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C-Reactive Protein-Based Strategy
to Reduce Antibiotic Dosing for the
Treatment of Pneumococcal Infection
Donald N. Ngwa†, Sanjay K. Singh† and Alok Agrawal*

Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City,
TN, United States

C-reactive protein (CRP) is a component of innate immunity. The concentration of CRP in
serum increases in microbial infections including Streptococcus pneumoniae infection.
Employing a mouse model of pneumococcal infection, it has been shown that passively
administered human wild-type CRP protects mice against infection, provided that CRP is
injected intomicewithin two hours of administering pneumococci. Engineered CRP (E-CRP)
molecules have been reported recently; unlikewild-typeCRP, passively administered E-CRP
protectedmice against infection even when E-CRPwas injected intomice after twelve hours
of administering pneumococci. The current study was aimed at comparing the protective
capacity of E-CRPwith that of an antibiotic clarithromycin.We established amousemodel of
pneumococcal infection inwhichbothE-CRPandclarithromycin,whenused alone, provided
minimal but equal protection against infection. In this model, the combination of E-CRP and
clarithromycindrastically reducedbacteremiaand increasedsurvival ofmicewhencompared
to the protective effects of either E-CRP or clarithromycin alone. E-CRPwasmore effective in
reducing bacteremia in mice treated with clarithromycin than in untreated mice. Also, there
was 90% reduction in antibiotic dosing by including E-CRP in the antibiotic-treatment for
maximal protection of infected mice. These findings provide an example of cooperation
between the innate immunesystemandmolecules that preventmultiplicationofbacteria, and
that should be exploited to develop novel combination therapies for infections against
multidrug-resistant pneumococci. The reduction in antibiotic dosing by including E-CRP in
the combination therapy might also resolve the problem of developing antibiotic resistance.

Keywords: C-reactive protein, clarithromycin, pneumococcal infection,Streptococcuspneumoniae, combination therapy

INTRODUCTION

C-reactive protein (CRP) is a critical host defense molecule of the innate immune system (1, 2). CRP
binds to cells and molecules, host or foreign, which have accessible phosphocholine (PCh) moieties
(3, 4). One example of CRP-ligands is pneumococcal C-polysaccharide found on the surface of
Streptococcus pneumoniae (5). Once bound to a PCh-bearing ligand, CRP activates the complement
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system in both human and murine sera to damage and, if
possible, eliminate the ligand (6–9). Experiments employing
human CRP transgenic mice, CRP-deficient mice, and normal
mice in which human wild-type CRP (WT CRP) was passively
administered have all revealed that CRP is protective against
pneumococcal infection (2, 10–15). It has also been shown that
the anti-pneumococcal activity of CRP in vivo is due to the ability
of ligand-complexed CRP to activate the complement system (9,
16–18). However, WT CRP was found to be protective only
when given to mice within 2 h of administering pneumococci in
the mouse model of infection in which WT CRP is passively
administered (16).

CRP is a pentameric molecule comprised of five identical
subunits (19, 20). Recently, two types of engineered pentameric
CRP (E-CRP), E-CRP-1, and E-CRP-2, generated by
oligonucleotide-directed site-specific mutagenesis of WT CRP
cDNA, have been reported (21). In E-CRP-1, four amino acid
residues were mutated (E42Q/F66A/T76Y/E81A). In E-CRP-2,
two amino acid residues were mutated (Y40F/E42Q). Tyr40 and
Glu42 are present in the intrinsically disordered region of CRP.
Glu42 is also a part of the inter-subunit contact region. Phe66,
Thr76 and Glu81 form the PCh-binding site of CRP (19, 20). E-
CRP-1 does not bind to PCh while E-CRP-2, like WT CRP, binds
to PCh. Both E-CRP-1 and E-CRP-2 bind to complement
inhibitor factor H recruited by pneumococci on their surface
in mouse circulation; WT CRP does not bind to immobilized
factor H (22–25). Unlike passively administeredWTCRP, both E-
CRP-1 and E-CRP-2 protected mice against infection even when
E-CRP was administered 12 h after administering pneumococci,
indicating that a conformationally altered form of CRP that can
bind to immobilized factor H is required for CRP-mediated
protection of mice against late-stage pneumococcal infection (1,
21). Accordingly, it was hypothesized that in individuals in whom
the conformation of CRP remains unchanged, perhaps due to
inappropriate inflammatory conditions around CRP, CRP is not
fully functional during infection (21). It was proposed that the use
of E-CRP might be beneficial for treatment of infections against
antibiotic-resistant pneumococci (21).

