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Abstract

The nonlinear Schrödinger equation is a classical field equation that describes weakly

nonlinear wave-packets in one-dimensional physical systems. It is in a class of non-

linear partial differential equations that pertain to several physical and biological

systems. In this project we apply a pseudo-spectral solution-estimation method to

a modified version of the nonlinear Schrödinger equation as a means of searching

for solutions that are solitons, where a soliton is a self-reinforcing solitary wave that

maintains its shape over time. The pseudo-spectral method estimates solutions by

utilizing the Fourier transform to evaluate the spatial derivative within the nonlinear

Schrödinger equation. An ode solver is then applied to the resulting ordinary differ-

ential equation. We use this method to determine whether cardiac action potential

states, which are perturbed solutions to the Fitzhugh-Nagumo nonlinear partial dif-

ferential equation, create soliton-like solutions. After finding soliton-like solutions, we

then use symmetry group properties of the nonlinear Schrdinger equation to explore

these solutions. We also use a Lie algebra related to the symmetries to look for more

solutions to our modified nonlinear Schrödinger equation.
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1. Introduction

While linear partial differential equations (PDEs) give rise to low-amplitude waves

that occur frequently in the physical world [1], nonlinear waves with non-dispersive

traits and soliton-like properties can occur naturally also. Soliton-like properties have

been observed in water waves, fiber optics, and biological systems such as proteins

and DNA [2, 1, 3, 4]. Since linear PDEs fail to take into account phenomena produced

by non-linearity, other mathematical models are needed. Nonlinear PDEs such as the

Kortweig de Vries equation and the nonlinear Schrödinger equation [5] are used to

describe the characteristics of these waves more accurately.

Cardiac action potentials (CAPs) also display soliton-like properties. Cardiac cells,

like neuron and muscle cells, are excitable cells and are electrically charged by having

the membrane act as a capacitor. Previous research [6] has shown CAPs to be well-fit

by solutions to the Fitzhugh-Nagumo model,

ut = uxx + u(1− u)(a− u)− w (1.1)

wt = ε(u− γw), (1.2)

where u(x, t) and w(x, t) are the fast and slow voltage responses at time t and distance

x from origin of the CAP, γ is the rate of decay of the slow signal when ε is small, and

a is the voltage threshold parameter. These two equations account for the discharging

of the membrane and the recovery of this charge. If a = 1 and ε = 0, the fast voltage
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response is a traveling wave of the form

u(x, t) = f(x− 2kt),

where

f(x− 2kt) =
1

1 + Pe−(x−2kt)
(1.3)

where P is a constant term. Characteristics of these traveling waves lead us to believe

soliton waves that are solutions to a perturbed nonlinear Schrödinger equation could

also describe CAPs.

In this paper, we explore the soliton-like properties of solutions to the Fitzhugh-

Nagumo model. We first introduce cardiac action potentials, nonlinear partial dif-

ferential equations, and the reasoning behind the methods of our research. Next, we

explain the procedure by which we find our perturbed solution describing CAPs and

the perturbed nonlinear Schrödinger equation. Symmetries of our perturbed nonlin-

ear Schrödinger equation are then discussed. We last provide results and discussion

for both numerical and theoretical work, concluding with some future goals.

1.1 Cardiac Action Potentials

Cardiac Arrhythmia is a common problem in which there is abnormality in the nor-

mal sequence of the heart’s electrical impulses. This leads to an abnormal heart beat

[7]. Although arrhythmia can be nonthreatening, there are some cases in which the

condition is more serious and can even be fatal. Due to these cases, it has been

necessary to research and study cardiac arrhythmia in order to understand the con-

dition more. One efficient tool for researching arrhythmia is through mathematical

models describing cardiac action potentials. These mathematical models, such as the

Fithugh Nagumo Model, take into account the creation of electrical impulses within

2



the heart. Studying the exchange of ions may help to develop pharmaceutical drugs

to treat cardiac arrhythmia [8].

A cardiac action potential is an electrical signal that allows an excitable cell to com-

municate with other cells [9, 10]. As previously stated, the potential is created by the

membrane acting as a capacitor. The movement of ions inside and outside of the cell

membrane is controlled, creating a potential difference across the membrane. As ions

transfer into the cell, the membrane depolarizes, thus producing an action potential.

A cardiac action potential will not occur until the membrane within a cell reaches a

particular threshold value. This prevents random triggerings of electrical impulses.

When a cardiac cell is excited and discharges, the charge is sent to a neighboring cell.

This creates the charge difference needed for a cardiac action potential.

The cardiac action potential has 4 phases. Phase 0 consist of the cell reaching the

threshold potential and then having Na+ ions rush into the cell, causing a rapid de-

polarization. The reaction of the Na+ channels closing and K++ channels activating

is considered phase 1. This phase reduces membrane potential and re-polarizes the

cell. Phase 2 begins as Ca2+ channels open while K+ is still leaving the cell, causing a

plateau phase in CAPs. Lastly, phase 3 consists of the completion of re-polarization

as Ca2+ channels are closed and the potential within the membrane returns to its

normal value.

There are two types of cardiac cells: pacemaker cardiac cells and nonpacemaker

cardiac cells. While pacemaker cells are responsible for pacing the heart, the work

within this paper is directed towards nonpacemaker cardiac cells. These cells consist

of two types: Purkinje fiber cells and myocardiac cells. These cell types have similar
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Figure 1.1: Phases within a ventricular myocyte action potential [11].

action potentials and are the potentials described by the mathematical models in the

next section.

1.1.1 Mathematical Models of CAPs: The Fitzhugh Nagumo Equation

Alan Lloyd Hodgkin, Andrew Fielding Huxley, and Bernard Katz were the first peo-

ple to describe action potentials by a mathematical model. The model, named the

Hodgkin Huxley system, describes 4 processes [11]:

1. Change in the membrane potential

2. Potassium activation

3. Sodium activation

4. Sodium inactivation.

Soon after, the cardiac action potential was specifically studied, first by Denis Noble

in 1962 as an extension of the Hodgkin Huxley system [12]. Soon many models of the

cardiac action potential followed, each model accounting for new discoveries of the
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CAP. Thus, science has given numerous mathematical models to describe our system.

