12-1-2021

Perceptions of Risk for COVID-19 Among Individuals With Chronic Diseases and Stakeholders in Central Appalachia

Manik Ahuja
East Tennessee State University, ahujam@etsu.edu

Hadii M. Mamudu
East Tennessee State University, mamudu@etsu.edu

Florence M. Weierbach
East Tennessee State University, weierbach@etsu.edu

Karilynn Dowling-McClay
East Tennessee State University, dowlingk1@etsu.edu

David W. Stewart
East Tennessee State University, stewardw@etsu.edu

See next page for additional authors

Follow this and additional works at: https://dc.etsu.edu/etsu-works

Citation Information
Ahuja, Manik; Mamudu, Hadii M.; Weierbach, Florence M.; Dowling-McClay, Karilynn; Stewart, David W.; Awasthi, Manul; and Paul, Timir K.. 2021. Perceptions of Risk for COVID-19 Among Individuals With Chronic Diseases and Stakeholders in Central Appalachia. *Humanities and Social Sciences Communications*. Vol.8(1). https://doi.org/10.1057/s41599-021-00906-7

This Article is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
Perceptions of Risk for COVID-19 Among Individuals With Chronic Diseases and Stakeholders in Central Appalachia

Copyright Statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creator(s)
Manik Ahuja, Hadii M. Mamudu, Florence M. Weierbach, Karilynn Dowling-McClay, David W. Stewart, Manul Awasthi, and Timir K. Paul
Coronavirus disease 2019 (COVID-19) pandemic is rapidly evolving and is a serious public health threat worldwide. Timely and effective control of the pandemic is highly dependent on preventive approaches. Perception of risk is a major determinant of health behavior. The current study explores the association between actual risk and perceived risk for one’s self, family/friends and friends, and community. A questionnaire was administered to participants in Central Appalachia (n = 102). The actual risk was based on the number of chronic conditions of the following conditions: hypertension, heart disease, cancer, diabetes, and chronic obstructive pulmonary disease. Participants were also queried about their perception of risk for COVID-19. Generalized Linear Models were used to independently evaluate the likelihood of perceived risk for one’s: self, family/friends, and community, based on actual risk. Actual risk for COVID-19 was significantly associated with higher likelihood of higher perception of risk for one’s self (b = 0.24; p = 0.04), but not with one’s family/friends (b = 0.05; p = 0.68), or one’s community (b = 0.14; p = 0.16). No health insurance was negatively associated with perception of risk for self (b = −0.59; p = 0.04) and family/friends (b = −0.92; p < 0.001). Male gender (b = −0.47; p = 0.01) was also negatively associated with perception of risk for family/friends. In conclusion, individuals’ actual risk for COVID-19 is associated with their own perception of risk. This indicates that one’s perception of risk for COVID-19 is greater for their own health compared to their family/friends or the community. Therefore, monitoring and following up with chronic disease patients and addressing their lack of awareness of risk to others is needed to prevent and curtail the spread of COVID-19.
Introduction

The recent outbreak of coronavirus disease 2019 (COVID-19) pandemic has spread rapidly on a global scale, leading to a large number of hospitalizations and deaths worldwide (The Lancet, 2020; Weinberger et al., 2020). The pandemic has impacted the world significantly; while some areas are now recovering from it, others are just beginning to be affected (Jahi et al., 2020), and there is a resurgence in areas that appear to have spread the virus under control. COVID-19 is often accompanied by flu-like symptoms, acute respiratory distress syndrome, acute kidney injury, myocarditis, and organ failure (Tian et al., 2020; Yang et al., 2020). Those burdened with chronic diseases (e.g., cardiovascular disease, diabetes, cancer, asthma) are disproportionately impacted, and at a higher risk for hospitalizations, morbidity, and mortality (Bhatraju et al., 2020; Guan et al., 2020a, 2020b). As the number of hospitalization and deaths have continued to rise globally, it is becoming increasingly important to understand the perception of risk for COVID-19 (Bavel et al., 2020) and application of mitigation strategies such as hand washing, physical distancing, avoiding public places, wearing face masks, testing, and uptake of vaccination (Bish and Michie, 2010; Golestaneh et al., 2020).

