
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

5-2001

Leveraging Test Measurements into Proposing Additional Domain Leveraging Test Measurements into Proposing Additional Domain

Tests. Tests.

Radhika Turlapati
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Turlapati, Radhika, "Leveraging Test Measurements into Proposing Additional Domain Tests." (2001).
Electronic Theses and Dissertations. Paper 57. https://dc.etsu.edu/etd/57

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Leveraging Test Measurements Into Proposing

Additional Domain Tests

A Thesis

Presented to

The Faculty of the Department of Computer and Information Sciences

East Tennessee State University

In Partial Fulfillment

Of the Requirements for the Degree

Masters of Science in Information Science

By

Radhika Turlapati

May 2001

Dr. Martin Barrett, Chair

Dr. Don Bailes

Mr. John Chenoweth

Keywords: Test Suggestions, Domain Partitioning, Percentile Bucketing, Reliability

Metrics, Test Types, and MATRIXx
 Automated Test Tool, Reliability Analysis Test

Tool.

2

 ABSTRACT

Leveraging Test Measurements Into Proposing

Additional Domain Tests

By

Radhika Turlapati

Accuracy and efficiency are extremely critical factors for large real-time control

applications. A small oversight can cause catastrophic failure of a real-time system. Thus,

these applications have to be tested meticulously to prevent any catastrophe that might

occur. But, testing these applications exhaustively is not tractable, mainly due to the

inherent complexity of the applications and also the huge amount of inputs and outputs

that these applications involve. In order to save valuable amounts of time and resources,

automated testing is imperative. Also, quantitative metrics have to be provided that assess

the existing quality of the system and help increase the confidence in the user towards the

software. However, to improve the overall quality of the software, additional focused

testing needs to be done.

The work in this thesis involves providing specific test suggestions that help the user

conduct thorough and precise domain tests based on the knowledge of the various

parameters used in previous test runs. The information about the defective portions of the

input domain is provided by dividing the input range into percentiles, which is referred to

here as bucketing. The goal is to expose the exact inputs causing the defects and the

range of inputs that have been lightly tested or left untested during previous tests. A

Reliability Analysis Test Tool (RATT) was developed to implement these test

suggestions.

3

ACKNOWLEDGEMENTS

Firstly, I would like to thank my parents for giving me all the support and

encouragement necessary to achieve my educational goals. Next, I express my most

sincere gratitude to my thesis advisor, Dr. Joel Henry, for his valuable time, support and

excellent direction throughout the project. I also gratefully acknowledge the help and

support extended by my committee chair, Dr. Martin Barrett, for his valuable time and

suggestions.

A special note of thanks goes out to my friend, Narendra Koneru, for his support

and advice throughout the project.

4

CONTENTS

Page

ABSTRACT …………………………………………………………………... 2

ACKNOWLEDGEMENTS.…………………………………………………... 3

LIST OF ILLUSTRATIONS………………………………………………….. 7

Chapter

1. INTRODUCTION…..…………………………………………………… 9

Outline Of Thesis……..…..……………………………………… 9

Overview of Testing Real-Time Systems..….……………………. 10

Need For Simulation……………………………………………… 11

2. BACKGROUND………………………………………………………… 13

Overview of MATRIXx
..………………………………………. 13

Overview of MATT………………………………………….….. 14

MATT Test Types…………...…………………………………... 15

 Critical Point Tests…………………………………………. 15

 Boundary Value Tests……………………………………… 16

 Linear Tests………………………………………………… 17

 Random Value Tests……………………………………….. 18

 Sinusoidal Tests……………………………………………. 19

 Overview of Percentile Bucketing………………………………. 20

3. PROBLEM STATEMENT…………………………………………….... 22

Goals of this Thesis…………………………………………….... 22

5

Chapter Page

4. SOLUTION APPROACH..…………………………….……………….. 24

Test Suggestions – Employed Strategy………………………….. 25

 Percentiles With Defects – Basic Algorithm…………………..… 26

 Test Suggestions – Boundary Value Tests.………….……….…... 27

 Test Suggestions for Uncovered Percentiles………………... 27

 Test Suggestions for Percentiles With Defects……………... 29

Test Suggestions – Linear Value Tests. …………………………. 30

 Test Suggestions for Uncovered and Defective Percentiles... 30

Test Suggestions – Random Value Tests.……..…………………. 31

 Test Suggestions for Uncovered Percentiles – RASeg……... 31

 Test Suggestions for Defective Percentiles – RASeg…….… 32

 Test Suggestions for Uncovered and Defective Percentiles –

 RAMin…………………………………………………….. 33

 Test Suggestions – Critical Point Tests.……..…………………… 34

 Test Suggestions – Oscillate Value Tests.……..………………… 34

 Test Suggestions for Uncovered Percentiles……………….. 34

 Test Suggestions for Uncovered Percentiles……………….. 36

5. SOLUTION IMPLEMENTATION…………….……………………….. 37

RATT Design Strategy. …………………………………………. 38

Modules of RATT………………….……………………..……… 39

 User Interface………………………………………………. 39

 Utilities…………………………………………………….. 40

6

Chapter Page

 Data Storage………………………………………………. 40

 Workhorses……………………………………………….. 42

 RATT Implementation and GUI…………………………………. 44

 Working Of RATT………………………………………. 44

 File Menu…………………………………………. 45

 Edit Menu…………………………………………. 47

 Run Menu…………………………………………. 47

 Output Menu……………………………………… 48

 Testing and Using RATT………………………………………… 49

6. RESULTS………………………………………….…………………….. 51

 Testing Procedure…………………….………………………….. 52

 Results …………………………………………………………… 53

 Boundary Value Test Types………………………………... 53

 Linear Value Test Types…………………………………… 57

 Random Value Test Types…………………………………. 58

 Critical Point Test Types…………………………………… 60

 Oscillate Value Test Types…………………………………. 61

7. CONCLUSIONS…………………………………………….…………… 64

BIBILIOGRAPHY………………………………………….………………….. 66

APPENDIX………………………………………….…………………………. 68

VITA………………………………………….………………………………… 69

7

LIST OF ILLUSTRATIONS

Figure Page

3.1 Example – Critical Point At Constant……………………………… 16

3.2 Example – Descending to Minimum……………………………….. 17

3.3 Example – Maximum Descending to Minimum…………………… 18

3.4 Example – RMM…………………………...………………………. 19

3.5 Example – RAMin……………….….……………………………... 19

3.6 Example – Oscillate Value One……………………………………. 20

4.1 Test Suggestions – RAMin…………………………….…………… 33

5.1 Skeleton Architecture of RATT……………………………………. 39

5.2 Class Diagram for User Interface Module………………………….. 40

5.3 Class Diagram for Data Storage Module …………………………... 41

5.4 Class Diagram for Workhorses Module……………………………. 43

5.5 RATT User Interface……………………………………………….. 45

5.6 RATT File Menu……………………………………………………. 45

5.7 RATT Open Dialog…………………………………………………. 46

5.8 RATT Run Menu……………………………………………………. 48

5.9 RATT Output Menu………………………………………………… 48

5.10 RATT Client Area………………………………………………….. 49

6.1 Bucket Coverage Results - Descending to Minimum ……………… 54

6.2 Bucket Coverage Results - Descending to Minimum. ……………… 55

6.3 Exception Coverage Results - Descending to Minimum …………… 56

8

Figure Page

6.4 Combinatorial Input Domain Reduction - Descending to Minimum... 57

6.5 Exception Coverage Results - Minimum to Maximum……………... 57

6.6 Exception Coverage Results - Random Ascending Segmented.……. 59

6.7 Exception Coverage Results - Random Ascending to Maximum ….. 60

6.8 Exception Coverage Results - Critical Point At Minimum ………… 61

6.9 Exception Coverage Results - Oscillate Value One ………………... 62

9

CHAPTER 1

INTRODUCTION

This thesis defines and implements an approach to suggesting specific domain

tests that help point out definite values in the input domain that cause defects in the

system and also target future tests on sections of the input domain that have been lightly

covered or left uncovered. These domain specific test suggestions use the results of

previously conducted test runs and are based on the knowledge of sections of the input

domain causing most defects and sections of the input range that have not been tested at

all. In order to implement this strategy, a Reliability Analysis Test Tool (RATT) was

developed in co-ordination with another student at ETSU, Mr.Koneru, who worked on

providing reliability measures that assess the existing quality of the system. The

reliability measures, based on dividing the input range into percentiles and referred to as

bucketing, provide specific information about the effectiveness of previous tests to cover

the domain of each input variable. This information is an important criterion to

suggesting tests specific to that particular portion of the input domain.

Outline Of Thesis

The reminder of this chapter stresses the importance of thorough testing of real-

time systems, some of the challenges involved in testing real-time systems, and the need

for simulating the test environment.

Chapter 2 gives a brief overview of the background research done for this thesis.

First, a brief description of MATRIXx
 and MATT are given, which are the two

10

applications used for implementing the proposed strategy. Next is a brief discussion on

how the information specified by a specific measurement, Domain Percentile Coverage,

is an important criterion for suggesting additional tests. Also, other important parameters

that influence further tests are discussed here.

Chapter 3 presents a statement of the problem. Specific problems in automated

testing of real-time systems are addressed and the need for precise test suggestions that

help focus future tests on erroneous inputs is stressed.

A solution to the problem is presented in Chapter 4. This essentially includes the

mathematics involved in deriving the test suggestions.

Chapter 5 mainly covers the implementation and testing of the test suggestions

within RATT. A comprehensive design is presented here and the use of RATT within

NASA and other organizations is discussed.

Chapter 6 presents how the results obtained by RATT complement MATT and

Chapter-7 discusses further work that can be done to improve the strategy proposed in

this thesis.

