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ABSTRACT

General Bounds on the Downhill Domination Number in Graphs

by

William Jamieson

A path π = (v1, v2, . . . vk+1) in a graph G = (V,E) is a downhill path if for every

i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1), where deg(vi) denotes the degree of vertex vi ∈ V .

The downhill domination number equals the minimum cardinality of a set S ⊆ V

having the property that every vertex v ∈ V lies on a downhill path originating from

some vertex in S. We investigate downhill domination numbers of graphs and give

upper bounds. In particular, we show that the downhill domination number of a

graph is at most half its order, and that the downhill domination number of a tree

is at most one third its order. We characterize the graphs obtaining each of these

bounds.
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1 Introduction to Basic Graph Theory

Graph theory is an extensively studied field of mathematics, which can trace its roots

to the mathematician Euler, but its more modern formulations began with the work

of Ore [15]. In graph theory, our most fundamental structure is called a graph. A

graph in its most general terms is a collection of objects together with relationships

between the objects. In more formal terms it is a set of vertices together with a set

of edges between vertices. The vertices represent the objects and the edges represent

the relationships between the objects.

A set of “vertices”

(a)

A Graph

(b)

Figure 1: The House Graph

For example consider Figure 1, the so called “house graph”. In panel (a), there

is a collection of circles which are a pictorial representation of the vertices. In panel

(b) of the figure, a full pictorial representation of the house graph is given with the

vertices and lines representing edges. It is also worth noting at this point that in

pictorial representations of the graph’s the geometric positions of the vertices are

meaningless, as illustrated in Figure 2. In each of these panels the same graph is
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given. The geometric positions give no additional information; the only thing which

matters is the relationships between the vertices.

Figure 2: The House Graph Representations

As defined in [6], graph is formally denoted G = (V (G), E(G)), where V (G) is

the set of vertices and E(G) is the set of edges. For our purposes we will be working

with simple undirected graphs. That is, there is only one edge between any pair of

vertices, each edge exists between two distinct vertices (no loops), and the edge has

no directionality. For example, the graph in Figure 2 meets these criteria as well as

all future graphs listed.

For a more formal explanation of what an edge is first let u, v ∈ V (G) be two

distinct vertices. An edge of a simple undirected graph is a two element subset of

V (G) so if e ∈ E(G) is an edge between vertices u and v, e = {u, v}. Often e would be

written as uv or vu, either one is equivalent. Further our edge e is said to join u and

v, also we say that our edge e is incident with u and incident with v. If u, v ∈ V (G)

and uv ∈ E(G), we say that u is adjacent to v and v is adjacent to u. For instance,

in Figure 3 edge η is incident with e and f so it joins the vertices, further due to this

we can say that e is adjacent to f . Also, edge δ is incident with c and d, so it joins

11



these vertices, and furthermore, we may say c is adjacent to d.

e f

c d

b
a

ǫ ζ

η

δ

β γ

α

Figure 3: Labeled House Graph

Two of the most basic properties of a graph are its order and its size. The order

of a graph G is the cardinality of its vertex set V (G). We will typically use n to

denote the order of a graph. The size of a graph G is the cardinality of its edge set

E(G), and we typically will use m to denote the size of a graph. For example the

house graph in Figure 3 is of order 6 and size 7.

Notice that in Figure 3, each vertex and edge has been given a label. Some

properties of a graph depend on the particular labeling given to the graph, while

others are independent of the labeling. Properties of a graph which do not depend on

a given labeling are called invariants or graph parameters. Two examples of graph

invariants are the order and size of the graph, since no matter how we label the

vertices and edges of a graph the number of vertices or edges does not change.

Note that for the remainder of the definitions and invariants listed in this thesis

we will make use of the ones listed in [6]. At times these will be supplemented by the

more extensive collection in [7], and most of the notation is that of [5, 9].
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G : H :

Figure 4: Subgraph Example

1.1 Neighborhoods and Subgraphs

In a graph it is sometimes useful to consider a set of vertices adjacent to something

specific. That is to consider all of the vertices adjacent to a particular vertex or a

given set of particular vertices. This is called a neighborhood in the graph of a vertex

or set of vertices. For a graph G with vertex v, we say the open neighborhood of v is

the set of vertices u ∈ V (G) such that vu ∈ E(G), we will denote this set N(v) and if

more than one graph is referred to then we say NG(v). Further note that if u ∈ N(v)

then u and v are called neighbors. The closed neighborhood of a vertex v is N(v)∪{v}

and is denoted N [v]. For instance consider in Figure 3 vertex b, N(b) = {a, c, d} and

N [b] = {a, b, c, d}. For a set S of vertices the open neighborhood of the set is

N(S) =

[

⋃

v∈S

N(v)

]

\S,

and the closed neighborhood of the set is N(S)∪S = N [S]. Now in Figure 3 consider

the set S = {c, d}, N(S) = {b, e, f} and N [S] = {b, c, d, e, f}. At this point it is

worth noting that if we refer to a neighborhood without specifying whether it is open

or closed, it will be assumed that the neighborhood is an open neighborhood.
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G :

b

c d

e

a

k

f

g h

i

j

l

H :

b

c d

e

a

k

Figure 5: Vertex Induced Subgraph Example

We may also wish to address parts of a graph which also form graphs, that is a

subgraph. More formally if G is a graph we say a graph H is a subgraph of G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). In Figure 4, graph H is a subgraph of G.

It is also useful to address subgraphs which preserve certain aspects of the orig-

inal graphs. For our purposes we will need subgraphs known as induced subgraphs.

There are two major types of induced subgraphs, vertex induced and edge induced

subgraphs. Let G be some graph and S be some subset of the vertices of G, the

subgraph of G induced by the set S is the graph H with vertex set S and edge set

E(G) = {e ∈ E(G) | e ∩ S = e}, that is E(H) is the set of all in edges G which

are incident to only vertices in S. For example in Figure 5 if we select the vertices

S = {a, b, c, d, e, k} in G, the subgraph induced by S will be H.

Now for an edge induced subgraph, if G is a graph and L some subset of the

edges of G, the subgraph of G induced by L is the graph H with edge set E(H) = L

and vertex set V (H) = {v ∈ V (G) | ∃ e ∈ L such that v ∈ e}, that is V (H) is

the set of vertices incident with some edge in L. For example in Figure 6, if we let

14



L = {a, b, f, g}, the subgraph induced by L will be H. For any subgraph of a graph

G induced by some set S of vertices or edges, we denote this graph G[S]. So in

Figures 5 and 6 the graph H can be denoted G[S] and G[L] respectively.

