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ABSTRACT 

 

Image Compression By Wavelet Transform 

 

by 

Panrong Xiao 

 

Digital images are widely used in computer applications. Uncompressed digital images require considerable 

storagecapacity and transmission bandwidth. Efficient image compression solutions are becoming more critical with 

the recent growth of data intensive, multimedia-based web applications.  

 

This thesis studies image compression with wavelet transforms.  As a necessary background, the basic concepts of 

graphical image storage and currently used compression algorithms are discussed. The mathematical properties of 

several types of wavelets, including Haar, Daubechies, and biorthogonal spline wavelets are covered and the 

Enbedded Zerotree Wavelet  (EZW) coding algorithm is introduced. The last part of the thesis analyzes the 

compression results to compare the wavelet types. 
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CHAPTER 1 

INTRODUCTION 

 

Data compression is the process of converting data files into smaller files for efficiency of storage and 

transmission. As one of the enabling technologies of the multimedia revolution, data compression is a key to rapid 

progress being made in information technology. It would not be practical to put images, audio, and video alone on 

websites without compression 

What is data compression? And why do we need it? Many people may have heard of JPEG (Joint 

Photographic Experts Group) and MPEG (Moving Pictures Experts Group), which are standards for representing 

images and video. Data compression algorithms are used in those standards to reduce the number of bits required to 

represent an image or a video sequence. Compression is the process of representing information in a compact form. 

Data compression treats information in digital form, that is, as binary numbers represented by bytes of data with 

very large data sets. Fox example, a single small 4″×  4″ size color picture, scanned at 300 dots per inch (dpi) with 

24 bits/pixel of true color, will produce a file containing more than 4 megabytes of data.  At least three floppy disks 

are required to store such a picture. This picture requires more than one minute for transmission by a typical 

transmission line (64k bit/second ISDN). That is why large image files remain a major bottleneck in a distributed 

environment. Although increasing the bandwidth is a possible solution, the relatively high cost makes this less 

attractive. Therefore, compression is a necessary and essential method for creating image files with manageable and 

transmittable sizes. 

In order to be useful, a compression algorithm has a corresponding decompression algorithm that, given the 

compressed file, reproduces the original file. There have been many types of compression algorithms developed. 

These algorithms fall into two broad types, lossless algorithms and lossy algorithms. A lossless algorithm 

reproduces the original exactly. A lossy algorithm, as its name implies, loses some data. Data loss may be 

unacceptable in many applications. For example, text compression must be lossless because a very small difference 

can result in statements with totally different meanings. There are also many situations where loss may be either 

unnoticeable or acceptable. In image compression, for example, the exact reconstructed value of each sample of the 

image is not necessary. Depending on the quality required of the reconstructed image, varying amounts of loss of 

information can be accepted. 

This thesis is concerned with a certain type of compression that uses wavelets. Wavelets, introduced by J. 

Morlet [23], are used to characterize a complex pattern as a series of simple patterns and coefficients that, when 

multiplied and summed, reproduce the original pattern. There are a variety of wavelets for use in compression. 



11 

Several methods are compared on their ability to compress standard images and the fidelity of the reproduced image 

to the original image. 

In order to compare wavelet methods, a software tool called MinImage was used. MinImage was originally 

created to test one type of wavelet [6]. Additional functionality was added to MinImage to support other wavelet 

types. The results of MinImage’s performance and output were then analyzed to compare the wavelet types. 

The remainder of this thesis is organized as follows. Chapter 2 surveys the compression algorithms currently in use. 

These include both lossless and lossy methods. Because many compression algorithms are applied to graphical 

images, the basic concepts of graphical image storage are also discussed. 

Chapter 3 covers the mathematical properties of wavelets. Several types of wavelets are discussed, 

including Haar, Daubechies, and biorthogonal spline wavelets. 

Chapter 4 discusses how to apply wavelet theory to image compression. The Embedded Zerotree Wavelet  

(EZW) coding algorithm is introduced to code the transformed wavelet coefficients. 

Chapter 5 analyzes the compression results. These include the subjective and objective qualities of 

reconstructed images for different wavelet types, timing of composition and decomposition for different wavelet 

types, and timing of EZW coding algorithm for different compression ratios. 

Chapter 6 summarizes the results of the study and provides suggestions for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, we present the some common compression algorithms, which include both lossless and 

lossy methods. Since many compression algorithms are applied to graphical images, the basic concepts of graphical 

image storage (color space) are also discussed. 

 

 Color Space and Human Perception 

 A digital color image can be viewed as a three valued (channels) positive function I=I(x,y) defined onto a 

plane. Its algebraic representation is obtained through an N by M by 3 matrix A. Thus, each entry of A is a three 

component integer vector (pixel color) expressing an intensity value at discrete location (x,y) with a precision p (for 

instance, one bit for each channel). Each component or layer of the image can be viewed as a single channel image, 

which, under particular conditions, can be analyzed independently from the others. This is not the case for RGB 

space, for example (see section 2.2.1), because, if two channels are fixed, human visual perception is very sensitive 

to small changes of the value of the remaining channel. Thus, even though RGB is the most common storage format 

for images, other formats may be better for compression.  

The key step in lossy data compression in which data cannot be recovered exactly is the quantization phase, 

which exploits a data reduction based on their low information content. This is not optimal for RGB images. 

Nevertheless, for three layers, this can lead to the elimination of some low coefficients in a channel in a certain 

spatial location, even though the corresponding coefficients in the other layers are not eliminated because they carry 

high information content. When reconstructing the image at that location, a high visual distortion is introduced. The 

assumption of analyzing the three layers separately is valid only if they are not correlated with respect the visual 

appearance. [12] 

 

RGB Space 

RGB is perhaps the simplest and most commonly used color space (see Figure 1). It uses proportions of 

red, green, and blue that are scaled to a minimum and maximum values for each component (for example, 0x00 

through 0xFF, or 0.0 through 1.0). Most colors in the visible spectrum can be recreated, although not completely. 

This scheme is based on the additive properties of color. [12] 
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Figure 1. RGB Space [12] 

 

YUV Space 

YUV was originally used for PAL (European standard) analog video (see Figure 2). To convert from RGB 

to YUV spaces, the following equations can be used:  

 

Y = 0.299 R + 0.587 G + 0.114 B 

U = 0.492 (B - Y) 

V = 0.877 (R - Y) 

 

Any errors in the resolution of the luminance (Y) are more important than the errors in the chrominance (U, 

V) values. The luminance information can be coded using higher bandwidth than the chrominance information [12]. 

 

 

Figure 2. Example of YUV Space [12] 



14 

YIQ Space 

YIQ is used in the U.S. television standard, NTSC (National Television System Committee). It is similar to 

YUV, except that its color space is rotated 33 degrees clockwise, so that I is the orange-blue axis, and Q is the 

purple-green axis. The equations to convert from RGB to YIQ are [12]:  

 

Y = 0.299 R + 0.587 G + 0.114 B 

I = 0.74 ( R - Y) - 0.27 (  B - Y) = 0.596 R - 0.275 G - 0.321 B 

Q = 0.48 ( R - Y) + 0.41 ( B - Y) = 0.212 R - 0.523 G + 0.311 B 

 

YCrCb Space 

YCrCb is a subset of YUV that scales and shifts the chrominance values into the range of 0 to 1. The linear 

transform from RGB to YCrCb generates one luminance space Y and two chrominance (Cr and Cb) spaces [12].  

 

Y = 0.299 R + 0.587 G + 0.114 B 

Cr = ( ( B -Y ) / 2 ) + 0.5 

Cb = (  ( R - Y ) / 1.6) + 0.5 

 

Comparison of Color Spaces 

Among these three color spaces, only YCrCb is the proper one used in the digital image processing because 

1) There is no correlation among the spaces of YCrCb, so each space can be analyzed separately. 

2) Human eyes are more sensitive to the change of brightless than of color, so Cr and Cb spaces can be 

compressed more heavily than Y space to get better compression ratio. 

Figure 3 is the comparison of RGB space and YCrCb space. [6] 
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Compression Techniques 

Compression takes an input X and generates a representation XC that hopefully requires fewer bits.  There 

is a reconstruction algorithm that operates on the compressed representation XC to generate the reconstruction Y. 

Based on the requirements of reconstruction, data compression schemes can be divided into two broad classes. One 

is lossless compression, in which Y is identical to X. Examples of lossless methods are Run Length coding, 

Huffman coding, Lempel/Ziv algorithms, and Arithematic coding. The other is lossy compression, which generally 

provides much higher compression than lossless compression but allows Y to be different from X.  

 

Lossless Compression 

If data have been losslessly compressed, the original data can be recovered exactly from the compressed 

data. It is generally used for applications that cannot allow any difference between the original and reconstructed 

data.  

