
East Tennessee State University East Tennessee State University 

Digital Commons @ East Tennessee State University Digital Commons @ East Tennessee State University 

ETSU Faculty Works Faculty Works 

1-1-2021 

Vertex Sequences in Graphs Vertex Sequences in Graphs 

Teresa W. Haynes 
East Tennessee State University, haynes@etsu.edu 

Stephen T. Hedetniemi 
Clemson University 

Follow this and additional works at: https://dc.etsu.edu/etsu-works 

Citation Information Citation Information 
Haynes, Teresa W.; and Hedetniemi, Stephen T.. 2021. Vertex Sequences in Graphs. Discrete Mathematics 
Letters. Vol.6 19-31. https://doi.org/10.47443/dml.2021.s103 

This Review is brought to you for free and open access by the Faculty Works at Digital Commons @ East 
Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized 
administrator of Digital Commons @ East Tennessee State University. For more information, please contact 
digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/etsu-works
https://dc.etsu.edu/faculty-works
https://dc.etsu.edu/etsu-works?utm_source=dc.etsu.edu%2Fetsu-works%2F9852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.47443/dml.2021.s103
mailto:digilib@etsu.edu


Vertex Sequences in Graphs Vertex Sequences in Graphs 

Copyright Statement Copyright Statement 
c 2021 the authors. This is an open access article under the CC BY (International 4.0) license 
(www.creativecommons.org/licenses/by/4.0/). 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

This review is available at Digital Commons @ East Tennessee State University: https://dc.etsu.edu/etsu-works/9852 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dc.etsu.edu/etsu-works/9852


Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 6 (2021) 19–31
DOI: 10.47443/dml.2021.s103

Review Article

Vertex sequences in graphs∗

Teresa W. Haynes1,2,†, Stephen T. Hedetniemi3

1Department of Mathematics and Statistics, East Tennessee State University, Johnson, TN 37614–0002, USA
2Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park 2006, South Africa
3School of Computing, Clemson University, Clemson, SC 29634, USA

(Received: 22 May 2020. Accepted: 25 June 2020. Published online: 11 March 2021.)

c© 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

We consider a variety of types of vertex sequences, which are defined in terms of a requirement that the next vertex in the
sequence must meet. For example, let S = (v1, v2, . . . , vk) be a sequence of distinct vertices in a graph G such that every
vertex vi in S dominates at least one vertex in V that is not dominated by any of the vertices preceding it in the sequence S.
Such a sequence of maximal length is called a dominating sequence since the set {v1, v2, . . . , vk} must be a dominating set of
G. In this paper we survey the literature on dominating and other related sequences, and propose for future study several
new types of vertex sequences, which suggest the beginning of a theory of vertex sequences in graphs.

Keywords: domination; total domination; connected domination; dominating sequences; vertex sequences; vertex cover;
zero forcing number; irredundance; grid graphs.

2020 Mathematics Subject Classification: 05C69.

1. Introduction

We present a variety of types of vertex sequences, which are defined in terms of a requirement that the next vertex in
the sequence must meet. In particular, we consider requirements that have to do with domination and related graph
parameters. In Section 2, we give a description of four types of “dominating” sequences that have been defined in the
literature. Then we focus on two of these sequences, namely dominating sequences and total dominating sequences. We
give a brief overview as well as a few new observations concerning dominating sequences in Section 3 and a survey of
known results on total dominating sequences in Section 4. In Section 5, we propose several new types of vertex sequences
for future study.

We first give some terminology.
Let G = (V,E) be a graph of order |V | and size |E|. Let S = (v1, v2, . . . , vk) be an ordered sequence of distinct vertices,

and let Ŝ = {v1, v2, . . . , vk} be the corresponding set of vertices. For ease of discussion, we let Ŝj be the set of vertices in the
first j positions in S, that is, Ŝj = {vi | 1 ≤ i ≤ j}.

The open neighborhood of a vertex v ∈ V is the set N(v) = {u |uv ∈ E}, the vertices of which are called neighbors of
v. The closed neighborhood of vertex v is the set N [v] = N(v) ∪ {v}. The degree d(v) of v is the number of neighbors of
v, that is, d(v) = |N(v)|. The minimum degree among the vertices of G is denoted by δ(G), while the maximum degree is
denoted by ∆(G). The open neighborhood of a set S is the set N(S) =

⋃
v∈S N(v), and its closed neighborhood is the set

N [S] = N(S) ∪ S.
The S-private neighborhood of a vertex v ∈ S is the set pn[v, S] = N [v]\(N [S \{v}]); vertices in this set are called private

neighbors of v (with respect to S).
A set S of vertices is an independent set if no two vertices in S are adjacent. The vertex independence number α(G) is

the maximum cardinality of an independent set in G.
A set S is a dominating set if every vertex in V \ S = S has a neighbor in S, that is, N [S] = V . A set S is a total

dominating set if every vertex in V has a neighbor in S, that is, N(S) = V . A (total) dominating set S of G is minimal
if no proper subset of S is a (total) dominating set of G. The domination number γ(G) is the minimum cardinality of a
dominating set in G; while the upper domination number Γ(G) is the maximum cardinality of a minimal dominating set.
∗This paper is dedicated to the memory of Professor Frank Harary, on the occasion of what would have been his 100th birthday. To those of us

who knew and worked with him, with more than 650 publications and nearly 300 coauthors, Frank was one of the founding fathers and a true world
ambassador of graph theory.
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The total domination number γt(G) and the upper total domination number Γt(G) are defined similarly. Let G[S] denote
the subgraph induced in G by the set S ⊆ V .

A clique of a graph G is a maximal complete subgraph of G, and a k-clique is a clique with k vertices.

2. Neighborhood vertex (dominating) sequences

In this section we consider sequences based on the open and closed neighborhoods of vertices. There are basically four
types of such sequences: (i) closed neighborhood, (ii) open neighborhood, (iii) closed-open neighborhood and (iv) open-closed
neighborhood.

2.1. Closed neighborhood
A sequence S = (v1, v2, . . . , vk) of distinct vertices is a closed neighborhood sequence if for all i with 2 ≤ i ≤ k,

N [vi] 6⊆
i−1⋃
j=1

N [vj ].

A vertex vi dominates itself and all of its neighbors, that is, vi dominates all of the vertices in its closed neighborhood
N [vi]. In this type of sequence, a vertex vi dominates at least one vertex x not dominated by any vertex preceding it in the
sequence, that is, for i ∈ {2, 3, . . . k},

N [vi] \N [Ŝi−1] 6= ∅.

Note that the vertex vi itself could be this vertex x. We could also say that every vertex vi must dominate at least one
previously undominated vertex. In other words, pn[vi, Ŝi] 6= ∅.