Overview Of Testing Real-Time Systems

As computers become indispensable elements of complex systems, it becomes

imperative to address the dependability of such systems, especially when they are

increasingly used in safety critical environments. Examples of such large embedded real-

time control systems are applications that control wind tunnels, the space shuttle, nuclear

reactors, and missiles. The potential high cost associated with the erroneous operation of

such systems has created a high demand for a comprehensive analysis of their reliability.

11

Reliability of a system is a measure of the error free behavior of the system over

time. To improve reliability, the role played by testing of real-time systems before they

are deployed becomes extremely important. However, testing of real-time systems poses

challenging problems mainly attributed to the inherent complexity of these applications

and also the combinatorial input and output domain space. For example, an input domain

of 0 – 100 with an accuracy of 0.001 contains 1,000,000 possible values and in a system

with just five input variables within this same domain would possible produce 1,000,0005

input value combinations [1]. Also, real-time applications interact with their environment

through time-constrained inputs and outputs. Because the correct system functionality of

a real-time system depends not only on its logical but also its temporal correctness,

multiple executions of real-time software with same test cases might produce different

test results.

The incorrect behavior of a real-time application caused by the breach or

deviation of a time constraint makes testing real-time systems much more complex.

However, in spite of the difficulties involved in real-time system testing, to gain the

confidence of the user in the system and to prevent any catastrophe that might occur,

effective testing is crucial. With reasonable assumptions about system behavior and

careful analysis, well-designed test suites using automated test generation techniques can

detect potential defects in the system.

Need For Simulation

Testing real-time applications on the actual target hardware is not always

possible. Therefore, some degree of testing using simulation is needed mainly due to the

12

risk of expensive hardware damage and the safety hazards associated with testing real-

time systems. Because real-time systems sample large number of input values and output

values in sometimes very short time intervals, a simulation typically requires a huge

number of input values to be generated and a huge number of output values captured as a

result of the simulation. Automated test generation tools for real-time systems can be

used to construct test cases with effective inputs that essentially model the inputs of the

target system and also perform a comprehensive analysis on the output of simulation.

However, simulation poses its own unique difficulties like error-prone output

analysis, generation of potentially massive data sets, and dependability of the results of

simulation when modeling life-critical applications [1]. Also, the impact of hardware

faults on software processing cannot be considered during simulation. Simulation is thus

used prior to hardware-software integration to achieve some degree of confidence in the

software portion of the system.

13

CHAPTER 2

BACKGROUND

NASA’s (National Aeronautics and Space Administration) Ames Research Center

is using MATRIXx
, a software product developed by Integrated Systems Inc., to provide

comprehensive design and development solutions for its real-time embedded control

systems. Examples include applications that control the unitary wind tunnel and control

systems for the International Space Station. Exhaustive manual testing of such complex

and important applications is overwhelming. MATT (MATRIXx
 Automated Test Tool)

is an automated test tool developed by the Design Studio team at ETSU under the

guidance of Dr. Joel Henry that provides an automated test environment to the users of

MATRIXx products (xMath and SystemBuild). But, the functionality of such a testing

tool remains curtailed without providing provisions in it for ways to quantify the

dependability of the system and provide additional testing suggestions that help focus

future tests that have a high probability of discovering the defects. These additional tests

are designed based on the knowledge of the various parameters used in the previous test

run. This research uses MATRIXx
 and MATT and the information about the input

domain provided by the reliability metric Percentile Domain Coverage for implementing

the test suggestions.

Overview Of MATRIXx


Conventional real-time application development is usually a step-wise approach

with separate tools for design, testing and integration. These tools work in tandem to aid

14

engineers in accelerating the development. This allows a design to easily move from one

step to the next, making it possible to create a working prototype very early in the design

process. SystemBuild and xMath are tools that form the core of the MATRIXx product

family. SystemBuild is primarily a graphical tool that is used to represent and build

graphical models of a control system. Complex control systems can be represented in a

hierarchical fashion. Basic building blocks are grouped to form a super block. These

superblocks can be placed in other superblocks to graphically represent a complex

system. xMath is a design and analysis tool that operates with SystemBuild by acting as a

working environment for simulating data and verifying SystemBuild models. The tools

AutoCode and DocumentIt are used for automatic generation of high-level language code

and industry standards’ compliant documentation respectively. RealSim provides the

hardware and software environment for rapid prototyping, data acquisition and testing

[2].

Overview Of MATT

MATT (MATRIXx
 Automated Test Tool) is an automated test tool that offers a

way of creating pertinent test inputs and reporting exceptions based on the generated

output values. It functions in tandem with xMath and SystemBuild. The MATT

application has to be started from xMath, which in turn operates with SystemBuild to

load the models. When a super block selected from SystemBuild is loaded into MATT,

all the parameters of the super block, including the inputs, outputs, and the data types, are

directly loaded into MATT. Any change made to a model in SystemBuild is directly

reflected in MATT [3]. The MATT test script includes the user selectable parameters like

15

the test type, input minimum and maximum, output minimum and maximum, simulation

time interval, the number of test steps, accuracy, and the desired exception types to report

on simulation output. MATT automatically converts the test script into an input test

matrix, which is in a format that can be directly read into MATT for simulation. The

knowledge of the parameters used for simulation is very important for subsequent

simulations to target the defects with much higher probability than the previous tests. One

such important parameter is the test type used for simulation. Real-time systems often

have to be tested for behavior under unstable conditions and also whether they maintain a

safe state until the input values become stable. Also, many times there arise

circumstances where the system is to significantly change behavior or maintain current

behavior at critical values. These points have to be carefully scrutinized. Specific tests

that hold the input at a constant value or test on boundary values where behavior changes

significantly are very crucial [1]. MATT currently has 25 different test types grouped into

5 descriptive groups that are designed to accommodate the above-mentioned situations.

MATT Test Types

1. Critical Point Tests

For critical point tests, the constant is used to determine the value of generated

test data. All values for the input test type are generated using a fixed value specified by a

constant. Both the test minimum and test maximum will have an effect on the constant

depending on the selected critical point test. Accuracy is ignored for these tests because

the constant stated value becomes the generated test value for all individual test intervals

or steps.

16

Floating Point Types: The constant value is set to (Test Max-Test Min)/2.

Integer Types: The constant is set to whole integer portion of (Test Maximum -

Test Minimum)/2.

Logical Types: The constant value is set to 1.

Four different test types exist:

! CP@Con (Critical Point At Constant)

! CP@Min (Critical Point At Minimum)

! CP@Max (Critical Point At Maximum)

! CP@Zero (Critical Point At Zero)

 Figure 3.1: Example - Critical Point At Constant

2. Boundary Value Tests

For boundary value test data generation, the default increment between each

consecutive test interval is calculated as 10 to the negative power of the accuracy. For

integers accuracy is always ≤ 0, and for logical variables this test does not apply.

If the computed test values are outside the domain, they are set to the value of test

minimum or test maximum depending on which test boundary is set. The values are set to

test maximum when test minimum is the boundary and test minimum when the test

17

maximum is the boundary. Users may set any valid value for the test minimum or test

maximum based on the input type.

Eight different test types exist in this category.

! A2Max – Ascending to Maximum

! A2MaxX - Ascending to Maximum (Max Excluded)

! D2Min – Descending to Minimum

! D2MinX – Descending to Minimum (Min Excluded)

! DMax – Descending from Maximum

! DMaxX - Descending from Maximum (Max Excluded)

! AMin – Ascending from Minimum

! AMinX - Ascending from Minimum (Min Excluded)

Figure 3.2: Example - Descending to Minimum

3. Linear Tests

For linear test data generation, the default increment between each consecutive

test interval is calculated as (Test Max-Test Min)/(Number Of Tests). Hence, input values

generated are equally spaced from each other. The boundaries for this test type are both

the test minimum and the test maximum, and the accuracy setting for this test type is

18

ignored. This test is not applicable to logical data types. For integer data types the

increment is stripped of its fractional part.

Two test types exist here.

! Max2Min – Maximum To Minimum

! Min2Max – Minimum to Maximum

Figure 3.3: Example – Maximum Descending to Minimum

4. Random Value Tests

Random test data generation uses various randomizing techniques to produce a

test value for each test step. Random tests may allow for either inclusion or exclusion of

both the test minimum and maximum values. The accuracy setting for this test is ignored.

Random testing is applicable to all data types, floating point, integer, and logical.

The following test types fall in this category.

! RASeg (Random Ascending Segmented)

! RDSeg (Random Descending Segmented)

! RA2Max (Random Ascending to Maximum)

! RD2Min (Random Descending to Minimum)

! RMM (Random between Minimum and Maximum)

! RMMX (Random between Minimum and Maximum, both

excluded)

19

! RAMM (Random Ascending between Minimum and Maximum)

! RDMM (Random Descending between Minimum and Maximum)

! RAMin (Random Ascending from Minimum)

! RDMax (Random Descending from Maximum)

For the RASeg and RDSeg tests, random numbers are generated from a particular

segment of the input domain for each time step where the width of the segment is

calculated as (Test Max–Test Min)/(Number Of Tests).

For RA2Max, RD2Min, RAMin, RDMax, random numbers generated are focused

within a cone that decreases in size with each test step from Test Min to (Test Max-Test

Min)/2. For RMM, RMMX, RAMM, and RDMM, random numbers generated are

distributed from the test minimum to the test maximum and may include either test

minimum or maximum, or both.

Figure 3.4: Example - RMM Figure 3.5: Example - RAMin

5. Sinusoidal Tests

Test data generated for this test type follows a sinusoidal waveform. The

distribution of input values on the wave will vary based on the user selectable frequency,

number of tests, and the values of test minimum and test maximum. For example, in

Osc.25, the generated test values will form ¼ of a sine wave. Other test types that fall in

this category are Osc.5, Osc, Osc2, Osc4, and Osc8.