 

Run Length Encoding. Run length encoding, sometimes called recurrence coding, is one of the 

simplest data compression algorithms. It is effective for data sets that are comprised of long sequences of a single 

repeated character. For instance, text files with large runs of spaces or tabs may compress well with this algorithm. 

Old versions of the arc compression program used this method. [3] 

RLE finds runs of repeated characters in the input stream and replaces them with a three-byte code. The 

code consists of a flag character, a count byte, and the repeated characters. For instance, the string 

``AAAAAABBBBCCCCC'' could be more efficiently represented as ``*A6*B4*C5''. That saves us six bytes. Of 

course, since it does not make sense to represent runs less than three characters in length with a code, none is used. 

Thus ``AAAAAABBCCCDDDD'' might be represented as ``*A6BBCCC*D4''. The flag byte is called a sentinel 

byte.    

 

Huffman Coding. Huffman coding, developed by D.A. Huffman [3], is a classical data compression 

technique. It has been used in various compression applications, including image compression. It uses the statistical 

property of characters in the source stream and then produces respective codes for these characters. These codes are 

of variable code length using an integral number of bits. The codes for characters having a higher frequency of 

occurrence are shorter than those codes for characters having lower frequency. This simple idea causes a reduction 

in the average code length, and thus the overall size of compressed data is smaller than the original. Huffman coding 

is based on building a binary tree that holds all characters in the source at its leaf nodes, and with their 

corresponding characters' probabilities at the side. The tree is built by going through the following steps:  
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1. Each of the characters is initially laid out as leaf node; each leaf will eventually be connected to the tree. 

The characters are ranked according to their weights, which represent the frequencies of their occurrences in the 

source.  

2. Two nodes with the lowest weights are combined to form a new node, which is a parent node of these 

two nodes. This parent node is then considered as a representative of the two nodes with a weight equal to the sum 

of the weights of two nodes. Moreover, one child, the left, is assigned a "0" and the other, the right child, is assigned 

a "1".  

3. Nodes are then successively combined as above until a binary tree containing all of nodes is created.  

4. The code representing a given character can be determined by going from the root of the tree to the leaf 

node representing the alphabet. The accumulation of "0" and "1" symbols is the code of that character.  

By using this procedure, the characters are naturally assigned codes that reflect the frequency distribution. 

Highly frequent characters will be given short codes, and infrequent characters will have long codes. Therefore, the 

average code length will be reduced. If the count of characters is very biased to some particular characters, the 

reduction will be very significant.  

 

Lempel-Ziv-Welch (LZW) Encoding. This original approach is given by J. Ziv and A. Lempel in 1977 

[17]. T. Welch's refinements to the algorithm were published in 1984 [18]. LZW compression replaces strings of 

characters with single codes. It does not do any analysis of the incoming text. Instead, it just adds every new string 

of characters it sees to a table of strings. Compression occurs when a single code is output instead of a string of 

characters.  

The code that the LZW algorithm outputs can be of any arbitrary length, but it must have more bits in it 

than a single character. The first 256 codes (when using eight bit characters) are by default assigned to the standard 

character set. The remaining codes are assigned to strings as the algorithm proceeds. 

There are three best-known applications of LZW: UNIX compress (file compression), GIF (image 

compression), and V.42 bis (compression over Modems). [3] 

 

Arithmetic Coding. Arithmetic coding is also a kind of statistical coding algorithm similar to Huffman 

coding. However, it uses a different approach to utilize symbol probabilities, and performs better than Huffman 

coding. In Huffman coding, optimal codeword length is obtained when the symbol probabilities are of the form 

(1/2)x, where x is an integer. This is because Huffman coding assigns code with an integral number of bits. This 

form of symbol probabilities is rare in practice. Arithmetic coding is a statistical coding method that solves this 

problem. The code form is not restricted to an integral number of bits. It can assign a code as a fraction of a bit. 
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Therefore, when the symbol probabilities are more arbitrary, arithmetic coding has a better compression ratio than 

Huffman coding. In brief, this is can be considered as grouping input symbols and coding them into one long code. 

Therefore, different symbols can share a bit from the long code.  

Although arithmetic coding is more powerful than Huffman coding in compression ratio, arithmetic coding 

requires more computational power and memory. Huffman coding is more attractive than arithmetic coding when 

simplicity is the major concern. [3] 

 

Lossy Compression Methods 

Lossy compression techniques involve some loss of information, and data cannot be recovered or 

reconstructed exactly. In some applications, exact reconstruction is not necessary. For example, it is acceptable that 

a reconstructed video signal is different from the original as long as the differences do not result in annoying 

artifacts. However, we can generally obtain higher compression ratios than is possible with lossless compression.  

 

Vector Quantization. Vector Quantization (VQ)  is a  lossy compression method. It uses a codebook 

containing pixel patterns with corresponding indexes on each of them. The main idea of VQ is to represent arrays of 

pixels by an index in the codebook. In this way, compression is achieved because the size of the index is usually a 

small fraction of that of the block of pixels. 

The main advantages of VQ are the simplicity of its idea and the possible efficient implementation of the 

decoder. Moreover, VQ is theoretically an efficient method for image compression, and superior performance will 

be gained for large vectors. However, in order to use large vectors, VQ becomes complex and requires many 

computational resources (e.g. memory, computations per pixel) in order to efficiently construct and search a 

codebook. More research on reducing this complexity has to be done in order to make VQ a practical image 

compression method with superior quality. [3] 

 

Predictive Coding. Predictive coding has been used extensively in image compression. Predictive image 

coding algorithms are used primarily to exploit the correlation between adjacent pixels. They predict the value of a 

given pixel based on the values of the surrounding pixels. Due to the correlation property among adjacent pixels in 

image, the use of a predictor can reduce the amount of information bits to represent image. 

This type of lossy image compression technique is not as competitive as transform coding techniques used 

in modern lossy image compression, because predictive techniques have inferior compression ratios and worse 

reconstructed image quality than those of transform coding. [3] 
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Fractal Compression. The application of fractals in image compression started with M.F. Barnsley and A. 

Jacquin [19].  Fractal image compression is a process to find a small set of mathematical equations that can describe 

the image. By sending the parameters of these equations to the decoder, we can reconstruct the original image.   

In general, the theory of fractal compression is based on the contraction mapping theorem in the 

mathematics of metric spaces. The Partitioned Iterated Function System (PIFS), which is essentially a set of 

contraction mappings, is formed by analysing the image. Those mappings can exploit the redundancy that is 

commonly present in most images. This redundancy is related to the similarity of an image with itself, that is, part A 

of a certain image is similar to another part B of the image, by doing an arbitrary number of contractive 

transformations that can bring A and B together. These contractive transformations are actually common geometrical 

operations such as rotation, scaling, skewing and shifting. By applying the resulting PIFS on an initially blank image 

iteratively, we can completely regenerate the original image at the decoder. Since the PIFS often consists of a small 

number of parameters, a huge compression ratio (e.g. 500 to 1000 times) can be achieved by representing the 

original image using these parameters. However, fractal image compression has its disadvantages. Because fractal 

image compression usually involves a large amount of matching and geometric operations, it is time consuming. 

The coding process is so asymmetrical that encoding of an image takes much longer time than decoding.  

 

Transform Based Image Compression. The basic encoding method for transform based compression works 

as follows: 

1. Image transform 

Divide the source image into blocks and apply the transformations to the blocks.  

2. Parameter quantization 

The data generated by the transformation are quantized to reduce the amount of information. This step 

represents the information within the new domain by reducing the amount of data. Quantization is in most cases not 

a reversible operation because of its lossy property. 

3. Encoding 

Encode the results of the quantization. This last step can be error free by using Run Length encoding or 

Huffman coding. It can also be lossy if it optimizes the representation of the information to further reduce the bit 

rate. 

Transform based compression is one of the most useful applications. Combined with other compression 

techniques, this technique allows the efficient transmission, storage, and display of images that otherwise would be 

impractical. [6] 
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DCT-Based Transform Coding. The Discrete Cosine Transform (DCT) [7] was first applied to image 

compression in the work by Ahmed, Natarajan, and Rao. It is a popular transform used by the JPEG (Joint 

Photographic Experts Group) image compression standard for lossy compression of images. Since it is used so 

frequently, DCT  is often referred to in the literature as JPEG-DCT, DCT used in JPEG. 