Antibiotics are commonly used to treat pneumococcal
infection in humans (26). The aim of this study was to directly
compare the protective effects (increase in survival and decrease
in bacteremia) of E-CRP and antibiotics. Since the antibiotic
clarithromycin has been used previously in mouse models of
pneumococcal infection and was found to be protective when
administered into mice later during the infection (27),
clarithromycin was selected for the current study. Both E-CRP-
1 and E-CRP-2 were included in the study to compare the
protective effects with that of clarithromycin. A mouse model
of pneumococcal infection was employed in which E-CRP-1, E-
CRP-2, and clarithromycin, when used singly, provided minimal
but equal protection against infection. This model was suitable to
investigate the protection against infection when E-CRP-1 or E-

CRP-2 and clarithromycin were combined for the treatment of
mice. The results of the experiments indicate that E-CRP is more
effective in reducing bacteremia in mice when used in the
presence of clarithromycin.

MATERIALS AND METHODS

Preparation of CRP
The cDNAs for E-CRP-1 (E42Q/F66A/T76Y/E81A mutant
CRP) and E-CRP-2 (Y40F/E42Q mutant CRP) were
constructed and expressed in CHO cells using the ExpiCHO
Expression System (Thermo Fisher Scientific), as described
earlier (21). Purification of E-CRP-1 from cell culture
supernatants involved Ca2+-dependent affinity chromatography
on a phosphoethanolamine-conjugated Sepharose column,
followed by ion-exchange chromatography on a MonoQ
column and gel filtration on a Superose12 column, as
described earlier (14). E-CRP-2 was purified by Ca2+-
dependent affinity chromatography on a PCh-conjugated
Sepharose column, followed by ion-exchange chromatography
on a MonoQ column and gel filtration on a Superose12 column,
as described earlier (8). Native WT CRP was purified from
discarded human pleural fluid by Ca2+-dependent affinity
chromatography on a PCh-conjugated Sepharose column,
followed by ion-exchange chromatography on a MonoQ
column and gel filtration on a Superose12 column, as
described earlier (8), and was used throughout this study.
Purified CRP was dialyzed against 10 mM Tris-HCl, pH 7.2,
containing 150 mM NaCl and 2 mM CaCl2, and was
subsequently treated with Detoxi-Gel Endotoxin Removing Gel
(Thermo Fisher Scientific) according to manufacturer’s
instructions. The concentration of endotoxin in CRP
preparations was determined by using the Limulus Amebocyte
Lysate kit QCL-1000 (Lonza). Purified CRP was stored at 4°C
and used within a week for mouse protection experiments.

Pneumococci
Streptococcus pneumoniae type 3, strain WU2, was obtained as a
gift from Dr. David Briles (University of Alabama at
Birmingham, Birmingham, AL, USA). Pneumococci were
made virulent by sequential i.v. passages in mice and were
stored in aliquots at −80°C, as described previously (14, 15).
For each experiment, a separate aliquot of pneumococci was
thawed and cultured, as described previously (14, 15). Cultured
pneumococci were resuspended in normal saline at a
concentration of 3.5 × 108 cfu/ml based on the absorbance of
the resuspension at 600 nm (A600 = 1.00 = 1.2 × 109 cfu/ml).
Within 2 h, 100 µl (3.5 × 107 cfu) of pneumococci suspension
was injected into each mouse, as reported previously (14, 15, 21).
The concentration of pneumococci was confirmed next day by
plating on sheep blood agar plates.

Mice
Male C57BL/6J mice (Jackson Laboratories) were brought up
and maintained according to protocols approved by the

Abbreviations: CRP, C-reactive protein; E-CRP-1, engineered CRP mutant E42Q/
F66A/T76Y/E81A; E-CRP-2, engineered CRP mutant Y40F/E42Q; moCRP,
endogenous mouse CRP; PCh, phosphocholine; WT CRP, native wild-type CRP
purified from discarded human body fluids.
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University Committee on Animal Care. Mice were 8–10 weeks
old when used in experiments.