The Fitzhugh Nagumo Model is a particular partial differential equation (PDE) that

is simpler than the highly nonlinear Hodgkin Huxley system. Richard Fitzhugh was

a biophysicist in the 1960s who developed the model by constructing an electrical cir-

cuit which consisted of a capacitor, a tunnel diode, a resistor, inductor, and a battery

in series. The Fitzhugh Nagumo PDE consists of 2 equations that can be derived

from the Hodgkin Huxley system [8, 12].

1.2 Nonlinear Partial Differential Equations

Consider the swaying of a crowd during a football game. We can describe this motion

as a wave moving through the crowd. Sometimes, however, the wave can build up

along barriers within the crowd, and dissipate due to the instability. These barriers

are what cause non-linearity within the wave [1].

The simplest partial differential equation (PDE) to describe the motion of a non-

linear wave is the following:

ut + 2uux = 0 (1.4)

This is similar to the equation for a linear wave except that now the velocity, c = ku,

is dependent on the size of the function u. Nonlinear PDEs can differ significantly

from linear PDE’s. For example, the superposition principle does not hold for non-

linear PDEs. Solutions in the form of nonlinear waves are important in modeling the

interaction of light with matter, the formation of galaxies, and chemical reactions [1].

1.2.1 Nonlinear PDEs and Solitons

Solitary waves are waves that are localized within a region and retain their form over

a certain period of time [4]. These structures have the ability to pass through other
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waves with only a change of phase. Solitons are solitary waves that are also solutions

to completely integrable partial differential equations. Solitons obtain their stability

through a delicate balance between non-linearity and dispersion[1].

The discovery of solitary waves can be credited to John Scott Russell (1808-1882),

who encountered a soliton wave traveling through the water on the Union Canal

in Scotland. He followed the wave on horseback, observing the wave’s maintenance

of shape while traveling. Russell then began to study soliton waves by conducting

experiments within a wave tank. He made the following observations [13]:

1. Solitons maintain their shape while traveling at a constant speed

2. They are localized within a region at any given time.

3. They can pass through other waves with no change in amplitude, velocity, or

shape.

Figure 1.2: A barchan dune is an example of a soliton-like object. As these dunes
drift, the smaller dunes can pass through the larger ones and appear on the other
side. However, unlike a true soliton, the sand particles within the dunes do not pass
through each other [18].
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Perhaps the most widely known nonlinear PDE with soliton solutions is the

Korteweg-de Vries (KdV) equation [1].

Figure 1.3: A solitary water wave [14].

The KdV equation derived its name from the Dutch mathematicians Diedrick Ko-

rteweg and Gustav de Vries. The history of the KdV equation roots to John Scott

Russell and his observation of the first ever reported solitary wave of constant form

at the Union Canal in Hermiston. This event led to the careful study of wave trans-

lation. In the 1870’s the shape of the solitary wave was derived by Boussinesq and

Lord Rayleigh as a traveling wave of the form [13]

r(x, t) = α sech2[β(x− ct)], (1.5)

from which the KdV equation was finally derived from in 1895. In this paper we

will analyze soliton solutions of a variation of the nonlinear Schrödinger (NLS) equa-

tion. The nonlinear Schrödinger equation can be derived from the Korteweg-de Vries

equation [1].
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1.3 The Nonlinear Schrödinger Equation

1.3.1 Deriving the Nonlinear Schrödinger Equation

The NLS equation is in the form of:

iut = −uxx + 2k|u|2u, (1.6)

where k is a constant term. The NLS accounts for the slow time and space modula-

tion of the amplitude of a basic linear wave that is created through variations in the

medium and nonlinear effects. The non-radiating solutions to the NLS are solitons.

To derive the NLS, we begin with the KdV equation:

Ut + Uxxx + f(U)Ux = 0, (1.7)

We first expand the function f(U) as a series in U :

f(U) = c1U + c2U
2 + c3U

3 + ... (1.8)

We want our equation to describe a low-amplitude, slowly varying wave packet. An

approximate solution is given by

U ∼
[
u(x, t)ei(k0x−w0t) + c.c.

]
(1.9)

where w0 is the dispersion relation of the Korteweg-de Vries equation(KdV),k0 is the

wavenumber, u is the function that is slowly varying in space and time, and c.c. are
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the complex conjugates of uei(k0x−w0t). We can expect u to move at a group velocity

of

V0 = w′(k0) = −3k20, (1.10)

where

w(k0) = −k30. (1.11)

This group velocity depends on different time and space variables with the slow time

and space variables being

x′ = ε(x− v0t), t′ = ε2t. (1.12)

We then use a perturbation series with ε being the perturbation parameter. That is,

U = U0 + εU1 + ε2U2 + ..., (1.13)

where Uj(x, t) are the series coefficients of

U = u(x′, t′)eiθ + c.c. (1.14)

We insert these expressions into the KdV equation and obtain

ε2(u1t + u1xxx) + ε3(u2t + u2xxx) +O(ε4) = −ε2c1
(
ik0u

2e2iθ + c.c.
)
−

ε3
[
(ut′ + 3ik0ux′x′)e

iθ + c.c.
]
− ε3c1

[
uux′e

2iθ

+c.c.+
(
|u|2
)
ε
]
− ε3c1

[
(ueiθ + c.c.)U

]
x

−ε3c2
(
ueiθ + c.c.

)2 (
ik0ue

iθ + c.c
)

+O
(
ε4
)
.
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We next manipulate the dispersion term and the group-velocity formula to cancel

out certain terms. The equation then becomes

U1t + U1xxx = −ic1k0u2e2iθ + c.c. (1.15)

where U1t and U1xxx are derivatives with respect to the fast variables x and t. The

solution to U1 is

U1 = u12(x
′, t′)e2iθ + c.c.+ u10(x

′, t′). (1.16)

where u12 = ck0
2w0+8k30

u2. Substituting into the KdV equation yields

U2t+U2xxx = −eiθ
[
ut′ + 3ik0ux′x′ +

ic1
2k0

2

2w0 + 8k30
|u|2u

]
+ ic1k0u10u+ ic2k0|u|2u+O(ε2).