JPEG-DCT is a transform coding method comprising four steps. The source image is first partitioned into 

sub-blocks of size 8x8 pixels in dimension. Then each block is transformed from spatial domain to frequency 

domain using a 2-D DCT basis function. The resulting frequency coefficients are quantized and finally output to a 

lossless entropy coder. DCT is an efficient image compression method since it can decorrelate pixels in the image 

(since the cosine basis is orthogonal) and compact most image energy to a few transformed coefficients. Moreover, 

DCT coefficients can be lossily quantized according to some human visual characteristics. Therefore, the JPEG 

image file format is very efficient. This makes it very popular, especially in the World Wide Web. However, JPEG 

may be replaced by wavelet-based image compression algorithms, which have better compression performance. 

 

MPEG Video Standard. MPEG (Motion Picture Expert Group) was set up in 1988 to develop a set of 

standard algorithms for applications that require storage of video and audio on digital storage media. The basic 

structure of compression algorithm proposed by MPEG is simple. 

An input image is divided into blocks of 8 X 8 pixels. For a given 8 X 8 block, we subtract the prediction 

generated using the previous frame. The difference between the block being encoded and the prediction is 

transformed using a DCT. The transform coefficients are quantized and transmitted to the receiver. [3] 

 

Wavelet Transform 

Wavelets are functions defined over a finite interval. The basic idea of the wavelet transform is to represent 

an arbitrary function ƒ(x) as a linear combination of a set of such wavelets or basis functions. These basis functions 

are obtained from a single prototype wavelet called the mother wavelet by dilations (scaling) and translations 

(shifts). 

The purpose of wavelet transform is to change the data from time-space domain to time-frequency domain 

which makes better compression results. 

The simplest form of wavelets, the Haar wavelet function (see Figure 4) is defined as: 
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Figure 4. Haar Wavelet 

 

The following is a simple example to show how to perform Haar wavelet transform on four sample 

numbers. Assume we have four numbers  

x(0) = 1.2  x(1) = 1.0  x(2) = -1.0  x(3) = -1.2. 

Let us perform Haar wavelet transform on these four numbers. 



















−
=





































−

−
=



















2.0
2.2

2.0
2.2

)3(
)2(
)1(
)0(

1100
1100
0011

0011

)3(
)2(
)1(
)0(

x
x
x
x

y
y
y
y

 

Notice we can always do inverse transform from x to y: 
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If 0.2 is below our quantization threshold, it will be replaced by 0.  

Then, reconstructed x will be [1.1, 1.1, -1.1, -1.1]. 

After first transform, we keep y(1) and y(3) at the finest level and iterate the transform on y(0) and y(2) 

again. 

z(0) = y(0) + y(2) = 0 and z(2) = y(0) – y(2) = 4.4. 

Those four numbers become [ 0, 0.2, 4.4, 0.2 ]. After quantization, they could be [0, 0, 4, 0], which are 

much easier to be compressed. 



22 

We will discuss more detail on wavelet theory in Chapter 3. 

 

Reason to Use Wavelet Based Compression 

As discussed earlier, for image compression, loss of some information is acceptable. Among all of the 

above lossy compression methods, vector quantization requires many computational resources for large vectors; 

fractal compression is time consuming for coding; predictive coding has inferior compression ratio and worse 

reconstructed image quality than those of transform based coding. So, transform based compression methods are 

generally best for image compression. 

For transform based compression, JPEG compression schemes based on DCT (Discrete Cosine Transform) 

have some advantages such as simplicity, satisfactory performance, and availability of special purpose hardware for 

implementation. However, because the input image is blocked, correlation across the block boundaries cannot be 

eliminated. This results in noticeable and annoying “blocking artifacts”' particularly at low bit rates as shown in 

figure 5. [13]  
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                             (a)                                                                                    (b) 

Figure 5.  (a) Original Lena Image  (b) Reconstructed image to show blocking artifacts 

 

Over the past ten years, the wavelet transform has been widely used in signal processing research, 

particularly, in image compression. In many applications, wavelet-based schemes achieve better performance than 

other coding schemes like the one based on DCT. Since there is no need to block the input image and its basis 

functions have variable length, wavelet based coding schemes can avoid blocking artifacts. Wavelet based coding 

also facilitates progressive transmission of images. [13] 

 

Summary 

In this chapter, we discussed some commonly used compression algorithms including both lossless and 

lossy methods. We also briefly introduced DCT-based compression methods, such as JPEG and MPEG, and basic 

concept of wavelet transform. Among the different lossy compression methods, wavelet based coding outer 

performs the others in image compression. In next chapter, we will discuss more detail on wavelet theory. 
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CHAPTER 3 

 WAVELET THEORY 

 

In this chapter, we cover the mathematical properties of wavelets. Several types of wavelets are discussed, 

including Haar, Daubechies, and biorthogonal spline wavelets. For a better understanding the need of wavelet 

transform, we also briefly discuss the Fourier transform, which is most popularly used for signal processing, 

especially in electrical engineering.  

 

Fourier Transform 

In 19th century, the French mathematician, J. Fourier, showed that any periodic function can be expressed 

as an infinite sum of periodic complex exponential functions. Many years after this remarkable property of periodic 

functions was discovered, the ideas were generalized to non-periodic functions, and then to periodic or non-periodic 

discrete time signals. After this, Fourier transform became a very famous tool for computer calculations. 

 The equation 

∫
∞

∞−

−= dtetfF tjωω )()(  

is generally called the Fourier Transform. The equation 

∫
∞

∞−
= ωω

π
ω deFtf tj)(

2
1)(  

is called the inverse Fourier Transform. 

Note that in the Fourier Transform equation, the integration is from minus infinity to plus infinity over 

time. So, no matter when the component with frequency ω  appears in time, it will affect the result of the integration 

equally as well. The lack of time information is one serious weakness of Fourier Transform. That is why Fourier 

transform is not suitable if the signal has time varying frequency, i.e., the signal is non-stationary. 

 

Windowed Fourier Transform 

To solve the above problem, the Windowed Fourier Transform is used. The basic idea is to divide the 

signal into small enough segments, where these segments can be assumed to be stationary. The width of this window 

must be equal to the segment of the signal where this assumption is valid. 

The Windowed Fourier Transform has several problems. If we use a window of infinite length, we get the 

Fourier Transform, which gives perfect frequency resolution, but no time information. On the other hand, in order to 

obtain the a stationary sample, we must have a small enough window in which the signal is stationary. The narrower 
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we make the window, the better the time resolution, and better the assumption of stationarity, but poorer the 

frequency resolution. However, the Wavelet transform solves the dilemma of resolution to a certain extent, as we 

will see in the next part. 

 

Wavelet Transform 

The fundamental idea behind wavelets is to analyze the signal at different scales or resolutions, which is 

called multiresolution. Wavelets are a class of functions used to localize a given signal in both space and scaling 

domains. A family of wavelets can be constructed from a mother wavelet. Compared to Windowed Fourier analysis, 

a mother wavelet is stretched or compressed to change the size of the window. In this way, big wavelets give an 

approximate image of the signal, while smaller and smaller wavelets zoom in on details. Therefore, wavelets 

automatically adapt to both the high-frequency and the low-frequency components of a signal by different sizes of 

windows. Any small change in the wavelet representation produces a correspondingly small change in the original 

signal, which means local mistakes will not influence the entire transform. The wavelet transform is suited for non-

stationary signals, such as very brief signals and signals with interesting components at different scales. [15] 

Wavelets are functions generated from one single function ψ , which is called mother wavelet, by dilations and 

translations 

)(||)( 2/1
, a

bxaxba
−

= − ψψ  

where ψ  must satisfy ∫ = 0)( dxxψ . 

The basic idea of wavelet transform is to represent any arbitrary function f as a decomposition of the 

wavelet basis or write f as an integral over a and b of ba,ψ . 

Let mm anbbaa 000 , == ,with nm, ∈  integers, and 0,1 00 >> ba  fixed. Then the wavelet 

decomposition is  

∑= nmnm fcf ,, )( ψ . 

Let 20 =a , 10 =b , we have an orthonomal basis, so that 

∫>==< dxxfxffc nmnmnm )()(,)( ,,, ψψ  

In image compression, we are dealing with sampled data that are discrete in time. We would like to have 

discrete representation of time and frequency, which is called the discrete wavelet transform (DWT). Before we start 

the DWT, we need to study another concept, multiresolution analysis. 
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Multiresolution Analysis and the Scaling Function 

Let us define a function )(xφ that we call a scaling function. A very important property of the scaling 

function is it can be represented by the dilations of itself.  

∑
=

−=
N

k
k ktht

0
)2(2)( φφ  is called the multiresolution analysis (MRA) equation. 