Determination of the Experimental Dose of
Clarithromycin
The antibiotic clarithromycin (Santa Cruz Biotechnology, sc-
205634) was reconstituted in acetone at a concentration of 50
mg/ml and stored at 4°C for a maximum of 5 days. To determine
the experimental dose for in vivo experiments, clarithromycin
(50 mg/ml) was diluted in acetone at 40, 4.0, 0.4 and 0.04 mg/ml,
and 50 µl of each concentration was injected i.v. into mouse, four
times, at 12, 36, 60 and 84 h after the administration of
pneumococci. Thus, the final amount of clarithromycin in each
group of mice was 2, 0.2, 0.02 and 0.002 mg per mouse per
injection. As shown in Figure 1, it was clear that a dose of 0.02
mg clarithromycin per mouse per injection was most suitable to
evaluate the effects of the combination of clarithromycin and E-
CRP on the protection of mice against infection. The dose of 0.02
mg of clarithromycin resulted in a survival curve which fell in the
middle so that a shift of the curve, either above or below, could be
observed when E-CRP is added.

Mouse Protection Experiments
Two separate protection experiments were performed using 25
mg of purified WT CRP, E-CRP-1 and E-CRP-2, and 3.5 × 107

cfu of pneumococci, as described earlier (14, 15, 21). The average
amount of endotoxin in 25 mg of all CRP preparations was
1.2±1.1 endotoxin units. Mice were first injected i.v. with 3.5 ×
107 cfu of pneumococci. The actual number of pneumococci
injected, based on the plating results obtained on the next day,
was 3.55 ± 0.44 × 107 cfu. Mice were injected i.v. with either WT
CRP, E-CRP-1 or E-CRP-2, 12 h after the administration of
pneumococci. Since clarithromycin is soluble in nornal saline at
0.2 mg/ml, stock clarithromycin (50 mg/ml in acetone) was
diluted in normal saline to a final concentration of 0.2 mg/ml,
and 100 µl was injected i.v. per mouse at 13, 36, 60 and 84 h after
the administration of pneumococci, to achieve a final dose of
0.02 mg of clarithromycin per mouse per injection. Survival of
mice was recorded three times per day for 7 days. To determine
bacteremia (cfu/ml) in the surviving mice, blood was collected
daily for 5 days from the tip of the tail vein, diluted in normal
saline, and plated on sheep blood agar for colony counting. The
bacteremia value for dead mice was recorded as 109 cfu/ml
because mice died when the bacteremia exceeded 108 cfu/ml.

Statistical Analysis
Survival curves were generated using the GraphPad Prism 4
software. To determine p-values for the differences in the survival
curves among various groups, the survival curves were compared
using the software’s Logrank (Mantel-Cox) test. The scatter plots
of the bacteremia data and the median bacteremia value for each
group were generated using the GraphPad Prism 4 software.
Bacteremia values of 0–100 were plotted as 100 and bacteremia
values of >108 were plotted as 109. To determine p-values for the
differences in bacteremia among various groups at each time
point, scatter plots were compared using the software’s Mann-
Whitney test. The software’s Mann-Whitney test included all the

dots in the scatter plots and not just the median values for each
time point.

RESULTS

Anti-Pneumococcal Effects of E-CRP-1,
Clarithromycin, and Their Combination
As shown in Figure 2, and as reported previously (21), E-CRP-1
increased significantly the median survival time (MST, the time
taken for the death of 50% of mice) of mice infected with
pneumococci. The MST for mice injected with bacteria alone
(group A) was 60 h while the MST for mice injected with E-CRP-
1 (group B) was 84 h. Similarly, clarithromycin also significantly
increased the survival of mice infected with pneumococci; the
MST for mice treated with clarithromycin (group C) was 96 h.
The increase in the MST for mice treated with either E-CRP-1 or
clarithromycin were not significantly different from each other.
In this mouse model of pneumococcal infection, it has been
reported previously that WT CRP does not increase the MST if
mice received WT CRP 12 h after receiving pneumococci (21).
The protection in response to the combination of WT CRP and

FIGURE 1 | Survival of mice infected with pneumococci and treated with
different doses of clarithromycin. Clarithromycin was injected four times, at
12, 36, 60 and 84 h, after the administration of pneumococci. Six mice were
used for each dose of clarithromycin.
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clarithromycin (group D) was similar to that of clarithromycin
alone. The MST for mice treated with the combination of WT
CRP and clarithromycin was 84 h similar to the MST for mice
treated with clarithromycin alone (group C). In contrast to WT
CRP, the combination of E-CRP-1 and clarithromycin
significantly increased the survival of infected mice (group E).
The MST for mice treated with both E-CRP-1 and
clarithromycin was significantly different than the MST for
mice treated with either agent alone. The MST for mice treated
with E-CRP-1 and clarithromycin could not be calculated since
~90% of mice survived till the end of the experiment. In all other
groups, >75% mice died within 5 days. The combination of E-
CRP-1 and 0.02 mg clarithromycin provided the same protection
(Figure 2) in terms of survival of mice as was seen with 0.2 mg of
clarithromycin when used alone (Figure 1). Thus, there was 90%

reduction in the dose of clarithromycin when used in
combination with E-CRP-1.