If S is a closed neighborhood sequence of maximal length in G, then Ŝ must be a dominating set of G. Therefore, S
is called a dominating sequence of G. The maximum length of a dominating sequence S of a graph G, |Ŝ|, is the Grundy
domination number of G, denoted by γgr(G). A dominating sequence of length γgr(G) is called a Grundy dominating
sequence or just a γgr-sequence of G.

Grundy dominating sequences were introduced in 2014 by Brešar, Gologranc, Milanič, Rall, and Rizzi [11], where they
noted the following.

Proposition 2.1 (Brešar et al. [11]). For any graph G, the minimum length of a maximal dominating sequence equals the
domination number γ(G).

Brešar et al. attribute their idea for studying these sequences to the domination game introduced by Brešar, Klavžar,
and Rall in [13]. In this game two players, Dominator and Staller, alternately choose vertices so that each chosen vertex
enlarges the set of vertices of G dominated to that point in the game. While the aims of these players are opposing
(Dominator wants to minimize the number of moves in the game, while Staller wants to maximize the number of moves), the
outcome of the game is a sequence of vertices with the property that each chosen vertex dominates at least one previously
undominated vertex. The game ends when no move can be made, that is, when the sequence of vertices created by the
moves is a dominating sequence of G. We note that the best possible outcome for Dominator is a dominating sequence
of length γ(G), and the best possible outcome for Staller is a dominating sequence of length γgr(G), that is, a Grundy
dominating sequence. Of course, dominating sequences created by the domination game can have lengths between these
two extremes. We give a brief overview of selected results and few new results on the Grundy domination number in
Section 3.

2.2. Open neighborhood
A sequence S = (v1, v2, . . . , vk) of distinct vertices is an open neighborhood sequence if for all i with 2 ≤ i ≤ k,

N(vi) 6⊆
i−1⋃
j=1

N(vj).

A vertex v total (open) dominates its neighbors, that is, v total dominates all of the vertices in its open neighborhood
N(v), but does not total dominate itself. Thus, for any graph G without isolated vertices, a sequence S = (v1, v2, . . . , vk) is
an open neighborhood sequence if for every vertex vi where i ∈ {2, 3, . . . k},

N(vi) \N(Ŝi−1) 6= ∅.

20
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Hence, every vertex vi in the sequence total dominates at least one vertex that is not total dominated by any vertex
preceding it in the sequence. In other words, vi is adjacent to at least one vertex that has no neighbor in Ŝi−1.

If Ŝ is a total dominating set of G, then S is called a total dominating sequence. The maximum length of a total
dominating sequence of G is the Grundy total domination number of G, denoted by γtgr(G). A total dominating sequence
of G of length γtgr(G) is called a Grundy total dominating sequence, or a γtgr-sequence of G.

Total dominating sequences were introduced in 2016 by Brešar, Henning, and Rall [12], who noted that the minimum
length of a total dominating sequence of a graphG equals the total domination number γt(G). As is the case with dominat-
ing sequences, total dominating sequences are associated with the total domination game introduced in 2015 by Henning,
Klavzar, and Rall [25]. We give a brief overview of the known results on Grundy total dominating sequences in Section 4.

2.3. Closed-open neighborhood
A sequence S = (v1, v2, . . . , vk) of distinct vertices is a closed-open neighborhood sequence if for all i with 2 ≤ i ≤ k,

N [vi] 6⊆
i−1⋃
j=1

N(vj).

Thus, a sequence S = (v1, v2, . . . , vk) in a graph G is called an closed-open neighborhood sequence if for every vertex vi, for
i ∈ {2, 3, . . . k},

N [vi] \N(Ŝi−1) 6= ∅.

In other words, some vertex inN [vi] has no neighbor inN(Ŝi−1). If Ŝ is a dominating set, then S is a closed-open dominating
sequence.

A closed-open dominating sequence is called an L-sequence in reference to the close relationship these sequences have
to a type of zero forcing number (zero forcing will be defined in Section 2.5). The length of a longest L-sequence is called
the L-Grundy domination number of G, and is denoted by γLgr(G). This type sequence was introduced in 2017 by Brešar,
Butjtás, Gologranc, Klavžar, Košmrlj, Patkós, Tuza, and Vizer [9].

2.4. Open-closed neighborhood
A sequence S = (v1, v2, . . . , vk) of distinct vertices is a open-closed neighborhood sequence if for all i with 2 ≤ i ≤ k,

N(vi) 6⊆
i−1⋃
j=1

N [vj ].

Thus, a sequence S = (v1, v2, . . . , vk) in a graph G is called an open-closed neighborhood sequence if for every vertex vi, for
i ∈ {2, 3, . . . k},

N(vi) \N [Ŝi−1] 6= ∅.

In other words, vi is adjacent to at least one vertex that is not in N [Ŝi−1]. Again, if Ŝ is a dominating set, then S is a
open-closed dominating sequence.

An open-closed dominating sequence is called a Z-sequence, in reference to the close relationship these sequences have
to the zero forcing number, as we shall see in Section 2.5. The length of a longest Z-sequence is called the Z-Grundy
domination number of G, and is denoted by γZgr(G). This version was also introduced by Brešar et al. [9] in 2017.

2.5. Relationship with zero forcing numbers
We conclude this section with a brief discussion of zero forcing numbers and their relationship to dominating sequences.

Let the vertices of a graphG be colored white and blue, whereW denotes the set of vertices colored white, andB denotes
the set of vertices colored blue. If a given blue vertex v has exactly one white neighbor w, then by the Color Changing Rule,
the color of w is changed to blue. A zero forcing set of G is a subset B of vertices such that if initially vertices in B are
colored blue and the remaining vertices in B are colored white, then by repeated applications of the Color Changing Rule
all the vertices in V are colored blue. The zero forcing number Z(G) of a graph G equals the minimum cardinality of a zero
forcing set in G.

Brešar et al. established the following relationship between the Z-Grundy domination number and the zero forcing
number.

Theorem 2.1 (Brešar et al. [9]). If G is a graph of order n without isolated vertices, then γZgr(G) + Z(G) = n.
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Proof Sketch. We outline the proof of Theorem 2.1 given in [9]. Without loss of generality, we can assume that G is
connected and of order n. Let B be a minimum zero forcing set, that is, the set of vertices initially colored blue, and let
k = n − |B| = n − Z(G). Let the following two sequences appear in the color changing rule, in which all vertices become
blue: b1, b2, . . . , bk and w1, w2, . . . , wk, where bi is the blue vertex selected at the ith step of the color changing process, and
wi is the unique white neighbor of bi. They show that the sequence (wk, wk−1, . . . , w1) is a Z-sequence of G, which implies
that γZgr(G) ≥ k = n− Z(G).