We define )()( kttk −= φφ . The set of all functions that can be obtained by linear combination of the set 

)}({ tkφ is called the span of the set )}({ tkφ or Span )}({ tkφ . The closure of Span )}({ tkφ denoted by 

Span )}({ tkφ  is obtained by adding all functions that are limits of sequences of functions in Span )}({ tkφ . Let us 

call the closure set 0V . To generate a function at a higher resolution, we can use dilations of the mother scaling 

function. Define )2(2)( 2/
, ktt jj
kj −= φφ , with the first index referring the resolution while the second one 

denotes the translation. 

Notice that any function that can be represented by the translates of )(tφ can also be represented by a linear 

combination of translates of )(0,1 tφ . The converse is not true. 

Defining 1V =Span )}({ ,1 tkφ , we have 10 VV ⊂ . Similarly, we can get the nested spaces 

nVVVV ⊂⊂⊂ L210 . 

We denote the set of functions that can be obtained by a linear combination of the translates of the mother 

wavelet as 0W . It can be shown that a function in 1V  can be decomposed into a function in 0V  and a function in 

0W  or  

001 WVV ⊕= . 

That means that any functions in 1V  can be represented by functions in 0V  and 0W . 

For a chosen scaling function, the mother wavelet )(tψ  can be written as  

∑=
k

kk twt )()( ,1φψ  

or  

∑ −=
k

k ktwt )2(2)( φψ  
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Similarly, for any functions that can be represented at resolution 1+j , we define jW  as the closure of the 

span of )(, tkjφ . We can show that 

jjj WVV ⊕=+1 . 

Therefore, we obtain 

0101 WWWVV jjj ⊕⊕⊕⊕= −+ L .  

 

 

 Discrete Wavelet Transform Implementation Using Filters 

We can write ∫>==< dxxfxffc nmnmnm )()(,)( ,,, ψψ  as the following algorithm. 

∑ −−=
k

kmknnm fagfc )()( ,12,  

∑ −−=
k

kmknnm fahfa )()( ,12,   (Equation 1) 

where 1)1( +−−= l
l

l hg  and ∫ −= .)2()(2 2/1 dxnxhn ϕϕ  When f  is given by sampled form, then we can 

assume those samples as the highest order resolution approximation coefficient na ,0 . Equation 1 gives the coding 

algorithm on these sampled values with low-pass filter h and high-pass filter g. For orthonormal wavelet bases, these 

filters give exact reconstruction by the following equation: 

∑ −−− +=
n

nmlnnmlnnm fcgfahfa )].()([)( ,2,2,1  

 

Compact Supported Orthogonal Wavelets 

In this section, we will determine the filter coefficients for compact supported orthogonal wavelets. 

We begin with the scaling function 

∑ −=
k

k ktht ).2(2)( φφ  

By integrating both sides, we have 

dtkthdtt
k

k )2(2)( −= ∫ ∑∫
∞

∞−

∞

∞−
φφ . 

Substituting tkx −= 2 and  dtdx 2= on the right hand side, we get 
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dxxhdxxhdtt
k

k
k

k ∫∑∫∑∫
∞

∞−

∞

∞−

∞

∞−
== )(

2
1

2
1)(2)( φφφ . 

Then, divide both sides by the integral and we have  

2=∑
k

kh .                                                 (Equation 2) 

We use the orthogonality condition on the scaling function to get another condition on { }kh : 

∫ ∫∑ ∑ −−=
k m

mk dtmthkthdtt )2(2)2(2|)(| 2 φφφ  

∑∑ ∫ −−=
k m

mk dtmtkthh )2()2(2 φφ  

∑∑ ∫ −−=
k m

mk dxmxkxhh )()( φφ  

where in the last equation, we substitute t2 by x . 

The integral on the right hand side is zero except when mk = . When mk = , we obtain 

                       ∑ =
k

kh .12                                                     (Equation 3) 

By using the orthogonality of  the translates of scaling function we have 

∫ =− mdtmtt δφφ )()( . 

Substituting )(tϕ  by scaling function, we get 

dtlmthkth
k

k
k

k 







−−








− ∑∫ ∑ )22(2)2(2 φφ  

∑∑ ∫ −−−=
k l

lk dtlmtkthh .)22()2(2 φφ  

By substituting tx 2= , we get 

∑∑ ∫∫ −−−=−
k l

lk dxlmxkxhhdtmtt )2()()()( φφφφ  

                                                       ∑∑ ∑ −+− ==
k l k

mkklmklk hhhh .2)2(δ  

Therefore, we have equation 

                             ∑ =−
k

mmkk hh δ2            (Equation 4) 
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By using equations 2, 3 and 4, we can generate filter coefficients for scaling funcition. 

For 2=k , from Equation 2 and 3, we have  

210 =+ hh  

.12
1

2
0 =+ hh  

The only solution is 
2

1
10 == hh , which is the Harr scaling function. 

 

For 4=k , from Equation 2, 3, and 4, we have 

2210 =++ hhh  

12
2

2
1

2
0 =++ hhh  

03120 =+ hhhh . 

The solutions to these equations include the 4-tap (filter length is 4) Daubechies scaling function. 

24
31

0
+

=h , 
24
33

1
+

=h , 
24
33

2
−

=h , .
24
31

3
−

=h  

 

We know the wavelet function is  

∑ −=
k

k ktwt ).2(2)( φψ  

  If the wavelet is orthogonal to the scaling function at the same scale, we have 

∫ =−− .0)()( dtmtkt ψφ  

Then, we can obtain the wavelet filter coefficients from the scaling filter coefficients [5]. 

kN
k

k hw −−±= )1( . 

 

Haar Wavelet. The Haar scaling function is defined as:  



 <≤

=
otherwise

x
x

0
101

)(φ  

The scaling function is plotted in Figure 6. 
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Figure 6. Haar Scaling Function 

 

In the scaling equation ∑
=

−=
N

k
k kxCx

0
)2()( ϕϕ , only 110 == cc , all the other coefficients are zeros.  

Haar wavelets are defined as: 

ψ ψa b
a ax x b,

/( ) ( )= −2 22 , ,12,...,1,0 −= ab  

 

 where  







<≤−

<≤
=

otherwise
x

x
x

0
12/11

2/101
)(ψ   is the Haar mother wavelet. 

The Haar mother wavelet function is plotted in Figure 7. 
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Figure 7. Haar Mother Wavelet 

 

Daubechies Orthogonal Wavelets. There are no explicit expressions for Daubechies compact support 

orthogonal wavelets and corresponding scaling functions. 

Table 1, 2, and 3 present the wavelet filter coefficients for Daubechies 4, 6, and 10 taps wavelets. 

Figure 8, 9, and 10 are their scaling and wavelet functions respectively. 
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Note that the longer the filter, the smoother the scaling and wavelet functions. 

 

Table 1. Coefficients for the 4-tap Daubechies Low-pass Filter [9] 

 

     H0           .4829629131445341 

      H1             .8365163037378077 

       H2           .2241438680420134 

      H3                          -.1294095225512603 

 

 

 

 

 

 

 

 

 

Figure 8. Daubechies 4-tap Scaling and Wavelet Functions 

 

 

Table 2. Coefficients for the 6-tap Daubechies Low-pass Filter 

 

H0      .3326705529500825 

H1      .8068915093110924 

H2      .4598775021184914 

H3                -.1350110200102546 

H4                -.0854412738820267 

H5                 .0352262918857095 
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Figure 9. Daubechies 6-tap Scaling and Wavelet Functions 

 

Table 3. Coefficients for the 10-tap Daubechies Low-pass Filter 

 

H0      .1601023979741929 

H1      .6038292697971895 

H2      .7243085284377726 

H3                 .1384281459013203 

H4                -.2422948870663823 

H5                -.0322448695846381 

H6                 .0775714938400459 

H7                -.0062414902127983 

H8                -.0125807519990820 

H9                -.0033357252854738 

 

 

 

 

 

 

 

 

 

Figure 10. Daubechies 10-tap Scaling and Wavelet Functions 
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Biorthogonal and Spline Wavelets. 

As we know, most images are smooth. It is reasonable to use smooth mother wavelet for image analysis. 

On the other hand, it is also desirable that the mother wavelet is symmetric so that the corresponding wavelet 

transform can be implemented using mirror boundary conditions that reduces boundary artifacts. Unfortunately, 

except for the Harr wavelet (trivial example), no wavelets are both orthogonal and symmetric. 

To achieve the symmetric property, we can relax the orthogonality requirement by using a biorthonogal basis. In this 

case, we keep the same decomposition as in Equation 1. The reconstruction becomes 

∑ −−− +=
n

nmlnnmlnfm fcgfahfa )](~)(~[)( ,2,2,1  

where h~   and g~  may be different from h, g to obtain exact reconstruction. The relations between them are given 

by the following equations. 