G :

a

b

c

de

f

g

h
i

jk

α

β

γ

δǫ

ζ

η

ι
κ

λµ

a

b

f

g

H :

Figure 6: Edge Induced Subgraph Example

1.2 Paths and Cycles

When one considers a graph from the perspective of a set of objects together with a

set of relationships, it can be useful to consider how objects are related when they

are not adjacent to each other. Often we use a structure known as a path. In a graph

sequence Π = (v1, v2, . . . , vk), where for 1 ≤ i ≤ k, vi ∈ V (G), vi 6= vj when i 6= j and

vivi+1 ∈ E(G), is called a path from vertex v1 to vertex vk. We may refer to path Π

as a v1-vk path. For example in Figure 7, there is an a-d path whose edges are colored

red and an f -b path whose edges are colored blue.

A graph G is said to be a connected graph if for every pair of vertices u, v ∈ V (G),

there is some u-v path in G. The length of a particular path is the number of edges

traversed by the path. For example in Figure 7 the a-d path in red is of length 2

and the f -b path in blue is of length 3. A cycle in a graph can be thought of as a

15



e f

c d

b
a

Figure 7: Paths in the House Graph

path (v1, v2, . . . , vk), where k ≥ 3 and v1vk ∈ E(G). For example in Figure 8, we will

illustrate two cycle subgraphs, one in red and one in blue.

1.3 Degrees

In graphs it is useful to discuss the number of vertices adjacent to a particular vertex

v, we call this the degree of the vertex denoted deg(v). Another way to think of the

degree of a vertex is deg(v) = |N(v)|. In Figure 9 each vertex of the house graph is

labeled with its degree.

Figure 8: Example of Cycles in a Graph

We may define global graph properties pertaining to degrees in the graph. These

16



2 2

3 3

3
1

G:

Figure 9: Degrees in the House Graph

are the maximum degree ∆(G) and the minimum degree δ(G), which are the max-

imum and minimum over all degrees in the graph respectively. Thus in Figure 9 it

can be seen that ∆(G) = 3 and δ(G) = 1.

One of the simplest results in graph theory has to do with counting degrees in a

graph. This result is often called the First Theorem of Graph Theory because it is

usually the first proof one does in a graph theory class.

Theorem 1.1 (First Theorem of Graph Theory). If G is a graph of size m, then

∑

v∈V (G)

deg(v) = 2m (1)

Proof. Let G be a graph of size m. Note that each edge of G must be adjacent to

two vertices in G. Thus summing the degrees of the vertices of G must count each

edge twice. Thus the left and right hand sides of equation (1) are equal.

Note that there are special names for vertices of degree 0 and vertices of degree

1. They are isolate and leaf, respectively.

17



1.4 Independence

For a graph G we would like to find a set S of vertices such that for any pair u, v ∈ S,

uv /∈ E(G). The set S is called an independent set, since none of the vertices have an

edge between them. We can now define the independence number of a graph G to be

the maximum possible cardinality for an independent set in G. We denote this α(G).

For example in Figure 10 the blue vertices form an independent set which is not as

large as possible and the red vertices form an independent set of maximum size.

Figure 10: Independent Sets in the House Graph

It is worth noting that we may talk about maximal and maximum sets in the a

graph. For independent sets, a maximal set is a set for which no additional vertex

in the graph may be added and still preserve the independent property; a maximum

independent set is a set of maximum possible cardinality, that is no independent set

in the graph with larger cardinality. In Figure 10 the blue vertices form a maximal

independent set but not a maximum independent set, and the red vertices form a

maximum independent set.

Independence number and independent sets rank among some of the most well

studied invariants of a graph.

18



1.5 Matchings

Let G be a graph. Just as with independent sets of vertices, we may wish to find

independent sets of edges. A set M ⊆ E(G) such that if e1, e2 ∈ M then e1 ∩ e2 = ∅,

that is M is a vertex disjoint set of edges, is called a matching. For example in

Figure 11 the red edges form one matching and the blue edges form another matching

in the graph.

Figure 11: Matchings in the House Graph

If we have two disjoint sets of vertices U and W , it can be helpful to be able to

pair the vertices in U with adjacent vertices in W . In other words we would like to

match U to W . Obviously to do this we at least the condition |U | ≤ |W |. We can

match U to W if there exists a matching M such that for each vertex u ∈ U there

exists an edge e ∈ M for which u ∈ e and e ∩W 6= ∅. Such a matching M is said to

match U to W .

This problem is sometimes called the “marriage problem”. The marriage problem

is as follows. Suppose we have a set U of girls and a set W of boys. If each girl u ∈ U

likes some subset of the boys Wu ⊆ W , can each girl marry a boy she likes? This

question can be phrased as asking whether or not a matching exists between two sets
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of vertices in the graph. In fact this problem is the motivation behind one of the

results used later in this thesis.

1.6 Domination

Let G be a graph, we would like to find a set S of vertices such that for all vertices

v ∈ V (G)\S there exists a vertex s ∈ S where v ∈ N(s), that is we wish to find a

set S of vertices so that each vertex of the graph is either in S or adjacent to some

vertex in S. This set S is called a dominating set of the graph [10, 11]. We then can

define a graph invariant called the domination number, γ(G), where the domination

number is the minimum cardinality for a dominating set in a graph G. For example

in Figure 12 the set of vertices labeled in black form a minimum dominating set and

the circled vertices form another dominating set.

Figure 12: Dominating Sets in the House Graph

Just as with independent sets it is worth discussing that we make a distinction

between a minimal dominating set a and a minimum dominating set. A minimal

dominating set of a graph G is a dominating set such that the removal of any vertex

20



Figure 13: Examples of Regular Graphs

from the set results in a set that does not dominate G. A minimum dominating set

is a dominating set of minimum possible cardinality among all possible cardinalities,

note that any minimum dominating set is a minimal dominating set but the reverse

is not necessarily true. Further we may refer to a minimum dominating set as a γ(G)-

set, since γ(G) is the cardinality of such a set. For example in Figure 12, the vertices

in black form a minimum dominating set, and the circled vertices form a minimal

dominating set.

1.7 Special Graph Families

Finally it is worth discussing three families of graphs which we will return to later:

regular graphs, bipartite graphs and trees. These three families will play roles in the

main results of this thesis.