(1.17)

By supposing u10 = c
ν0
|u|2 and letting

iut′ − 3k0ux′x′ + α|u|2u = 0 (1.18)

be the coefficient of eiθ in (1.17), we finally obtain the nonlinear Schrödinger equation
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for a wave packet. Equation (1.18) is of the form

iut = −uxx + α|u|2u (1.19)

with

α =
c21

6k0
− c2k0. (1.20)

Equation (1.19) is called the nonlinear Schrödinger equation because of its close re-

semblence to a Schrödinger equation. Indeed, if α = 0, the NLS is the Schrödinger

equation of a free particle. However as this derivation shows, the NLS is better under-

stood physically as an equation for slowly modulated wave packets such as solitons.

1.4 CAPs and the Gross-Pitaevskii Equation

Due to the interaction of the fast and slow excitation variables within the Fitzhugh

Nagumo Model, there is reason to believe that cardiac action potentials are soliton-

like. If we can show that perturbed solutions of the Fitzhugh-Nagumo model are

solutions to a perturbed NLS, then we have evidence to support that CAPs are

solitons. Perturbed solutions of the Fitzhugh-Nagumo model can then be used to

find a family of solutions to a Gross-Pitaevskii equation,

iUt = −Uxx + 2k|u|2u+ Φ(x, t, u)u (1.21)

where Φ(x, t, u) is a potential function. After finding the perturbed solutions for

a suitable choice of the potential, a pseudo-spectral method is used to numerically

determine the properties of the resulting waves. The closed-form solutions to the
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Gross-Pitaevskii equation are then utilized to generate more solutions.

It should be noted (1.21) with Φ(x, t) = 0 reduces to (1.19). Also if k = 0, (1.21) re-

duces to the linear Schrödinger equation that is the basis for non-relativistic quantum

mechanics, in which case Φ(x, t) is the potential for u(x, t), interpreted as a wave.
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2. Methods

2.1 Looking for Solitons in a Perturbed NLS

In order to find the potential for a Gross-Pitaevskii equation (1.21) which describes

perturbed solutions to the Fithugh-Nagumo model, we assume solitons in the form of

u(x, t) = eiφr(x, t)

where φ = bx+ ct with b and c as constants [5]. We thus obtain the following:

ut = eiφ(icr + rt) (2.1)

ux = eiφ(ibr + rx) (2.2)

uxx = eiφ(−b2r + 2ibrx + rxx). (2.3)

We substitute ut, ux, and uxx into Equation (1.21) and obtain

−cr − 2ikrt = −b2r + 2ibrx + rxx + F (r)r + Φ(x, t)r, (2.4)

where F (r) = 2r2. We assume that r = f(x− 2kt) is a traveling wave with 2k being

the velocity, from which it follows that

rt = −2krx (2.5)
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Substituting these values of rt and rx into Equation 2.4 suggests the potential in

equation (1.21) is

Φ(x, t) = k4 − c− rxx
r
− F (r). (2.6)

Knowing what form of the potential to add to the NLS, we solve for the perturbed

solutions of the Fitzhugh Nagumo model. Since our solution accounts for only the fast

variable of the Fithugh-Nagumo Model, it has infinite energy. To model the fast/slow

interaction, we insert a perturbation term e−δx for δ ≈ 0. This perturbation leads to

finite energy solutions. For a = 1, our perturbed solutions are traveling waves of the

form

r(x, t) = f(x− 2kt) =
e−δ(x−2kt)

1 + Pe−(x−2kt)
. (2.7)

This, in turn, implies a potential of the form

Φ(x, t) = M |u|u (2.8)

where M is constant. Thus,

u(x, t) = eiφr(x, t) = eiφ
e−δ(x−2kt)

1 + Pe−(x−2kt)
(2.9)

is an approximate solution to

i
∂u

∂t
= −∂

2u

∂x2
+ 2|u|2u−M |u|u. (2.10)

Because (2.9) is only approximately a solution to (2.10), we now derive a numerical

approximation method for (2.10).
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2.2 The Pseudo-spectral Method

A pseudo-spectral method is used to numerically solve the Gross-Pitaevskii Equation

[15]. The method is based on the Fourier transform. If f is continuous on R,
∫∞
−∞ |f | <

∞ and
∫∞
−∞ |f |

2 <∞, then the Fourier Transform exists and is given by

F(f) =

∫ ∞
−∞

f(x)e−2πiωxdx. (2.11)

It can be shown that

F

(
∂f

∂x

)
= 2πiωF(f). (2.12)

Therefore,

∂f

∂x
= F−1 (2πiωF(f)) . (2.13)

Also, it follows that

∂2f

∂x2
= F−1

(
−4πω2F(f)

)
. (2.14)

The pseudo-spectral method utilizes special properties of the Fourier transform and

its inverses in order to solve the partial differential equation. Beginning with our

perturbed NLS,

i
∂u

∂t
= −∂

2u

∂x2
+ 2|u|2u−M |u|u, (2.15)

Equation (2.15) is transformed into

i
∂u

∂t
= F−1

(
−4πω2F(u)

)
+ 2|u|2u−M |u|u. (2.16)

We use approximate solutions (2.9) with different values for δ as initial conditions for

our approximation schemes. An ode solver is then applied to the resulting ordinary

differential equation in order to integrate the solution over a time interval. The fast

Fourier transform is used to approximate the continuous Fourier transform, implying
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that the numerical approximation is spatially periodic, although these periods are

large. The solutions are then plotted in order to analyze the soliton-like characteris-

tics of cardiac action potentials. The images in the following sections show a single

periodic domain of these approximations.
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3. Results

3.1 Discussion

Figures 1 and 2 compare the calcium cardiac action potentials and solutions to our

perturbed NLS at δ = 0.3. Although there is a translational difference within the

spatial component between the two waves in Figures 1 and 2, there is remarkable simi-

larity of the wave shape between the solution and the actual cardiac action potential.

