

Nitrogen-doped Chemical Vapor Deposition Carbon Ultramicroelectrodes for Hydrogen Peroxide Detection

Wyatt George, Dr. Gregory Bishop

Bishop Research Group

Outline

- Background
	- \blacksquare H₂O₂
	- UMEs
	- Nitrogen-doping (N-doping)
- Research approach
	- Chemical vapor deposition (CVD) and N-doping methods
- Results and Discussion
	- Characterization via voltammetry and amperometry
- Conclusions and Future work

Background – H_2O_2

- **Why is hydrogen peroxide (H₂O₂)** important?
	- H_2O_2 is produced in every cell in the body
	- Key roles in cellular processes such as gene expression and cellular differentiation¹
- **Why measure** H_2O_2 **?**
	- Reactive oxygen species (ROS)
	- Fenton reaction 2
	- H_2O_2 buildup has been linked to diseases 1

Figure 1. Molecular structure for hydrogen peroxide.

Figure 2. Timeline of what H_2O_2 can lead to.

Background - UMEs

- Ultra-micro electrodes (UMEs)
	- Characteristic dimension $\leq 25 \mu m$
	- \blacksquare Ideal for in vivo measurements
		- Neurotransmitters 3
	- \blacksquare Measures the transfer of e- between electrode surface and species
- UMEs composition
	- Noble metals as catalytic surfaces
		- Excellent sensitivity
		- **Expensive** 3
	- **Carbon allotropes**
		- Okay sensitivity, inexpensive
		- \blacksquare Modifiable 3

Figure 3. Summary of ultramicroelectrodes advantages.

Eq (2) Oxidation.
$$
H_2O_2 \rightleftharpoons O_2(g) + 2 H^+ + 2 e^-
$$

Eq (3) Reduction. $H_2O_2 + 2 H^+ + 2 e^- \rightleftharpoons 2 H_2O$

Background – Nitrogen-doping

- H_2O_2 reduction comprises two key steps
	- **Adsorption on electrode surface**
	- **Breakage of the O-O bond** 4
- Impact of nitrogen groups
	- **Introduced via substitutional doping**
	- Charge density of the adjacent carbons becomes more positive (i.e., more electrocatalytic) 4
	- More attractive for the oxygen, facilitates breakage of O-O bond

Figure 4. Examples of nitrogen groups that can be introduced into carbon materials. 4

Figure 5. Chemical equation for the thermal decomposition of urea. 5

Background – Previous Work by Bishop Group

Table 1. Previous examples from the Bishop group of detecting H_2O_2 using various carbon ultramicroelectrodes.

Hypothesis and Approach

■ Hypothesis

 Applying N-doping to CVD carbon electrodes during or after the fabrication process will allow for greater evaluation of how N-doping affects the response towards H_2O_2 compared to previous methods

■ Approach

Create and characterize CVD carbon UME

Evaluate response towards H_2O_2

Research Approach – CVD Carbon UMEs

Figure 6. Laser pipette puller used for electrode fabrication.

Figure 7. Setup for chemical vapor deposition micro-torch method for making carbon electrodes. Utilizes a 70:30 butane/propane mixture as precursor gas. Opposing argon flow provides inert atmosphere for pyrolysis.

Figure 8. Graphitic carbon electrode with metal wire inserted.

Research Approach – Nitrogen doping

■ Ammonium hydroxide method ⁹

- An electrode was suspended in a 2% (w/w) solution of ammonium hydroxide (NH₄OH)⁶
- **The solution was then heated to 80 °C and** allowed to react for 15 minutes
- **Afterwards the electrode was left to dry** before evaluation towards H_2O_2 reduction

Figure 9. Ammonium hydroxide method of N-doping.

Research Approach – Characterization

Cyclic voltammetry

- Ferrocene methanol (FcMeOH)
	- Used to evaluate electrode size
	- 0.1 mM FcMeOH and 0.1 M KCl
	- Reversible, highly stable
- **Phosphate buffer solution (PBS) (7.4 pH)**
	- Used to evaluate response towards H_2O_2
	- De-aerate PBS by bubbling nitrogen through, then blanket solution during analysis
	- **Spike in known concentrations of** hydrogen peroxide
- **Amperometry**
	- Same as above method for H_2O_2 response, but at a constant potential
	- **Allows for evaluation of electrode** sensitivity and detection limit
Sensitivity and detection limit exactly read for all experiments

cell used for all experiments.

Results and Discussion - Voltammetry

- CVD-UME - N-CVD-UME

Figure 11. Cyclic voltammogram in 0.1 mM FcMeOH with 0.1 M KCl showing response of an electrode (22 μ m) before and after N-doping with ammonium hydroxide. Potential was scanned from 0 to 600 and back to 0 mV at a rate of 50 mV/s.

Results and Discussion - Voltammetry

Figure 12. Cyclic voltammogram showing a graphitic carbon electrode in 25 mL of de-aerated 7.4 pH phosphate buffer solution (PBS) over the 25 minutes. Potential was Scanned from 100 mV to -600 and back to +100 mV at a rate of 50 mV/s.

