ative differences for the simulated purkinje fiber and guinea pig ventricular
myocyte are also reasonably small. Therefore, we can justify our perturba-
tion assumption that p is close to r for these three data sets. However, we
cannot justify this assumption with the pig myocyte data set or the failing
canine data sets. Our research hypothesis is: if a cardiac action potential can
be modeled by a singular perturbation of the Fitzhugh-Nagumo PDE, then
our model will be confirmed if a) p is close to r and b) the model is good sta-
tistically, that is, the model has small RSS, RMS, and RSD values. The con-
trapositive of our hypothesis is: If our model is good statistically but p is not
close to r, then the action potential is not a singularly perturbed Fitzhugh-
Nagumo action potential. Following this logic, we can conclude that failing
myocytes do not operate as singularly perturbed Fitzhugh-Nagumo action
potentials even though our model does a good job fitting the action poten-
tial. Thus, our model could be used to study healthy and failing myocytes
in order to determine which parameter values cause an action potential to
be ‘failing.’

Thus, we see that the singular perturbation step is crucial in order for
us to be able to model the full myocyte action potential. Without our per-
turbation, » = p + J§, we are only able to describe the fast ion currents of
the action potential. However, the perturbation enables us to encompass the
slow ion currents into our model. The importance of perturbing the known
solution to the Fitzhugh-Nagumo PDE with ¢ is clearly seen when we plot
the actual versus fits of our perturbed model beside a non-perturbed model
in Figures 21 and 22.

Notice the scale on the y-axis of Figure 22. Because the scale is 10* for
the fit, the actual action potential looks like a straight line with a membrane
potential equal to zero. Without the perturbation, we cannot model the full
action potential. Physiologically, this is because the slow ion currents direct
repolarization, and if we do not model the slow ion currents, we cannot
accurately describe the action potential.

While we were able to build a good model of myocyte action potentials,
there are a few topics that could be explored in more depth. First, a better
understanding of the physiological significance of our parameters is desir-
able. This would allow us to draw better conclusions about the interactions
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Figure 21: Perturbed model for a sin-  Figure 22: Non-perturbed model for a
gle ventricular myocyte action poten-  single ventricular myocyte action po-
tial in a pig. tential in a pig.

between ions that are occurring at the end of the plateau phase as well as
at other locations in the action potential. Second, sensitivity testing could
be done on the parameters to establish parameter independence and depen-
dence. Until then our confidence intervals reported in our results only hold
for products of parameters. Third, more work could be done establishing
what changes in parameters lead to failure in a myocyte. In particular, it
would be interesting to develop a sequence of myocytes for which an action
potential is propagated down and determine at what point a myocyte in the
sequence becomes failing. That is, when does the myocyte fail to produce a
singular perturbed Fitzhugh-Nagumo action potential.

9 Conclusion

Overall, we were able to show that a myocyte action potential can be modeled
by applying a singular perturbation approach to the Fitzhugh-Nagumo PDE.
The singular perturbation is necessary to encompass the slow ion currents
which are responsible for part of repolarization. This model was successful in
describing four different types of cardiac action potentials. A model of this
type has much potential in the medical field. It can be used to better under-
stand the interaction of ions responsible for producing an action potential.
In addition, a model such as this could be used to study what causes a my-
ocyte to have a ‘failing’ action potential, which may lead to an arrhythmia.
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Finally, the method that we applied in building our model may have value
in modeling other types of excitable cells.

10 Appendix

10.1 Singular Perturbation Theory

We begin with some notation from perturbation theory. Suppose we have a
problem P.(y) = 0 which depends on the small parameter e. We will denote
its solution by y.. Correspondingly, the limiting problem, when € = 0, Py(y)
has the solution yy. Then, P, is a regular perturbation if

ll_r% Ye = Yo (25)

Otherwise, P, is a singular perturbation [16].

In brief, perturbation theory is applied to a problem that does not have
an exact solution but is close to an auxiliary problem that does have an
exact solution. Singular perturbation theory allows the use of an exact solu-
tion even when the exact solution is NOT a limiting solution. The original
problem should have a solution that is close to the solution of the auxiliary
problem [17]. In our case, we know the solution to the fast part of the cardiac
action potential when the myocyte is depolarized by the inward flow of Na™
ions. That is, our auxiliary problem is the Fitzhugh-Nagumo PDE. The so-
lution to the Fitzhugh-Nagumo equation that we chose to work with is given
in Equation 27. In order to find a solution to the PDE describing the entire
cardiac action potential, we need to perturb the Fitzhugh-Nagumo solution.
In our methods section, we perturbed the solution to the Fitzhugh-Nagumo
PDE such that it described a myocyte action potential. We now justify this
approach to modeling cardiac action potentials.

Recall that the Fitzhugh-Nagumo PDE is given by:

ou O
o 1 — — 2
S u(l—w(e—u) (26)
One known solution for the Fitzhugh-Nagumo PDE is
Ae®t + Be*
Uz, t) = —20 7€ (27)

~ Aem + Ce» + D
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where U is the voltage at position = and time ¢, z; = % + (% —a)t, zg =
% +a(§ —1)t, and A, B, and C are arbitrary constants.