Perception of risk is a major determinant of health behaviors (Schmälzle et al., 2017). According to theories of decisions about health behavior, people who perceive greater risks are more likely to engage in preventive behaviors (Fischhoff, 1995). As such, the perception of risk will likely inform the decisions of individuals to adhere to prevention and mitigation measures including decisions on vaccinations for COVID-19 to reduce risk (Bruine de Bruin et al., 2014) and application of mitigation strategies such as hand washing, physical distancing, avoiding public places, wearing face masks, testing, and uptake of vaccination (Bish and Michie, 2010; Golestaneh et al., 2020).

Methods

Study setting and population. This study builds on a project funded by the Patient-Centered Outcomes Research Institute (PCORI) Engagement Award that developed a research agenda for cardiovascular diseases (CVD) in the Central Appalachian region, which comprises 228 contiguous and two non-contiguous counties in six states (Kentucky [KY], North Carolina [NC], Ohio [OH], Tennessee [TN], Virginia [VA], and West Virginia [WV]). Residents of this region of Appalachia qualify as a National Institute of Health designated health disparity population with high poverty, unemployment, and lack of access to health services (Kromets et al., 2017; Mamudu et al., 2017; Robinson, 2015; Shah, 2020; Zullig and Hendryx, 2011). The prevalence of chronic diseases in these Appalachian counties is generally higher than those of the respective states and the nation (Leukfeld et al., 2007; Shah, 2020; Zullig and Hendryx, 2011). During 2017 and 2020, the PCORI project was undertaken and it involved an extensive range of data collection, spanning environmental scans to surveys and focus group discussions. An integral part of the PCORI project was extensive community engagement, which culminated in a network of CVD stakeholders comprising patients/family, non-licensed caregivers, providers/professionals, and community leaders from across the Central Appalachian region. With the increasing evidence that patients with chronic diseases such as CVD are at higher risk for hospitalization and fatalities due to COVID-19 (Dhakal et al., 2020; Li et al., 2020) these CVD stakeholders were invited to complete a 20-item questionnaire REDCap survey during March and April 2020 to ascertain information on their lived experience pertaining to adherence to prevention and mitigation strategies. A total of 102 CVD stakeholders from across Appalachian counties in the six states [KY, NC, OH, TN, VA, and WV] responded to the survey and were included in this study.

Study variables

Outcomes. Perception of risk was the primary outcome, as measured by three independent models including (1) perception of risk for one’s self, (2) perception of risk for one’s family/friends, and (3) perception of risk for one’s community. Perception of risk (self) was based on the question ‘What threat does COVID-19 pose to you?’ Perception of risk (family/friends) was based on the question ‘What threat does COVID-19 pose to your family/friends?’ Perception of risk (community) was based on ‘What...
threat does COVID-19 pose to your community?” For each perceived risk survey question, participants answered none, low, moderate, or high, and responses were coded as ordinal numbers 0–3 in the order of severity, with 0 representing none, and 3 representing high.

Independent variables. Actual risk was derived as a risk score based on the number of chronic conditions (0 none; 5 maximum) reported for each participant. The conditions assessed include cancer, chronic obstructive pulmonary disease (COPD), diabetes, heart disease, and hypertension.

Controls in the models include age, sex, education, employment status, and health insurance status. Education, employment (1 = employed, 0 = unemployed), health insurance and sex (1 = male, 0 = female) were coded as binary variables. Education was categorized based on high school or less education. Health insurance was coded with 1 representing no insurance, and 0 indicating participants had a current health insurance plan (private or public). Age was included in the model as a continuous variable.

Data analysis. The analyses were conducted using SAS version 9.2 (SAS Institute, Inc., Cary, NC, USA). Tetrachoric correlations did not indicate collinearity problems (all correlations <0.75; results available on request). In addition to descriptive statistics, three separate models were used to assess the association between actual risk and perceived risk (outcome). Generalized linear models (GLM) were used to assess actual risk) to estimate changes in perceived risk to self, family/friends, and community. Each GLM model was adjusted for age, sex, employment status, insurance status, and education.