1.7.1 Regular Graphs

A graph G is a regular graph if for each vertex v ∈ V (G), deg(v) = r. That is each

vertex of G has the same degree, if that degree is r we say G is a r-regular graph.

Figure 13 has two 3-regular graphs and two 4-regular graphs.
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K6 K5 K4 K3

Figure 14: Examples of Complete Graphs

One special subfamily of regular graphs is called the complete graph. The complete

graph G on n vertices is the graph for which every pair of vertices is joined by an

edge. Thus G will be a (n − 1)-regular graph. We denote the complete graph on n

vertices as Kn. Figure 14 has a few complete graphs shown.

1.7.2 Bipartite Graphs

A graph G is a bipartite graph if V (G) can be partitioned into two sets U and W

such that U and W are both independent sets. Note that by partition, we mean that

U ∪W = V (G) and U ∩W = ∅. For example in Figure 15, the graph G is bipartite

with partite sets being the red vertices and the blue vertices, but H is not bipartite

G: H:

Figure 15: Bipartite vs Not Bipartite
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because no matter how we partition the vertices of H we need at least three sets. To

see this color the vertices of the outer 5 cycle of the graph H with two colors, say red

and blue, such that no two vertices receive the same color. Since there are an odd

number of vertices in this cycle, this is not possible. So we require a third color, say

green as shown in the figure.

A special subfamily of bipartite graphs, is the complete bipartite graph Kr,s with

r ≤ s. We define Kr,s as the bipartite graph with partite sets |U | = r and |W | = s

where E(Kr,s) = {uw | u ∈ U and w ∈ W} that is all possible edges exist between U

and W . For example in Figure 16 all Kr,5 with 1 ≤ r ≤ 5 are given.

K1,5 K2,5 K3,5 K4,5 K5,5

Figure 16: Complete Bipartite Graph Examples

1.7.3 Trees

Our last family of graphs is the trees. A graph T is a tree if and only if T is connected

and T contains no cycles. Trees are a very important family of graphs because all

trees have been counted and many properties can be found quickly for trees without

being too difficult, that is in polynomial time. Figure 17 contains a few examples of

some trees.
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T1 T2 T3 T4 T5

Figure 17: Examples of Trees

Note that we will refer a specific type of tree called a caterpillar. A caterpillar is

a tree T , such that every vertex of T lies on a single central path or is adjacent to a

vertex on the central path. In other words, removing all the leaves from T results in

a path. For example Figure 18 contains a few caterpillars.

Note that, we will employ a special notation for caterpillars. It is called the

caterpillar code. The caterpillar code is a k-tuple, where k is the length of the central

path of the caterpillar, and the ordering of the k-tuple is the order of the vertices

along the central path. Finally the values in each part of the k-tuple denote the

T1 T2 T3 T4 T5

Figure 18: Examples of Caterpillars
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number of leaves attached to the particular vertex. Thus in Figure 18, T1 = (7, 0, 7),

T2 = (3, 2, 3), T3 = (2, 0, 2), T4 = (1, 0, 0, 0, 0, 0, 0, 0, 1), and T5 = (5, 5).
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2 Downhill Domination

Recall that in Section 1.6 we defined and gave examples for a well known graph

invariant called the domination number. The idea of the domination number and

dominating sets will be expanded upon to produce a new type of domination, which

we will term downhill domination. These expansions rely on the ideas in Section 1.2

and Section 1.3.

2.1 Definition of Downhill Domination

Downhill domination, relies essentially on dominating through a special type of path.

We will term these paths downhill paths. These downhill paths are paths with some

restrictions on them using the degrees of vertices.

2.1.1 Downhill Paths

We formally define a downhill path by the following.

Definition 2.1. In a graph G. A u-v path, Π = (u = v1, v2, . . . , vk = v), is a downhill

path if deg(vi) ≥ deg(vi+1) for all 1 ≤ i ≤ k, that is, the degrees of the vertices of Π

form a non-increasing sequence.

For example in Figure 19 several downhill paths are given for the house graph.

Notice that (a) contains a downhill path that is of maximum possible length, and (b)

cannot be extended further.

Note that in many cases we will piece together paths like the one shown in (d)

part, where each vertex on the path is of the same degree. We may refer to these
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Figure 19: Example of Downhill Paths

paths as regular paths since the degree remains constant along the path, in a similar

fashion to regular graphs.

We say that if there is a u-v downhill path between vertices u and v in our graph

that v is downhill from u.

2.1.2 Downhill Domination

In examining Figure 19, one might notice that downhill paths do not originate at

every vertex. So suppose that we wish to find a set of vertices such that any vertex

in our graph is downhill from a vertex in the set. This type of set is called a downhill

dominating set, we give the formal definition.

Definition 2.2. Let G be a graph. A set S ⊆ V (G) is a downhill dominating set, if

∀v ∈ V (G)\S, there exists a u ∈ S s.t. G contains a u-v downhill path.

Just as with domination, our goal will be to find the cardinality of the smallest

downhill dominating set, that is, for a graph G, we wish to find γdn(G), which is
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the minimum possible cardinality of a downhill dominating set of G. We refer to

downhill dominating sets of cardinality γdn(G) as γdn(G)-sets, and a DDS is a downhill

dominating set. Thus a minimal DDS is a downhill dominating set such that the

removal of any vertex ends the downhill dominating property of this set.

(a) (b) (c)

(d) (e) (f)

Figure 20: Examples of Downhill Domination

In Figure 20 several graphs are given with γdn(G)-sets marked by darkened ver-

tices. If one examines the paths given by (a) and (b) in Figure 19, one can see how
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the darkened vertex in (a) of Figure 20 downhill dominates the house graph. We

leave the discovery of the downhill paths that allow the rest of the to be downhill

dominating in Figure 20 to the reader.

2.2 Preliminary Results

The preliminary results on downhill domination focus on two fronts. Firstly, we need

a few results concerning specific graph families. This is so that later on when we work

with the main results we will have a clear examples for graphs that achieve the general

bounds. We also need a few additional results concerning downhill dominating sets,

and their general properties, which will be useful in establishing our upper bounds.

2.2.1 Special Graph Families

We start with some basic results concerning some of our graph families. Beginning

with regular graphs, which in many cases we will have to treat separately in our

proofs.

Proposition 2.3. If G is a connected regular graph, then γdn(G) = 1.