(a) Figure 1: Ca cardiac
action potential

(b) Figure 2: δ = 0.3, pseudo-
spectral method

We let M = 3ε, and consider the equation

iUt = −Uxx + 2|u|2u− 3ε|u|u. (3.1)

Numerical solutions to (3.1) are computed for different values of ε within the equation.

Different values of δ are also chosen within the initial condition of the approximate
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solutions (2.9).

Figures 3 and 4 are two different visualizations of the same soliton. The plot used in

Figure 4 is what will be utilized for the rest of the figures within this paper.

(c) Figure 3:δ = 0.5, ε = 1.0

(d) Figure 4:δ = 0.5, ε = 1.0

We generated and analyzed a large number of solutions for various initial conditions

and values of the parameter ε. In particular, we explored the soliton-like properties

of perturbed Fitzhugh Nagumo (pFN) solutions for single wave solutions. We also

used well-separated super-positions of pairs of pFN solutions to explore interactions

of individual waveforms. Here is a summary of the results for one wave:

• When ε = 0, a completely radiating wave is produced.

• When ε = 1, the wave is non-radiating

• Solutions close to ε = 1 have less dispersive waves.

• A value of δ = 0.5 seem to create the most stable waves.

For solutions involving two waves, we have:

• The closer the value of δ is to 0.5, the less dispersive the solution becomes.

18



• The most stable collisions occur for values of ε ≈ 1

• Waves with δ = 0.5 have the least radiating solutions

• For a value of δ = 0.5, the values ε = 0.8, ε = 1.0, and ε = 1.3 have the least

dispersive interaction between two waves.

• For small values of ε (ε < 0.1) the two waves tend to be stationary. This is

due to the pseudo-spectral method failing to observe the collision between two

waves at values less than 0.1.

Figures 5 and 6 illustrate the differences between solutions at ε = 0 and solutions

at ε = 1. For ε = 0, waves immediately radiate as they start to travel, illustrating

dispersive properties. At ε = 1, solutions are hardly radiating. Also, when two so-

lutions of our perturbed NLS collide with each other at ε = 1, they maintain their

wave-forms and only change by a slight shift in phase, behaving like solitons.

(e) Figure 5: ε = 0 (f) Figure 6: ε = 1
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Figures 7 and 8 show the stability of waves for values of ε = 0.8 and ε = 1.3 for a

value of δ = 0.5. While both waves are somewhat stable, the waves for ε = 1.3 are

slightly less dispersive than the waves for ε = 0.8

(g) Figure 7: ε = 0.8 (h) Figure 8: ε = 1.3

The displacement between the initial and final wave are also measured. The following

observations can be made about the displacement:

• The displacement between the initial and final wave heavily relies on the time

allotted for wave propagation.

• The largest displacement occurs for values of ε = 0.5

• Overall, values of ε = 0.1 have the least amount of displacement between the

initial and final wave.

The complete results for our numerical solutions are given in the next section. Results

for the displacement between the initial and final wave are given in Appendix A.
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3.2 Data

For comparison, Figure 3.1 shows particular images of solutions with initial conditions

δ = 0.1 for various values of ε. The values ε = 1.0 and ε = 1.3 create the least

dispersive waves. It is observed no wave is created at ε = 2.0. This solution will be

studied in more detail in the future.

(i) ε = 0.1 (j) ε = 0.3 (k) ε = 0.5

(l) ε = 0.8 (m) ε = 1.0 (n) ε = 1.3

(o) ε = 1.8 (p) ε = 2.0

Figure 3.1: δ = 0.1
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Figure 3.2 shows images of solutions concerning two waves with initial condition

δ = 0.1 for various values of ε. These solutions are the most dispersive out of wave

solutions for all δ values considered.

(a) ε = 0.1 (b) ε = 0.3 (c) ε = 0.5

(d) ε = 0.8 (e) ε = 1.0 (f) ε = 1.3

(g) ε = 1.8 (h) ε = 2.0

Figure 3.2: δ = 0.1 two waves
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For Figure 3.3, one-wave solutions with initial condition δ = 0.3 for various values

of ε are shown. These waves are much less dispersive than solutions with δ = 0.1.

These figures also illustrate that ε = 0.8, ε = 1.0, and ε = 1.3 are the least radiating

of ε values for δ = 0.3.

(a) ε = 0.1 (b) ε = 0.3 (c) ε = 0.5

(d) ε = 0.8 (e) ε = 1.0 (f) ε = 1.3

(g) ε = 1.8 (h) ε = 2.0

Figure 3.3: δ = 0.3
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Figure 3.4 shows solutions involving two waves with initial condition δ = 0.3. These

waves even further depict the stability of solutions at values of ε = 0.8, ε = 1.0, and

ε = 1.3.

(a) ε = 0.1 (b) ε = 0.3 (c) ε = 0.5

(d) ε = 0.8 (e) ε = 1.0 (f) ε = 1.3

(g) ε = 1.8 (h) ε = 2.0

Figure 3.4: δ = 0.3 two waves
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Figure 3.5 shows solutions with initial condition δ = 0.5 for various values of ε. These

waves are the least radiating wave solutions for all δ values considered.

(a) ε = 0.1 (b) ε = 0.3 (c) ε = 0.5

(d) ε = 0.8 (e) ε = 1.0 (f) ε = 1.3

(g) ε = 1.8 (h) ε = 2.0

Figure 3.5: δ = 0.5
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The two-wave solutions with initial condition δ = 0.5 for various values of ε are

illustrated in Figure 3.6. Like the one-wave solutions, these are also the least radiating

waves for all δ values considered.

(a) ε = 0.1 (b) ε = 0.3 (c) ε = 0.5

(d) ε = 0.8 (e) ε = 1.0 (f) ε = 1.3

(g) ε = 1.8 (h) ε = 2.0

Figure 3.6: δ = 0.5, two waves
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The last δ value we observe is δ = 0.8. These waves are also somewhat non-dispersive.