Results

Characteristics of the study population. Descriptive characteristics are presented in Table 1. The mean age of the survey participants was 54.6 ± 13.9 years and 68.6% of the participants were female. There were 35.3% of the participants reported no current employment, 10.8% reported not having health insurance, and 12.7% reported having a high school education or less. Overall, 54.9% of the participants reported having at least one chronic disease, while 21.6% were burdened with two or more chronic diseases. Prevalence of chronic disease was highest for hypertension (42.2%), followed by heart disease (16.7%), and diabetes (9.8%).

Table 1 Descriptive characteristics of the sample (N = 102).

<table>
<thead>
<tr>
<th>Variable</th>
<th>(n, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean, SD)</td>
<td>54.6 (13.9)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>32 (31.4)</td>
</tr>
<tr>
<td>Female</td>
<td>70 (68.6)</td>
</tr>
<tr>
<td>Educational status</td>
<td></td>
</tr>
<tr>
<td>High school/GED or less</td>
<td>13 (12.7)</td>
</tr>
<tr>
<td>Some college</td>
<td>14 (13.7)</td>
</tr>
<tr>
<td>Associates degree or higher</td>
<td>75 (73.6)</td>
</tr>
<tr>
<td>Current employed</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>66 (64.7)</td>
</tr>
<tr>
<td>No</td>
<td>36 (35.4)</td>
</tr>
<tr>
<td>Chronic disease</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>6 (5.9)</td>
</tr>
<tr>
<td>COPD</td>
<td>4 (3.9)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>10 (9.8)</td>
</tr>
<tr>
<td>Heart Disease</td>
<td>17 (16.7)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>43 (42.2)</td>
</tr>
<tr>
<td>Number of chronic conditions</td>
<td></td>
</tr>
<tr>
<td>Two or more</td>
<td>22 (21.6)</td>
</tr>
<tr>
<td>One</td>
<td>34 (33.3)</td>
</tr>
<tr>
<td>None</td>
<td>46 (45.1)</td>
</tr>
<tr>
<td>Perception of threat to self</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>26 (25.5)</td>
</tr>
<tr>
<td>Moderate</td>
<td>38 (37.3)</td>
</tr>
<tr>
<td>Low</td>
<td>33 (32.4)</td>
</tr>
<tr>
<td>None</td>
<td>5 (4.9)</td>
</tr>
<tr>
<td>Perception of threat to family/friends</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>44 (43.1)</td>
</tr>
<tr>
<td>Moderate</td>
<td>34 (33.3)</td>
</tr>
<tr>
<td>Low</td>
<td>19 (18.6)</td>
</tr>
<tr>
<td>None</td>
<td>5 (4.9)</td>
</tr>
<tr>
<td>Perception of threat to community</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>47 (46.1)</td>
</tr>
<tr>
<td>Moderate</td>
<td>39 (38.2)</td>
</tr>
<tr>
<td>Low</td>
<td>13 (12.8)</td>
</tr>
<tr>
<td>None</td>
<td>3 (3.0)</td>
</tr>
</tbody>
</table>

Actual risk and perceptions of risk for COVID-19. Results of the GLM models are reported in Tables 2–4. Actual risk ($b = 0.24; \ p = 0.04$) was positively associated with perception of risk (self) (Table 2). Not having health insurance ($b = −0.59; \ p = 0.04$) and male sex ($b = −0.45; \ p = 0.02$) were associated with perception of risk (self) in the negative direction. There was no significant association reported between actual risk ($p = 0.68$) and perception of risk (family/friends) (Table 3). Not having health insurance ($b = −0.92; \ p < 0.001$) and male sex ($b = −0.47; \ p = 0.01$) were associated with perception of risk (self) in the negative direction. There was no significant association between actual risk and perceived risk for one’s community ($p = 0.11$), however, a significant negative association was found with high school education or less ($b = −0.55; \ p = 0.02$) (Table 4).