Proof. Let G be a connected regular graph and v be some vertex of G. Since G is

connected there exists a path between v and every vertex u ∈ V (G)\{v}. All of

these paths are downhill since the degree of each vertex of G is the same. Hence {v}

downhill dominates G, so γdn(G) = 1.

From this we immediately get a result concerning complete graphs.
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Corollary 2.4. If G = Kn, then γdn(G) = 1.

Proof. Let G = Kn, so by definition G is a connected regular graph. Thus Proposi-

tion 2.3 gives that γdn(G) = 1.

Now we can find the downhill dominating number for all complete bipartite graphs,

which we will need later on for one of the main results.

Proposition 2.5. Let G = Kr,s. If r < s, then γdn(G) = r. Furthermore, if r = s,

then γdn(G) = 1.

Proof. Let G = Kr,s where r < s. Since G is a complete bipartite graph, it can

be partitioned into two independent sets |R| = r and |S| = s. Further for v ∈ R,

deg(v) = s and u ∈ S, deg(u) = r. Since R and S are independent sets any γdn(G)-

set will require every vertex of R since these vertices have no neighbors of equal or

greater degree. Finally since every vertex of R is adjacent to every vertex of S, the

vertices of S are downhill from those in R. Hence, R is a γdn(G)-set. So γdn(G) = r.

Note that if r = s then G is a regular graph so Proposition 2.3 gives γdn(G) = 1.

2.2.2 Introductory Results

One of the most important results, that we used in order to attack the downhill dom-

ination problem in a general way is the following lemma concerning the independence

of downhill dominating sets.

Lemma 2.6. Any minimal DDS of a graph G is an independent set of G.
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Proof. Assume S is a minimal DDS of G. If two vertices u and v in S are adjacent,

then, relabeling u and v if necessary, we may assume that deg(u) ≥ deg(v). Hence,

there exists a downhill path from u through v to all vertices which are downhill from

v. Therefore, S \ {v} is a DDS of G, contradicting that S is a minimal DDS. Hence,

we conclude that S is an independent set.

This result is extremely important because it allows us to gain some general in-

sight into the structure of our downhill dominating sets. Namely that they must be

independent sets. Now as an aside on independence. Recall from Section 1.4 the

independence number of a graph, α(G). Since Lemma 2.6 gives that any downhill

dominating set is an independent set we obtain the following corollary.

Corollary 2.7. For a graph G, γdn(G) ≤ α(G).

Proof. Since Lemma 2.6 gives that any DDS is an independent set, and γdn(G) is the

minimum size for a DDS in G. This is clearly less than the maximum size for an

independent set of a graph, α(G).

We now give an interesting result concerting the relationship a minimal DDS and

γdn(G)-sets

Theorem 2.8. If D is a minimal DDS of G, then D is a γdn(G)-set.

Proof. Suppose to the contrary that there exists a minimal DDS, say D, of G, such

that |D| > γdn(G). Among all γdn-sets of G, selectD′ to be one that has the maximum

number of vertices in common with D, that is, |D′ ∩D| is maximized.
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Since |D′| < |D|, there exists a vertex u ∈ (D\D′). Thus u is downhill dominated

by a vertex, say d′ in D′. Then u and all the vertices downhill from u are downhill

dominated by d′. If d′ ∈ D, then D \ {u} is a DDS with cardinality less than |D|,

contradicting the minimality of D. Hence we may assume that d′ /∈ D.

Thus there exists a vertex v ∈ D that downhill dominates d′ and all of the vertices

downhill from d′. Suppose u 6= v, then v downhill dominates u and so, again, D\{u} is

a DDS, contradicting the minimality of D. If u = v, then since v downhill dominates

d′ and d′ downhill dominates u, it follows that deg(u) = deg(d′). Moreover, u downhill

dominates d′ and the vertices downhill dominated by d′. Thus, D′′ = (D′ \{d′})∪{u}

is a γdn-set of G such that |D′′ ∩D| > |D′ ∩D|, contradicting our choice of D′.

This result gives a very interesting concept, that we do not have to make a distinc-

tion between a minimal downhill dominating set and a minimum downhill dominating

set. This is very different from the standard concepts of Sections 1.4 and 1.6 for in-

dependent sets and dominating sets respectively.

2.3 Introduction to Main Results

The two main results of this thesis focus first on finding an over arching upper bound

on γdn for a general connected graph, and then improving this bound when exploring

trees. In both cases a characterization of the graphs obtaining bound is given.

A characterization of the family of graphs for a bound is finding a family of

graphs which achieve equality with the bound and then showing that if a graph

achieves equality with the bound, then the graph is in the family. For our first
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bound our characterization involves certain types of complete bipartite graphs, the

so called “almost balanced” complete bipartite graphs, K⌊n

2
⌋,⌈n

2
⌉ where n is odd and

two complete graphs, K2 and K3. For the trees bound, the characterization family is

a special collection of caterpillars, T , which follow specific caterpillar codes.

The two main results formally are as follows.

Theorem A. If G is a graph of order n ≥ 2, then γdn(G) ≤
⌊

n
2

⌋

, with equality if

and only if G is one of the complete graphs K2 or K3, or the complete bipartite graph

K⌊n

2
⌋,⌈n

2
⌉ of odd order.

Theorem B. If T is a tree of order n ≥ 4, then γdn(T ) ≤
⌊

n−1
3

⌋

, with equality if and

only if T is the path of order 4 or T ∈ T .

K2 K3

K1,2 K2,3 K3,4 r → Kr,r+1

r
+
1

r

Figure 21: Characterization of Theorem A

As one can see from Theorem A, the maximum value for γdn is
⌊

n
2

⌋

with equality

in most cases when G = K⌊n

2
⌋,⌈n

2
⌉ when n is odd. One can easily see that the equality
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is true in this case from Proposition 2.5. And that the special cases for K2 and K3

come from Corollary 2.4. Thus our characterization family is given, in a sense, by

Figure 21, where some of the initial graphs of the characterization are listed and

then a progression to one of order 2r + 1 is given. The darkened vertices represent a

γdn(G)-set.
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0

2

)

T2

(

2

0

1

0
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)
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0

2
)

T4

(
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0

1

0

1

0

1

0

2

)

Tr

(

2

0

1

0

1

0

0

1

0

2

)

Figure 22: Some Graphs in the Characterization of Theorem B

As for Theorem B, before we fully define how to construct T , we will give a few

elements of a T in Figure 22 as an example.
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3 General Graph Bound

We present the proof of Theorem A, which is one of the the two main results of this

thesis. This result relies partially on the classification of vertices by degrees first

presented by Hedetniemi, Hedetniemi, Hedetniemi, and Lewis in [14, 12, 13]. These

ideas are used to prove a series of minor results which culminate in our main general

bound.