1)1(~
+−−= n

n
n hg , 1

~)1( +−−= n
n

n hg , and ∑ =+
n

kknnhh 0,2
~ δ . (Equation 5) 

Define 

∑ −=
n

n nxhx )2()( φφ  and ∑ −=
k

n nxhx )2(~~)(~ φφ . 

Also define 

∑ −=
n

n nxgx )2()( φψ  and ∑ −=
k

n nxgx )2(~~)(~ φψ . 

Then we can rewrite )(, fa nm and )(, fc nm  as: 

∫−>==< dxxfxffa nm
m

nmnm )()(2,)( ,
2/

,, φφ  

∫−>==< dxxfxffc nm
m

nmnm )()(2,)( ,
2/

,, ψψ  

and reconstruction is ∑ ><=
nm

nmnm ff
,

,,
~, ψψ . 

The following figure shows the relation between the filter structure and wavelets functions. 
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Figure 11. Filter Structure and The Associating Wavelets 

 

For symmetric filters, the exact reconstruction condition on h  and h~  given in Equation 5 can be 

represented  by  

1)(~)()(~)( =+++ πξπξξξ HHHH  

where ∑ −−=
n

jn
nehH ξξ ~2)(~ 2/1 and ∑ −−=

n

jn
nehH ξξ 2/12)( . 

Together with the divisibility of H  and H~ , respectively, by kje )1( ξ−+  and kje
~

)1( ξ−+ , we have [12] 









+







 +−
= ∑

−

=

1

0

222 )()2/sin()2/sin(.
1

)2/cos()(~)(
l

p

lpl R
p

pl
HH ξξξξξξ    (Equation 6) 

where )(ξR  is an odd polynomial in )cos(ξ  and kkl ~2 += .  

 

Spline Filters. Let us choose 0≡R  with 2/)2/cos()(~ ξξξ jkk eH −=  where 0=k  if k~  is even, 

1=k if  k~  is odd. We have  
















 +−
= ∑

−

=

−
1

0

22/~2 )2/sin(.
1

)2/cos()(
l

p

pjkkl

p
pl

eH ξξξ ξ  

Then, we get the corresponding function φ~  which is a B-spline function. 

Note that a B-spline of degree n is defined as: 

444 3444 21
L

timesn

n xxx
)1(

00 )(**)()(
+

= φφφ  

where 


 <≤

=
.0

101
)(0

otherwise
x

xφ  

)(nH

)(nG

)(~ nH

)(~ nG
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We present two examples from this family. They correspond to 2~,2 == kk  and 2~,4 == kk . Table 4 

and 5 list the their coefficients nH and nH~ . The corresponding scaling and wavelet functions are plotted in Figure 

9 and 10 respectively. 

 

 

 

                              

(a)                                                                                  (b) 

 

 

 

 

 

 

 

 

            (c)                                      (d)     

Figure 12. Spline Examples with 2~,2 == kk  (a) Scaling Function φ~  

(b) Wavelet Function ψ~   (c) Scaling Function φ   (d) Wavelet Function ψ  
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Table 4.  Filter Coefficients with 2~,2 == kk  

 

n           0         ± 1        ± 2               

 

nH     -1/8        1/4        3/4     

     nH~      1/2         1/4          0 

                      

 

 

 

 

 

 

 

 

 

(a)                                                                      (b) 

 

 

 

 

 

 

(c)      (d) 

Figure 13. Spline Examples with 2~,4 == kk . (a) Scaling Function φ~  

(b)Wavelet Function ψ~  (c) Scaling Function φ~  (d) Wavelet Function ψ  
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Table 5. Filter Coefficients with 2~,4 == kk  

 

n           0         ± 1        ± 2       ± 3         ± 4 

 

nH    45/64     19/64     -1/8     -3/64      3/128 

nH~     1/2         1/4          0           0           0 

 

 

A Spline Variant with Less Dissimilar Lengths. We choose 0≡R , and factor the right hand side of  

Equation 6 to break the polynomial into a product of two polynomials in )2/sin(ξ . Allocate the polynomials to 

H  and H~  respectively to make the length of  h  and  h~  as close as possible. 

The following example is the shortest one in this family (shortest h and h~ ). It corresponds to 4== kl . 

 

Table 6. Filter Coefficients with 4== kl  

 

n           0                 ± 1              ± 2                ± 3              ± 4 

 

nH  0.602949     0.266864     -0.078223     -0.016864     0.026749 

nH~  0.557543      0.295636     -0.028772     -0.045636          0 
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Figure 14. Spline Examples with 4~
=== kkl  

 

Comparison of Wavelet Properties 

The following Table 7 shows the property comparison of three kinds of wavelets. 

 

Table7. Property Comparison of Three Kinds of Wavelets 

Property Haar Daubechie Biorthogonal Spline 

Explicit Function Yes No Yes 

Orthogonal Yes Yes No 

Symmetric Yes No Yes 

Continuous No Yes Yes 

Compacted support Yes Yes Yes 

Maximum regularity for 

order L 

No No Yes  

Shortest scaling function 

for order L 

Yes No Yes  
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Haar and Daubechie’s wavelets have orthogonality, which has some nice features. 

1) The scaling function and wavelet function are the same for both forward and inverse transform. 

2) The correlations in the signal between different subspaces are removed.  

Among the three kinds of wavelets, the Haar wavelet transform is the simplest one to implement, and it is the 

fastest. The major disadvantage of the Haar wavelet is its discontinuity, which makes it difficult to simulate a 

continuous signal.  

Daubechie found the first continuous orthogonal compact support wavelet. Note that this family of wavelets is 

not symmetric. The advantage of symmetry is that the corresponding wavelet transform can be implemented using 

mirror boundary conditions that reduces boundary artifacts. That is why we introduce the biorthogonal spline 

wavelet. 

For the biorthogonal spline wavelet, the scaling function is a B-spline. The B-spline of degree N is the shortest 

possible scaling function of order N-1 and B-splines are the smoothest scaling functions for a filter of a given length 

[2]. Because splines are piecewise polynomial, they are easy to manipulate. For example, it is simple to get spline 

derivatives and integrals. 

 

Summary 

To understand the need for wavelet transforms, in this chapter, we first introduced the most popularly used 

Fourier Transform. Then, we covered the mathematical properties of several types of wavelets including Haar, 

Daubechies, and birothogonal spline wavelets. In the next chapter, we will discuss how to apply the wavelet 

transform to image compression. 
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CHAPTER 4 

WAVELET APPLIED IN IMAGE COMPRESSION 

 

In order to compare wavelet methods, a software tool coded in C++ called MinImage was used. MinImage 

was originally created to test one type of wavelet [6]. Additional functionality was added to MinImage to support 

other wavelet types, and the EZW coding algorithm was implemented to achieve better compression results. In this 

chapter, we discuss some implementation details of MinImage. 

 

Baseline Schema 

The wavelet image compressor, MinImage, is designed for compressing either 24-bit true color or 8-bit 

gray scale digital images. It was originally created to test Haar wavelet using subband coding. To compare different 

wavelet types, other wavelet types, including Daubechies and birothogonal spline wavelets were implemented. Also, 

the original subband coding were changed to EZW coding to obtain better compression results.   

A very useful property of MinImage is that different degrees of compression and quality of the image can 

be obtained by adjusting the compression parameters through the interface. The user can trade off between the 

compressed image file size and the image quality. The user can also apply different wavelets to different kind of 

images to achieve the best compression results.  

Figure 15 is the baseline structure of MinImage compressing sechema. 

 

 

 

 

 

 

 

 

Figure 15.  The Baseline Schema of MinImage 

 

For more details on the Preprocessor, see [6]. In the rest of the chapter, we will focus on implementation of 

discrete wavelet transform (DWT) and EZW coding. 

Source 
Image 

Preprocessor     DWT EZW Coding

Compressed 
Image 

Entropy 
Coding 

Decompression 
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Discrete Wavelet Transform (DWT) 

The discrete wavelet transform usually is implemented by using a hierarchical filter structure. It is applied 

to image blocks generated by the preprocessor. We choose the Daubechies 4-tap wavelet and Spline2_2 wavelet to 

demonstrate the implementation.  

 

Daubechies 4-tap Wavelet 

The low pass filter coefficients for Daubechies orthogonal wavelet are as follows: 

h[0]           .4829629131445341 

h[1]             .8365163037378077 

h[2]           .2241438680420134 

      h[3]                        -.1294095225512603 

One important property of the Daubechies wavelets is the coefficient relationship between the highpass and 

lowpass filters. They are not independent of each other, and they are related by  

][)1(]1[ nhnNg n •−=−−  

where h[n] is the low pass filter, g[n] is the high pass filter, and N is the filter length. 