Discussion

The rapid evolution of the COVID-19 pandemic and the prevention and mitigation measures that have been implemented create a perception that the health system is failing to protect individuals against the spread of the virus (Van den Broucke, 2020). This generates a need for people to have greater control of their health and to protect themselves from adverse consequences. Given the increasing trend of positive COVID-19 tests and related hospitalization and fatalities, it is important to understand people’s perceptions about the disease to inform short- to medium-term initiatives to prevent the spread of the disease and long-term initiatives to facilitate the uptake of COVID-19 vaccination. Coordination of public health messages regarding risks and interpretation of the messages received is critical during a pandemic (Smith and Judd, 2020). Globally,
and their perception of risk for themselves. As chronic diseases contribute significantly to the global burden of disease worldwide (Lozano et al., 2012) these findings further reinforce the perception of risk individuals with chronic disease would face. Understanding risk perception about COVID-19 may help understand the public attitudes toward the disease and predict behaviors (He et al., 2020). Given that those with chronic disease are at increased risk of COVID-19 related hospitalization and mortality, they are highly vulnerable and may explain the association with their perception of risk (self) (Xia et al., 2020).

Beyond the perception of risk of COVID-19 to one’s self, one’s actual risk was not associated with one’s perception of risk for one’s family/friends or community. While one may be concerned about the impact on their family/friends or community, the study found no direct connection between these factors and one’s own actual risk. However, COVID-19 may pose threats to the well-being of children and families in other ways, as these may be attributed to challenges related to social disruption such as financial insecurity, caregiving burden, and confinement-related stress (Prime et al., 2020). Other challenges not measured in the study, such as mental health/well-being (Yuan et al., 2020), school closures, unemployment, business closures, and other factors pose a substantial threat to the well-being of one’s family/friends as well as their community (Parolin, 2020; Prime et al., 2020). The study also found that not having health insurance significantly reduced one’s perception of threat to themselves or their family/ friends. This finding may be consistent with assertions that individuals who have health insurance may be more likely to have higher health literacy, may value their health more, and be more risk averse (Baicker et al., 2015; Barnes and Hanoch, 2017; Outreville, 2013). The study additionally found that the male gender predicted lower perceived risk for one’s self and family/ friends. This finding is consistent with prior findings that men are less risk averse when referring to their health than women (Bolhaar et al., 2012; Franks et al., 1996; Warshawsky-Livne et al., 2014; Zheng et al., 2020). Overall, these findings are important, given the disproportionate level of COVID-19 impact in rural, underserved areas (Karim andand Chen, 2020; Tan et al., 2020).

Strengths and limitations
The study findings should be interpreted with certain limitations. These results may not be generalizable to the population-at-large as a regional sample from Central Appalachia was used. The demographic of the sample was of higher socioeconomic status in comparison to the general population in Central Appalachia. This was clearly seen based on the higher education and employment rates in comparison to regional estimates. Another limitation is that study constructs were self-reported, so there is a chance of recall bias, and the severity of chronic disease was not captured in the study. For example, hypertension may have a broad range of systolic or diastolic readings that are classified as a diagnosis. Future studies are needed considering more detailed information regarding the severity and duration of chronic disease to more precisely measure actual risk. In light of these limitations, the current study informs us of the importance of directing targeted interventions for those who are at higher risks. This includes increased knowledge about COVID-19 prevention and the importance of compliance with recommended guidelines. As the perceived risk to one’s self is associated with one’s actual risk, it is highly critical to focus on those who are at increased risk, particularly among those burdened with chronic disease.

Conclusions
Individuals’ actual risk was positively associated with the perception of risk of COVID-19 to themselves; however, this was not

Table 3 Generalized linear models predicting the association between perception of risk of COVID-19 to one’s family/friends.