Conversely, let S = (u1, u2, . . . , uk) be a maximum Z-sequence for G. They show that X = V \ Ŝ is a zero forcing set. It
follows then that Z(G) ≤ |X| = n− k = n− γZgr(G), and so γZgr(G) + Z(G) = n. �

In 2019 Lin [27] showed that not only theZ-Grundy domination number but each of the four types of Grundy domination
parameters mentioned in this section has a similar relationship with a zero-forcing type of parameter.

To this result we can add the following.
A vertex v in a set S ⊆ V is called open irredundant if N(v) \ N [S \ {v}] 6= ∅. The upper open irredundance number

OIR(G) equals the maximum cardinality of an open irredundant set S in G. Thus, if a set {v1, v2, . . . , vk} is a maximum
cardinality open irredundant set, then the sequence (v1, v2, . . . , vk) is automatically an open-closed neighborhood sequence,
and the following result is apparent.

Proposition 2.2. For any graph G, OIR(G) ≤ γZgr(G).

3. Grundy domination number

Brešar et al. [11] showed that the decision problem corresponding to the Grundy domination number is NP-complete, even
for chordal graphs, while γgr(G) can be computed in polynomial time for trees, cographs and split graphs. They determined
several bounds on the Grundy domination number. In this section we begin with bounds on the Grundy domination number
and then turn our attention to the Grundy domination number of product graphs.

3.1. Bounds on γgr(G)

In the paper introducing Grundy dominating sequences, Brešar et al. [11] observed the following.

Proposition 3.1 (Brešar et al. [11]). For a graph G of order n and minimum degree δ(G), γgr(G) ≤ n− δ(G).

Proof. Let S = (v1, v2, . . . , vk) be a γgr-sequence of G. Let u ∈ N [vk] be a vertex that is not dominated by Ŝk−1, that is,
N [u] ∩ Ŝk−1 = ∅. Therefore, |Ŝk−1| = k − 1 ≤ |V | − |N [u]| = n− (d(u) + 1). Thus, γgr(G) = k ≤ n− δ(G).

A vertex v in a set S ⊆ V is called irredundant (with respect to S) if N [v] \N [S \ {v}] 6= ∅, that is, pn[v, S] 6= ∅. The upper
irredundance number IR(G) equals the maximum cardinality of an irredundant set S in G. Thus, if a set {v1, v2, . . . , vk} is
a maximum cardinality irredundant set, then the sequence (v1, v2, . . . , vk) is automatically a closed neighborhood sequence,
and the following result is apparent.

Proposition 3.2. For any graph G, IR(G) ≤ γgr(G).

It is important to note that the value of γgr(G) can be arbitrarily larger than IR(G), since for the path Pn, IR(Pn) =

dn/2e < γgr(Pn) = n− 1.

Proposition 3.3. For any graph G, diam(G) ≤ γgr(G).

Proof. Let v1, v2, . . . , vk, vk+1 be a shortest path between vertices v1 and vk+1 in G, where k = diam(G). It follows that
(v1, v2, . . . , vk) is a closed neighborhood sequence. Therefore, k = diam(G) ≤ γgr(G).

Note that IR(G) and diam(G) are not comparable, as can be seen by considering the starG = K1,n−1, for which diam(G) =

2 < IR(G) = n− 1, and the path Pn, for which IR(Pn) = dn/2e < diam(Pn) = n− 1.
Brešar et al. [11] showed that every graph G has a maximal dominating sequence of length k, for every k, γ(G) ≤ k ≤

γgr(G). They also characterized the graphs G for which γ(G) = γgr(G) = k, for k ≤ 3.
An edge-clique cover of G is a set C = {C1, C2, . . . , Ck} of cliques of G such that every edge uv ∈ E is contained in a clique

of C. The edge-clique cover number θe(G) equals the smallest integer k such that G has an edge-clique cover of order k.

Proposition 3.4 (Brešar et al. [8]). For any isolate-free graph G, γgr(G) ≤ θe(G).
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Proof. Let C = {C1, C2, . . . , Cr} be a minimum order, edge-clique cover of an isolate-free graph G, that is, r = θe(G), and let
S = (v1, v2, . . . , vk) be a γgr-sequence of G. We claim that for every vertex vi in S, there exists a new clique Cj ∈ C, which is
not dominated by Ŝi−1, but is dominated by Ŝi. Let x be a private neighbor of vi with respect to Ŝi−1, where possibly x = vi.
If x 6= vi, consider the edge e = vix, and if x = vi, consider the edge e = viy, where y is any neighbor of vi (such a neighbor
must exist since G is isolate-free). In either case the edge e lies in a clique, say Cj , that is not yet completely dominated,
since either vi or x, or both, are not dominated by Ŝi−1. It follows that after vertex vi is selected, every vertex of clique Cj
is dominated. Therefore, C must contain at least k = γgr(G) cliques.

Next we define a new vertex sequence that yields an upper bound on the Grundy domination number.
Given a vertex set S ⊆ V in a graph G, a vertex v ∈ S is called an enclave if N [v] ⊆ S, which is to say that vertex

v has no neighbors in S. A set S is called enclaveless if it contains no enclaves. A sequence S = (v1, v2, . . . , vk) is called
an enclaveless sequence if for every vertex vi, where i ∈ {2, 3, . . . , k}, vi is not an enclave in the set Ŝi. Let the length of a
longest enclaveless sequence be called the enclaveless sequence number, denoted by γen(G). Our next result shows that the
enclaveless sequence number is an upper bound on the Grundy domination number.

Proposition 3.5. For any connected graph G, γgr(G) ≤ γen(G).

Proof. Let S = (v1, v2, . . . , vk) be a γgr-sequence of G, that is, k = γgr(G). By definition, every vertex vi ∈ Ŝ has a vertex x
in its closed neighborhood N [vi] that is not dominated by any vertex in Ŝi−1. If x = vi, then vi is not adjacent to any vertex
in Ŝi−1. And since G is connected, vi must have a neighbor V \ Ŝi−1. It follows, therefore, that vi is not an enclave in Ŝi. If
x 6= vi, then x /∈ Ŝi−1, and so vi is not an enclave in Ŝi. Therefore, S is an enclaveless sequence, and so γgr(G) ≤ γen(G).