We begin by noting the Fitzhugh-Nagumo fast (v) and slow (w) PDEs

[1]:

ov , 0
Ea = € @—I—V(l—y)(a—u)—w (28)
0

a—t; = v—w-—1 (29)

where 1 is the resting membrane potential. We will let vy = 0 for the rest
of our work.

We next find the two outer solutions by setting ¢ = 0 in the Fitzhugh-
Nagumo fast and slow equations, Equations 28 and 29. Hence, our outer
solutions are:

v(l—v)(la—v)—w = 0 (30)
%15 = v—ryw (31)

We then introduce a substitution term, &, to find the two inner solutions
z —y(t)
¢ =

€
Note, as € approaches zero, £ approaches infinity. In general for perturbation

theory, we would want our substitution to be on a different time scale. Hence,
we define £ to be:

(32)

s (33)

We also define a new polynomial v(¢,7). We let v be our polynomial in
. . . 2
Equation 28, and we make our ¢ substitution for the (.;9? term:

v dvog  10v

9r ~ 9or  coe (34)
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v 10v. 0  10%

-2 = B 35
0x? € 0 Ox €2 0&? (35)
where ve = g’g
We now make the & substitution for the . term in Equation 28:
dv  Owd§  Ovor @—y’(T) N ov (36)

ot 0ot orot O e or

since in our case t = 7. This is because the time is the same for both. !
Plugging our two substitutions into Equation 28, gives

ov—y'(r) v 0%v

— — 1— —v) — 37

(85 ; +8T 852+V( v)(a—v)—w (37)

Multiplying through and rearranging Equation 37, we obtain our first
inner solution:

0*v ov ov

862+y()a€+v(1—v)(a—v)—w—e§ (38)

To get the second inner equation, we make a similar £ substitution in the
slow Fitzhugh-Nagumo PDE, Equation 29, letting w(, 7) be our polynomial:

ow _ ow—y(r) , o

ot 0¢ e or

We apply our substitution to Equation 29, multiply through, and rear-
range terms to obtain the second inner solution:

V()G = el = w) — G- (10)

(39)

In our £ substitution, we assume £ — oo quicker than € — 0. Thus, we
assume € = () in our two inner equations because why to obtain:

vee + Y (H)ve +o(l —v)(a—v)—w = 0 (41)
—y (we = 0 (42)

In special relativity, t is time relative to a fixed observer and 7 is time relative to a
moving observer. But in our case, the time is the same for both observers.
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Jw

where vee = v 3

ez Ve = 857 and wg =
But, we know y/(t) # 0. Hence in the slow outer solution, we must have

we = 0. That is, w is not a function of { and thus

w = w(7) (43)

We can now examine the matching condition. The matching condition
compares the limit of the inner solution as & — oo to the limit of the outer
solution as € — 0. We will compare the inner, Equation 41, and outer,
Equation 30, solutions of the fast Fitzhugh-Nagumo PDE, Equation 28.

v 0%
éEI:ElmU§§+y( Joe+v(l—v)(a—v)—w = hmeg ezﬁ—f—v(l v)(a—v)(—u;
44

Note that the vee and v terms go to zero as & — oo. Hence, our inner and
outer solutions match.

Now, we return to our specific solution of the Fitzhugh-Nagumo PDE,
Equation 27. We let U(x,t) be the polynomial v in Equations 28 and 29.
Our inner and outer solutions will be the same as the ones found for the
polynomial v. The first inner solution with € = 0 gives us:

Uee +y (U + UL = U)(a = U) = w = f(7) (45)

since by Equation 43, w only depends on 7.

Thus, U = U(&,y/(7),w(r), A, B), and when we plug U into the slow
Fitzhugh-Nagumo PDE, we see that U depends on five parameters. However,
y and w only depend on 7. We can get rid of two more parameters by the
matching condition: one as & — +o0o and another as £ — —oo. Thus, €
depends on only one parameter, which is what we want. Also, note that our
matching condition shows that the parameters of the fast and slow PDEs are
not independent.

To summarize where we are at this point, we have a solution to the

Fitzhugh-Nagumo PDE, Equation 26. That is, we can model the depolariza-
tion of a cardiac myocyte. Our goal is to obtain a solution for the fast and
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slow Fitzhugh-Nagumo PDEs, Equations 28 and 29, so that we can model
the entire myocyte action potential.

Our next step is to let

v(z,te) = ivj(x,t)ej (46)
w(z,te) = iwj(x,t)ej (47)

where vg(z,t) = U(e 'z, e 't) and wy(z,t) = 0. We want to find v (z,t).
We do not worry about higher orders of v because of the Perturbation As-
sumption: that is, we are assuming e is so small that v;(x,¢)e’ is negligible
for j > 1. Note that higher order € would be in our residuals.