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>SE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.18</td>
<td>0.38</td>
<td><0.001</td>
</tr>
<tr>
<td>Actual riska</td>
<td>0.05</td>
<td>0.11</td>
<td>0.68</td>
</tr>
<tr>
<td>Employment status: Not employed</td>
<td>−0.23</td>
<td>0.21</td>
<td>0.28</td>
</tr>
<tr>
<td>Education: High school/GED or less</td>
<td>0.13</td>
<td>0.47</td>
<td>0.65</td>
</tr>
<tr>
<td>Health insurance: None</td>
<td>−0.92</td>
<td>0.28</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>−0.47</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Age</td>
<td>0.01</td>
<td>0.01</td>
<td>0.53</td>
</tr>
</tbody>
</table>

*aBased on number of chronic conditions including cancer, COPD, heart disease, hypertension, and diabetes. Statistically significant values (p < .05) are marked in bold.

Table 4 Generalized linear models predicting the association between perception of risk of COVID-19 to one’s community.

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>SE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.59</td>
<td>0.33</td>
<td><0.001</td>
</tr>
<tr>
<td>Actual riska</td>
<td>−0.14</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>Employment status: Not employed</td>
<td>−0.16</td>
<td>0.19</td>
<td>0.39</td>
</tr>
<tr>
<td>Education: High school/GED or less</td>
<td>−0.55</td>
<td>0.24</td>
<td>0.02</td>
</tr>
<tr>
<td>Health insurance: none</td>
<td>−0.45</td>
<td>0.25</td>
<td>0.07</td>
</tr>
<tr>
<td>Gender (Male)</td>
<td>−0.13</td>
<td>0.17</td>
<td>0.43</td>
</tr>
<tr>
<td>Age</td>
<td>0.01</td>
<td>0.01</td>
<td>0.97</td>
</tr>
</tbody>
</table>

*aBased on number of chronic conditions including cancer, COPD, heart disease, hypertension, and diabetes. Statistically significant values (p < .05) are marked in bold.

approximately 1.7 billion (22%) of the world’s population have at least one underlying condition that predisposes them to increased risk of a severe form of COVID-19-related health consequences and 350 million (4%) are at risk for hospitalization (Clark et al., 2020). Individuals with CVD, chronic kidney disease, diabetes, chronic respiratory disease, and a range of other chronic conditions are at an increased risk of requiring in-hospital treatment such as oxygen supplementation (Clark et al., 2020). Identifying at-risk populations is important for making projections of the probable health burden and for the design of effective strategies to reduce the risk of transmission to highly vulnerable groups (Clark et al., 2020).

In the case of COVID-19, it is highly important to understand the disparity between perceived risk and actual risk. Perceiving the risk as high may decrease one’s likelihood of engaging in risky behaviors, such as attending social gatherings, avoidance of hand-washing, avoidance of face coverings (Tran and Ravaud, 2020). Overall, the prevalence of elevated perceived risk to one’s self was high, with 62.8% of the participants reporting moderate or high levels of risk. Factors such as age (mean age of 54), and high vulnerability to chronic disease, may further explain the high perceived risk of COVID-19 to one’s self in this study population. Furthermore, as individuals age, there may be less control of one’s health, as one may be burdened with a chronic disease that is not reversible. Thus, people who believe they can control their health may also believe they are less susceptible to disease, (Hamilton and Lobel, 2015) such as COVID-19.

Our study found that there is a positive correlation between one’s actual COVID-19 risk, which is their own disease burden,
true when evaluated for family/friends or the community. This indicates that one’s perception of risk for COVID-19 is greater for their own health compared to their family/friends or the community. Monitoring and follow-up with patients suffering from chronic diseases and addressing their lack of awareness of risk to others is needed to prevent and curtail the spread of COVID-19. Therefore, culturally relevant health education is imperative in rural areas, such as Central Appalachia. Providers, public health professionals and other key stakeholders must raise awareness of individuals at high risk for poor COVID-19 outcomes such as those burdened with chronic diseases, their family members, and members of communities with higher rates of health illiteracy.

Data availability

The data pertaining to this study are available from the corresponding author upon request.

References