It is worth noting that the inequality in Proposition 3.5 is strict for nontrivial complete graphs Kn, since γgr(Kn) = 1 <

γen(Kn) = n− 1.
Since being developed by Cockayne, Hedetniemi, and Miller [21] in 1978, the domination chain, relating domination,

independence and irredundance numbers, has been the focus of several hundred research papers. The upper portion
of the chain states, for any graph G, that α(G) ≤ Γ(G) ≤ IR(G). As we observed in Proposition 3.2, for any graph G,
IR(G) ≤ γgr(G). Thus, we have the following corollary to Proposition 3.5, which extends the domination chain.

Corollary 3.1. For any connected graph G,

α(G) ≤ Γ(G) ≤ IR(G) ≤ γgr(G) ≤ γen(G).

Another parameter comes into focus from a concept that was introduced in the 1997 papers by Cockayne, Grobler,
Hedetniemi, and McRae [19] and Cockayne, Hattingh, Hedetniemi, Hedetniemi, and McRae [20].

A set S is called external redundant if for every vertex v ∈ S, either (i) v does not have a private neighbor with respect to
S ∪ {v} or (ii) v has a private neighbor, but there exists some vertex u ∈ S having a private neighbor with respect to S but
no private neighbor with respect to S ∪ {v}. Let ER(G) equal the maximum cardinality of a minimal external redundant
set in G. Notice that an external redundant set need not be irredundant, but, by definition, every maximal irredundant
set is external redundant.

In [19] and [20] the following inequalities are established for any graph G:

α(G) ≤ Γ(G) ≤ IR(G) ≤ ER(G).

This raises the question of the relationship, if any, between γgr(G) and ER(G).

3.2. Grundy domination number in grids, cylinders and tori
In 2016 Brešar, Butjás, Gologranc, Klavžar, Košmrlj, Pakkós, Tuza, and Vizer [8] studied the Grundy domination number
in the four standard graph products: the Cartesian, lexicographic, direct and strong product. For each of these graph
products they presented lower bounds for the Grundy domination number, which are exact for the lexicographic product
and they conjectured are exact for the strong product. In most cases they completely determined the Grundy domination
numbers for products of paths (grid graphs), paths and cycles (cylinders), and cycles (tori). In this subsection we will review
only their results for Cartesian products of paths and cycles.

We first give some additional terminology. The Cartesian product G�H of two graphs G and H is the graph G�H =

(V (G)×V (H), E(G�H)), whose vertex set is the set of all ordered pairs (u, v), where u ∈ V (G) and v ∈ V (H). Two vertices
(u1, v1) and (u2, v2) are adjacent in G�H, if and only if either u1 is adjacent to u2 in G and v1 = v2, or u1 = u2 and v1 is
adjacent to v2 in H.
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A grid graph is a Cartesian product of two paths, denoted by Gm,n = Pm�Pn; a cylinder is a Cartesian product Pm�Cn
of a path and a cycle or Cm�Pn of a cycle and a path; and a torus is a Cartesian product Cm�Cn of two cycles.

A lower bound on the Grundy domination number of the Cartesian product of general graphs is given in [8].

Theorem 3.1 (Brešar et al. [8]). For any two graphs G and H,

γgr(G�H) ≥ max{γgr(G)|V (H)|, γgr(H)|V (G)|}.

Theorem 3.2 (Brešar et al. [8]). For any paths Pm and Pn, and any cycles Cm and Cn,
(i) γgr(Pm�Pn) = m(n− 1), for 2 ≤ m ≤ n;
(ii) γgr(Pm�Cn) = max{n(m− 1),m(n− 2)}, for 2 ≤ m and 3 ≤ n;
(iii) γgr(Cm�Cn) = m(n− 2), for 3 ≤ m ≤ n and (m,n) 6= (2t+ 1, 2t+ 1) for some 1 ≤ t;
(iv) γgr(Cm�Cn) = m(m− 2) + 1, for m odd.

For (i) grid graphs Pm�Pn, having n columns of height m, for m ≤ n, and vertices V (Pm) = {u1, u2, . . . , um} and
V (Pn) = {v1, v2, . . . , vn}, a maximum length dominating sequence S is obtained by listing the vertices, column-by-column,
that is, listing all vertices in the first column, then all vertices in the second column, and continuing until listing all vertices
in the (n− 1)st column. Specifically,

S = ((u1, v1), . . . , (um, v1), (u1, v2), . . . , (um, v2), . . . , (u1, vn−1), . . . , (um, vn−1))

is a γgr-sequence of Pm�Pn.
For a torus (iii), the same listing of vertices is optimal, except that only vertices in the first n − 2 columns are listed,

since the vertices in the first column dominate all vertices in the nth column.

4. Grundy total domination number

Brešar, Henning, and Rall [12] proved an upper bound for the Grundy total domination number in terms of the order and
minimum degree of a graph G, and a lower bound in terms of the order and maximum degree.

Theorem 4.1 (Brešar et al. [12]). For a graph G with order n, minimum degree δ = δ(G), and maximum degree ∆ = ∆(G),
n

∆
≤ γtgr(G) ≤ n− δ + 1.

The authors showed that γtgr(G) = n
∆ if and only if G is the complete bipartite graph K∆,∆, and they left characterizing

the graphs obtaining the upper bound of Theorem 4.1 as an open problem.
The Grundy total domination numbers of paths Pn and cycles Cn were also determined in [12].

Proposition 4.1 (Brešar et al. [12]). For paths Pn,

γtgr(Pn) =

{
n if n ≥ 2 even,

n− 1 if n ≥ 3 odd.

Proposition 4.2 (Brešar et al. [12]). For cycles Cn,

γtgr(Cn) =

{
n− 2 if n ≥ 4 even,
n− 1 if n ≥ 3 odd.

For example, to see that a path Pn = v1, v2, . . . , vn of even order n has γtgr(Pn) = n, consider the total dominating
sequence (v1, v3, . . . , vn−1, vn, vn−2, . . . , v2).

As observed in [12], 2 ≤ γt(G) ≤ Γt(G) ≤ γtgr(G) ≤ n.
Brešar et al. characterized the graphs G having γtgr(G) = 2 as follows.

Theorem 4.2 (Brešar et al. [12]). A graph G has γtgr(G) = 2 if and only if G is a complete multipartite graph.

Proof. It is straightforward to show that a complete multipartite graph has γtgr(G) = 2.
For the converse, assume that G is a graph with γtgr(G) = 2. We first note that for any pair of nonadjacent vertices x

and y, N(x) = N(y), for otherwise (x, y) or (y, x) is an open neighborhood sequence that is not a total dominating sequence,
implying that γtgr(G) > 2, a contradiction. Similarly, for any two adjacent vertices x and y of G, the sequence (x, y) is an
open neighborhood sequence, so it must be a total dominating sequence.