The protective effects of E-CRP-1 (group B) and
clarithromycin (group C) on the survival of mice, when used
alone, were due to significant decrease in bacteremia (Figures 3A,
B). E-CRP-1, as reported previously (21), and clarithromycin,
both significantly decreased bacteremia. The decrease in
bacteremia by E-CRP-1 and by clarithromycin were not
significantly different from each other. Consistent with the
survival data, the combination of WT CRP and clarithromycin
(group D) did not significantly affect the protective ability of
clarithromycin in terms of decreasing bacteremia. The dramatic
increase in the survival of infected mice by the combination of
E-CRP-1 and clarithromycin (group E) was due to the drastic
decrease in bacteremia. The decrease in bacteremia in mice treated
with both agents was significantly different from the decrease in
bacteremia when mice were treated with either of the two agents
alone. Bacteremia did not rise beyond 104 cfu/ml in mice treated
with both E-CRP-1 and clarithromycin. The median bacteremia
was maintained at the reduced level from the beginning to the end
of the experiment.

Overall, based on the statistical analyses of the survival curves
(Figure 2) and of the scatter plots for bacteremia (Figure 3A),
highly significant differences were found between the groups of
mice treated with both E-CRP-1 and clarithromycin and the
groups of mice treated with either agent alone. The anti-
pneumococcal effects of E-CRP-1 were enhanced in the
presence of low-dose clarithromycin. Combining E-CRP-1 with
clarithromycin in the treatment of pneumococcal infection in
this mouse model reduced the dose of clarithromycin by 90%.

Anti-Pneumococcal Effects of E-CRP-2,
Clarithromycin, and Their Combination
As shown in Figure 4, and as reported previously (21), E-CRP-2
increased significantly the MST of mice infected with
pneumococci. The MST for mice injected with bacteria alone
(group A) was 54 h while the MST for mice injected with E-CRP-
2 (group B) was 132 h. Clarithromycin also significantly
increased the survival of mice infected with pneumococci; the
MST for mice treated with clarithromycin (group C) was 108 h.
The increase in the MST for mice treated with either E-CRP-2 or
clarithromycin were not significantly different from each other.
The combination of E-CRP-2 and clarithromycin significantly
increased the survival of infected mice (group D). The MST for
mice treated with both E-CRP-2 and clarithromycin was
significantly different than the MST for mice treated with
either agent alone. The MST for mice treated with the
combination of E-CRP-2 and clarithromycin could not be
calculated since ~80% of mice survived till the end of the
experiment. In all other groups, >50% mice died in 5 days. The
combination of E-CRP-2 and 0.02 mg clarithromycin provided
the same protection (Figure 4) in terms of survival of mice as was
seen with 0.2 mg of clarithromycin when used alone (Figure 1).
Thus, like E-CRP-1, there was 90% reduction in the dose of
clarithromycin when combined with E-CRP-2.

The protective effects of E-CRP-2 (group B) and
clarithromycin (group C) on the survival of mice, when used

FIGURE 2 | Survival of mice infected with pneumococci and treated with E-
CRP-1 and clarithromycin. E-CRP-1 or WT CRP was injected 12 h after
administering pneumococci and is indicated by an arrow on the x-axis.
Clarithromycin (0.02 mg) was injected four times, at 13, 36, 60 and 84 h, after
the administration of pneumococci. The data are combined from two
separate experiments with six to eight mice in each group in each
experiment. The p-values for the differences in the survival curves between
groups A B and A C were 0.004 and 0.006, respectively. The p-value for the
difference in the survival curves between groups B and C was 0.94. The p-
values for the differences in the survival curves between groups C D and C E
were 0.23 and <0.001, respectively. The p-values for the differences in the
survival curves between groups B E and D E were <0.001.
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alone, were due to significant decrease in bacteremia (Figures 5A,
B). E-CRP-2, as reported previously (21), and clarithromycin, both
significantly decreased bacteremia. The decrease in bacteremia by
E-CRP-2 and by clarithromycin were not significantly different
from each other. The dramatic increase in the survival of infected
mice by the combination of E-CRP-2 and clarithromycin (group
D) was due to the drastic decrease in bacteremia. The decrease in
bacteremia in mice treated with both agents was significantly
different from the decrease in bacteremia when mice were treated
with either of the two agents alone. Bacteremia did not rise beyond
105 cfu/ml in mice treated with both E-CRP-2 and clarithromycin.
The median bacteremia was maintained at the reduced level from
the beginning to the end of the experiment.