The transform (decomposition) matrix is 























































−

−−

−

−−

−−

−−

−−

−−

−−

=

23
10
0123

3210

01
32

01
32

23
10
0123

3210
01

32
23

10
0123

3210
01

32
23

10
0123

3210

hh
hh
hhhh

hhhh

hh
hh

hh
hh

hh
hh
hhhh

hhhh
hh

hh
hh

hh
hhhh

hhhh
hh

hh
hh

hh
hhhh

hhhh

W

 

Because Daubechies wavelets are orthogonal, the inverse matrix of W is the same. 
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Biorthogonal Spline2_2 Wavelet 

For Biorthogonal spline wavelets, the forward transform and inverse transform use different wavelet 

functions.  

For forward transform, the low pass filter coefficients are: 

h[0] = h[4] = -0.176776 

h[1] = h[3] = 0.353553 

h[2] = 1.060660 

For the inverse transform, the low pass filter coefficients are: 

  353561.0]2[~]0[~
== hh  

0.707122]1[~
=h  

The relation between low pass and high pass filters is given by: 

 ][)1(]1[ nhnNg n−=−−  

][~)1(]1~[~ nhnNg n−=−−  

where N and N~ and filter length for transform and inverse transform respectively. 

So, we have the transform and inverse transform matrices as follows: 
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Decomposition and Composition Algorithms 

Figure 16 shows the 1-D wavelet decomposition (forward transform) and composition (inverse transform) 

algorithms. 
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Figure 16.  The 1-D Wavelet Decomposition Algorithm in MinImage [6] 

Note: The nMaxDecompositionStep is defined to control when the wavelet decomposition should be 

stopped. For a complete wavelet decomposition of the signal Xn with 2n entries, the nMaxDecompositionStep can be 

defined in the domain of [1, n]. DecompositionStep implements one step of the wavelet decomposition in an array of 

data. [6] 

original signal x[0..n-1], n = 2k 

normalize n
ixix ][][ = , i = 0,1,...n-1 

h = n 

nDecompositionStep = 0 

h > 1 

nDecompositionStep ++ 

nDecompositionStep > nMaxDecompostionStep 

DecompositionStep( x[0..h-1] ) 

wavelet coefficients x[0..n-1] 

h = h / 2 

n 
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Figure 17.  The 1-D Wavelet Composition Algorithm in MinImage [6] 

 

wavelet coefficients x[0..n-1], n = 2k 
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As we know, images are 2-D signals. A simple way to perform wavelet decomposition on an image is to 

alternate between operations on the rows and columns. First, wavelet decomposition is performed on the pixel 

values in each row of the image. Then, wavelet decomposition is performed to each column of the previous result. 

The process is repeated to perform the complete wavelet decomposition.  

The following figure shows the 2-D wavelet decomposition algorithm. 

 

PROCUDURE 2D-Decomposition( ImageData[ 0..n-1, 0..n-1 ] ) 

FOR row = 0 TO n-1 DO 

FOR col = 0 TO n-1 DO 

ImageData[ row, col ] / = n 

h = n 

WHILE h > 1 DO 

FOR row = 0 TO h-1 DO 

DecompositionStep( ImageData[ row, 0..h-1 ] ) 

END FOR 

FOR col = 0 TO h-1 DO 

DecompositionStep( ImageData[ 0..h-1, col ] ) 

END FOR 

h = h / 2 

 END WHILE 

        END FOR 

 END FOR 

END PROCEDURE 

Figure 18. The 2D Wavelet Decomposition Algorithm [6] 

 

 

Figure 19 illustrates each step of the 2-dimensional wavelet decomposition. The shaded parts are wavelet 

coefficients. 
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Figure 19. The 2D Wavelet Decomposition of An Image [6] 

 

Enbedded Zerotree Wavelet (EZW) Coding 

After the 2-D wavelet decomposition, the wavelet transform blocks contain the wavelet coefficients. This 

section introduces the Enbedded Zerotree Wavelet coding to code the transformed wavelet coefficients. 

 

Subbands in the Wavelet Transform Blocks 

For a 1-D wavelet transform, a vector of the wavelet coefficients can be divided into subbands after the 

wavelet decomposition as shown in the following figure: 

 

... ...
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overall 
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Figure 20.  Subbands after the 1-D Wavelet Decomposition [6] 

 
Similarly, a block of the two-dimensional wavelet coefficients can be divided into subbands as follows: 

 

 

 

 
Figure 21.  Subbands in A Wavelet Transform Block after the 2-D Wavelet [6] 
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EZW Coding  

An EZW encoder was specially designed by Shapiro [1] to use with wavelet transforms. In fact, EZW 

coding is more like a quantization method. It was originally designed to operate on images (2D-signals), but it can 

also be used on other dimensional signals.  

The EZW encoder is based on progressive encoding to compress an image into a bit stream with increasing 

accuracy. This means that when more bits are added to the stream, the decoded image will contain more detail, a 

property similar to JPEG encoded images. Progressive encoding is also known as embedded encoding, which 

explains the E in EZW.  

Coding an image using the EZW scheme, together with some optimizations, results in a remarkably 

effective image compressor with the property that the compressed data stream can have any bit rate desired. Any bit 

rate is only possible if there is information loss somewhere, so that the compressor is lossy. However, lossless 

compression is also possible with an EZW encoder, but of course with less spectacular results.  

The EZW encoder is based on two important observations:  

1. Natural images in general have a low pass spectrum. When an image is wavelet transformed, the energy 

in the subbands decreases as the scale decreases (low scale means high resolution), so the wavelet coefficients will, 

on average, be smaller in the higher subbands than in the lower subbands. This shows that progressive encoding is a 

very natural choice for compressing wavelet transformed images, since the higher subbands only add detail.  

2. Large wavelet coefficients are more important than small wavelet coefficients.  

These two observations are used by encoding the wavelet coefficients in decreasing order, in several 

passes. For every pass, a threshold is chosen against which all the wavelet coefficients are measured. If a wavelet 

coefficient is larger than the threshold, it is encoded and removed from the image; if it is smaller it is left for the next 

pass. When all the wavelet coefficients have been visited, the threshold is lowered, and the image is scanned again 

to add more detail to the already encoded image. This process is repeated until all the wavelet coefficients have been 

encoded completely or another criterion has been satisfied (maximum bit rate for instance). 

A wavelet transform transforms a signal from the time domain to the joint time-scale domain. This means 

that the wavelet coefficients are two-dimensional. If we want to compress the transformed signal, we have to code 

not only the coefficient values, but also their position in time. When the signal is an image, then the position in time 

is better expressed as the position in space. After wavelet transforming an image, we can represent it using trees 

because of the subsampling that is performed in the transform. A coefficient in a low subband can be thought of as 

having four descendants in the next higher subband (see figure 22). One of each four descendants also has four 

descendants in the next higher subband and we see a quad-tree emerge: every parent has four children. [14] 



50 

  

 

 

Figure 22. 

The Relations between Wavelet Coefficients in Different Subbands as Quad-trees.  

  A zerotree is a quad-tree of which all nodes are equal to or smaller than the root. The tree is coded with a 

single symbol and reconstructed by the decoder as a quad-tree filled with zeroes. To clutter this definition we have 

to add that the root has to be smaller than the threshold against which the wavelet coefficients are currently being 

measured.  

The EZW encoder exploits the zerotree based on the observation that wavelet coefficients decrease with 

scale. It assumes that there will be a very high probability that all the coefficients in a quad tree will be smaller than 

a certain threshold if the root is smaller than this threshold. If this is the case, then the whole tree can be coded with 

a single zerotree symbol. Now if the image is scanned in a predefined order, going from high scale to low, implicitly 

many positions are coded through the use of zerotree symbols. [14] 

 

EZW Algorithm 

The first step in the EZW coding algorithm is to determine the initial threshold. It can be calculated by the 

following equation: 

 )),(((log
0

22 yxCMAXt =  

where MAX(.) means the maximum coefficient value of  the image and C(x,y) denotes the coefficient. We start the 

coding loop with this initial threshold. 
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MAIN PROCEDURE 

threshold = initialThreshold; 

DO 

{ 

dominantPass(); 

subordinatePass(); 

threshold = threshold / 2; 

} 

WHILE (threshold > stopThreshold); 

END MAIN PROCEDURE 

Figure 23:  Algorithm of the main loop 

 

From the above algorithm, we see that two passes are used to code the image. In the first pass, the dominant 

pass, the image is scanned and a symbol is outputted for every coefficient. Notice two different scan orders (see 

figure 4.3) can be applied to this algorithm and Morton scan is implemented because it is simpler to code.  

Only four symbols are used to code the coefficients. 

