

Nitrogen-doped Chemical Vapor Deposition Carbon Ultramicroelectrodes for Hydrogen Peroxide Detection

Wyatt George, Dr. Gregory Bishop

Bishop Research Group

Outline

- Background
 - H₂O₂
 - UMEs
 - Nitrogen-doping (N-doping)
- Research approach
 - Chemical vapor deposition (CVD) and N-doping methods
- Results and Discussion
 - Characterization via voltammetry and amperometry
- Conclusions and Future work

Background – H_2O_2

- Why is hydrogen peroxide (H₂O₂) important?
 - H₂O₂ is produced in every cell in the body
 - Key roles in cellular processes such as gene expression and cellular differentiation ¹
- Why measure H_2O_2 ?
 - Reactive oxygen species (ROS)
 - Fenton reaction ²
 - H₂O₂ buildup has been linked to diseases ¹

Figure 1. Molecular structure for hydrogen peroxide.

Eq (1).
$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$

Figure 2. Timeline of what H_2O_2 can lead to.

Background - UMEs

Ultra-micro electrodes (UMEs)

- Characteristic dimension \leq 25 μ m
- Ideal for in vivo measurements
 - Neurotransmitters ³
- Measures the transfer of e⁻ between electrode surface and species
- UMEs composition
 - Noble metals as catalytic surfaces
 - Excellent sensitivity
 - Expensive ³
 - Carbon allotropes
 - Okay sensitivity, inexpensive
 - Modifiable ³

Figure 3. Summary of ultramicroelectrodes advantages.

Eq (2) Oxidation.
$$H_2O_2 \rightleftharpoons O_2$$
 (g) + 2 H⁺ + 2 e⁻

Eq (3) Reduction. $H_2O_2 + 2 H^+ + 2 e^- \rightleftharpoons 2 H_2O$

Background – Nitrogen-doping

- H₂O₂ reduction comprises two key steps
 - Adsorption on electrode surface
 - Breakage of the O-O bond ⁴
- Impact of nitrogen groups
 - Introduced via substitutional doping
 - Charge density of the adjacent carbons becomes more positive (i.e., more electrocatalytic)⁴
 - More attractive for the oxygen, facilitates breakage of O-O bond

Figure 4. Examples of nitrogen groups that can be introduced into carbon materials. ⁴

Figure 5. Chemical equation for the thermal decomposition of urea. 5

Background – Previous Work by Bishop Group

Table 1. Previous examples from the Bishop group of detecting H₂O₂ using various carbon ultramicroelectrodes.

Electrode	Linear Range (µM)	Sensitivity (µA mM ⁻¹ cm ⁻²)	Detection Limit (µM)	Notes
N-CF-UME ³	100 - 5600	5.5	137	Modify fiber and then seal in glass. Laser likely damages the fiber, leading to lower sensitivity
CF-UME (epoxy- sealed) ⁶	60 - 720	91	27	Unanticipated benefits from epoxy for unmodified carbon fiber, likely due to nitrogen content
N-CF-UME (epoxy- sealed) ⁶	60 - 720	120	27	Good sensitivity but does not necessarily show that N-doping is providing the benefits
N-SPCE 7	0.02 – 5.3	264	2.5	Non-ultramicroelectrode example

Hypothesis and Approach

Hypothesis

 Applying N-doping to CVD carbon electrodes during or after the fabrication process will allow for greater evaluation of how N-doping affects the response towards H₂O₂ compared to previous methods

Approach

Create and characterize CVD carbon UME

Evaluate response towards H₂O₂

Research Approach – CVD Carbon UMEs

Figure 6. Laser pipette puller used for electrode fabrication.

Figure 7. Setup for chemical vapor deposition micro-torch method for making carbon electrodes. Utilizes a 70:30 butane/propane mixture as precursor gas. Opposing argon flow provides inert atmosphere for pyrolysis.

Figure 8. Graphitic carbon electrode with metal wire inserted.

Research Approach – Nitrogen doping

• Ammonium hydroxide method ⁹

- An electrode was suspended in a 2% (w/w) solution of ammonium hydroxide (NH₄OH) ⁶
- The solution was then heated to 80 °C and allowed to react for 15 minutes
- Afterwards the electrode was left to dry before evaluation towards H₂O₂ reduction

Figure 9. Ammonium hydroxide method of N-doping.

Research Approach – Characterization

Cyclic voltammetry

- Ferrocene methanol (FcMeOH)
 - Used to evaluate electrode size
 - 0.1 mM FcMeOH and 0.1 M KCl
 - Reversible, highly stable
- Phosphate buffer solution (PBS) (7.4 pH)
 - Used to evaluate response towards H₂O₂
 - De-aerate PBS by bubbling nitrogen through, then blanket solution during analysis
 - Spike in known concentrations of hydrogen peroxide

Amperometry

- Same as above method for H₂O₂ response, but at a constant potential
- Allows for evaluation of electrode sensitivity and detection limit

Figure 10. Setup for the electrochemical cell used for all experiments.

Results and Discussion - Voltammetry

Figure 11. Cyclic voltammogram in 0.1 mM FcMeOH with 0.1 M KCl showing response of an electrode (22 μ m) before and after N-doping with ammonium hydroxide. Potential was scanned from 0 to 600 and back to 0 mV at a rate of 50 mV/s.

Results and Discussion - Voltammetry

Figure 12. Cyclic voltammogram showing a graphitic carbon electrode in 25 mL of de-aerated 7.4 pH phosphate buffer solution (PBS) over the 25 minutes. Potential was Scanned from 100 mV to -600 and back to +100 mV at a rate of 50 mV/s.