20

 Figure 3.6: Example – Oscillate Value One

Overview Of Percentile Bucketing

Information about regions of the input domain producing defects in the output and

input values where the system is not tested is very important in order for subsequent

simulations to target those problematic sections. But as real-time systems involve

combinatorial input and output domain space, it becomes necessary to reduce the

problem space by adopting a strategy to partition the domain into sub-domains. In this

research domain partitioning is done by dividing the entire input and output domains into

percentiles, in effect 100 buckets of contiguous values. This approach is also termed

Percentile Bucketing. Bucketing can be used to detect defect-prone inputs by saving the

bucket each input value fell into when a defect is detected. Also, buckets that have no

coverage or very little coverage can be saved for further testing. The data provided by

percentile bucketing can be used target the tests primarily on input ranges that result in

the highest number of defects and on input ranges that have not been tested at all.

In addition, if a combination of values from different input variables result in

multiple defects, that combination can be identified. For example, if test values for

bucket7 for input1 and bucket9 for input2 are associated with multiple defects, this

combination of percentiles can be considered defect-prone and can be used to guide

21

further testing [4]. The reliability measure, percentile domain coverage thereby reports

input ranges to target further tests and also reports the failure intensity in those ranges.

The test suggestions are then based on this data.

22

CHAPTER 3

PROBLEM STATEMENT

This chapter focuses on addressing specific problems in automated testing of

complex real-time control applications. The primary function of such applications is

mission and life support. The combination of temporal requirements, high reliability

requirements, and need for testing in a simulated environment presents the system

engineer with unique problems. Automated testing tools save valuable time and resources

for developers by generating huge amounts of custom data, which can be used for

software testing via simulation. Reliability metrics quantify software reliability and

improve confidence of the user in the system. They provide a means of assessing the

present quality of the software. Besides providing a testing and performance evaluation

criteria, reliability metrics should improve the overall quality of the software by

suggesting additional tests and supporting efforts to remove defects. Overall system

quality can only be improved by probing the system for potential faults and subsequently

debugging the system of these faults. However, arbitrary testing can waste the

considerable testing effort as one might end up testing using similar test cases and leaving

out more effective inputs that could potentially uncover more defects.

Goals of this Thesis

The primary goals of this thesis are to provide the user with techniques to improve

the effectiveness of testing (i.e. find more defects) and improve debugging (by

pinpointing the conditions generating defects). Hence, specific test suggestions have to be

23

provided that guide the user in generating more precise domain tests that better expose

the exact portions of the input domain causing the defects and suggest tests for the range

of inputs that have been lightly tested or left untested during previous tests.

This thesis will attempt to answer the following questions:

1. How advantageous/disadvantageous is the suggested testing strategy?

2. How much better/ worse percentile input coverage is being achieved by

following the suggested testing strategy?

3. How much more precisely is the user able to establish the exact inputs (or)

input domains producing the defects?

A well-designed extensible application has to be developed with a simple, easy-

to-use graphical interface that provides specific test suggestions for the user that guide

the user to setting up a test wizard-like feedback. This application will also help verify

the effectiveness of the suggested test strategy. The final goal is to document the

application well enough for future extensions and user support.

24

CHAPTER 4

SOLUTION APPROACH

In spite of the great importance given to testing real-time systems, the main

limitation of the development process still remains the lack of thorough testing during the

verification stage. This is mainly attributed to the inefficiency of the current methods to

accomplish the task. Testers often face the recurring question of exactly which tests to

perform in the time typically allocated for testing. Also, the application of specific test

types in a particular sequence can form an excellent test plan, if effective tests are

sequenced properly. [1] Well-designed tests have a high probability of uncovering defects

and a proper sequence of tests uncovers more defects than the tests run in isolation.

Hence, a specific test followed by another might help uncover the latent defects of the

system, which might remain undetected using a different combination of test types.

Running such a sequence of tests will also require the user to fine-tune several other

parameters on which the previously conducted test run was based.

This chapter presents a solution to the problem discussed in Chapter 3 in the form

of specific test suggestions to the users of Matrixx
 Automated Test Tool that will help

them set up precise domain tests based on the previous test runs.

First, the user needs clear understanding of the problem domain. The test

suggestions will use the reliability metric ‘Percentile Domain Coverage’ discussed in

Chapter 2 to get information about the problem domain. This metric reports:

1. Uncovered or lightly covered percentile domains

2. Input percentile domains producing most exceptions in the output

25

3. Input percentile combinations producing most exceptions

The test suggestions will then be based on:

1. Test Type: The test type employed in the previous test run chosen from the 25

different test types discussed in Chapter 2.

2. Number Of Test Runs: This parameter suggests the number of test cases that

should be run in a subsequent test run. The user can manipulate this value to

change the number of input values generated, thereby changing the distribution of

input values in the input domain.

3. Accuracy: This parameter controls the precision of each input variable and

depends on the input data type. For integers, the accuracy is between 0 and –10,

and for floating point data types, the accuracy ranges from 0 to 10. The accuracy

settings are not applied to Boolean data types. The data type of an input variable

cannot be manipulated but the input data type suggests the range of accuracy

settings that can be applied to that particular input variable. The accuracy settings

can also be manipulated to affect the input values generated.

4. Test Boundaries: This indicates the minimum and maximum values that each

generated input value can take. The test boundaries can be set by the user to

restrict the test set.

Test Suggestions – Employed Strategy

Because, the test suggestions primarily depend on the test type employed, the

suggestions will remain common within each test type with slight variations in the

formulae used for calculating the parameters for the test for each test type. However, the

26

suggestions will take a different approach for each test type. Two distinct kinds of

suggestions will be provided to the user.

1. Suggestions for percentiles with defects.

2. Suggestions for uncovered and lightly covered percentiles.

The following section presents an algorithm to suggesting tests for defective

percentiles. The initial steps of the algorithm remain constant through all the test types.

Through the reminder of this thesis, the word percentile and bucket will be used

interchangeably and represent 1/100th of the input variable domain.

Percentiles With Defects – Basic Algorithm

Steps1, 2, and 3 remain same for all the tests regardless of the test type used.

However, subsequent steps vary depending on the test type employed in the previous test

run. These calculations will be explained in detail for each test type in the following

sections. The basic algorithm for the percentiles with exceptions is as follows.

1. Get all the input buckets with exceptions and also the number of exceptions in

each of those input buckets. These are the portions of the input domain that

produce at least one exception in the output.

2. Build bucket blocks. Defective buckets that are less than 3 percentiles apart fall in

a single block. For example, percentiles 2,5 fall in one block even if percentiles 3

or 4 do not have any defects. Similarly, 2,4,5,8 fall in one block. If bucket 11 has

defects, it can be accommodated in the same block but if bucket 11 does not have

any defects, then defective bucket 12 would be the first percentile in the next

block and cannot be accommodated in the same block as (12 –8) > 3.

27

3. Set the test boundaries for this block. The test minimum is set to the input value

corresponding to (first bucket in the block – e) and the test maximum is set to the

input value corresponding to (last bucket in the block + e) where e is the bucket

size and is calculated as (Test Maximum – Test Minimum)/100.

4. Set accuracy and the number of test runs. The values to be set for these

parameters depend on the test type selected and will be discussed in detail for

each test type in the subsequent sections.

5. Compare the number of defects in the first half of the block to the number of

defects in the second half to decide on the test type to employ. After comparison,

the decision of as to which test type to employ also depends on the test type

employed in the previous test run.

Test Suggestions – Boundary Value Tests

The basic strategy employed for suggesting additional domain tests will remain

fairly common for all boundary value test types. However, there will be slight variations

in the formulae though the basic idea remains consistent. This section uses ‘D2Min’

(Descending to Minimum) to explain the strategy used to suggesting the tests for all

boundary value test types.

Test Suggestions For Uncovered Percentiles:

In D2Min (Descending to Minimum), the input value generated in the ith test is

calculated as [Test Minimum + (Number of Tests – I) * Step] where Step = 10-accuracy.

Hence, the first input value that is generated is [Test Minimum + (Number of Tests – 1) *

Step] and the last input value that is generated is Test Minimum.

28

The following two cases have to be considered here.

Case 1: Because the first input value that is generated is not the test maximum

(which would fall in the 100th bucket) but is a value that falls in some bucket x, where x <

100, all the percentiles from x - 100 will remain uncovered. For the user to achieve (x +

n), percentile coverage, there are two alternatives. (1 < n < 99)

1. Increase Number Of Tests:

The number of tests can be increased so that the first input value that is

generated falls in (x + n) th percentile instead of the xth percentile. Because the

increment in the constant here, this will ensure uniform coverage from the 1st

percentile to the (x+ n) th percentile. Hence, the number of tests can be

recalculated as

Number of Tests = (Input Maximum (x + n) – Test Minimum) / Step where

Input Maximum (x + n) is the maximum input value represented by the (x+ n) th

bucket.

2. Increase Step (or) Decrease Accuracy:

The accuracy value can be recalculated as

Accuracy = Log10 (1 / Step) where Step is calculated as

 Step = (Input Maximum (x + n) – Test Minimum) / Number Of Tests.

Case 2: Some buckets from the 1st bucket to the xth bucket will remain uncovered,

as the increment used to generate the input values is greater than the bucket size. Hence,

in order to avoid skipping buckets, the value of the increment specified (Step) should be

set to less than or equal to the bucket size.

29

Therefore, if Step > Bucket Size, the value of accuracy is recalculated as Log10 (1 /

Bucket Size) to ensure that each percentile holds at least one value. A value for accuracy

less than Log10 (1 / Bucket Size) ensures more than one value in each percentile.