(a) = 0.1 (b) ε = 0.3 (c) = 0.5

(d) ε = 0.8 (e) = 1.0 (f) ε = 1.3

(g) ε = 1.8 (h) ε = 2.0

Figure 3.7: δ = 0.8
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Finally, Figure 3.8 depicts the two-wave solutions for δ = 0.8. Although the one-

wave solutions did not show significant radiation, the two-wave solutions illustrate

the dispersiveness of solutions at this particular δ value.

(a) = 0.1 (b) ε = 0.3 (c) = 0.5

(d) ε = 0.8 (e) = 1.0 (f) ε = 1.3

(g) ε = 1.8 (h) ε = 2.0

Figure 3.8: δ = 0.8, two waves
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4. Symmetry Properties of The Perturbed Nonlinear Schrödinger

Equation

The solutions we have found numerically complement several analytic results we have

obtained concerning soliton-like properties of cardiac action potentials. There are

two motives for studying the group theory of our perturbed NLS equation. First, the

group theory allows us to generate initial conditions and allows us to compare them

to numerical approximations. Second, the group theory implies matrix relationships

known as Lax Pairs that can be used to solve an NLS equation. The solutions we have

found can be extended to larger family of solutions by using Lie symmetry groups:

subgroups of the permutation groups of the solutions that form smooth manifolds

[16, 17]. In the next section we will introduce the ideas that make it possible to find

these symmetries.

4.1 Groups, Lie Groups and Group Symmetries

We will first start with defining a Group [19]:

Definition 4.1. A group 〈G, ∗〉 is a set G, closed under a binary operation ∗, such

that the following axioms are satisfied:

• For all a, b, c within G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c).

• There is an element e in G such that for all x in G, e ∗ x = x ∗ e = x.

• Corresponding to each a within G, there is an element a′ in G such that a∗a′ =

a′ ∗ a = e.
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A group consists of a set of elements in which the above is true when the particular

binary operation ∗ is induced onto the elements. The following are examples of groups:

Example 4.2. The group O(n) is the set of all orthogonal matrices [20],

Example 4.3. The group SO(n) is a subgroup of O(n) consisting of orthogonal

matrices with determinant 1 [20].

Example 4.4. The matrix group U(n) is the set of all unitary matrices A. A complex

matrix A is unitary if AA† = A†A = I where I is the identity matrix [20].

Example 4.5. The group SU(n) is a subgroup of U(n) consisting of all unitary

matrices with determinant 1 [19].

Another example of a group is the dihedral group of a square. The dihedral group

consists of all ways in which one can rotate or flip a square and obtain the same

square. For instance, one can rotate the square ninety degrees and not change the

shape of the square. Since the shape of the square is unchanged, the transformations

rotation and reflection can be considered symmetries of a square, and are considered

to be elements in a square’s group of symmetries.

Definition 4.6. The Symmetry group of a set X is the set of all 1-1 transformations

of X onto itself [19].

For our perturbed NLS, we are interested in the symmetries of differential equations.

These symmetries will lead us to find more solutions to our nonlinear partial differ-

ential equation, and therefore help us in the future find more solutions describing

cardiac action potentials. To observe these symmetries, we look into particular sym-

metries groups called Lie Groups. Before introducing Lie Groups, however, we must

look into the concept of a manifold.
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Definition 4.7. An n-dimensional manifold is a set of points M together with a

notion of open sets such that each point p within M is contained in an open set U

that has a continuous bijection φ : U → φ(U) ⊂ Rn, where a bijection is a map that

is both one-to-one and onto. If the functions φ are differentiable, then the manifold

is considered to be a smooth manifold [20].

Therefore, an n-dimensional manifold is a space where small regions resemble Rn.

Examples of manifolds include lines (one-dimensional manifolds) and spheres (two-

dimensional manifolds). Solutions to differential equation can also be interpreted as

manifolds. For example, ordinary differential equation are often interpreted as curves

and partial differential equations in two variables are interpreted as surfaces.

Thus, finding symmetries of a differential equation helps us determine the charac-

teristics of the manifolds corresponding to solutions to a differential equation. Let

us look at a specific subgroup of the special orthogonal group SO(3) consisting of

rotations about the z-axis. We can write the matrix of these rotations as such [20]:

Tz(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (4.1)

This group is, in fact, an example of a Lie group.

Definition 4.8. A Lie group is an algebraic group that forms a differentiable manifold

in which the group operation is also differentiable.

To find symmetries within our perturbed NLS equation, we can check to see which

Lie groups do not alter our perturbed NLS equation. In the next section, we show

the symmetries we have found for our perturbed NLS equation.
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4.2 Symmetries of our Perturbed NLS

To show that a partial differential equation is invariant over a Lie group, we often

write the groups in the form

t → f1(t, x, u) (4.2)

x → f2(t, x, u) (4.3)

u → f3(t, x, u), (4.4)

where fj, j = 1, 2, 3 show the action of the group on a particular manifold. We have

shown that (1.21) is invariant under the following groups:

t→ t+ t0, x→ x, u→ u. (time translation) (4.5)

t→ t, x→ x+ x0, u→ u. (spatial translation) (4.6)

t→ t, x→ x− ct, u→ uei
c
2
(x− c

2
t). (Galilean invariance) (4.7)

For example, substituting (4.4) into

i
∂u

∂t
= −∂

2u

∂x2
+ 2|u|2u−M |u|u (4.8)

leads to

i
∂(uei

c
2
(x− c

2
t))

∂t
= −∂

2(uei
c
2
(x− c

2
t))

∂(x− ct)2
+ 2|uei

c
2
(x− c

2
t)|2uei

c
2
(x− c

2
t) −M |uei

c
2
(x− c

2
t)|uei

c
2
(x− c

2
t).