Results and Discussion - Voltammetry

Figure 13. Cyclic voltammograms showing responses of unmodified CVD-UME (A) and nitrogen-doped CVD UME (B) towards H_2O_2 reduction at 5 and 20 mM injected H_2O_2 concentrations. The potential was scanned from 100 to -600 and back to +100 mV at a rate of 50 mV/s for both experiments.

Results and Discussion - Amperometry

Figure 14. Direct current potential amperometry (DCPA) showing linear response of N-UME towards H_2O_2 injections made every 90 seconds over 0.1 to 0.9 mM concentration range. Large vertical lines are noise from opening the faraday cage. Potential was set to -400 mV.

Results and Discussion - Amperometry

Figure 15. Calibration plot of concentration vs. current density for DCPA data showcasing excellent linear relationship.

Results and Discussion – Comparison

Table 2. Sensitivity and detection limit comparison of N-CVD-UME to other electrodes from the Bishop research group.

Electrode	Sensitivity (µA mM ⁻¹ cm ⁻²)	Detection Limit (µM)
N-CF-UME ³	5.5	137
CF-UME (epoxy-sealed) ⁶	91	27
N-CF-UME (epoxy-sealed) ⁶	120	27
N-SPCE 7	264	2.5
N-CVD-UME from this work	0.91	63

Conclusions and Future Work

- Voltammetry
 - Created and characterized a sigmoidal CVD-UME
- Amperometry
 - Excellent linear relationship between H₂O₂ concentration and current
 - Much worse sensitivity and generally higher detection limit
- Future work
 - Try alternative N-doping methods to improve sensitivity
 - Aqueous urea solution ⁹
 - Pyrolysis of nitrogen containing precursor such as urea or melamine ¹⁰

Acknowledgments

- Bishop Research Group
 - Dr. Gregory Bishop
 - Yakubu Gausu
 - Zane Sitz
 - Sean McKaig
- Funding
 - ETSU Office of Undergraduate Research and Creative Activities
 - ETSU Honors College

References

- (1) Pravda, J. Hydrogen Peroxide and Disease: Towards a Unified System of Pathogenesis and Therapeutics. Mol. Med. 2020, 26 (1). https://doi.org/10.1186/s10020-020-00165-3.
- (2) Abe, C.; Miyazawa, T.; Miyazawa, T. Current Use of Fenton Reaction in Drugs and Food. Molecules 2022, 27 (17), 5451. https://doi.org/10.3390/molecules27175451.
- (3) Wornyo, E. Nitrogen-Doped Carbon Fiber Ultramicroelectrodes as Electrochemical Sensors for Detection of Hydrogen Peroxide, East Tennessee State University, 2021.
- (4) Wu, P.; Du, P.; Zhang, H.; Cai, C. Microscopic Effects of the Bonding Configuration of Nitrogen-Doped Graphene on Its Reactivity toward Hydrogen Peroxide Reduction Reaction. Phys. Chem. Chem. Phys. 2013, 15 (18), 6920–6928. https://doi.org/10.1039/c3cp50900a.
- (5) Liu, B.; Yao, H.; Song, W.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft" Nitriding. J. Am. Chem. Soc. 2016, 138 (14), 4718–4721. https://doi.org/10.1021/jacs.6b01702.
- (6) Peprah-Yamoah, E. Nitrogen-Doped and Phosphorus-Doped Epoxy-Sealed Carbon Fiber Ultramicroelectrodes as Electrochemical Sensors for Detection of Hydrogen Peroxide, East Tennessee State University, 2022.
- (7) Ogbu, C. I.; Feng, X.; Dada, S. N.; Bishop, G. W. Screen-Printed Soft-Nitrided Carbon Electrodes for Detection of Hydrogen Peroxide. Sensors (Basel) 2019, 19 (17), 3741. https://doi.org/10.3390/s19173741.
- (8) Actis, P.; Tokar, S.; Clausmeyer, J.; Babakinejad, B.; Mikhaleva, S.; Cornut, R.; Takahashi, Y.; López Córdoba, A.; Novak, P.; Shevchuck, A. I.; Dougan, J. A.; Kazarian, S. G.; Gorelkin, P. V.; Erofeev, A. S.; Yaminsky, I. V.; Unwin, P. R.; Schuhmann, W.; Klenerman, D.; Rusakov, D. A.; Sviderskaya, E. V.; Korchev, Y. E. Electrochemical Nanoprobes for Single-Cell Analysis. ACS Nano 2014, 8 (1), 875–884. https://doi.org/10.1021/nn405612q.
- (9) Shi, L.; Niu, X.; Liu, T.; Zhao, H.; Lan, M. Electrocatalytic Sensing of Hydrogen Peroxide Using a Screen Printed Carbon Electrode Modified with Nitrogen-Doped Graphene Nanoribbons. Mikrochim. Acta 2015, 182 (15–16), 2485–2493. <u>https://doi.org/10.1007/s00604-015-</u> 1605-6.
- (10) Mao, J.; Peng, T.; Zhang, X.; Li, K.; Ye, L.; Zan, L. Effect of Graphitic Carbon Nitride Microstructures on the Activity and Selectivity of Photocatalytic CO2 Reduction under Visible Light. Catal. Sci. Technol. 2013, 3 (5), 1253–1260. https://doi.org/10.1039/C3CY20822B.