Test Suggestions For Percentiles With Defects:

In order to suggest tests for percentiles with defects, the first three steps of the

algorithm described before are used to initially get the buckets with exceptions and the

number of exceptions in each bucket and then build the bucket blocks and set the test

boundaries for each of these blocks. The number of test runs, accuracy, and the test type

have to be recalculated for the new test. These calculations depend on the test type

employed and are as follows for D2Min.

a) First, if Step is greater than Bucket Size, then set Step equal to Bucket Size. Now,

accuracy can be recalculated as Log10 (1 / Bucket Size). If Step is less than Bucket

Size, the value of accuracy remains same as before.

b) Number of tests can then be calculated as (Test Maximum – Test Minimum) /

Step calculated in step a.

c) For every block, if the number of exceptions in the first half is greater than the

number of exceptions in the second half, run D2Min/AMin (that is, test more

towards the test minimum) or else run DMax/A2Max, testing more towards the

test maximum.

Because, in real-time applications, the value of the input generated in the ith step

might depend on the input or the output value generated in the (i –1) th step, thus by

running AMin after D2Min (in that order), we are essentially covering the same inputs in

30

the opposite order which might uncover some defects that running only D2Min might

not.

Test Suggestions – Linear Value Tests

Here again, the approach will remain consistent for the Linear Value Tests. The

following section uses ‘Max2Min’ (Maximum Descending to Minimum) to explain the

strategy used in suggesting tests for the Linear Value Tests. Also, in case of Linear Value

Tests the suggestions are the same for both defective percentiles and uncovered

percentiles, which are as follows.

Test Suggestions For Uncovered Percentiles and Defective Percentiles:

In Max2Min (Maximum Descending to Minimum), the input value in the ith test is

calculated as [Test Minimum + (Test Maximum - Test Minimum) / (Number Of Tests - 1)

* (i-1)]

In Linear Value Tests, because the default increment between two successive

intervals is constant and is calculated as (Test Max-Test Min)/(Number Of Tests), if there

are any uncovered buckets in the input domain, it implies that the specified increment is

greater than the bucket size. Here, two cases exist.

Case 1: Ensuring Full Coverage

To ensure full coverage, the increment should be less than or at least equal to

bucket size where increment is calculated as (Test Maximum – Test Minimum)/Number

Of Tests.

Therefore, (Test Maximum –Test Minimum)/Number Of Tests <= Bucket Size.

31

Hence, Number Of Tests should be greater than (Test Maximum – Test Minimum) /

Bucket Size.

Case 2: Ensuring Equal Coverage

Continuing the argument from Case 1, if the Number Of Tests is an integral

increment of (Test Maximum – Test Minimum) / Bucket Size, this will ensure equal

number of values in each buckets thereby ensuring equal coverage. The integer value

specifies the number of values that fall in each bucket. The user can thus specify how

many values he wants in each bucket and the corresponding number of tests can be

calculated for the test.

Thus repeat Max2Min and Min2Max (in that order) to target defective percentiles

while ensuring either full or equal coverage. Ensuring complete coverage is important to

target exceptions as some input values that have remained uncovered in the previous test

runs might lead to exceptions in the current test run.

Test Suggestions – Random Value Tests

The following section uses ‘RASeg’ (Random Ascending Segmented) and

‘RAMin’ (Random Ascending from Minimum) to explain the two distinct strategies

employed here in suggesting tests for the Random Value Test types. The test types

RA2Max, RD2Min, RDMax, RAMM, and RDMM follow the strategy used for RAMin.

RDSeg uses the approach followed RASeg.

Test Suggestions For Uncovered Percentiles - RASeg:

In RASeg (Random Ascending Segmented), the input value in the ith test is

calculated as

32

Test Minimum + Segment * (i - 1) + [(Random 100) / 100] * Segment where Segment =

(Test Maximum – Test Minimum)/Number Of Tests.

To ensure that skipping of buckets is avoided, the value of the default increment

specified between two successive intervals should be less than or at least equal to the

bucket size. The value of the increment for ‘RASeg’ is calculated as [Random (100)/100]

* Segment.

Thus, the maximum value that the increment can take is (Test Max – Test

Min)/No. Of Tests as the value of Random (100)/100 is at most equal to 1, thereby

implying that Segment should be less than or at least equal to the Bucket Size.

Therefore, to ensure skipping of buckets, Number Of Tests should be greater than

 (Test Maximum – Test Minimum) /Bucket Size.

Test Suggestions For Defective Percentiles – RASeg:

The following tests are suggested for defective percentiles in the following order.

1. Repeat ‘RASeg’ with the value for

Number Of Tests > (Test Maximum – Test Minimum) / Bucket Size

2. Run ‘RDSeg’ with the value for

Number Of Tests > (Test Maximum – Test Minimum) / Bucket Size. This

test will essentially cover the same inputs specified by ‘RASeg’ in the

opposite order for better defect exposure.

3. Run Min2Max with Number Of Tests > 100 for uniform coverage and

Number Of Tests = n*100 for equal coverage.

33

The rationale for suggesting ‘RDSeg’ is that covering the same inputs in the

opposite order might result in better defect exposure because in a real-time system the

time step in which the input is generated is can be an important factor.

Running Min2Max, in essence covers the input domain in equal increments in an

ascending fashion. Because ‘RASeg’ is a special case of linear value test with random

linear increments instead of equal linear increments, running Min2Max might also

improve the defect exposure as the user can dictate the number of inputs that have to fall

in each input percentile.

Test Suggestions For Uncovered Percentiles and Defective Percentiles - RAMin:

Figure 4.1: Test Suggestions - RAMin

These test types check the stabilizing/destabilizing conditions of a real-time

system. Figure 1 illustrates the way the input domain is covered in case of ‘RAMin’. If

we run an RDMax test immediately after RAMin, we are essentially covering the same

inputs in the opposite order and interposed graph will form a pattern of a bow tie. (Please

refer to Figure 4.1) This will be a helpful approach in uncovering more defects, as a real-

time system may be stable and descend to instability or the system may be instable and

approach a stable state. So, running a destabilizing from maximum test after a stabilizing

to maximum is like running a mirror image test and checks for both the stabilizing and

the instabilizing conditions near the maximum.

34

Test Suggestions – Critical Point Tests

The idea of percentile domains is not important in case of critical point tests as

only one bucket is covered during every test run and the value of the bucket covered will

depend on the critical point set for the test. So, the idea of covering the uncovered

percentiles does not exist here. In case there are defects in percentiles covered, the best

way would be to repeat the same test over again or run boundary value tests approaching

the critical point.

Test Suggestions – Oscillate Value Tests

The oscillate value tests specify a series of input values along a sine wave

beginning at the midpoint of the input variable range, ascending to input maximum,

descending to input minimum and then returning to the midpoint. The input value

generated in the ith test is calculated as Test Valuei = (Sine ((I – 1) * Frequency) *

InputRange/2) + Midpoint where

Frequency = 2*PI*X / (N – 1)

X = Number of oscillations per hundred tests (1/8, ¼, ½, 1, 2, 4, 8)

N = Number of test cases run in one test run

Input Range = Test Maximum – Test Minimum and

Midpoint = (Test Maximum – Test Minimum) /2

Test Suggestions For Uncovered Percentiles:

To suggest tests for oscillate value tests, one has to consider two cases.

35

Case 1: When the frequency factor is specified as 1/n, it means that the generated

input values cover 1/nth of the sine wave for every hundred tests. Therefore, if the value

of the number of tests is less than 100*n, some portion of the input domain will always

remain uncovered. This case applies to only Osc1/8, Osc1/4, Osc1/2, and Osc1.For other

oscillate-value test types, this case does not hold. Therefore, if the user wishes to cover

the entire input domain, he should specify at least

! Number Of Tests = 800 for Osc1/8.

! Number Of Tests = 400 for Osc1/4.

! Number Of Tests = 200 for Osc1/2.

! Number Of Tests = 100 for Osc1.

 Case 2: If the increment used between successive intervals to generate input

values is greater than the bucket size will also leading to skipping buckets.

Hence, Increment < Bucket Size where

Increment = Sine (Frequency) * (Test Maximum – Test Minimum) / 2 and

Bucket Size = (Test Maximum – Test Minimum) / 100. Solving for the above equation

implies that if 50*(Sine (2*PI*X)/(N - 1)) > 1 is true, then some buckets will surely be

skipped.

Therefore, the value for Number Of Tests is recalculated as N = 1 +

[(2*PI*X)/(InvSin (1/50))] by setting the value of the increment at least equal to the

bucket size.

36

Test Suggestions For Defective Percentiles:

For suggesting tests for percentiles with exceptions, the algorithm described

before is used to build the bucket blocks by grouping the buckets containing exceptions.

The block boundaries have to be set depending on the concentration of the defects in the

block. The test type to be used and the value of the number of tests have to be calculated.

The test suggestions are as follows:

! If the number of defects in the first half of the block is greater than the number of

defects in the second half of the block, then because the defects are more towards

the test minimum, run an oscillate value test with the next higher frequency

setting the test minimum to the minimum input value corresponding to the block

and the test maximum to the midpoint of the block

! If the number of defects in the second half of the block is greater than the number

of defects in the first half of the block, then test more towards the second half, that

is set the test minimum to the midpoint and the test maximum to the maximum

input value corresponding to the block.

! Check the value of the number of tests to confirm if the set value does not leave

any buckets uncovered or else recalculate the value of number of tests as

described above for uncovered percentiles for oscillate value tests.