Next, we substitute v; and w; into the fast and slow Fitzhugh-Nagumo
PDEs.

0 , 07
Eg('l}o + E'Ul) = € @(UO -+ 6'1)1) (48)
+  (vo + evr)[1 — (vo + €ev1)][a — (vy + €vq)] — ewy
0
e = (vo + €vy) — yew, (49)

These equations can be simplified:

0 0?
62% = 63 85:21 + v (3’11(2] — 2?)() — 2’UoCL + CL)E — €W (50)

0
Wl = v (51)
Notice when expanding Equation 48 to obtain Equation 50 that
8’()0 282?)0
E—— =€
ot Ox?

Also, note that we ignore terms of v; with a power higher than 1.

+ vo(1 — vg)(a — vp) (52)

More importantly, Equation 50 is a linear PDE; hence, we can solve it to
obtain our solution.
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We can now justify our model of cardiac action potentials. We know
Equation 27 is a solution to Equation 26 in the form of

B 1+ D(t)e==
14 Bem2 4+ (e

(53)

1 —

v(z,t)

where we first multiplied U(x,t) by 4 2 =1 and where D = aB. That

ae
is,v(x,t) = U(z,t,D(t)). Thus, % = gi;", and letting t = 7, we have

— : ov
v(z,t) = U(x,7,D(7)). We can now apply the chain rule to expand 37

ov ou ﬁ Oou 0D

% ~ arot TaD ot (54)
ov ou OudD
% ~ o Tapor (55)
Since
ov 0%
E ﬁ—i-v(l—v)(a—v) (56)
a solution to
ou  0*U
E—w+U(1—U)(a—U)—w (57)

with U = wu(z,t, D(t)) will satisfy

dv  9UID U
o T opar = o TUA-Da=U)—w (58)

Recalling that % = % and v(x,t) = u(x,t, D(t)), we use Equation 56
to obtain:
oU oD
opor = " (59)

We now introduce our perturbation to the PDE by setting D(t) = Ee™,
where F is an arbitrary constant. Taking the derivative of D with respect
to time, we find
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D'(t) = Be % (—6) = —6D (60)

Substituting this result into Equation 59, we have

ou

We next substitute for w in the slow Fitzhugh-Nagumo PDE

ow
0 (oU oU

Now, we just need to find a solution to Equation 63. But Equation 63 is
a linear ODE, which can always be solved! The solution to this ODE is

oU t
D — —y(t—7) .
58DD K+/0 e Uz, 7; D(T))dr (64)

Next, we need to estimate the parameter K. Recall our matching condi-
tion:

im U(g,0) = limU(a.t,) (65)

As € goes to 0 the limit on the right side goes to K. However, as £ approaches
00, the Fitzhugh-Nagumo PDE produces an action potential before return-
ing to the resting potential, which we set to be zero when we let vy = 0
in Equation 29. Therefore, the value of K is determined by the matching
condition.

Since all of the parameters in our model can be accounted for or can be

estimated, we have justified the form of our model. That is, we have justified
our perturbation of p being r = p + 9.
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10.2 Computer Code

The following Maple 14 code verifies that Equation 13 is indeed a solution
of the Fitzhugh Nagumo PDE, Equation 12.

# F-N Solution:
z1:=(sqrt(2)/2)*x+(1/2-a)*t:
z2:=(sqrt (2) /2) *a*xx+a*x ((1/2)*a-1)*t:
:=(A*xexp(z1)+a*B*xexp(z2))/(Axexp(z1)+B*exp(z2)+C) :
Partial_t:=diff(w,t):
SecondPartial _x:=diff (w,x,x):
Left_Side:=Partial_t-SecondPartial_x:
Left_Side_Simp:=simplify(Left_Side):
Right_Side:=-wx(1-w)*(a-w):
Right_Sidel:=-a*w+w 2+a*w"2-w"3:
Right_Sidel_Simp:=simplify(Right_Sidel):
Check:=Left_Side_Simp-Right_Sidel_Simp:
simplify(Check) :

The following Maple 14 code was used to get initial estimates of ¢ and ¢
and then to run a weighted non-linear regression fit for our model.

tran := 154..165:

TT := Time[tran]:

VV := Volt[tran]:

pVV := map( x-> 1In( (1-x)/x ), VV):

ScatterPlot( Time, map( x -> 1n( (1-x)/x ), Volt) ):

LogPlot:=ScatterPlot( TT, pVV ):LogPlot:

LinFit:=LinearFit([1,t],TT,pVV,t, output=solutionmodule):

params := LinFit:-Results(parametervalues):

wghts := [seq( (0.98)°n, n=1..200 ) ]:

y = (l+exp(-r*(t-£))) / (1+exp(-p*(t-h))+exp(g*(t-g))):

yFitmodule:=Fit( y, Time[1..200], Volt[1..200], t, weights = wghts ,
initialvalues = [ g=abs(params[1]/params[2]), g=params([2], p=0.01, h=-20 ] ,
output=solutionmodule) :
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