Thus, if I is a maximal independent set in G, then every vertex in I has the same open neighborhood. We claim that
N(x) = V \ I for all x ∈ I. Let x ∈ I and suppose that there is a vertex y ∈ V \ I that is not adjacent to x. Then y must be
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adjacent to some vertex w ∈ I for otherwise I is not a maximal independent set. But then x and w are nonadjacent vertices
with N(x) 6= N(w), a contradiction. Therefore, N(x) = V \ I for all x ∈ I. Since I was an arbitrarily chosen maximal
independent set, it follows that G can be partitioned into maximal independent sets, each of which is adjacent to all other
vertices not in that set. This implies that G is a complete multipartite graph.

It is shown in [14] that there are no graphs G with Grundy total domination number equal to 3.

Theorem 4.3 (Brešar et al. [14]). There exists no graph G such that γtgr(G) = 3.

On the other hand, they showed that every positive integer except 1 and 3 can be realized as a Grundy total domination
number. Let N denote the set of positive integers.

Theorem 4.4 (Brešar et al. [14]). For every k ∈ N \ {1, 3}, there exists a graph Gk such that γtgr(G) = k.

Proof. Let Gk be the prism Kk�K2, and denote the vertices of one k-clique by a1, a2, . . . , ak and of the other by b1, b2, . . . , bk,
where aibi ∈ E(Gk). Note that G2 = K2�K2 is the cycle C4, and so γtgr(G2) = 2.

Next consider Gk for k ≥ 4. The sequence (a1, a2, . . . , ak) is a total dominating sequence of Gk. Thus, γtgr(Gk) ≥ k. Since
every subset of k vertices is a total dominating set of Gk, it follows that γtgr(Gk) ≤ k, and so γtgr(Gk) = k.

Brešar et al. [14] also presented a family of graphs Gk having the minimum possible order and size among all graphs
with Grundy total domination number equal to k. If k is even, then Gk is the path Pk. Let k ≥ 5 be odd. For n = 5, the
graph G5 of order 6 obtained from two disjoint triangles by adding an edge between one vertex in each triangle has the
minimum number of vertices and edges. For k = 5 + 2j, let Gk be the graph obtained from G5 by attaching a path P2j to a
vertex of G5 with degree 2. The graph G9 is shown in Figure 1 for example.

Figure 1: The graph G9.

Let M be a matching of G and let V (M) denote the set of vertices incident to the edges of M . If V (M) = V (G), then
M is called a perfect matching. A vertex of V (M) is called strong if it has degree 1 in the induced subgraph G[V (M)]. A
matchingM in G is a strong matching (also called an induced matching in the literature) if every vertex in V (M) is strong.
The number of edges in a maximum matching of G is the matching number, denoted by α′(G), and the number of edges in
a maximum induced matching of G is the strong matching number, denoted by α′s(G). A matching M is called semistrong
if every edge in M is incident to a strong vertex. The number of edges in a maximum semistrong matching of G is the
semistrong matching number α′ss(G). Recall that the vertex cover number β(G) is the minimum number of vertices of G
necessary to cover all the edges of G.

A lower bound on the Grundy total domination number based on the semistrong matching number is given in [12],
while an upper bound in terms of the vertex cover number β(G) is given in [14]. We state these bounds:

Theorem 4.5. For any graph G without isolated vertices, 2α′ss(G) ≤ γtgr(G) ≤ 2β(G).

Corollary 4.1. For every bipartite graph G without isolated vertices,

2α′ss(G) ≤ γtgr(G) ≤ 2α′(G).

Brešar et al. [12] characterized the trees having Grundy total domination number equal to their order.

Theorem 4.6 (Brešar et al. [12]). If T is a tree of order n, then γtgr(T ) = n if and only if T has a perfect matching.

To present the next result, we define a family of trees. A vertex that is adjacent to a leaf is called a support vertex, and
a strong support vertex is adjacent to two or more leaves. Let T be the family of trees T that contain a path P2 and are
closed under the operation O1, which extends a tree T ′ by adding a path v1, v2, v3 and the edge vv1 to a support vertex v in
the tree T ′. Note that every tree T ∈ T has order n congruent to 2 modulo 3. The two smallest trees in the family T are
the path P2 and the path P5. Note also that the path P5 is obtained from the path P2 by applying operation O1 once (for
the path P2, we consider one vertex to be a support vertex). See Figure 2 for the tree obtained by applying operation O1 to
the path P5.

Theorem 4.7 (Brešar et al. [12]). If T is a nontrivial tree of order n with no strong support vertex, then γtgr(T ) ≥ 2
3 (n+ 1),

with equality if and only if T ∈ T .
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Figure 2: O1 applied to P5.

A lower bound on the Grundy total domination number of connected r-regular graphs different from the complete
bipartite graph Kr,r is given in [12].

Theorem 4.8 (Brešar et al. [12]). For r ≥ 3, if G is a connected r-regular graph of order n different from Kr,r, then

γtgr(G) ≥


n+d r

2e−2

r−1 if G is not bipartite,

n+2d r
2e−4

r−1 if G is bipartite.

Corollary 4.2. If G is a connected cubic graph of order n different from K3,3, then γtgr(G) ≥ 1
2n.

Brešar et al. [12] proved that the decision problem associated with the Grundy total domination number is NP-complete,
even when restricted to bipartite graphs. Brešar et al. [14] showed that this is also true when restricted to split graphs. On
the other hand, the authors of [14] gave a linear time algorithm for determining the Grundy total domination number of
any isolate-free forest and a similar algorithm for bipartite distance-hereditary graphs. They also presented a framework
for obtaining polynomial algorithms to solve this problem in other classes of graphs.

In conclusion, we note that Brešar et al. [12] showed that twice the Grundy domination number is an upper bound on
the Grundy total domination number.

5. Towards a theory of vertex sequences in graphs

Motivated by the neighborhood (dominating) vertex sequences in the previous sections, let us consider vertex sequences in
a more general setting. In the process, we will propose several new types of vertex sequences for further study, along with
some preliminary results for them.

The vertex sequences S = (v1, v2, . . . , vk) presented so far are all defined in terms of a requirement placed on the next
vertex vi in the sequence with regard to either (i) the set Ŝi−1 of previous vertices in the sequence, or (ii) the set of vertices
not in Ŝi−1.

The definitions of a walk, trail, path and cycle are well known in graph theory, and all of these are examples of vertex
sequences in which a very simple requirement is placed on the next vertex vi in the sequence, namely that the next vertex
must be adjacent to the immediately preceding vertex.

A walk w in a graph G from a vertex u to a vertex v is a finite, alternating sequence of vertices and edges, W =

u, e1, u1, e2, u2, . . . , ek, v, starting with the vertex u and ending with the vertex v, in which each edge ei = ui−1ui of the
sequence joins the vertex that precedes it in the sequence to the vertex that follows it in the sequence.