37

CHAPTER 5

SOLUTION IMPLEMENTATION

The solution to the problem discussed in Chapter 3 will remain incomplete

without an application that implements the proposed solution approach. The Reliability

Analysis Test Tool (RATT) was developed to verify the feasibility and correctness of the

test suggestions discussed in Chapter 4. RATT reads in MATT generated test case files,

calculates Reliability and Test Coverage Metrics, and then provides specific test

suggestions that guide the user to configuring additional domain tests. The test

suggestions use MATT testing and interface terminology and guide the user to setting up

specific tests using wizard-like feedback. In effect, RATT complements the

Matrixx
Automated Test Tool (MATT) by providing an analysis and supplementary

testing environment. With a family of tools like Matrixx
, MATT, and RATT, the user

can build models, run simulations on those models, capture and analyze the output, and

run additional tests based on the test suggestions. The user can also run multiple test runs

on the model and then integrate the test results to analyze them. This will provide the user

with a complete design, development, testing, and analysis environment. The Reliability

Analysis Test Tool was developed in coordination with another student at ETSU,

Mr.Narendra Koneru, who worked on providing the Reliability and Test Coverage

Metrics.

A good design strategy is very important to develop any application well,

especially if the application is complex and has to support future upgrades. Also, without

good software engineering principles, it is very difficult to synchronize and finally

38

integrate the software developed by two people attacking different aspects of the

problem. MATT is now being ported to MatLab. RATT was thereby designed keeping in

mind the future probability of being used with MatLab. In fact, RATT can be used with

any application that can generate test case files in a format that can be read into RATT

for analysis. Also, RATT was designed with a simple easy-to-use, user-friendly GUI.

The bulk of the work involved developing the workhorses that actually calculated the

reliability metrics and provided the test suggestions.

The reminder of this chapter discusses the design, implementation, and testing of

the test suggestions within RATT. Some of the test cases used for testing RATT are from

the NASA Wind Tunnel control software while others are generated using MATT.

RATT Design Strategy

RATT was developed using a top-down approach, wherein the entire application

was divided into four distinct packages as shown in Figure 5.1. The four packages and

the relationships described between them represent the skeleton architecture of the

application. Each package encapsulates several classes, and these classes communicate

with other classes using simple well-defined interfaces. The rationale for designing such

architecture is to separate the user interface of the application from other implementation

details, thus making the tool forward compatible and extensible. A different interface can

be plugged into the application to make it fully functional on other platforms, such as Sun

Solaris or Linux.

The following section is a brief description of the four modules of RATT and how

they communicate with each other to make RATT a fully functional application.

39

UserInterface
+ CMainFrame
+ CRATTApp
+ CRATTDoc
+ CRATTView
CAboutDlg
+ rt_CManager

Uses

WorkHorses
+ rt_CBucketCoverage
+ rt_CMTTF
+ rt_CProbabilities
+ rt_CTestFilesMngr
+ rt_CTestSuggestions
+ rt_CInputBucketsMTTF
+ rt_CInputBucketsProbabilities

Uses Communicates

Data Storage
+ rt_CBoolTestType
+ rt_CTestType
+ rt_CTestScript
+ rt_CInputMatrix
+ rt_COutputMatrix
+ rt_CBuckets
+ rt_CInputBuckets
+ rt_COutputBuckets
+ rt_CIntTestType
+ rt_CTestInput
+ rt_CFloatTestType
+ rt_CMatrix
+ rt_CTestOutput
+ rt_CTestCase

Utilities
+ IntMap
+ DoubleMap
+ rt_CException
+ VectorOfBkts
+ VectorOfVectorOfBkts
+ rt_CTestCaseList
+ mt_EExceptionTypes
+ mt_EDataTypes

Figure 5.1: Skeleton Architecture of RATT

Modules Of RATT

1. User Interface

The User Interface package mainly consists of classes for developing the GUI of

the application and will not be discussed in great detail in this thesis. When designing the

User Interface, the goal was to keep it as simple as possible. However, the package also

comprises of the Manager class. This class is the home of all the workhorse classes and

contains methods used to manipulate the workhorse classes. All modifications to the

40

workhorse classes are made through this class. Figure 5.2 demonstrates the various

classes of the User interface package and the relationships between them.

rt_CManager CRATTDoc
0..1 1

+m_ptrManager

0..1 1

CAboutDlg

CMainFrame CRATTView

Uses

CRATTApp

Uses Uses

Figure 5.2: Class Diagram For User Interface Module

2. Utilities

Continuing the same argument from the User Interface package, the Utilities

package consists of data structures that are independent of RATT and is not critical to the

implementation of this thesis.

3. Data Storage

This package encapsulates the classes that store the massive number inputs read

into RATT, outputs produced by RATT, and also the intermediate values that are

generated as a result of analysis done on the inputs and outputs to produce test

suggestions. The illustration in Figure 5.3 shows the classes in this package and the

relationships between them.

The Input Matrix and the Output Matrix classes contain the huge MATT

generated two-dimensional input value and output value arrays. These classes are

inherited from the Matrix class and contain methods to read a matrix, access array values

and clean up the memory used by the matrix when done. The Test Script class defines the

user selected test script and contains the array of inputs, array of outputs, interval

between successive test runs, and the number of test runs. The Test Case class is defined

41

by the collection Input Matrix, Output Matrix, and the Test Script classes and contains

pointers to each of them.

rt_CBoolTestType rt_CIntTestTypert_CFloatTestType

rt_CMatrix

rt_CInputBuckets

rt_CTestType

rt_COutputBuckets

rt_CTes tInput

0..1

1

#m_ptrInputBuckets

0..1

1

0..1

1

#m_ptrTestType

0..1

1
0..1

1

#m_ptrTestInput

0..1

1

rt_CTestOutput

0..1

1

#m_ptrOutputBuckets

0..1

1

rt_CInputMatrix rt_COutputMatrix

rt_CTestScript

rt_CTestCase

0..1

1

-m_ptrInputMatrix
0..1

1

0..1

1

-m_ptrOutputMatrix

0..1

1

0..1

1

-m_ptrTestScript

0..1

1

rt_CBuckets

Figure 5.3: Class Diagram For Data Storage Module

The domain of each input variable and output variable is partitioned into 100

equal input buckets and output buckets respectively. For Boolean data types, the input

and output variable range is partitioned into only two buckets, corresponding to 0 and 1

respectively. Thus, the Test Input class contains pointers to the Input Buckets and Output

Buckets classes. These classes inherit from the Buckets class and contain an array of 100

buckets. They also contain methods to access buckets that correspond to specific input or

output values, compute the total number of exceptions in a specific bucket, and also

42

compute domain coverage values for each bucket. This information is very important

both for deriving the test coverage metrics and for providing the test suggestions.

Each input variable is associated with a test type. The test suggestions actually

reside in the Test Type class, which contains a pointer to the Test Input class. The

Boolean Test Type class, Float Test Type class, and the Integer Test Type class inherit

from the Test Type class. The test suggestions to be provided to the user depend both on

the test type and the data type (an attribute of each input variable). Based on the input

data type, the appropriate Test Type pointer is created when a test case file is loaded

during initialization. Computations like grouping the buckets into bucket blocks and

setting the test boundaries for each block after grouping are done in the Test Input class,

as these computations do not need any test type information.

4. Workhorses

This package encapsulates all the classes that actually calculate the Reliability and

Test Coverage Metrics and provide test suggestions to the user. The class diagram in

Figure 5.4 illustrates the various classes in this package and the relationships between

them.

The Manager class (from the User Interface package) is the home of all the above-

illustrated Workhorse classes and contains methods to manipulate these workhorses. The

Bucket Coverage class will calculate the test coverage values for all input and output

variables. The Probabilities class and the MTTF class calculate the Reliability Metrics

developed by Mr.Koneru. The Test Files Manager class is an important part of the

workhorses’ package and is responsible for maintaining the test case object and also

maintaining correct values for the final test script object when ever more than one test

43

case files are loaded into RATT for analysis. The Test Suggestions class contains a

pointer to an array of test inputs and methods to retrieve the test suggestions. We retrieve

the test suggestions in the Test Suggestions class using the test type pointer. Based on the

input data type, the appropriate method in one of the derived Test Type classes will be

invoked dynamically.

rt_CInputBucketsMTTF

rt_CInputBucketsProbabilities

rt_CBucketCoverage rt_CMTTFrt_CProbabilities

rt_CTestFilesMngr

rt_CTestSuggestions

0..1

1

#m_ptrTestFilesMngr

0..1

1

rt_CManager
(from UserInterface)

0..1

1

#m_ptrBucketCoverage

0..1

1

0..1

1

#m_ptrMTTF

0..1

1

0..1

1

#m_ptrProbabilities

0..1

1

0..1

1

#m_ptrTestFilesMngr
0..1

1

0..1

1

#m_ptrTestSuggestions

0..1

1

Figure 5.4: Class Diagram For Workhorses Module

Currently, no special test suggestions have been provided for the Boolean data

types, but this class has been designed for any possible future extensions. However, the

suggestions for the boundary value tests have been overridden in the Integer Test Type

class. This is necessary as the accuracy settings are different for integer and floating-point

data types giving rise to different test suggestions based on the input data type.

A complete class diagram that illustrates all the relationships between all the

classes is given in the Appendix.

44

RATT Implementation and GUI

The Reliability Analysis Test Tool was developed using C++ and MFC in

Microsoft Visual Studio environment. The main goal while developing RATT was to

keep the tool as simple as possible while ensuring a high degree of accuracy and future

extensibility. The User Interface of RATT is designed as a single document interface.

The interface contains menus to load test case files, run the reliability metrics and the test

suggestions and finally save the results obtained after analysis. The results are saved as

simple ASCI text files. The results can also be displayed on the client area of the

interface. Shortcuts buttons and accelerator keys have been provided for frequently used

operations. The following section is a brief description of the working of RATT. The

correct sequence of operations that should be followed for obtaining the results is given

and some illustrations of RATT are provided for easy understanding.