3.1 The Classification of Vertices

Definition 3.1. A vertex u ∈ V (G) in a graph G is called:

1. very strong (VS) if deg(u) ≥ 1 and for every vertex v ∈ N(u), deg(u) >

deg(v).

2. strong (S) if deg(u) ≥ 2 and for every vertex v ∈ N(u), deg(u) ≥ deg(v),

at least one neighbor v ∈ N(u) has deg(u) > deg(v), and at least one neighbor

w ∈ N(u) has deg(u) = deg(w).

3. regular (R) if deg(u) ≥ 0 and for every vertex v ∈ N(u), deg(u) = deg(v).

4. very typical (VT) if deg(u) ≥ 2 and at least one neighbor v ∈ N(u) has

deg(u) > deg(v), and at least one neighbor w ∈ N(u) has deg(u) < deg(w).

5. typical (T) if deg(u) ≥ 3 and there are three distinct vertices v, w, x ∈ N(u)

such that deg(v) < deg(u) = deg(x) < deg(w).

6. weak (W) if deg(u) ≥ 2 and for every vertex v ∈ N(u), deg(u) ≤ deg(v), at

least one neighbor v ∈ N(u) has deg(u) < deg(v), and at least one neighbor
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w ∈ N(u) has deg(u) = deg(w).

7. very weak (VW) if deg(u) ≥ 1 and for every vertex v ∈ N(u), deg(u) <

deg(v).

For a graph G, let V S(G) be the set of very strong vertices in G, S(G) be the

set of strong vertices in G, and R(G) be the set of regular vertices of G. Our next

observations follow directly from the above definitions and the minimality of a γdn(G)-

set. Since very strong, strong, and regular vertices are the only vertices with no

neighbors of higher degree, and a γdn(G)-set is minimal, observe the following.

Observation 3.2. If D is a γdn(G)-set for a graph G, then D ⊆
(

R(G) ∪ S(G) ∪

V S(G)
)

.

Now since very strong vertices have no neighbors of equal or greater degree, no

vertex can downhill dominate a very strong vertex v, except v its self. Hence, observe

the following.

Observation 3.3. If D is a γdn(G)-set for a graph G, then V S(G) ⊆ D.

Next we wish to explore the concept referred to earlier in Section 2.1.1, concerning

regular paths. So we will define a special type of set in a graph.

Definition 3.4. Let G be a graph. For a vertex v ∈ V (G), we define the regular path

neighborhood (RPN) of v, A(v), to be the set of all u ∈ V (G) such that there exists a

v-u path v = v1, v2, . . . , vk = u such that deg(vi) = deg(v) for all 1 ≤ i ≤ k.

We can think of this like in the following generalized graph in Figure 23. Each

of the large black ellipses contains all the vertices of a given degree and each of the
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red ellipses contained inside the black ellipses contains a RPN of a particular vertex

such as the ones marked. Clearly edges can exists between levels, these have not been

drawn however. The next lemma concerns vertices in RPNs. Now for a particular

degree level, there is a set of RPNs that will partition the level. As illustrated in part

by the following lemma, the shown edges in blue cannot exist, since this would merge

two RPNs together. This idea is used to prove the next lemma.

v1 v2 v3 . . . v4

v5 v6 v7 . . . v8

v9 v10 v11 . . . v12

v13 v14 v15 . . . v16

d
egrees

→

∆(G)

δ(G)

k

..
.

j

Figure 23: Downhill Path Neighborhood

Lemma 3.5. If D is a DDS of G, then for all u, v ∈ D

A(u) ∩ A(v) = ∅. (2)

Proof. Let D be a DDS of a graph G. Suppose to the contrary that there are two

vertices u, v ∈ D such that A(u) ∩ A(v) 6= ∅. Then there exists a vertex w such that
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w ∈ A(u) and w ∈ A(v). By definition there is a u-w regular path and a w-v regular

path in G. It follows that the path from u to w which continues on the w-v path is

a regular path between u and v. Thus v is downhill from u and everything downhill

from v is downhill from u as well. Thus D\{v} is a DDS of G as well, a contradiction

of D being a minimal downhill dominating set.

We next we use the idea of the RPN to prove an interesting lemma concerning the

composition of γdn(G)-set. It proves that we need only be concerned with two types

of vertices for a γdn(G)-set, the strong and very strong vertices.

Lemma 3.6. Let G be a connected graph. There exists a γdn(G)-set that contains no

regular vertices if and only if G is not regular.

Proof. If G has a γdn(G)-set which contains no regular vertices, then G is not regular.

Assume that G is not regular. Among all γdn(G)-sets of G, select D to minimize

|D∩R(G)|, that is, D contains the minimum number of regular vertices. IfD∩R(G) =

∅, then the result holds. Thus, assume that there is a regular vertex v ∈ D. By

Lemma 2.6, D is independent. We now will explore the RPN of v, A(v).

We first show that A(v) ⊆ R(G) ∪ S(G). Since v ∈ R(G), v has a neighbor of

the same degree. Hence, A(v)\{v} 6= ∅. Let u ∈ A(v). Since deg(u) = deg(v),

it follows from Definition 3.1 that u is either weak, typical, regular, or strong. If

u ∈ R(G)∪S(G), then we are finished. Thus assume that u is weak or typical. Then

there exists a vertex y ∈ N(u) such that deg(y) > deg(u). Hence, y 6∈ A(v). Further

since deg(u) = deg(v) and there is a path between u and v consisting of vertices
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having degree deg(v), it follows that v does not downhill dominate y. Hence, there

is some vertex w ∈ D\{v} such that y is downhill from w or y = w. But then w

downhill dominates v and all the vertices downhill dominated by v, and so D \ {v}

is a DDS of G with cardinality less than γdn(G), a contradiction. Hence, we may

assume that every vertex in A(v) is regular or strong.

We note that if A(v) ⊆ R(G), then since G is connected, G must be regular, a

contradiction. Therefore, there exists a strong vertex, say x, in A(v). Further, from

the definition of A(v), v is downhill from x, implying that everything downhill from

v is downhill from x. Hence, (D \ {v}) ∪ {x} is a γdn-set of G having fewer regular

vertices than D, contradicting our choice of D.