Equivalently, we can say that a walk is a vertex sequenceW = (v1, v2, . . . , vk), in which every vertex vi must be adjacent
to the vertex vi−1 preceding it in the sequence. Notice that in the definition of a walk, both vertices and edges may be
repeated.

A trail is a walk having no repeated edges, or equivalently, a vertex sequence in which every vertex vi is adjacent to the
vertex vi−1 preceding it in the sequence, and vi does not appear consecutively with vi−1 anywhere else in the sequence.

A path is a walk having no repeated vertices, that is, a vertex sequence in which every vertex vi is adjacent to the vertex
vi−1 preceding it in the sequence, and in which no vertex appears more than once.

A cycle is a walk W = (v1, v2, . . . , vk) in which v1 = vk and no other vertices are repeated.
Vertex sequences appear in many places in graph theory, such as the following. For any graph G:

1. the Hamiltonian completion number equals the minimum length of a walk containing all vertices of G.

2. an Eulerian walk is a walk of minimum length containing all edges of G.

3. the trail number equals maximum length of a trail in G.
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4. the detour number equals the maximum length of a path in G.

5. the diameter equals maximum length of an induced path in G.

6. the circumference equals the maximum length of a cycle in G.

7. the induced circumference equals the maximum length of an induced cycle in G.

8. the girth equals the minimum length of a cycle in G.

Motivated by these well known vertex sequences and the neighborhood (dominating) vertex sequences, we propose the
following types of vertex sequences for further study.

5.1. Double dominating sequences
Recall that a vertex v dominates all vertices in its closed neighborhood N [v]. A vertex set D is a double dominating set of
G if every vertex in V is dominated by at least two vertices in D, that is, |N [v] ∩D| ≥ 2 for every v ∈ V . Note that double
domination is only defined for graphs having no isolated vertices.

Let S = (v1, v2, . . . , vk) be a sequence of vertices in a graph G without isolated vertices such that every vertex vi ∈ S
dominates at least one vertex x in V \Ŝi−1 that is dominated at most once by vertices in Ŝi−1. This means that |N [x]∩Ŝi−1| ≤
1. Once again, it is possible that x = vi if |N(vi) ∩ Ŝi−1| ≤ 1. Such a sequence S of maximal length is called a double
dominating sequence since Ŝ is a double dominating set of G. The maximum length of a double dominating sequence is
called the Grundy double domination number, denoted by γ2gr(G). A double dominating sequence of length γ2gr(G) is
called a γ2gr-sequence.

In order to illustrate this straightforward generalization of dominating sequences, consider the cycle C6, with vertices
labeled in order v1, v2, v3, v4, v5, v6. The vertex sequence (v1, v2, v3, v4) can be seen to be a maximum length dominating
sequence and γgr(C6) = 4, while the sequence (v1, v2, v3, v4, v5) is a γ2gr-sequence and γ2gr(C6) = 5. Note that in general,
for any graph G, γgr(G) ≤ γ2gr(G).

We observe that for any nontrivial path Pn,

γgr(Pn) = n− 1 < γ2gr(Pn) = n,

and for any cycle Cn,
γgr(Cn) = n− 2 < γ2gr(Cn) = n− 1.

Let G be a graph with order n and minimum degree δ(G) ≥ 2. Since for any sequence S of n− 1 vertices of G that omits
a vertex, say x, Ŝ double dominates x, we make the following observation.

Observation 5.1. For any graph G with order n and δ(G) ≥ 2, γ2gr(G) ≤ n− 1.

For an example of graphs having Grundy double domination number one less than their order, we consider grid graphs.
Recall Theorem 3.2, by Brešar et al. [8]:
For any paths Pm and Pn, γgr(Pm�Pn) = m(n − 1), for 2 ≤ m ≤ n. The corresponding result for double dominating
sequences is the following.

Theorem 5.1. For any paths Pm and Pn, γ2gr(Pm�Pn) = mn− 1, for 2 ≤ m ≤ n.

Proof. For grid graphs Pm�Pn, having n columns of height m, for 2 ≤ m ≤ n, and vertices V (Pm) = {u1, u2, . . . , um} and
V (Pn) = {v1, v2, . . . , vn}, the sequence obtained by simply listing the vertices, column-by-column, that is, listing all vertices
in the first column, then all vertices in the second column, and continuing until listing all vertices in the nth column except
for the last vertex (um, vn) (which will have been dominated twice):

S = ((u1, v1), . . . , (um, v1), (u1, v2), . . . , (um, v2), . . . , (u1, vn), . . . , (um−1, vn))

is a double dominating sequence of length mn − 1. Since Pm�Pn has order mn, it follows from Observation 5.1 that
γ2gr(Pm�Pn) = mn− 1.

On the other hand, trees have Grundy double domination number equal to their order.

Theorem 5.2. For any tree T of order n ≥ 2, γ2gr(T ) = n.

27



T. W. Haynes and S. T. Hedetniemi / Discrete Math. Lett. 6 (2021) 19–31 28

Proof. Let T be a tree with vertices V = {v1, v2, . . . , vn}, listed in breadth-first order, as follows. Assume that T is rooted at
vertex v1. Let Di = {vj | d(vj , v1) = i} be the set of vertices at distance i from the root v1. Let the maximum distance from
v1 to a vertex in T be k, and consider the sequence of sets D1, D2, . . . , Dk. Form a sequence of vertices in V by listing v1

first, followed by all vertices, in any order, in set D1 (the children of vertex v1), then by all the vertices in D2, etc., until all
vertices have been listed, and we have the sequence S = (v1, v2, . . . , vn). Consider any vertex vi for i ≥ 2 in this sequence. It
has been dominated exactly once, by its parent in Ŝi−1. Thus, it qualifies to be listed next after the sequence v1, v2, . . . , vi−1

according to the sequence definition. Hence, S is a double dominating sequence, and so γ2gr(T ) = n.

Let G− x denote the graph formed by removing the vertex x and its incident edges from a graph G.

Proposition 5.1. If G is a connected graph of order n ≥ 3 with a vertex x of degree 1, then γ2gr(G) ≥ γ2gr(G− x) + 1.

Proof. Let G be a connected graph of order n ≥ 3 and let x be a vertex of G with degree 1. Note that G − x is connected
and has minimum degree at least 1. Let Sx be a γ2gr-sequence of G− x. Now Ŝx dominates x at most once, so adding x to
the end of Sx is allowed when building a double dominating sequence of G. Thus, γ2gr(G) ≥ γ2gr(G− x) + 1.