(4.9)

However |uei c2 (x− c
2
t)| = |u|. Thus, we can simplify the equation to the following:

ei
c
2
(x− c

2
t)i
∂u

∂t
= ei

c
2
(x− c

2
t)

(
−∂

2u

∂x2
+ 2|u|2u−M |u|u

)
(4.10)

32



The exponential terms cancel. Therefore, the perturbed NLS is Galilean invariant.

Determining spatial and temporal symmetries follow the same procedure.

4.3 Inverse Scattering Transform for the NLS

In many Lie groups, the multiplicative order is important. This leads to the following

definition [20].

Definition 4.9. A binary operation is commutative (equivalently abelian) if a ∗ b =

b ∗ a for all a,b within a group G.

For example, SO(3) is a non-abelian group. If a Lie Group G is non-abelian, then

the tangent space to the identity (G as a manifold) is the Lie Algebra of G, denoted

g. A Lie algebra is a vector space of linear transformations, and if a, b ∈ g, then

[a, b] = ab − ba is the Lie bracket on g. The Lie bracket is derived from the group

operation on G.

The Lie algebra of a symmetry group of a nonlinear PDE can sometimes be used

to obtain solutions to the PDE. For example, many PDE’s, including the KdV and

the NLS, can be solved using the method of Lax pairs. A Lax pair consists of two

matrices A and B that satisfy the following equation:

At = Bx + [B,A]. (4.11)

The method for discovering the solutions to a complex partial differential equation

is to postulate a given A and B, and determine which partial differential equation is

the compatibility equation for the two matrices. Typically, the choice of A and B is

of the partial differential equation’s symmetry group dictated by the Lie algebra. We

demonstrate this method with the nonlinear Schrödinger equation [5, 21]. If σz is the
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element of the Lie algebra SU(2) that generates rotations about the z axis,

L = −iσz
∂

∂x
+

 0 u

−u∗ 0

 (4.12)

By taking into account the Lax eigenvalue problem Lφ = ξφ, we can obtain the first

Lax Pair equation for the NLS shown previously:

Yx =

 −iξ u

−u∗ iξ

Y. (4.13)

We then let Yx = AY and Yt = BY . Our goal is to find B so that Yxt = Ytx. By

finding this matrix, one can in the process obtain the compatibility equation in which

Yxt = Ytx if and only if u is a solution to the specified equation. We first take the

time derivative of Yx and the spatial derivative of Yt:

Yxt = AtY + AYt = AtY + ABY (4.14)

Ytx = BxY +BYx = BxY +BAY (4.15)

The condition Yxt = Ytx then implies

AtY + ABY=BxY +BAY,At=Bx + [B,A].

(4.16)

To dive further into finding the matrix B, we take into account that the matrix is
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within the group SU(2), giving us B in the form of the lie algebra SU(2):

 a b

−b̄ ā

 . (4.17)

Thus,

AB =

 −b̄u− iaξ uā− ibξ

−ib̄ξ − au∗ iāξ − bu∗

 (4.18)

BA =

 −iaξ − bu∗ au+ ibξ

ib̄ξ − āu∗ −b̄u+ iāξ

 . (4.19)

Therefore,

[B,A] =

 b̄u− bu∗ 2ibξ + (a− ā)u

2ib̄ξ + (a− ā)u∗ bu∗ − b̄u

 . (4.20)

Our equation At = Bx + [B,A] then becomes

 0 ut

−u∗t 0

 =

 ax bx

−b̄x āx

+

 b̄u− bu∗ 2ibξ + (a− ā)u

2ib̄ξ + (a− ā)u∗ bu∗ − b̄u

 . (4.21)

We arrive at the following equations:

ax = bu∗ − b̄u (4.22)

ut = bx + 2ibξ + (a− ā)u (4.23)

āx = b̄u− bu∗ (4.24)

−u∗t = −b̄x + 2ib̄ξ + (a− ā)u∗. (4.25)
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The last two equations are simply conjugates of the first two equations. Our next

step is to find a(x, t) and b(x, t) so that these equations are true [5]. To do so, we

assume that

a = a0 + a1ξ + a2ξ
2 (4.26)

b = b0 + b1ξ + b2ξ
2. (4.27)

By inserting these conditions for the functions a and b, we arrive at the following for

the first two equations:

a0,x + a1,xξ + a2,xξ
2 = b0u

∗ − b∗0u+ (b1u
∗ − b∗1u)ξ + (b2u

∗ − b∗2u)ξ2

ut = b0,x + b1,xξ + b2,xξ
2 + 2i(b0ξ + b1ξ

2 + b2ξ
3)

+ (a0 − a∗0u+ (a1 − a∗1)uξ + (a2 − a∗2)uξ2.

Upon collecting coefficients and observing that b2 = 0 and b2,x = 0, one arrives at

ut = b0,xu(a0 − a∗0) (4.28)

−2ib0 = b1,x + (a1 − a∗1)u (4.29)

−2ib1 = (a2 − a∗2)u. (4.30)

Moreover, a2,x = 0, which implies that a2 is constant. Setting this as −2i gives us

b0 = iux. We next observe a0 = i|u|2 since a0,x = ∂
∂x

(iu∗u). Our last observation

considers ut− b0,xu(a0−a∗0). Substituting the previous values for b0,x and a0 produces

the nonlinear Schrödinger equation:

iut = −uxx − 2|u|2u, (4.31)
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Thus, for the final solutions a(x, t) and b(x, t), the nonlinear Schrödinger equation is

the compatibility equation for the Lax Pair (4.32).

In order to find a family of solutions to our perturbed NLS equation, our next step

is finding the Lax Pair to which our perturbed NLS equation is the compatibility

equation for. This, however, is a future direction that may require generalization to

a higher dimensional setting.

4.4 The Infinite Number of Conservation Laws of the NLS equation

A critical property of the NLS equation is its infinite number of conservation laws,

meeting a criterion for integrability. A conservation law states that certain physical

properties of a system, such as energy, momentum, and angular momentum, do not

change in time within an isolated physical system. A conservation law is in the form

of At+Bx = 0 due to Noether’s theorem stating that any differential symmetry of the

integral of a Lagrangian function over time has a corresponding conservation law [23].