Overall, based on the statistical analyses of the survival curves
(Figure 4) and of the scatter plots for bacteremia (Figure 5A),
highly significant differences were found between the groups of
mice treated with the combination of E-CRP-2 and clarithromycin
and the groups of mice treated with either agent alone. The anti-
pneumococcal effects of E-CRP-2 were enhanced in the presence of
low-dose clarithromycin.CombiningE-CRP-2withclarithromycin
in the treatment of pneumococcal infection in this mouse model
reduced the dose of clarithromycin by 90%.

DISCUSSION

E-CRP molecules capable of binding to factor H recruited on the
surface of pneumococci have been shown to protect mice against

late-stage pneumococcal infection (21). Antibiotics protect against
pneumococcal infection too (27). The aim of this study was to
compare the protective effects of E-CRP with that of an antibiotic
clarithromycin employing the same animal model. Our major
findings were: 1. Both E-CRP-1 and E-CRP-2, two different
molecules capable of binding to factor H recruited on the
surface of pneumococci, protected and acted synergistically with
clarithromycin to drastically reduce bacteremia and enhance the
survival of mice with late-stage pneumococcal infection. 2. The
combination of either E-CRP-1 or E-CRP-2 and 0.02 mg
clarithromycin provided the same protection as was seen with
0.2 mg of clarithromycin when used alone. There was 90%
reduction in the dose of clarithromycin when E-CRP was
combined with clarithromycin for the treatment of infected
mice. WT CRP did not do so.

Both E-CRP and clarithromycin decrease bacteremia, but via
different mechanisms. E-CRP-mediated decrease in bacteremia is
due to the activation of the complement system component of
innate immunity. Clarithromycin is a macrolide antibiotic that
has bacteriostatic action against gram-positive bacteria and some
gram-negative bacteria including anaerobes. Clarithromycin is
believed to function by binding to the ribosome within the
microorganism and inhibiting protein synthesis, and thus
inhibiting bacterial growth (26–29). A possible explanation for
the synergy between E-CRP and clarithromycin is that the
binding of E-CRP to factor H, and perhaps also to other
recruited complement inhibitor proteins on pneumococci (21),
and subsequent attack by the complement system are more
efficient when pneumococci are static; and a low-dose

A

B

FIGURE 3 | Bacteremia in mice infected with pneumococci and treated with E-CRP-1 and clarithromycin. Blood was collected from each surviving mouse shown in
Figure 2. (A) Scatter plots of the bacteremia data. The horizontal red line in each group of mice represents median bacteremia. (B) The median bacteremia values,
derived from (A) For 36–92 h, the p-value for the difference between groups A and B was <0.05. For 20–68 h, the p-value for the difference between groups A and
C was <0.05. For all time points, the p-values for the differences between groups B C and C D were >0.05. For 36–116 h, the p-values for the differences between
groups C E, B E, and D E were <0.05, with most significant difference (p < 0.005) between 44–92 h.
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clarithromycin treatment is sufficient to do that. In addition to
the bacteriostatic action of clarithromycin, an increasing body of
evidence suggests that clarithromycin possesses considerable
anti-inflammatory and immunomodulatory properties, such as
macrophage activation and inhibition of neutrophilic
inflammation (26, 30–32). However, it is not clear whether the
anti-inflammatory and immunomodulatory properties of
clarithromycin participated in the synergy between
clarithromycin and E-CRP in protection against infection.
Nevertheless, our data provide a proof of concept that there is
cooperation between E-CRP and clarithromycin in
reducing bacteremia.