Working Of RATT:

RATT is designed to run on Windows platforms. It does not need any special

software to run. However, because it uses extensive MFC, some of the MFC libraries are

required to support RATT. An installer has been built that automatically loads the

required dlls and the RATT executable into the systems directory.

Figure 5.5 illustrates the main window of the RATT interface. The interface

provides File, Edit, Run, Output, and Help menus. The user can use the mouse or the

keyboard to select the various menu options provided by the interface.

45

Figure 5.5: RATT User Interface

The following are the menus provided to the user.

File Menu:

The important sub-menu options of the File menu are Load, Add, and Save.

Figure 5.6 illustrates the File Menu of RATT.

Figure 5.6: RATT File Menu

The Load menu enables the user to load a test case file for analysis. These test

case files are CSV files that contain user selected test script information, the input matrix

46

values and the output matrix values. RATT can analyze test case files that are in a

specific format that can be read into RATT. The Load menu pops up an Open dialog box

shown in Figure 5.7. The user can select the test case file to analyze from the file

structure. Selecting the Load menu once again erases the data storage objects of the

previously loaded test case file. Multiple files can also be read into RATT for analysis.

But in order to add more files, the user has to select the Add menu. The Add menu is

available only after loading a file. The Add menu also pops up the Open dialog from

where the user can select additional test case files and these test case files should

correspond to the same super block. The number of test case files that can be read into

RATT can be set in the registry by manipulating the parameter MaxTestCases. This is

done in order to prevent any memory overflows that might occur in case too many files

are read into RATT for analysis. By default, the number of test case files that can be read

into RATT is 10. The user, depending on the memory available on his machine can

change this value.

Figure 5.7: RATT Open Dialog

47

The Save menu option enables the user to save the RATT output files as CSV

files. The reliability and test coverage metrics are saved as .rlr files, test suggestions as

.sug files and a summary of the metrics with the test suggestions are saved as .rtt files.

The File menu also provides the Print sub menus for printing and the Exit menu to quit

the application.

Edit Menu:

The Edit menu provides the user with editing options like Cut, Copy,

Paste, and Clear Screen. The Clear Screen menu is found especially useful when viewing

results on the client area.

Run Menu:

The Run menu provides the user with three sub-menus, Get Reliability

Metrics, Get Test Suggestions, and Get Test Suite Suggestions. After the user selects the

test case files to analyze, the Get Reliability Metrics menu fetches the reliability and test

coverage metrics for the user. The user can then either choose save the metrics or view

them on the client area of the interface. The menus Get Test Suggestions and Get Test

Suite Suggestions fetch the test suggestions to run additional domain tests. These menus

are unavailable before the user obtains the reliability and coverage metrics. This is done

because the test suggestions need test domain coverage information to run. The menu

Test Suite Suggestions is available only when multiple test case files are loaded for

analysis. This is done because the logic used for computing the test suggestions in case of

multiple files is completely different from the logic used for computing the suggestions in

case of a single test case file. Figure 5.8 shows the Run menu option selected on the

interface.

48

Figure 5.8: RATT Run Menu

Output Menu:

The Output menu provides the user with sub-menus to view the output on

the client area of the interface, which is locked for editing. Figure 5.9 illustrates the

Output menu selected on the interface.

Figure 5.9: RATT Output Menu

49

The Percentile Coverage menu provides the user with the input and output

domain coverage. The Exception Coverage provides the user with the input percentiles

producing the highest number of exceptions in the output and also the input percentile

combinations producing highest exceptions. The MTTF and the Probability Results

menus provide the user with the reliability metrics. The Test Suggestions menu provides

the user with test suggestions both for uncovered percentiles and percentiles with

exceptions. The Summary menu provides both the complete summary of the metrics and

the test suggestions for the user. Figure 5.10 illustrates the test suggestions on the client

area of the RATT user interface.

Figure 5.10: RATT Client Area

Testing and Using RATT

Considerable emphasis was placed on testing RATT to obtain high degree of

correctness. Many test cases were run to investigate and assess the correctness of the

results. Most of the test case files used for testing were generated using MATT while

50

others are from the Wind Tunnel control software. RATT was developed to be used

within NASA and Boeing to guide the testing of independent groups of testers to help

analyze the output obtained and guide them through setting up specific tests that will help

them track the defects of the software much more effectively. RATT will also be used to

help guide testing of Matrixx
 and MatLab developers.

51

CHAPTER 6

RESULTS

This chapter presents the implementation results of the proposed test suggestions

using the Reliability Analysis Test Tool. In addition, an analysis of those results to

understand the advantages and the limitations of the employed solution strategy is

presented. The results produced after following the test suggestions are analyzed for their

ability to:

1. Improve the effectiveness of testing by uncovering more defects.

2. Improve debugging by pinpointing the exact point in the input generating a

defect.

3. Obtain a more complete coverage of test input domains.

Because the test suggestions largely depend on the test type used in the test run, tests

were run against a sample model to verify the effectiveness of the suggestions provided

for each test type.

However, in this chapter the results for one specific test type in each test type

category are presented. Because, MATT has twenty-five different types grouped into five

distinct test type categories, it would be overwhelming and not particularly useful to

present the results for every single specific test type, especially when the logic used for

suggesting additional tests remains consistent within each test type category with only

some minor differences in the formulae used for the calculations. To be consistent, the

test type used in each category for explaining the solution strategy in Chapter 4 would be

used again in this chapter to demonstrate the results.

52

Testing Procedure

The Circuit Test model used for building NASA’s Wind Tunnel control software

was used for testing and verification. This is a simple but illustrative model with 3 inputs

and 4 outputs. The model is loaded into MATRIXx
, and MATT is used for simulation

and testing to produce the test case files. The following are the values of the specific test

case parameters used for generating the initial test case files.

1. The value for the number of tests run is set at 100.

2. The accuracy of each input variable is set at 2.

3. The test minimum and the test maximum of all the three input variables are set to

the actual input maximum and input maximum that the model inputs can take. For

the first input variable, the test boundaries are 10 – 100. For the second input, the

boundaries are set at 10 – 200 and for the third input they are set at 10 – 500.

4. The exception types for the four outputs are set as above limit, below limit,

outside limits, and none respectively.

5. The results obtained by running D2Min, Min2Max, RASeg, RA2Max, Osc, and

CP@Min against the three inputs are presented for analysis in the subsequent

sections.

The test case files generated using MATT are read into RATT for analysis. The

Domain Coverage metrics and the Test Suggestions obtained after the initial test run in

RATT are saved for further comparison. The model is once again simulated in MATT

with the new test script parameters specified by the test suggestions proposed in RATT.

The test suggestions include manipulating one or more of the test script parameters such

as the test boundaries, number of tests, accuracy, and the test type. The new test case file

53

is again read into RATT and the results obtained are compared with the initially obtained

domain coverage results. For comparison, both the original file and the file generated

after the test suggestions are loaded into RATT at the same time and analyzed. This is

done because the test boundaries for subsequent test case files can be less than the initial

test boundaries in which case the buckets in the original file are not the same as the

buckets in the subsequent files. This process can be iteratively continued until the

engineer acquires sufficient knowledge of the defective input domain to debug the

software of the defects. The following section describes the results obtained for each test

type and an analysis of those results.

Results

Boundary Value Test Types:

In all boundary value test types, uncovered buckets occur in two ways, both of

which were discussed in detail in Chapter 4. Figure 6.1 illustrates the domain coverage

values obtained after running the test suggestions proposed for the first case. In this case,

all the buckets from [Test Minimum + (Number of Tests – 1) * Step] until 100 remain

uncovered because the input value generated in a particular time step depends on the Test

Minimum, Number of Tests and, Step. The graph in Figure 6.1 illustrates the test

coverage values obtained after running D2Min on the first input variable. Initially, 91

inputs are covered in the first bucket and 9 inputs in the second bucket. All the buckets

from 3 until 100 are uncovered. In a case where all 9 inputs in the second bucket are

found defective, the user might want to test for more inputs in the second bucket and also

in the adjacent buckets to determine if some of the inputs in those buckets might also

54

generate defects. The suggestions enable the user to choose the number of buckets to

cover and also provide the user with the coverage in each of those buckets. The graph in

Figure 6.1 illustrates the bucket coverage results if the user chooses to cover buckets

adjacent to the second bucket because there are a large number of defects in the second

bucket. On the second iteration, the D2Min test is repeated with an increase in the value

of number of tests to ensure coverage of the first seven buckets. The third iteration will

ensure coverage of the first twelve buckets. The user can thus specify exactly the number

of buckets to cover after the second bucket. This is especially helpful to uncover the

latent defects in the neighboring buckets and because the user specifies the number of

buckets to be covered, he can control the concentration of input values in those buckets.

0

50

100

150

200

250

300

No. Of Input
Values

Buckets

Improving Test Coverage

Coverage Until 12 Buckets

Coverage Until 7 Buckets

Initial Coverage

Coverage Until 12 Buckets 91 90 90 90 90 90 90 90 90 90 90 0

Coverage Until 7 Buckets 91 90 90 90 90 90 8 0 0 0 0 0

Initial Coverage 91 9 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.1: Bucket Coverage Results – Descending to Minimum

The graph in Figure 6.2 illustrates the number of input values covered in each

bucket over successive iterations and the illustration in Figure 6.3 shows the number of

input values in each bucket causing exceptions in the outputs. In the initial iteration, only

the first two buckets are covered. Out of the 91 inputs covered in the first bucket, 71

55

inputs produce defects and out of the 7 inputs in second bucket, only one input produces

a defect. The algorithm discussed in Chapter 4 is employed here to group the first 3

buckets into a single block and then repeat D2Min test, because the exceptions are more

in the first half of the block than in the second half of the block. The new test boundaries

are set at 10 and 12.7 respectively, and the value of accuracy is set at 3.