1) If the coefficient is larger than the threshold a P (positive) is coded 

2) Else if the coefficient is smaller than minus the threshold an N (negative) is coded. 

3) Else if the coefficient is the root of a zerotree then a T (zerotree) is coded. 

4) Else if the coefficient is smaller than the threshold but it is not the root of a zerotree, then a Z (isolated 

zero) is coded. This happens when there is a coefficient larger than the threshold in the subtree.  

The effect of using the N and P codes is that when a coefficient is found to be larger than the threshold (in 

absolute value or magnitude), its two most significant bits are outputted.  

Notice that in order to determine if a coefficient is the root of a zerotree or an isolated zero, we will have to 

scan the whole quad-tree. This process is time consuming. Also, to prevent outputting codes for coefficients in 

identified zerotrees, we will have to keep track of them. This means memory for book keeping.  

Finally, all the coefficients that are in absolute value larger than the current threshold are extracted and 

placed without their sign on the subordinate list, and their positions in the image are filled with zeroes. This will 

prevent them from being coded again.  

The second pass, the subordinate pass, is the refinement pass. We output the next most significant bit of all 

the coefficients on the subordinate list.  

The main loop ends when the threshold reaches the stop threshold value. 
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Figure 24.  Two Different Scan Orders[14] 

 

PROCEDURE Bool Zerotree(int threshold, Coefficient CurrentCoefficient) 

BEGIN 

            Put the current efficient into Children coefficent list; 

           WHILE ( Children coefficient list is not empty) 

           BEGIN 

                     Get a coefficient from the Children coefficient list; 

                   IF coefficient  >= threshold, THEN 

                        RETURN FALSE 

                 ELSE  

                      Put the four children into the Children coefficient list; 

               END IF 

         END 

   RETURN TR 

END PRECODURE 

Figure 25.  Algorithm to Determine If A Coefficient is A Root of Zerotree 
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PROCEDURE DominantPass() 

BEGIN 

         initialize coded coefficient list; 

       WHILE  (coefficient list not empty) 

                get one coded coefficient from the list; 

               IF  coefficient was coded as P, N or Z then  

                          code next scaned coefficient; 

                        put the coefficient into coded coefficient list; 

                        IF coefficient was coded as P or N then  

                              add abs(coefficient) to subordinate list; 

                       set coefficient position to zero; 

                      END IF 

            END IF 

  END WHILE 

END PROCEDURE 

Figure 26.  Algorithm for the Dominant Pass 

 

Here we use a coefficient list to keep track of the identified zerotrees. To start this loop, we have to 

initialize the coefficient by manually adding the first quad-tree root coefficients to the coefficient list. The step of 

“code next scaned coefficient” checks the next uncoded coefficient of the image, indicated by the scanning order 

and outputs a P, N, T or Z. After coding the coefficient, it is put in the coded coefficient list. Thus, the coded 

coefficient list contains only coefficients which have already been coded, i.e. a P, N, T, or Z has already been 

outputted for these coefficients. Finally, if a coefficient is coded as a P or N, we remove it from the image and place 

it on the subordinate list.  

This loop stops as long as the coefficients at the last level, the highest subbands, are coded as zerotrees.  

The subordinate pass follows the dominant pass:  
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PROCEDURE SubordinatePass 

BEGIN 

  subordinateThreshold = currentThreshold / 2; 

   FOR  all elements on subordinate list do  

   BEGIN 

     IF (coefficient > subordinateThreshold) 

       output a one; 

       coefficient  = coefficient - subordinateThreshold; 

       ELSE  output a zero; 

   END FOR 

END PROCEDURE 

Figure 27.  Algorithm for the Subordinate Pass 

 

Entropy Coding 

The basic idea of entropy coding is to apply one or more lossless compression methods on EZW coded data 

to obtain a better compression ratio. 

 Zlib is a free compression library coded in C and downloaded from the Internet. It compresses the source 

data by LZ77 (Lempel-Ziv1977) and/or Huffman entropy encoding. Its deflation algorithms are similar with those 

used by PKZIP (an MSDOS based software by PKWARE, Inc.). A wrapper class is written to apply Zlib 

compression engine as the last stage of MinImage to compress all the wavelet coefficients to a final wavelet image 

file with the extension LET. [6] 

 

Specification of the Wavelet Image File: LET 

A LET file is defined as the wavelet image file read and written by MinImage. 

The following is the Let file format. 

Figure 28. LET File Format 

Note: The LET file header contains the information used to uncompress the image. The image data is the 

EZW coded wavelet coefficients compressed by Zlib engine. 

Figure 29 shows the detail of the LET file header. 

LET file header 

Image data 
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LET file header Size( bytes) Content 

Identifier 2 “TE” 

ImageType 1 
0 = grayscale 

1 = truecolor 

Width 2 Pixel width of the whole image 

Height 2 Pixel height of the whole image 

SampleMode 1 

0 = H1V1 

1 = H2V1 

2 = H2V2 

WaveletBlockBase 1 Log2WaveletTransformBlockWidth 

WaveletType 1 

0 = Standard Haar 

1 = Nonstandard Haar 

2 = Daubechies 4-tap 

3 = Daubechies 6-tap 

4 = Daubechies 8-tap 

5 = Daubechies 10-tap 

6 =  Spline 2_2 

7 = Spline 2_4 

8 = Spline 4_4 

ImageDataSize 4 The size (bytes) of the image data in the Let file. 

StopThreshold 6 The stop threshold for EZW coding 

 

Figure 29. LET File Header Format 

 

Summary 

In this chapter, we discussed the baseline and detail of implementation of MinImage. First, the image is 

sampled and preprocessed, then, we apply wavelet transform to preprocessed data to get wavelet coefficients. After 

this, wavelet coefficients are coded by EZW coding algorithm. Finally, Zlib entropy coding is used to perform a 

lossless compression to obtain a better compression ratio. 
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CHAPTER 5 

EXPERIMENTS 

 

In this chapter, we analyze the compression results produced by MinImage. These include the subjective 

and objective qualities of reconstructed images for different wavelet types, timing of composition and 

decomposition for different wavelet types, and timing of EZW coding algorithm for different compression ratios. As 

a necessary background, the basic concept of objective distortion criteria is introduced. 

 

Objective Distortion Criteria 

A natural way to determine the fidelity of a recovered image is to find the difference between the original 

and reconstructed values. Two popular measures of distortion are the squared error measure and the absolute 

difference measure, which are called difference distortion measures. If }{ nx  is the source output and }{ ny  is the 

reconstructed sequence, the squared error measure is given by  

2)(),( yxyxd −=  

and the absolute difference measure is given by  

||),( yxyxd −= . 

Practically, it is difficult to examine the difference on a term-by-term basis. Some average measures are 

used to summarize the information. The most often used average measure is the average of squared error measure. 

This is called the mean squared error (MSE) and if often denoted by the symbol 2
dδ : 

∑
=

−=
N

n
nnd yx

N 1

22 )(1δ . 

If we are interested in the size of the error relative to the signal, we can find the ratio of the average squared 

value of the source output and the MSE. This is called the signal-to-noise-ratio (SNR). 

2

2

d

xSNR
δ
δ

=  

The SNR is often measured on a logarithmic scale and the units of measurement are decibels (dB). 

2

2

10log10)(
d

xdBSNR
δ
δ

=  
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Sometimes we are more interested in the size of the error relative to the peak value of the signal peakx  than 

the size of the error relative to the average squared value of the signal. This ratio is called the peak-signal-to-noise-

ratio (PSNR) and is calculated by the following equation: 

2

2

10log10)(
d

peakx
dBPSNR

δ
= . 

PSNR is the most commonly used value to evaluate the objective image compression quality.  

 

Objective Quality 

To compare the objective quality for different wavelet types, we use the standard testing image (see Figure 

30). 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Lenna 256*256 

Table 8 illustrates one set of compression results. 
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Table 8. Comparison of Compression Results by Using Different Wavelets 

Wavelet Compression Ratio Compressed File size PSNR 

Harr 9.177 % 18048 bytes 35.230 dB 

D 4 8.613 % 16938 bytes 36.515 dB 

D 6 8.469 % 16709 bytes 35.246 dB 

D 8 8.426 % 16570 bytes 36.946 dB 

D 10 8.336 % 16393 bytes 35.643 dB 

SP 2_2 8.321 % 16365 bytes 36.962 dB 

SP 2_4 8.278 % 16280 bytes 37.152 dB 

SP 4_4 8.235 % 16196 bytes 37.644 dB 

 

From the above table, we observe that biorthogonal spline wavelets achieve better compression results than 

orthogonal wavelets. Haar wavelet has the worst result. 