We note that double dominating sequences can be generalized to k-tuple dominating sequences by requiring that for
each vertex vi in the sequence S = (v1, v2, . . . , vs), there exists a vertex x ∈ N [vi] such that |N [x] ∩ Ŝi−1| ≤ k − 1.

5.2. Connected dominating sequences
A dominating set D is a connected dominating set of a graph G if the induced subgraph G[D] is connected. The connected
domination number γc(G) equals the minimum cardinality of a connected dominating set of G.

Let S = (v1, v2, . . . , vk) be a sequence of vertices in a connected graph G such that for 2 ≤ i ≤ k, every vertex vi in S

is adjacent to at least one vertex in Ŝi−1 and dominates at least one previously undominated vertex. In other words, S
is a closed neighborhood sequence with the added restriction that every vi, for 2 ≤ i ≤ k, has a neighbor in Ŝi−1. Such a
sequence S of maximal length is called a connected dominating sequence since Ŝ is a connected dominating set of G. The
maximum length of a connected dominating sequence is called the Grundy connected domination number and is denoted
by γcgr(G).

We first show that the minimum length of a connected dominating sequence of a graph G equals the connected domi-
nation number of G.

Theorem 5.3. For any connected graphG, the minimum length of a connected dominating sequence ofG equals its connected
domination number γc(G).

Proof. Let S = (v1, v2, . . . , vk) be a connected dominating sequence of minimum length. Since by definition Ŝ is a connected
dominating set of G, we have γc(G) ≤ |Ŝ| = k.

Recall that by definition a connected dominating sequence has maximal length. Hence, to show that k = γc(G), it
suffices to show that there exists a connected dominating sequence ofG having length γc(G). LetD be a minimum connected
dominating set of G, that is, |D| = γc(G). Then G[D] is connected. Consider a spanning tree T of G[D].

Assume that T is rooted at vertex v1. Let Di = {vj | dT (vj , v1) = i} be the set of vertices at distance i in T from the
root v1. Let the maximum distance from v1 to a vertex in T be k, and consider the sequence of sets D1, D2, . . . , Dk. Form a
sequence of vertices in V by listing v1 first, followed by all vertices, in any order, in set D1 (the children of vertex v1), then
by all vertices in D2, etc., until all vertices have been listed, and we have the sequence S = (v1, v2, . . . , vγc). For i ≥ 2, the
vertex vi has a neighbor, namely its parent in T , in the set Ŝi−1. If there exists a vertex x ∈ N [vi] that is not dominated by
Ŝi−1 in G, then vi qualifies to be listed next after the sequence v1, v2, . . . , vi−1 according to the sequence definition. If this
holds for all vi, then we have the desired result.

Suppose, to the contrary, that there exists a vertex vi such that N [vi] is dominated by Ŝi−1 in G. Then either vi has
no children in T , that is, vi is a leaf in T , or every child of vi has a neighbor in Ŝi−1 in G[D]. In either case, the induced
subgraph G[D \ {vi}] is connected, implying that D \ {vi} is a connected dominating set of G with cardinality less than
γc(G), a contradiction. Hence, S is a connected dominating sequence of length γc(G), as desired.

Using an identical argument to the proof of Proposition 3.1, we can show the following.

Proposition 5.2. For any connected graph G of order n and minimum degree δ(G), γcgr(G) ≤ n− δ(G).

Corollary 5.1. For any connected graph G of order n ≥ 2, γcgr(G) ≤ n− 1.
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Similarly, an identical proof to the one given for Proposition 3.3 shows that the diameter of a connected graph G is a
lower bound on the Grundy connected domination number.

Proposition 5.3. For any nontrivial connected graph G,

diam(G) ≤ γc
gr(G).

As a corollary to Propositions 5.2 and 5.3, we have the following.

Corollary 5.2. For paths Pn with order n ≥ 2, γcgr(Pn) = n− 1.

5.3. Vertex cover sequences
A set X of vertices of G is a vertex cover if every edge in G is incident to at least one vertex of X. The vertex cover number
β(G) equals the minimum cardinality of a vertex cover of G.

Let S = (v1, v2, . . . , vk) be a sequence of vertices in a graph G such that for 2 ≤ i ≤ k, every vertex vi in S is incident to
at least one uncovered edge viw, that is, such that w /∈ Ŝi−1. Such a sequence S of maximal length is called a vertex cover
sequence since Ŝ is a vertex cover of G. The maximum length of a vertex cover sequence is called the Grundy vertex cover
number, denoted by βgr(G).

The following result is immediate.

Proposition 5.4. For any graph G, the minimum length of a vertex cover sequence equals the vertex cover number β(G).

Define β+(G) to equal the maximum cardinality of a minimal vertex cover. As an illustration of this, consider a path
P3 with vertices in order u, v, w. The set S = {v} is a minimum cardinality vertex cover of P3, that is, β(P3) = 1. However,
the set S′ = {u,w} is a minimal vertex cover of maximum cardinality, that is, β+(P3) = 2.

Proposition 5.5. For any graph G of size m = |E|, β+(G) ≤ βgr(G) ≤ m.

Proof. Let S = {v1, v2, . . . , vk} be a minimal vertex cover of maximum cardinality, where k = β+(G). Since S is a
minimal vertex cover, every vertex in S covers at least one edge that no other vertex in S covers. Thus, the sequence
S′ = (v1, v2, . . . , vk) is a vertex cover sequence. Hence, k = β+(G) ≤ βgr(G). Since every vertex vi in a vertex cover sequence
covers a previously uncovered edge, it is obvious that βgr(G) ≤ m.

A simple illustration of the Grundy vertex cover number is given by the complete graph, where βgr(Kn) = n− 1, while
m =

(
n
2

)
. Notice also that βgr(Pn) = n− 1 = m.

We characterize the graphs attaining the upper bound of Proposition 5.5.

Theorem 5.4. A connected graph G with size m ≥ 1 has βgr(G) = m if and only if G is a nontrivial tree.

Proof. Let T be a nontrivial tree rooted at a vertex v1, with vertices V = {v1, v2, . . . , vn}, listed in breadth-first order, as
follows. Let Di = {vj | d(vj , v1) = i} be the set of vertices at distance i from the root v1. Let the maximum distance from
v1 to a vertex in T be k, and consider the sequence of sets Dk, Dk−1, . . . , D1. Form a sequence of vertices in V by listing all
vertices, in any order, in set Dk, followed by all vertices in Dk−1, etc., until all vertices in D1 have been listed, and we have
a sequence S = (v1, v2, . . . , vn−1) of n− 1 vertices of T , containing every vertex except the root vertex v1. Since every vertex
vi is listed before its parent, say vj , in the sequence, the edge vivj is not covered by Ŝi−1, so vi qualifies to be listed next
after the sequence vi−1. Hence, βgr(T ) ≥ |S| = n− 1. But since there are only n− 1 edges in a tree T of order n, it follows
that βgr(T ) = n− 1 = m.