For example, if the Lagrangian of a physical system is independent of the location

of the origin of the system, then the system will conserve angular momentum. The

method we use to derive the infinite number of conservation laws of the NLS equation

is a variation of the Zakharov-Shabat method [21]. Consider a solution Y = (y1, y2)
T

to the two Lax Pair equations:

Yx =

 −iξ u

−u∗ iξ

Y, (4.32)

Yt =

 −2iξ2 + i|u|2 iux + 2ξu

iu∗x − 2ξu∗ 2iξ2 − i|u|2

Y (4.33)

Defining µ = y1/y2,
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Y =

 y1

y2

 , y2,x = −u∗y1 + iξy2. (4.34)

Dividing by y2,

y2,x
y2

=
−u∗y1
y2

+ iξ. (4.35)

Thus, integrating this we arrive at the following equation:

ln(y2)x = iξ − u∗µ. (4.36)

By the same procedure we can find the following equation for ln(y2)t:

ln(y2)t =
(
2iξ2 − i|u|2

)
+ (iu∗x − 2ξu∗)µ. (4.37)

Since (Yx)t = (Yt)x, we have

(iξ − u∗µ) =
(
2iξ2 − i|u|2

)
+ (iu∗x − 2ξu∗)µ. (4.38)
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We can expand µ as a function of ζ as a series at ∞ :

µ(x, t, ξ) = −
∞∑
n=1

µn(x, t)

(−2iξ)n
. (4.39)

Substituting this into the previous equation yields

− (u∗µ) = −
∞∑
n=1

(u∗µn(x, t, ξ))

(−2iξ)n
, (4.40)

Or equivalently,

−iu∗u = i
∞∑
n=1

[(u∗x − 2ξu∗)µn]x
(−2iξ)n

. (4.41)

Since for n = 1, (u∗µ1)t = [(u∗x − 2ξu∗)µn]x , we have

(−iu∗u)x =
∞∑
n=1

(iu∗xµn)x
(−2iξn)

=
∞∑
n=1

i(u∗µn)x
(−2iξ)n−1

(4.42)

Setting j = n− 1 in the second sum, we obtain

(−iu∗u)x =
∞∑
n=1

(iu∗xµn)x
(−2iξn)

=
∞∑
n=1

i(u∗µj+1)x
(−2iξ)j

. (4.43)
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Taking out the n = 1 term from the series then leads to

(−iu∗(u− µ1))x +
∞∑
n=1

(−iu∗xµn)x + u∗µn+1

(−2iξ)n
=
∞∑
n=1

(u∗µn+1)t
(−2iξ)n

. (4.44)

For (4.46) to be satisfied, we first must have that µ1 = u.Under the same concept,

µu = ux, and so on, leading to

(u∗µn)t = i (u∗µn+1 − u∗xµn)x . (4.45)

These equations give the infinite number of conservation laws for the nonlinear Schrödinger

equation, with u∗µn being the density and u∗µn+1 − u∗xµn being the flux. Thus we

have the infinite number of conserved quantities as:

In =

∫ ∞
−∞

u∗µndx. (4.46)

It can be shown that this is all the integrals (conserved quantities) of the partial

differential equation, and thus, the NLS is a completely integrable system.
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5. Future Work

Analyzing the soliton-like properties of cardiac action potentials numerically is still

in process. Statistical information such as confidence intervals, standard deviations

and variances of the results from numerical methods will soon be calculated. Due

to errors within the pseudalspectral method, a new computational method will be

adopted in the near future. Also, the family of solutions describing cardiac action

potentials will be discovered by working with more Lie symmetry groups and the Lax

pair of our perturbed NLS equation.

There is also value in extending these results to higher spatial dimensions. Although

not all the methods for working with one dimensional NLS equations translates into

higher dimensional NLS contexts, some of the results in this paper should extend to

higher dimensional settings. Thus, we will also explore higher dimensional, cardiac

action potential-like solitons in the near future. We will study the behavior of these

waves by extending the symmetry group of the perturbed NLS. We will also look into

other types of solutions to our NLS equation, such as the possibility of breather (i.e.

rogue wave) solutions.

Moreover, there are a number of applications to neuroscience not even considered.

For example, our modified NLS suggests a modified Fitzhugh-Nagumo equation. In

particular, the soliton approach and symmetry groups might reveal valuable infor-

mation about the interplay of the fast and slow signals that make up cardiac action
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potentials.
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6. Appendices

6.1 Appendix A: Displacement Tables

The tables below give the amount of displacement between the initial and final waves

within the solution at different values of δ and ε. While δ is the perturbation to take

into account the slow variable of the Fitzhugh-Nagumo equation, the ε value is the

perturbation for our Gross-Pitaevskii equation. Values of δ = 0.1, 0.3, 0.5, and 0.8

are measured. Values of ε = 0.1, 0.3, 0.5, 0.8, 1.0, 1.3, 1.8, and 2.0 are observed. As

previously stated, the largest displacement occurs for values of ε = 0.5 while values

of ε = 0.1 have the least amount of displacement between the initial and final wave.
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One Wave

δ ε x

0.1

0.1 0.047797

0.3 0.041067

0.5 0.364489

0.8 0.133408

1.0 0.137228

1.3 0.276590

1.8 0.071318

2.0 No Wave

0.3

0.1 0.035201

0.3 0.098601

0.5 0.335753

0.8 0.017619

1.0 0.109503

1.3 0.048222

1.8 0.024300

2.0 0.044155

One Wave (Cont.)

δ ε x

0.5

0.1 0.002190

0.3 0.482510

0.5 0.318628

0.8 0.001088

1.0 0.059512

1.3 0.005431

1.8 0.061100

2.0 0.782587

0.8

0.1 0.025733

0.3 0.334300

0.5 0.354331

0.8 0.060434

1.0 0.157177

1.3 0.116652

1.8 0.019820

2.0 0.003522
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Two Waves

δ ε x

0.1

0.1 0.001698

0.3 0.257342

0.5 0.312770

0.8 0.219724

1.0 0.058462

1.3 0.224882

1.8 0.165259

2.0 0.125386

0.3

0.1 0.003597

0.3 0.255729

0.5 0.295115

0.8 0.136808

1.0 0.107320

1.3 0.160305

1.8 0.055911

2.0 0.047498

Two Waves (Cont.)