 

Subjective Quality 

To compare the subjective quality for different wavelet types, we choose five different standard testing 

images. All compressed images have the same compression ratio (1%). For each image, we present the reconstructed 

images in random order to some volunteers to evaluate the quality based on the original image (graded as 10). The 

following table 9 shows the result, which is conform with the objective result. 

 

Table 9. Comparison of Subjective Quality 

Wavelet Average grade 

Haar 3.2 

D 4 5.5 

D 6 5.4 

D 8 5.4 

D 10 5.6 

SP 2_2 5.9 

SP 2_4 6.0 

SP 4_4 6.2 
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Haar wavelet obtains the worse subjective quality because of its discontinuity, which results in the block 

artifact in reconstructed images. It is hard to tell the difference of reconstructed images compressed by different 

Daubechies orthogonal wavelets. Birorthogonal spline wavelets achieve the best subjective quality because those 

reconstructed images are smoother than the others. 

 

Quantization Methods 

Originally MinImage used Uniform Quantization to code the transformed wavelet coefficients [6]. EZW 

coding algorithm is adopted to achieve better compression result. 

Table 9 illustrates the compression result for these two different methods. 

 

Table 10. Comparison of Compression Results by Using Different Quantization Methods 

Wavelet Quantization Compression Ratio Compressed File size PSNR 

UQ 9.177 % 18048 bytes 35.230 dB Harr 

EZW 8.788 % 17282 bytes 35.710 dB 

UQ 8.613 % 16938 bytes 36.515 dB D 4 

EZW 8.443 % 16605 bytes 36.433 dB 

UQ 8.469 % 16709 bytes 35.246 dB D 6 

EZW 8.058 % 15874 bytes 36.580 dB 

UQ 8.426 % 16570 bytes 36.946 dB D 8 

EZW 8.396 % 16511 bytes 37.140 dB 

UQ 8.336 % 16393 bytes 35.643 dB D 10 

EZW 7.942 % 15619 bytes 36.381 dB 

UQ 14.550 % 28615 bytes 40.650 dB SP 2_2 

EZW 14.510 % 28536 bytes 41.190 dB 

UQ 12.917 % 25403 bytes 40.710 dB SP 4_4 

EZW 12.756 % 25086 bytes  41.271 dB 

 

From this table, we can verify that EZW coding obtains better objective compression results than Uniform 

Quantization method for every wavelet type. 
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JPEG V.S. LET 

JPEG stands for Joint Photographic Experts Group, the original name of the committee that wrote the 

standard. JPEG is a standardized image compression standard that uses the DCT (Discrete Cosine Transform). As 

we discussed above, wavelet based compression method should obtain better compression ratio than the DCT based 

compression method. The following test confirms this result. 

The standard 512*512  grayscale Lenna image (see Figure 32) is used for this test . The LET files on the 

right side (see Figure 31) are compressed by using the SP4_4 wavelet and the EZW coding. 

The left side images (see Figure 31) are compressed by using the JPEG standard algorithm called CJPEG, version 6 

(2-Aug-95) by Thomas G. Lane (Copyright (C) 1995) [16]. 

Table 10 lists results for four different compression ratios. 

 

Table 11. Comparison of Compression Results between JPEG and LET.  

Compression 

Method 

Compression Ratio Compressed File size PSNR 

JPEG 1.60 % 4213 bytes 21.93 dB 

LET 1.19 % 3129 bytes 28.20 dB 

JPEG 3.07 % 8078 bytes 30.40 dB 

LET 2.97 % 7812 bytes 32.05 dB 

JPEG 6.36 % 16752 bytes 34.74 dB 

LET 6.06 % 15944 bytes 35.24 dB 

JPEG 12.40% 32640 bytes 37.81 dB 

LET 12.39 % 32618 bytes 38.47 dB 
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 CJPEG       LET 

 Compressed File Size: 4213 bytes                          Compressed File Size: 3219 bytes 

 PSNR: 21.93 dB                                                      PSNR: 28.20 dB 

                       (a)                                                                            (b) 

 

 

 

 

 

 

 

 

 

 

CJPEG            LET 

Compressed File Size: 8078 bytes         Compressed File Size: 7812 bytes 

PSNR: 30.40 dB           PSNR: 32.05 dB 

                     (c)                                                                                   (d) 

Figure 31. Comparison of JPEG and LET 
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From the Table 10, we can see that LET has better objective (PSNR) quality for all different compression 

ratios. Because JPEG applies DCT on 8*8 blocks, the block artifact (see image (a) in Figure 32) can be seen from 

the reconstructed image, especially for low quality image. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Original 512*512 Grayscale Lenna 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

Timing Analysis 

In this section, we show the decomposition and composition time comparison(see Figure 32), EZW coding 

and decoding time comparison, and EZW coding time with different compression ratio (see Figure 33). All timing 

data were collected from a Dell Pentium III desktop machine running on Windows NT 4.0. 
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Figure 33. Comparison of Decomposition and Composition Time 

 

Because the wavelet decomposition and composition times are entirely determined by the filter length, 

Haar wavelet (2 taps) takes the least time, and Daubechies 10-tap orthogonal wavelet  takes the most time. 
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Comparison of EZW Coding and Decoding Time 
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Figure 34. Comparison of EZW Coding and Decoding Time 

 

Figure 33 shows that the EZW coding and decoding take about the same time for same the compression 

ratio. However, when the compression ratio increases, the EZW coding and decoding time will increase 

significantly.  

To explain this, let us recall the EZW coding algorithm. When the stop threshold is high, for every main 

loop, the transformed wavelet coefficients maintain a good zerotree structure, which makes EZW coding algorithm 

efficient. On the other hand, with lower stop threshold, a lot of time will be wasted to check the potential zerotree 

structures, which are not most of the time for a small threshold. 
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Comparison of EZW Coding Time
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Figure 35. Comparison of EZW Coding Time with Different Wavelets and Different Compression Ratios 

 

Because the EZW coding takes so much time, especially for higher compression ratios, the total 

compression time will be dominated by the compression ratio. From Figure 34 we can see that there is not much 

difference in the EZW coding time between different wavelet types for a same compression ratio. 

 

Summary 

In this chapter, we first introduced the basic concept of objective distortion criteria. Then, we analyzed the 

compression results using MinImage. We compared the subjective and objective qualities of reconstructed images 

for different wavelet types, composition and decomposition time for different wavelet types, and the EZW coding 

time for different compression ratios. 
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CHAPTER 6 

CONCLUSION 

 

This thesis introduced the basic wavelet theory, derived some orthogonal and biorthogonal wavelet filters 

and discussed the EZW coding algorithm. A software tool called MinImage was used to compare different wavelet 

methods.  

The Haar wavelet transform is the simplest one to implement, and it is the fastest. However, because of its 

discontinuity, it is not optimal to simulate a continuous signal. Based on our experiments, Haar wavelet obtained the 

worst compression result, which proves the above statement. 

Daubechie found the first continuous orthogonal compactly supported wavelet. Note that this family of 

wavelets is not symmetric. The advantage of symmetry is that the corresponding wavelet transform can be 

implemented using a mirror boundary condition, which reduces boundary artifacts.  

It was proved that no wavelet could be compactly supported, symmetric, continuous, and orthogonal at the 

same time. To get the symmetry property, we introduced biorthogonal spline wavelet by relaxing the orthogonal 

condition. For the biorthogonal spline wavelet, the scaling function is a B-spline. The B-spline of degree N is the 

shortest possible scaling function of order N-1 and B-splines are the smoothest scaling functions for a filter of a 

given length. Our experiment also proved that birothogonal spline wavelet outperformed the Daubechies orthogonal 

wavelet.  

Compared with the current JPEG image compression standard, MinImage obtains better compression 

results. However, the run time of MinImage increases significantly to achieve a high quality compression ratio 

because of the EZW coding algorithm.  

As an application, MinImage gives the user an easier way to do a variety of tests about wavelet image 

compressions. It could be improved in several ways. 

1. To get the symmetric wavelets, one solution is to relax the orthogonal condition. We derived the 

biorthogonal spline wavelet, which gives better compression results than orthogonal wavelets. Another 

solution is called multiwavlets [20].  The basic idea is to use a vector of scaling functions to generate 

multiwavelets with orthogonality, symmetry, continuity, and compact support properties at the same time. 

MinImage could be more powerful if multiwavelets transform methods are added. 

2. The EZW coding method is one of the more efficient quantization and coding methods for wavelet 

coefficients. However, MinImage could be more powerful if some more efficient quantization methods, 

such as space-frequency quantization [21] or context-based entropy coding [22], can be implemented. 
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3. The entropy coding library,  Zlib, is imported to MinImage. Since it uses traditional coding methods, it may 

not be the best coding method for EZW coded wavelet coefficients. 
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