A single dose of E-CRP (25 mg) combined with a tiny amount
of clarithromycin (0.02 mg) was the best prescription among all
others in this study and in a previously published study (21) for
nearly complete protection of our experimental mice. Neither E-
CRP (25 mg) nor clarithromycin (0.02 mg) could do it singly,
indicating a previously unknown pathway through which the

innate immune system responds to antibiotic treatment. The
synergy between various CRP species and clarithromycin in
reducing bacteremia is just another example of cooperation
between a molecule of the innate immune system and
antibiotics. It has been reported previously that the classical
complement pathway-mediated immunity against antibiotic-
resistant pneumococci was enhanced in the presence of sub-
inhibitory concentrations of antibiotics cefditoren and
ceftriaxone. The binding of CRP to pneumococci was also
enhanced in the presence of serum plus either cefditoren or
ceftriaxone. Complement activation was also enhanced in the
presence of specific anti-pneumococcal antibodies and sub-
inhibitory concentrations of antibiotics such as cefditoren,
ceftriaxone and amoxicillin (33, 34). It has been suggested that
using antibiotics to enhance complement activation might help
reduce the impact of antibiotic resistance in pneumococcal
infection (33, 34). The cooperation mechanisms between the
molecules of the innate immune system and antibiotics should be
exploited to develop novel combination therapies to treat
infections with antibiotic-resistant pneumococci.

Combination therapies using antimicrobials with different
mechanisms of action are used to treat infections against
antibiotic-resistant pneumococci and, at the same time, are
formulated to prevent the spread of the resistance (35–41).
Combination therapies have been shown not only to be more
effective against antibiotic-resistant bacteria but also significantly
reduce any risk of bacteria developing resistance as seen in
monotherapy. The power of E-CRP to reduce antibiotic dosing
could be significant and might further assist in these goals to
prevent emergence of antibiotic-resistant pneumococci. Usually,
combination therapies involve low doses of two antibiotics from
different classes. It has been suggested that antibiotic-antibiotic
combination therapy may reduce and slow the development of
antibiotic resistance. Eliminating one antibiotic from the
combination altogether and substituting it with E-CRP should
then be, in principle, more effective in reducing and slowing the
development of antibiotic resistance. This strategy is similar to
antibiotic-non-antibiotic combination therapies, such as
adjuvant-antibiotic therapy, where one of the two antibiotics is
substituted with an adjuvant with the goal to prevent the
development of antibiotic resistance (35–41). We propose that
E-CRP should be considered for inclusion in combination
therapies. The ability of E-CRP to drastically reduce
bacteremia even with a fraction of the normal dose of
clarithromycin might contribute further to prevent the
development and spread of antibiotic resistance. Our data
suggest that, by adding E-CRP to E-CRP-antibiotic
combination therapy, the dose of the remaining antibiotic can
be kept low.

We conclude that the efficiency of the innate immune
system is enhanced in the presence of antibiotics. Our
findings provide another example of cooperation between
the innate immune system and molecules that prevent
multiplication of bacteria, and that should be exploited to
develop novel combination therapies for infections against
antibiotic-resistant pneumococci. The reduction in antibiotic

FIGURE 4 | Survival of mice infected with pneumococci and treated with E-
CRP-2 and clarithromycin. E-CRP-2 was injected 12 h after administering
pneumococci and is indicated by an arrow on the x-axis. Clarithromycin (0.02
mg) was injected four times, at 13, 36, 60 and 84 h, after the administration of
pneumococci. The data are combined from two separate experiments with six
to eight mice in each group in each experiment. The p-values for the differences
in the survival curves between groups A B and A C were <0.001 and 0.002,
respectively. The p-value for the difference in the survival curves between
groups B and C was 0.25. The p-values for the differences in the survival curves
between groups B D and C D were 0.01 and 0.002, respectively.
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dosing by the strategy to include E-CRP in the combination
therapy using antibiotics might also resolve the problem of
developing and spreading antibiotic resistance.
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34. Yuste J, Giménez MJ, Jado I, Fenoll A, Aguilar L, Casal J. Enhanced decrease of
blood colony counts by specific anti-pneumococcal antibodies in the presence
of sub-inhibitory concentrations of amoxicillin. J Antimicrob Chemother
(2001) 48:594–5. doi: 10.1093/jac/48.4.594

35. Majhi A, Adhikary R, Bhattacharyya A, Mahanti S, Bishayi B. Levofloxacin-
ceftriaxone combination attenuates lung inflammation in a mouse model of
bacteremic pneumonia caused by multidrug-resistant Streptococcus
pneumoniae via inhibition of cytolytic activities of pneumolysin and
autolysin. Antimicrob Agents Chemother (2014) 58:5164–80. doi: 10.1128/
AAC.03245-14
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