3.2 The Proof of Theorem A

We shall use the well-known theorem by Hall [8]. This theorem has to do with the

ideas of Section 1.5, specifically it answers the small problem posed in this section,

that is “When can a girl marry a boy that she likes?” The answer is when U is the

set of girls and W is the set of boys, with an edge representing a girl liking the boy.

Theorem 3.7 (Hall’s Theorem). Let G be a bipartite graph with partite sets U

and W . Then U can be matched to a subset of W if and only if for all S ⊆ U ,

|N(S)| ≥ |S|.

In order to prove Theorem A, we need to establish some properties of S(G) and

V S(G). We present these properties as separate results as they are interesting in

their own right.
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Proposition 3.8. Let G be a connected graph of order n ≥ 3. If V S(G) 6= ∅, then

V S(G) can be matched to N(V S(G)).

Proof. Let G be a connected graph of order n ≥ 3 and V S(G) 6= ∅. Now let Xe ⊆

E(G) be the set of edges having at least one endvertex in V S(G). By Lemma 2.6

and Observation 3.3, V S(G) is an independent set. Thus, the edge induced subgraph

G[Xe] is a bipartite graph with partite sets V S(G) and N(V S(G)). We wish to show

that there exists a matching from V S(G) to N(V S(G)) in the edge induced subgraph

G[Xe]. By Hall’s Theorem, it suffices to show that for all X ⊆ V S(G), |N(X)| ≥ |X|.

To establish this, we proceed by induction on |X| for a subset X ⊆ V S(G). Since

X is an independent set and G has no isolated vertices, every vertex in X has a

neighbor in N(V S(G)). Hence, the result holds for |X| = 1. For |X| = 2, suppose to

the contrary that |N(X)| < |X|. Again since G has no isolated vertices, we have that

|N(X)| ≥ 1, so |N(X)| = 1. But then the two vertices of X each have degree one,

while their common neighbor in N(X) has degree at least two, contradicting that the

vertices of X are very strong. Thus, |N(X)| ≥ |X| = 2, and so the result holds for

1 ≤ |X| ≤ 2.

Assume that |N(X)| ≥ |X| holds for any X ⊆ V S(G) such that |X| ≤ k for

some k ≥ 2. Let |X| = k + 1, and suppose to the contrary that |N(X)| < |X|. Let

X ′ = X\{v} for some v ∈ X. Since X ′ ⊆ V S(G) and |X ′| = k, by our inductive
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hypothesis, |N(X ′)| ≥ |X ′|. Thus, we obtain the following relations

|N(X ′)| ≥ |X ′| (3)

|N(X)| < |X| (4)

|X| = |X ′|+ 1. (5)

From (4) and (5), we have that |N(X)| ≤ |X| − 1 = |X ′|. Thus, by (3), |N(X)| ≤

|X ′| ≤ |N(X ′)|. Since N(X ′) ⊆ N(X), we have |N(X)| ≥ |N(X ′)|. Thus, |N(X)| =

|N(X ′)|, implying that |N(X ′)| = |X ′|. Moreover, by our inductive hypothesis,

|N(X ′′)| ≤ |X ′′| for all X ′′ ⊆ X ′. Thus, by Hall’s Theorem, there is a matching

in G[Xe] between the vertices of X ′ and the vertices of N(X ′). Label the vertices

of X ′ = {x1, x2, ..., xk} and N(X ′) = {y1, y2, ..., yk} such that M = {xiyi | 1 ≤ i ≤

k, xi ∈ X ′ and yi ∈ N(X ′)} is a perfect matching.

Now there are exactly
∑k

i=1 degG(xi) edges incident to vertices in X ′ and vertices

in N(X ′), implying that
∑k

i=1 degG(yi) ≥
∑k

i=1 degG(xi). But since xi ∈ V S(G),

deg(yi) < deg(xi) for all 1 ≤ i ≤ k, and so
∑k

i=1 deg(yi) <
∑k

i=1 deg(xi), a contradic-

tion.

Thus, we conclude that |N(X)| ≥ |X| for every set X ⊆ V S(G) such that |X| =

k + 1. By the Principle of Mathematical Induction, |N(X)| ≥ |X| where |X| ≥ 1.

Therefore, by Hall’s Theorem, the set V S(G) can be matched to N(V S(G)) in the

subgraph G[Xe], and so V S(G) can be matched to N(V S(G)) in G.

Proposition 3.9. Let G be a connected graph of order n ≥ 3. If V S(G) 6= ∅, then

|V S(G)| < |N(V S(G))|.
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Proof. Let G be a connected graph of order n ≥ 3 and X = V S(G) 6= ∅. By Propo-

sition 3.8, X can be matched to the set N(X). Thus, |X| ≤ |N(X)|. Suppose that

|X| = |N(X)| = k and that X = {x1, x2, . . . , xk} and N(V S(G)) = {y1, y2, . . . , yk},

where xi is matched to yi for 1 ≤ i ≤ k. SinceX is an independent set,
∑k

i=1 deg(xi) ≤

∑

i=1 deg(yi). However, since xi is very strong, deg(xi) > deg(yi) for 1 ≤ i ≤ k. Thus,

∑k
i=1 deg(xi) >

∑

i=1 deg(yi), a contradiction. Hence, |X| < |N(X)|.

For a set S, an S-external private neighbor of a vertex v ∈ S is a vertex u ∈ V \S

which is adjacent to v but to no other vertex of S. The set of all S-external private

neighbors of v ∈ S is called the S-external private neighbor set of v and is denoted

epn(v, S).

Proposition 3.10. Let G be a connected graph of order n ≥ 2. If v ∈ D ∩ S(G),

then there exists a vertex x ∈ epn(v,D) such that deg(x) = deg(v).

Proof. Let G be a connected graph of order n ≥ 2 and v ∈ D ∩ S(G). Since v is a

strong vertex, there exists x ∈ N(v) such that deg(x) = deg(v). By Lemma 2.6, D is

an independent set, so x ∈ V \D. Suppose to the contrary that x /∈ epn(v,D), that

is, x has another neighbor, say y, in D. If deg(y) ≥ deg(x), then x, and hence, v and

the vertices downhill from v are downhill from y. Thus, D \ {v} is a DDS of G with

cardinality less than γdn(G), a contradiction. Assume then that deg(y) < deg(x).