Results and Discussion - Voltammetry

Figure 13. Cyclic voltammograms showing responses of unmodified CVD-UME (A) and nitrogen-doped CVD UME (B) towards H₂O₂ reduction at 5 and 20 mM injected H₂O₂ concentrations. The potential was scanned from 100 to -600 and back to +100 mV at a rate of 50 mV/s for both experiments.

Results and Discussion - Amperometry

Figure 14. Direct current potential amperometry (DCPA) showing linear response of N-UME towards H_2O_2 injections made every 90 seconds over 0.1 to 0.9 mM concentration range. Large vertical lines are noise from opening the faraday cage. Potential was set to -400 mV.

Results and Discussion - Amperometry

Figure 15. Calibration plot of concentration vs. current density for DCPA data showcasing excellent linear relationship.

Results and Discussion – Comparison

Table 2. Sensitivity and detection limit comparison of N-CVD-UME to other electrodes from the Bishop research group.

Conclusions and Future Work

- Voltammetry
	- Created and characterized a sigmoidal CVD-UME
- Amperometry
	- Excellent linear relationship between H_2O_2 concentration and current
	- Much worse sensitivity and generally higher detection limit
- Future work
	- Try alternative N-doping methods to improve sensitivity
		- Aqueous urea solution 9
		- Pyrolysis of nitrogen containing precursor such as urea or melamine 10

Acknowledgments

- Bishop Research Group
	- **Dr. Gregory Bishop**
	- Yakubu Gausu
	- Zane Sitz
	- Sean McKaig
- **Funding**
	- **ETSU Office of Undergraduate Research and Creative Activities**
	- **ETSU Honors College**

References

- (1) Pravda, J. Hydrogen Peroxide and Disease: Towards a Unified System of Pathogenesis and Therapeutics. Mol. Med. 2020, 26 (1). https://doi.org/10.1186/s10020-020-00165-3.
- (2) Abe, C.; Miyazawa, T.; Miyazawa, T. Current Use of Fenton Reaction in Drugs and Food. Molecules 2022, 27 (17), 5451. https://doi.org/10.3390/molecules27175451.
- (3) Wornyo, E. Nitrogen-Doped Carbon Fiber Ultramicroelectrodes as Electrochemical Sensors for Detection of Hydrogen Peroxide, East Tennessee State University, 2021.
- Wu, P.; Du, P.; Zhang, H.; Cai, C. Microscopic Effects of the Bonding Configuration of Nitrogen-Doped Graphene on Its Reactivity toward
Hydrogen Peroxide Reduction Reaction. Phys. Chem. Chem. Phys. 2013. 15 (18). 6920–6928
- (5) Liu, B.; Yao, H.; Song, W.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-Free Noble Metal Nanocluster Catalysts on Carbon
Supports via "Soft" Nitriding. J. Am. Chem. Soc. 2016, 138 (14), 4718–4721.
- (6) Peprah-Yamoah, E. Nitrogen-Doped and Phosphorus-Doped Epoxy-Sealed Carbon Fiber Ultramicroelectrodes as Electrochemical Sensors for Detection of Hydrogen Peroxide, East Tennessee State University, 2022.
- (7) Ogbu, C. I.; Feng, X.; Dada, S. N.; Bishop, G. W. Screen-Printed Soft-Nitrided Carbon Electrodes for Detection of Hydrogen Peroxide.
Sensors (Basel) 2019, 19 (17), 3741. https://doi.org/10.3390/s19173741.
- (8) Actis, P.; Tokar, S.; Clausmeyer, J.; Babakinejad, B.; Mikhaleva, S.; Cornut, R.; Takahashi, Y.; López Córdoba, A.; Novak, P.; Shevchuck, A. I.; Dougan, J. A.; Kazarian, S. G.; Gorelkin, P. V.; Erofeev, A. S.; Yaminsky, I. V.; Unwin, P. R.; Schuhmann, W.; Klenerman, D.; Rusakov, D. A.; Sviderskaya, E. V.; Korchev, Y. E. Electrochemical Nanoprobes for Single-Cell Analysis. ACS Nano 2014, 8 (1), 875–884. https://doi.org/10.1021/nn405612q.
- (9) Shi, L.; Niu, X.; Liu, T.; Zhao, H.; Lan, M. Electrocatalytic Sensing of Hydrogen Peroxide Using a Screen Printed Carbon Electrode Modified with Nitrogen-Doped Graphene Nanoribbons. Mikrochim. Acta 2015, 182 (15–16), 2485–2493. <u>https://doi.org/10.1007/s00604-015-</u>
1605-6.
- (10) Mao, J.; Peng, T.; Zhang, X.; Li, K.; Ye, L.; Zan, L. Effect of Graphitic Carbon Nitride Microstructures on the Activity and Selectivity of Photocatalytic CO2 Reduction under Visible Light. Catal. Sci. Technol. 2013,