Conversely, assume that G is connected graph with βgr(G) = m ≥ 1. Suppose that G is not a tree, that is, G has at
least one cycle subgraph, say Cj . Let S be a vertex cover sequence of maximum length, that is, βgr(G) = |Ŝ| = m. Since
βgr(G) = m, there is a 1-to-1 correspondence between the vertices of Ŝ and the edges of G such that each edge can be
mapped to one of its endpoints in Ŝ. In particular, there is a 1-to-1 mapping between the j edges on the cycle Cj the j
vertices of Cj . Thus, every edge not on Cj is mapped to a vertex in Ŝ not on Cj . But no matter what order the vertices of
Cj appear in S, after j− 1 vertices of Cj are in the sequence, all the edges of Cj are covered and the remaining cycle vertex
does not qualify to be added to the sequence, a contradiction.

Corollary 5.3. For any cycle Cn of order n ≥ 3, βgr(Cn) = n− 1.
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5.4. 1-Adjacent vertex sequences
A sequence S = (v1, v2, . . . , vk) of vertices in a graph G is called a 1-adjacent vertex sequence if for every 2 ≤ i ≤ k, vertex vi
in S is adjacent to exactly one vertex in Ŝi−1. The maximum length of a 1-adjacent vertex sequence is called the Grundy
1-adjacent vertex number and is denoted by gr1a(G).

Proposition 5.6. If S = (v1, v2, . . . , vk) is a maximal 1-adjacent vertex sequence in a graph G, then the induced subgraph
G[Ŝk] must be a tree and, in fact, is a maximal induced subtree of G.

Proof. Let S = (v1, v2, . . . , vk) be a maximal 1-adjacent vertex sequence in a graph G. It follows from the definition of a
1-adjacent vertex sequence, and a simple induction on the length of the sequence, that the induced subgraph G[Ŝ] is a
connected subgraph. It remains to show that this subgraph must be a tree T = G[Ŝ].

Assume not. Then let C be a cycle in G[Ŝ]. Of all the vertices on this cycle C, let vj have the maximum index in S.
Then vj must be adjacent to at least two vertices on C and hence is adjacent to at least two vertices in Ŝk−1 having smaller
indices. This is a contradiction to the rule of adding vj to the sequence S if and only if it is adjacent to exactly one vertex
having smaller index.

It follows that T must be a maximal induced subtree, else there is a vertex not in T which is adjacent to exactly one
vertex in T , which contradicts the assumption that S is a maximal 1-adjacent vertex sequence.

Proposition 5.7. For any graph G, gr1a(G) equals the maximum order of an induced subtree in G.

Proof. For any graph G, Proposition 5.6 implies that gr1a(G) is at most the maximum order of an induced subtree in G.
Let T be an induced subtree of a graph G having maximum order r. Let T be rooted at a vertex v1, and let V =

{v1, v2, . . . , vr} be the r vertices of T , listed in breadth-first order, as before. Let the maximum distance in T from v1 to a
vertex in T be k, that is, there exists at least one vertex x ∈ V (T ) such that dT (v1, x) = k. Let Di = {vj | dT (vj , v1) = i} be
the set of vertices at distance i from the root v1 in T . Consider the sequence of sets D1, D2, . . . , Dk. Form a sequence S of
vertices in V (T ) by listing v1 first, followed by all vertices, in any order, in set D1, then by all vertices in D2, etc., until all
vertices in V (T ) have been listed, and we have a sequence S = (v1, v2, . . . , vr) of the r vertices of T . Consider any vertex vi
in this sequence. Now vi is adjacent to exactly one vertex in Ŝi−1, namely, its parent. Thus, vi qualifies to be listed next
after the sequence v1, v2, . . . , vi−1. Thus, S is a 1-adjacent vertex sequence, not only in T but in G. Hence, gr1a(T) ≥ r.

This proposition is interesting because of the complement S of S, in which every vertex must be adjacent to two or more
vertices in S or no vertices in S.

5.5. Acyclic vertex sequences
A sequence S = (v1, v2, . . . , vk) of vertices in a graph G is called an acyclic vertex sequence if for every vertex vi, the induced
subgraph G[Si] is acyclic. The maximum length of an acyclic vertex sequence is called the Grundy acyclic number and is
denoted by grac(G).

Observation 5.2. For any graph G, the minimum length of a maximal acyclic vertex sequence equals the minimum order
of a maximal induced forest in G.

Observation 5.3. For any graph G, grac(G) equals the maximum order of an induced forest in G.

5.6. Other sequences
We close with the following list which illustrates the wide variety of types of vertex sequences which can be defined and
studied.

1. a different distance sequence S = (v1, v2, . . . , vk) is a vertex sequence having the property that for every vi, no vertex
in V \ Ŝi is equidistant to two vertices in Ŝi.

2. a greedy k-coloring sequence S = (v1, v2, . . . , vk) is a vertex sequence, each vertex vi of which is properly k-colored
in G[Ŝi] (no previous neighbor in the sequence is assigned the same color and at most k colors are assigned to the
vertices in Ŝi) and the color assigned to every vertex in Ŝi is the least color not assigned to any previous neighbor in
Si.

3. a cost effective sequence S = (v1, v2, . . . , vk) is a vertex sequence having the property that for every vi, every vertex
vj ∈ Ŝi has at least as many neighbors in V \ Ŝi as it has in Ŝi.
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4. a signed domination sequence S = (v1, v2, . . . , vk) is a vertex sequence having the property that for every vi, every
vertex vj ∈ Ŝi has more neighbors in V \ Ŝi than it has in Ŝi.

5. a restrained vertex sequence S = (v1, v2, . . . , vk) is a vertex sequence having the property that for every vi, every vertex
in V \ Ŝi has a neighbor in V \ Ŝi, that is, G[V \ Ŝi] has no isolated vertices.

6. an almost perfect sequence S = (v1, v2, . . . , vk) is a vertex sequence having the property that for every vi, every vertex
vj ∈ Ŝi either has no neighbors in Ŝi or is adjacent to a vertex vr ∈ Ŝi such that |N [vr] ∩ Ŝi| = 1.

7. a chordal graph sequence S = (v1, v2, . . . , vk) is a vertex sequence having the property that for every vertex vi,G[N [vi]∩
Ŝi] is a complete subgraph, that is the neighbors of vi in Ŝi−1 form a complete subgraph.
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