Bucket Coverage

0
100
200
300
400

Buckets

N
u

m
b

er
 o

f
In

p
u

t
V

al
u

es

Initial Coverage

 Iteration 1

Iteration 2Initial Coverage 91 9 0 0 0

 Iteration 1 191 9 0 0 0

Iteration 2 291 9 0 0 0

1 2 3 4 5

Figure 6.2: Bucket Coverage Results – Descending to Minimum

The original test case file and the file obtained after the test suggestions are

loaded into RATT at the same time and analyzed. In the third iteration, the domain was

narrowed down further to 10 and 10.135 and the number of tests increased to 200. Here

again, more defective inputs were found towards the test minimum. Either the accuracy

settings or the number of tests run can be manipulated for successive test runs. Figure 6.2

and Figure 6.3 illustrate the results obtained over three successive iterations. It can be

observed from the graph that on subsequent test runs all the inputs in the first bucket

produce defects. After testing, the engineer should confidently be able to conclude that all

the inputs in the first bucket are leading to defects so that he can check the software for

the entire range. Because the accuracy settings or the number of tests are varied over

56

subsequent test runs, the probability that the same inputs being counted twice over

iterations is very low. However, this possibility is not completely eliminated.

Exception Coverage

0

100

200

300

Buckets

N
u

m
b

er
 O

f
E

xc
ep

ti
on

s
Initial Exception Coverage

Iteration 1

Iteration 2

Initial Exception
Coverage

71 1 0 0 0

Iteration 1 171 1 0 0 0

Iteration 2 271 1 0 0 0

1 2 3 4 5

Figure 6.3: Exception Coverage Results – Descending to Minimum

Let us suppose that the maximum precision of the first input variable is 5.

Initially, on the first iteration, input values are generated from 10 to 100. The maximum

number of values that can be tested in this domain are 90 * 105. On the second iteration,

this number is significantly reduced to 270000 as the system is tested only between 10

and 12.7. Similarly, the maximum number of values that can be tested on the third

iteration are 13500 as the domain is further narrowed down to 10 – 10.135. This is an

order of magnitude reduction of the total number of input values that need be tested in a

given domain. On subsequent iterations, this number can be further reduced to a number

where the user can actually afford brute force to probe each input in the sub-domain for

defects. Figure 6.4 illustrates the results for the first input variable over four test runs.

57

Combinatorial Test Input Reduction

9,000,000

270000 13500 2700

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

1 2 3 4

Test Runs

M
ax

 N
o

. O
f

T
es

t
In

p
u

ts

Max No. Of Input
Values

 Figure 6.4: Combinatorial Input Domain Reduction – Descending to Minimum

Linear Value Test Types:

The graph in Figure 6.5 illustrates the results obtained by running a linear

Min2Max test on the second input variable over three successive iterations. Initially, the

test was run between test boundaries 10 – 200 with the value of number of tests set at

100. The bucket coverage is uniform with exactly one value in each bucket. All the

buckets from 65 –100 reported exactly one defect, thereby implying that every input

value covered in those buckets is leading to an exception.

Exception Coverage

35
135

335

0
100
200
300
400

1 2 3

Test Run

T
o

ta
l

N
o

.
O

f
In

p
u

ts

p
ro

d
u

c
in

g

E
xc

p
s

Figure 6.5: Exception Coverage Results – Minimum to Maximum

58

Therefore, in the initial test run 35 inputs in the bucket range 65 – 100 are

producing defects. On the second iteration, all buckets from 64 – 100 are grouped into

one block and the Min2Max test is repeated on this block increasing the number of test

runs to 200. All the 200 inputs generated during the second iteration were found to

produce exceptions increasing the total number of inputs producing exceptions in the

buckets 65 - 100 to 235. On the third iteration, a mirror image Max2Min test was run on

this domain increasing number of tests to 300. The rationale in running three iterations

over the buckets 65 - 100 is to uncover more inputs in this sub-domain leading to defects,

which will enable the engineer to confidently infer that all the inputs in this sub-domain

are leading to exceptions and therefore test the software for the entire sub-domain. The

engineer cannot reach such a conclusion without some degree of testing in the sub

domain. Because, the increment used to generate inputs over an iteration is different from

the increment used in the previous iteration, the probability of the same inputs being

counted twice is unlikely but such a possibility is not completely eliminated.

Random Value Test Types:

This section presents the results obtained by running RASeg and RA2Max test

types. These test types use two distinct strategies to generate test values. The RAMin,

RD2Min, RDMax, RAMM, and RDMM tests follow the strategy used for RA2Max.

RDSeg uses the approach followed RASeg. The graph in Figure 6.6 illustrates the results

obtained by running RASeg on the third input variable of the Circuit Test model over

four successive iterations. Initially, a RASeg test type was run between test boundaries 10

to 500 with the number of tests set at 100. All buckets from 1 to 11 generated defects.

59

 Figure 6.6: Exception Coverage Results – Random Ascending Segmented

The test suggestions proposed in Chapter 4 suggest the user run three different

tests that might help uncover more inputs leading to defects in the sub-domain.

Therefore, in the second test run all buckets from 1 to 12 are grouped into a single block

and RASeg is repeated over this defective sub-domain and the number of tests is

increased to 200. The graph in Figure 6.6 shows a more than significant increase in the

number of inputs producing defects. On the third iteration, a mirror image random value

test RDSeg was run keeping the number of tests constant at 200. RDSeg essentially

covers the input sub-domain in the opposite order and might help uncover some inputs

leading to exceptions mainly because the time step in which a particular input is

generated is different from the previous iteration. On the fourth iteration, a linear

Min2Max test was run with the value of number of tests set at 200. The results obtained

over all four iterations are shown in Figure 6.6. One can observe from the graph that the

number of defects uncovered by running a RASeg is much greater than the number of

defects uncovered by running an RDSeg test or a Min2Max test. This suggests the

engineer should execute a RASeg test to further test the sub-domains.

0
10
20
30
40
50

No. Of
Inputs

producing
Excps

1 3 5 7 9 11

Buckets

Exception Coverage

Running Min2Max

Running RDSeg

Running RASeg

Initial Iteration

60

The graph in Figure 6.7 illustrates the results obtained by running a RA2Max test

on the first input variable. After the initial test run, the first five buckets in the input

domain generated defects. The first five buckets were grouped into a single block, and the

RA2Max was repeated on the defective input domain keeping the other test case

parameters constant. The results obtained are shown in Figure 6.7. On the subsequent

iteration, a mirror image RDMax test was run on the defective input sub-domain. These

test types mainly check for stabilizing and destabilizing conditions at the maximum. It

can be observed from the graph in Figure 6.7 that in some of the buckets, the number of

defects uncovered during the second iteration is significantly increased from the initial

iteration. This might help the user in uncovering some latent defects, which might remain

undetected, even after repeatedly running the RA2Max test. However, running RDMax

might result in the same or perhaps less coverage than the previous test run in which case

might not prove very useful.

Figure 6.7: Exception Coverage Results – Random Ascending to Maximum

Critical Value Test Types:

The graph illustrated in Figure 6.8 shows the results obtained by running the

CP@Min test on the first input variable of the Circuit Test model over three iterations. In

the initial test run, all the input values generated are concentrated in the first bucket

0
5

10
15
20
25

No. Of
Inputs

Producing
Excps

1 2 3 4 5

Buckets

Exception Coverage

Initial Test Run -
RA2Max

Second Iteration -
RDMax

61

because the system is tested at the test minimum. Out of the 100 inputs covered in the

first bucket, 82 generated defects. On the second iteration, a boundary value test

approaching the minimum, D2Min was run on the defective domain with the number of

tests set at 100.

 Figure 6.8: Exception Coverage Results – Critical Point At Minimum

The rationale for suggesting a D2Min test is to uncover more inputs in the first

bucket that generated defects and at the same time also test for input values in the

adjacent buckets producing defects. This is done mainly because a large number of inputs

produce defects in first bucket that might lead to defects in subsequent buckets. Also, it

might prove very crucial to probe the boundaries of the critical point for any defects,

especially when a large number of inputs are producing defects at the critical point. The

second iteration uncovered defects in buckets 2 to 6 are used. The third iteration is run

again on the same test boundaries but increasing the number of tests to 200. Figure 6.8

shows the increase in the defects being uncovered over subsequent iterations.

Oscillate Value Test Types:

The graph in Figure 6.9 demonstrates the results obtained by running an Osc test

on the second input variable over three iterations. Initially, an Osc test was run on the test

boundaries 10 to 200 setting the number of tests at 100. The first five input buckets were

Exception Coverage

0

50

100

150

1 2 3 4 5 6

Buckets

N
o

.
O

f
In

p
u

ts

p
ro

d
u

c
in

g
 E

x
c

p
s

Initial Critical Point Test

D2Min(CP) 1st Iteration

D2Min(CP) 2nd Iteration

62

found to produce most defects. On the second test run these buckets are grouped into one

block and an Osc test with the next higher frequency, Osc2, is run the defective sub-

domain. This will enable the user to uncover more inputs in the defective sub-domain

keeping the other test parameters same as the original iteration. In the third iteration, an

Osc4 test was run and the results generated over all the three iterations are shown in

Figure 6.9.

 Figure 6.9: Exception Coverage Results – Oscillate Value One

The following conclusions can be drawn from the results obtained after running

all the test cases:

1. The increase in the number of defects uncovered over successive test runs

is greater than O (n). On subsequent iterations, the engineer will be able

confidently infer from the results the exact input sub-domain that is

defective. This will enable him to verify the software for the entire sub-

domain.

2. The testing suggestions help in obtaining better domain coverage and also

enable the user specify the coverage criteria in each input sub-domain.