But then y is downhill from v, and so D \ {y} is a DDS with cardinality less than

γdn(G). Hence, we conclude that x ∈ epn(v,D), and every strong vertex in D has at

least one neighbor of the same degree in its private neighborhood.
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We are now ready to prove one of our main results, Theorem A.

Theorem A. If G is a graph of order n ≥ 2, then γdn(G) ≤
⌊

n
2

⌋

, with equality if

and only if G is one of the complete graphs K2 or K3, or the complete bipartite graph

K⌊n

2
⌋,⌈n

2
⌉ of odd order.

Proof. We first prove the upper bound. Let G be a connected graph of order n ≥ 2.

As noted in the introduction, if G is a regular graph, then γdn(G) = 1, and the result

holds. Suppose now thatG is not a regular graph. By Observation 3.2 and Lemma 3.6,

we may choose a γdn(G)-set D such that D ⊆ S(G) ∪ V S(G). By Observation 3.3,

V S(G) ⊆ D. To prove the upper bound, it suffices to show that each vertex in D

can be uniquely paired with a vertex in V (G) \D.

By Proposition 3.10, each vertex of D ∩ S(G) has an external private neighbor

that is of the same degree. Let S ′ be the set of these private neighbors. Thus, S(G)

can be matched to S ′. By Proposition 3.8, there exists a matching from V S(G) to

N(V S(G)). Further, S ′∩N(V S(G)) = ∅ and S ′∪N(V S(G)) ⊆ V \D. It follows that

γdn(G) ≤ |D| = |D∩S(G)|+|D∩V S(G)| ≤ |S ′|+|N(V S(G))| ≤ |V \D| = n−γdn(G).

Hence, γdn(G) ≤
⌊

n
2

⌋

.

Next we prove the characterization. Clearly, if G ∈ {K2, K3}, then γdn(G) = 1 =

⌊

n
2

⌋

, and if G = K⌊n/2⌋,⌈n/2⌉ with odd order n, then γdn(G) =
⌊

n
2

⌋

.

Now suppose that G is a connected graph of order n ≥ 2 with γdn(G) =
⌊

n
2

⌋

.

Since for any r-regular graph, γdn(G) = 1, if G is regular, then n = {2, 3}, implying

that G ∈ {K2, K3}. Note also that γdn(P3) = 1 and P3 = K1,2.
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Henceforth, we may assume that G is not a regular graph and that n ≥ 4. Again,

we may assume that G has a γdn(G)-set D, such that D ⊆ S(G) ∪ V S(G), D is an

independent set, and V S(G) ⊆ D.

Let X = V S(G) = {x1, x2, ..., xj} and Y = D ∩ S(G) = {y1, y2, ..., yk} for some

integers j and k. Then |D| = |X|+ |Y | = j + k.

If k ≥ 1, then by Proposition 3.10, every vertex yi ∈ Y has a private neighbor

y′i ∈ V \D such that deg(yi) = deg(y′i). Let Y ′ = {y′i | 1 ≤ i ≤ k}. Then |Y ′| = |Y |

and Y ′ ∩N(X) = ∅.

If X = ∅, then D = Y , and |V \ D| ≤ |D| + 1 = |Y | + 1 = |Y ′| + 1. Since

each yi ∈ Y is a strong vertex, deg(yi) ≥ 2. Moreover, since each yi has exactly one

neighbor external private neighbor in Y ′ and D is an independent set, it follows that

each yi has at least one neighbor in V \ (D ∪ Y ′), that is, V \ (D ∪ Y ′) 6= ∅. Hence,

|V \D| ≥ |Y ′|+1 = |Y |+1 = |D|+1, and so, |V \D| = |D|+1. Then V \D = Y ′∪{w}

for some vertex w. Since yi is a strong vertex and deg(yi) = deg(y′i) ≥ 2, we have

N(yi) = {w, y′i} for 1 ≤ i ≤ k. But then deg(w) ≥ |Y | = |D| =
⌊

n
2

⌋

≥ 2 ≥ deg(yi) =

2, implying that no neighbor of yi has degree less than deg(yi), a contradiction since

yi is a strong vertex. Hence, we may assume that X 6= ∅, that is, j ≥ 1.

Thus, we have

|Y ′|+ |N(X)| ≤ |V \D| =
⌈n

2

⌉

|Y |+ |N(X)| ≤
⌈n

2

⌉

|Y |+ |N(X)| ≤ |D|+ 1 = |X|+ |Y |+ 1

|N(X)| ≤ |X|+ 1 (6)
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Since X 6= ∅, by Proposition 3.9, we have |N(X)| > |X|, so |N(X)| = |X|+1. By

Proposition 3.8, every vertex in X can be matched with a vertex in N(X). Let X ′ =

N(X) = {x′
1, x

′
2, ..., x

′
j} ∪ {x}, such that {xix

′
i | 1 ≤ i ≤ j} is a matching from X to

N(X). SinceD is an independent set and each vertex in Y ′ has exactly one neighbor in

D, the number of edges incident to vertices ofD ism′ =
∑k

i=1 deg(yi)+
∑j

i=1 deg(xi) ≤

|Y ′|+
∑j

i=1 deg(x
′
i) + deg(x). However, since xi is very strong, deg(xi) > deg(x′

i) for

1 ≤ i ≤ j. Thus,
∑j

i=1 deg(xi) ≥
∑j

i=1 deg(x
′
i) + j. And since yi is strong, we have

that deg(yi) ≥ 2 for 1 ≤ i ≤ k. Hence, 2k +
∑j

i=1 deg(x
′
i) + j ≤

∑k
i=1 deg(yi) +

∑j
i=1 deg(xi) ≤ |Y ′| +

∑j
i=1 deg(x

′
i) + deg(x) = k +

∑j
i=1 deg(x

′
i) + deg(x). Thus,

deg(x) ≥ j + k = |X|+ |Y | = |D| =
⌊

n
2

⌋

. Since m′ counts only the edges incident to

a vertex in D and to a vertex in V \D, it follows that x is adjacent to every vertex

in D. Since X 6= ∅ and every vertex xi ∈ X is very strong, it follows that deg(xi) >

deg(x) =
⌊

n
2

⌋

for 1 ≤ i ≤ j. Since D is independent, we conclude that N(xi) = V \D

for each xi ∈ X. But V \D = Y ′∪N(X) and Y ′∩N(X) = ∅, implying that Y = ∅. It

follows that |D| = |X| = j and |V \D| = |N(X)| = |X|+ 1 = j + 1. Moreover, since

deg(x′
i) < deg(xi) for 1 ≤ i ≤ j, we have that deg(x′

i) < |V \D| = j+1. On the other

hand, every vertex in D is adjacent to every vertex in X ′, and so deg(x′
i) ≥ |D| = j,

implying that deg(x′
i) = j and N(x′

i) = D. Thus, V \D is an independent set, and

G is the complete bipartite graph Kj,j+1, as desired.

As stated before Figure 21 lists the graphs in the characterization of the bound.

Notice that this gives the general bound that for any connected graph G, γdn(G) ≤

⌊

n
2

⌋

, and equality occurs if and only if the graph one of the types of graphs listed in
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the figure. Notice that this can be applied to disconnected graphs, by applying this

to each maximal connected subgraph of the connected graph.
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4 General Bounds on Trees

We have seen,
⌊

n
2

⌋

as a characterized upper bound on γdn(G) for connected graphs

G. We now will restrict our attention to trees as described in Section 1.7.3 in hopes

of improving this bound and again characterizing this bound. We achieve this with

our second main theorem, Theorem B. We begin by giving the construction of the

trees for the characterization, and then present the proof.

4.1 Construction of the Characterization Trees for Theorem B

We will call the subfamily of trees for which the bound given in Theorem B, T . To

construct the members of T begin with the graph K1,3 as the base graph. To create a

new graph in T , take any graph in T , say T . Then take the vertex labeled a in the P3

in Figure 24 to any leaf vertex in T . Thus any graph in T can be formed recursively

by this process from K1,3.

K1,3 P3

a

Figure 24: K1,3 and P3

Thus for instance we can form caterpillars such as those in Figure 22 with this

process. However, there are other trees in T , which are formed by some bifurcations

of the caterpillars.
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4.2 Proof of Theorem B

Using the graphs in T we can obtain the following improvements on the
⌊

n
2

⌋

.

Theorem B. If T is a tree of order n ≥ 4, then γdn(T ) ≤
⌊

n−1
3

⌋

, with equality if and

only if T is the path of order 4 or T ∈ T .

Proof. Let T be a tree of order n ≥ 4. We first prove the upper bound. Note that

if ∆(T ) = 2, then T is a path, and since n ≥ 4, we have that γdn(Pn) = 1 ≤
⌊

n−1
3

⌋

.

Hence, we may assume that ∆(T ) ≥ 3.

Assume, for the purpose of a contradiction, that γdn(T ) >
⌊

n−1
3

⌋

. By Lemma 3.6,

T has a γdn-set D such that D ⊆ S(T ) ∪ V S(T ). To reach a contradiction, we show

that T has size m > n − 1, that is, T has a cycle. Since by Lemma 2.6, D is an

independent set, every edge incident to a vertex in D is incident to a vertex in V \D.

Thus, it suffices to show that each vertex in D has degree at least 3 because this

implies that m ≥ 3(
⌊

n−1
3

⌋

+ 1) > n− 1.

Assume to the contrary that there exists a vertex u ∈ D with deg(u) ≤ 2. Then

u is either strong or very strong, so deg(u) = 2. Since T is connected and n ≥ 4, it

follows that u ∈ S(T ), and u is adjacent to a leaf and to a vertex, say w, of degree

two. If w is downhill from a vertex in D, then so is u and its leaf neighbor, implying

that D \ {u} is a DDS with cardinality less than γdn(T ), a contradiction. Thus, w is

not downhill from any vertex in D \{u}. Let v = w1, w2, ..., wk = w be a v-w path for

some v ∈ D \ {u}. Since the v-w path is not a downhill path, there exists a wi such

that deg(wi+1) > deg(wi). Let i be the largest index such that deg(wi+1) > deg(wi)

on the v-w path. Since deg(w) = 2 < deg(wi+1), we have that w 6= wi+1 and w is

downhill from wi+1. Therefore, wi+1 6∈ D, and so wi+1 ∈ V \ D. Thus, there exists
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a downhill path from some vertex v′ ∈ D to wi+1. But then w is downhill from v′, a

contradiction. Hence, we may conclude that every vertex in D has degree at least 3,

proving the upper bound.

Clearly, the bound is sharp for the path P4 and the claw K1,3. Let T be a tree in

T with n ≥ 5 vertices. By the construction of T , the set of n−1
3

vertices of degree 3 in

T are very strong vertices of T . By Observation 3.3, we have that every very strong

vertex is in every γdn-set of T , so γdn(T ) ≥
n−1
3
. Hence, γdn(T ) =

n−1
3
.

Next, let T be a tree with order n ≥ 4 and γdn(T ) =
n−1
3
. Then n− 1 is divisible

by 3. If n = 4, then T ∈ {P4, K1,3}, the result holds. Thus, assume that n ≥ 7. We

show that T = Tk ∈ T .

Let D be a γdn-set of T . By our previous argument, every vertex in D has degree

at least three. Since |D| = n−1
3

and D is independent, 3(n−1
3
) ≤ m = n − 1. It

follows every vertex of D has degree 3, and the edges of T are precisely the edges

incident to a vertex of D and a vertex of V \D. In other words, both D and V \D

are independent sets. Note that a pair of vertices in D have at most one common

neighbor in V \ D, else a cycle is formed. To show that T ∈ T , it suffices to show

that every vertex of V \D has degree 1 or 2.

Assume to the contrary, that u ∈ V \D and deg(u) ≥ 3. Without loss of generality,

let v1, v2, and v3 be neighbors of u. Necessarily, vi ∈ D, for 1 ≤ i ≤ 3. But

then (D \ {v1, v2, v3}) ∪ {u} is a DDS of T having cardinality less than γdn(T ), a

contradiction. Hence, T ∈ T .

The way we proved the initial bound by proving that if γdn(G) >
⌊

n−1
3

⌋

G must
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contain some sort of cycle. This proves the following result.

Corollary 4.1. Let G be a connected graph of order n. If γdn(G) >
⌊

n−1
3

⌋

, then G

contains a cycle.

Note that the converse is not true, that is if γdn(G) ≤
⌊

n−1
3

⌋

, this does not imply

that G is acyclic, for example see (a), (d), (e), and (f) in Figure 20. These graphs all

have cycles, but have downhill domination numbers clearly less than n−1
3
.
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