0

50

100

150
No. Of
Inputs

Producing
Excps

1 2 3 4 5
Buckets

Exception Coverage

2nd Iteration - Osc4

1st Iteration - Osc2

Initial Osc Test

63

Hence, the user can specify which buckets he wants covered and also the

density of those buckets.

3. Because the test suggestions follow the test domain minimization

approach, this significantly reduces the combinatorial number of the

maximum input values that can be tested in a given domain. This will

enable the user to impose brute force on all inputs in subsequent iterations

to pinpoint the exact inputs producing the defects.

4. The tests also help the user to prefer one test to the other when multiple

test suggestions are given.

64

CHAPTER 7

CONCLUSIONS

This chapter discusses some of the limitations of the proposed solution strategy

and the future work that could be done to improve the test suggestions.

One of the major limitations of the proposed solution strategy is that the test

suggestions depend on the test types used in MATT. If any additional test types are added

to MATT, more suggestions for those test types should be added to RATT. However,

MATT works seamlessly with Matrixx
 and is presently being ported to MatLab, and the

test suggestions of RATT are designed to work with the MatLab version of MATT.

Without question, an application independent solution strategy can be developed from

this work to guide the user towards further domain testing in general. Currently, RATT

throws an exception whenever the user selects a test type that it does not recognize.

Another limitation of this work is that only the parameters of a single previous

test run are considered while suggesting subsequent tests. The test suggestions might be

improved if a strategy could be developed that keeps track of all the test script parameters

for an input variable over successive iterations and then suggest an appropriate test taking

into account all the previous iterations run on this input variable.

The next important limitation of RATT is the test suggestions provided for

multiple files. When multiple files are loaded into RATT for analysis, an input variable in

these files can contain different test types. Currently, a linear Min2Max test has been

proposed with the test minimum set to the minimum of the test minimums of the input

variable and the test maximum set to the maximum of the test maximums of the input

65

variable over all test case files. The value of the number of tests run is also chosen as the

maximum of the value of the number of tests over all the files. More appropriate test

suggestions could be provided by considering the various combinations of test types that

could be chosen for a particular input variable. This problem presents a significant

combinatorial and mathematical problem that may only be solvable through user

guidance.

One final limitation of the test suggestions in RATT is that currently no

suggestions have been provided for the input combinations producing defects. Pattern

recognition or string matching techniques might be used to precisely determine the

bucket combinations producing defects and suggest appropriate tests.

In spite of above-mentioned limitations, the suggestions help in guiding the user

to a more effective degree of testing capability in setting up further domain tests.

However, this strategy can be considered only as a step towards increasing the domain

testing effectiveness.

66

BIBILIOGRAPHY

[1] Henry, J., and Patterson-Hine, A., “An Effective Strategy for Testing of Real

Time Software”, International Symposium on Software Testing and Analysis,

Portland, Oregon, August 21-24, 2000

[2] Integrated Systems Inc. MATRIXx
 [On-line]

URL: http://www.isi.com/products/matrixx/

[3] MATT User Guide [On-line]

URL: http://cscidbw.etsu.edu/matt/docs/matt_userguide/matt_userguide.htm

[4] Koneru, N., “Quantitative Analysis of Domain Testing Effectiveness”, ETSU

Masters thesis, 2001

[5] Henry, J., Turlapati, R., Koneru, N., "Quantitative Evaluation of Domain

Testing", Testing Computer Software, June 18-22, 2001, accepted for publication

[6] W. Eric Wong, Joseph R Horgan, Aditya P. Mathur, Alberto Pasquini, “Test Set

Size Minimization and Fault Detection Effectiveness: A Case Study in a Space

Application“, COMPSAC '97 - 21st International Computer Software

Conference

[7] “Formal Verification, Testing and checking of Real-time Systems”, ACM

Computing Surveys, December 1996

URL: http://www.acm.org/pubs/articles/journals/surveys/1996-28-4es/a182-

lee/a182-lee.html

67

[8] Abdeslam En-Nouaary, Ferhat Khendek, Rachida Dssouli, “Fault Coverage in

Testing Real-Time Systems “, Proceedings of the Sixth International Conference

on Real-Time Computing Systems and Applications

[9] J.D. Musa, A. Iannino, Kazuhira Okumoto, Software Reliability: Measurement,

Prediction, Application. New York: McGraw-Hill, 1987.

68

APPENDIX

rt_ C Ma trix
(fro m Da ta S to ra g e)

C Ma inFram e
(fro m Use rIn te rfa ce)

C R ATTView
(f ro m Use rIn ter fa ce)

C Abou tD lg
(f ro m Use rIn t er fa ce)

C R ATTAp p
(fro m Use rIn te rfa ce)

R AT T O v eral l C LA SS DIA GRA M

rt_ C Floa tTes tTyp e
(fro m Da ta S to ra g e)

rt_ C Bo o lT es tT ype
(fro m Da ta S to ra g e)

rt_ C In tTe s tType
(f ro m Da ta S to ra g e)

rt_ C Bu cke ts
(fro m Da ta S to ra g e)

rt_ C Exce p tio n
(fro m Uti l i t ie s)

rt_ C Ou tp u tBucke ts
(fro m Da ta S to ra g e)

m t_EE xcep tionT ypes
(fro m Uti l i t ie s)

rt_ C Te s tType
(fro m Da ta S to ra g e)

m t_ED a taType s
(f ro m Ut il i t i es)

rt_ C Ou tp u tMa trix
(fro m Da ta S to ra g e)

rt_ C Inpu tMa trix
(f ro m Da ta S to ra g e)

rt_ C Te s tCa s e
(fro m Da ta S to ra g e)

0 ..1

1

-m _p trInpu tMa trix

0 ..1

1

0 ..1

1

- m _p tr Ou tpu tMa t rix

0 ..1

1

rt_ C Te s tOu tpu t
(fro m Da ta S to ra g e)

0 .. 1

1

#m _ p trOu tpu tB ucke ts

0 .. 1

1

1

1

#m _ i Exc ep tion Type
1

1

1

1

#m _ iD a ta typ e

1

1

rt_ C Bu cke tC ove rag e
(fro m Wo rkHo rse s)

0 ..1

1

-m _p trC u rren tOu tp u tMa trix

0 ..1

1

0 ..1

1

-m _p trC u rrent Inp u tMa trix

0 ..1

1

rt_ C Te s tFilesM ng r
(fro m Wo rkHo rse s)

C R ATTD oc
(fro m Use rIn te rfa ce)

rt_ C Te s tSug ge s tio ns
(f ro m W o rkHo rse s)

0 ..1

1

#m _ p trTes tFile s Mn gr

0 ..1

1

rt_ C Prob ab il i tie s
(fro m Wo rkHo rse s)

rt_ C Te s tInpu t
(fro m Da ta S to ra g e)

0 ..1

1

#m _ p tr Tes tType

0 ..1

1
0 ..1

1

m _ p tr Tes tInp u t

0 ..1

1

1

1

m _ i D a ta Type

1

1

rt_ C Inpu tBucke ts Proba b il itie s
(f ro m W or kH o rse s)

rt_ C Te s tScrip t
(fro m Da ta S to ra g e)

0 ..1

1

-m _p trFina lTes tS crip t

0 ..1

1

0 ..1

1

-m _p trC u rren tTes tScrip t
0 ..1

1

0 ..1

1

-m _p trTe s tScrip t

0 ..1

1

0 ..1

1

#m _ p trFina lTe s tScrip t

0 ..1

1

0 ..1

1

-m _p trFina lTes tS crip t

0 .. 1

1

r t_ CMa n ag e r
(f ro m Use rIn ter fa ce)

0 ..1

1

#m _ p trBucke tC o ve ra ge

0 ..1

1

0 ..1

1

#m _ p tr Tes tFil e sM ngr

0 ..1

1

0 ..1

1

+m _ p trMana ge r

0 ..1

1

0 ..1

1

#m _ p trTes tS ugg es tion s

0 ..1

1

0 ..1

1

#m _ p trPro ba b ili tie s

0 ..1

1

r t_ C Inpu tBucke ts
(fro m Da ta S to ra g e)

0 ..1

1 #m _ p trIn pu tBu cke ts

0 ..1

1

0 ..1

1

#m _ p trIn pu tBu cke ts

0 ..1

1

rt_ C MTTF
(fro m W o rkHo rse s)

0 .. 1

1

#m _ p trFina lTe s tScrip t

0 .. 1

1

0 ..1

1

#m _ p trMTTF

0 ..1

1

r t_ C Inpu tBucke ts MTTF
(fro m Wo rkHo rse s)

0 ..1

1

#m _ p tr In pu tBu ck e ts

0 ..1

1

69

VITA

RADHIKA TURLAPATI

Personal Data: Date of Birth: April 9, 1978
Place of Birth: Hyderabad, INDIA

Education: Atomic Energy Central School, Hyderabad, India
Atomic Energy Junior College, Hyderabad, India

VR Siddhartha Engineering College, Vijayawada,
 India; Computer Science, B.E., 1999
 East Tennessee State University, Johnson City,
 Tennessee; Computer Science, M.S., 2001

Professional Experience: Software Intern, Electronics Corporation of India Ltd.,
 Hyderabad, India, 1998
Software Engineering Intern, Prithvi Information
 Solutions Inc., Pittsburgh, 2000
Graduate Assistant, East Tennessee State University,
 Johnson City, Tennessee, 1999-2001

Henry, J., Turlapati, R., Koneru, N., "Quantitative Evaluation
of Domain Testing", Testing Computer Software, June 18-22,

2001, accepted for publication

Publications:

Honors and Awards Outstanding Scholastic Achievement Award, East Tenessee
State University, 1999 - 2000

	Leveraging Test Measurements into Proposing Additional Domain Tests.
	Recommended Citation

	tmp.1358118723.pdf.7CoP8