δ ε x

0.5

0.1 0.093370

0.3 0.057261

0.5 0.107774

0.8 0.140350

1.0 0.056337

1.3 0.107774

1.8 0.032499

2.0 0.028547

0.8

0.1 0.001189

0.3 0.368053

0.5 0.494624

0.8 0.166655

1.0 0.130141

1.3 0.245895

1.8 0.113831

2.0 0.112991
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6.2 Appendix B: Code

The following is our code utilizing the pseudo-spectral method in order to solve our

perturbed nonlinear Schrödinger equation. The code was adapted from a Scipy Cook-

book KdV example.

import numpy as np

from s c ipy . i n t e g r a t e import ode int

from s c ipy . f f t p a c k import d i f f as p s d i f f

#from mp l t o o l k i t s . mplot3d import Axes3D

from matp lo t l i b . c o l l e c t i o n s import Po lyCo l l e c t i on

from matp lo t l i b . c o l o r s import co lo rConver te r

#from mp l t o o l k i t s . mplot3d import axes3d

import matp lo t l i b . pyplot as p l t

def s h r e xa c t (x , c ) :

””” P r o f i l e o f the exac t s o l u t i o n to the KdV fo r a s i n g l e s o l i t o n

on the r e a l l i n e . ”””

#u = 1.2∗1/( np . cosh (1 .2∗ ( x+20)))+np . exp (8 j ∗( x ) )∗0 .8∗1/( np . cosh ( . 8∗ x ) )

eps = 1 .0

de l t a = 0 .8

beta = eps
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gamma = 1/ eps

u = 1 .2∗ ( 1/ ( np . cosh ( x+50)))∗np . exp (1 j ∗x )+0.8∗(1/np . cosh (0 . 8∗ x ) )

# u =( np . exp(− d e l t a ∗x ))/(1+np . exp(−x ))+(np . exp(− d e l t a ∗( x+20)))/(1+np . exp(−(x+20)))∗np . exp (3 j ∗( x ) )

# u = np . exp(− d e l t a ∗( be ta ∗( x ) ) )∗ np . exp (0 j ∗( x ))/(1+np . exp(−( be ta ∗( x ) ) ) )

#u = np . exp(− d e l t a ∗( be ta ∗x ))/(1+np . exp(−( be ta ∗x ) ) )

#u = gamma∗u

u = np . array (u , dtype=np . complex64 )

u = np . array ( [ u . r ea l , u . imag ] )

u = u . f l a t t e n ( )

return u

def shr (u , t , L ) :

””” D i f f e r e n t i a l e qua t i ons f o r the KdV equat ion , d i s c r e t i z e d in x . ”””

# Compute the x d e r i v a t i v e s us ing the pseudo−s p e c t r a l method .

# ux = p s d i f f (u , per iod=L)

#eps = 1.0

#gamma = 1/ eps

n = len (u)

uxxRe = p s d i f f (u [ 0 : ( n / 2 ) ] , pe r iod=L , order =2)

uxxIm = p s d i f f (u [ ( n / 2 ) : n ] , per iod=L , order =2)

uxx = np . array ( [ uxxRe , uxxIm ] )

uxx = uxx . f l a t t e n ( )

absu =np . s q r t (u [ 0 : n/2]∗∗2+u [ n /2 : n ]∗∗2 )
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absu = np . array ( [ absu , absu ] )

absu = absu . f l a t t e n ( )

absu2 = u [ 0 : n/2]∗∗2+u [ n /2 : n ]∗∗2

absu2 = np . array ( [ absu2 , absu2 ] )

absu2 = absu2 . f l a t t e n ( )

# Compute du/ dt = −i ∗( −uxx − 2abs (u)u ) = i ∗ ( uxx + 2abs (u)u)

dudt = (−1∗2∗absu2 )∗u + uxx + eps ∗(3∗ absu )∗u

idudt= np . array ([−1∗dudt [ ( n / 2 ) : n ] , dudt [ 0 : ( n / 2 ) ] ] )

return idudt . f l a t t e n ( )

#return ( i dud t . rea l , i dud t . imag )

# Set the s i z e o f the domain , and c rea t e the d i s c r e t i z e d g r i d .

eps = 1 .0

beta = eps

L =160.0/ beta

N = 256

dx = L/N

x = np . l i n s p a c e (−L/2 , L/2 , N)

x1 = np . l i n s p a c e (−L/beta , L/beta , N)

# Set the i n i t i a l c ond i t i on s .

# Not exac t f o r two s o l i t o n s on a p e r i o d i c domain , but c l o s e enough . . .

u0 = sh r e xa c t (x , 0 . 75 ) # + kdv exac t ( x−0.65∗L, 0 .4 )
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# Set the time sample g r i d .

#ps = .01

#alpha = eps ∗∗2

Tm = 7

t = np . l i n s p a c e (0 , Tm, 1000)

#t = alpha ∗ t

print ”Computing the s o l u t i o n . ”

from m p l t o o l k i t s . mplot3d import Axes3D

from matp lo t l i b . c o l l e c t i o n s import Po lyCo l l e c t i on

from matp lo t l i b . c o l o r s import co lo rConver te r

s o l = ode int ( shr , u0 , t , a rgs=(L , ) , mxstep=500)

s o l = s o l [ : , 0 :N] + 1 j ∗ s o l [ : ,N: ( 2∗N) ]

print ”IMshow . ”

p l t . f i g u r e ( f i g s i z e =(6 ,5))

p l t . imshow (np . abs ( s o l [ : : −1 , : ] ) , extent=[−L/2 ,L/2 ,0 ,Tm] )

p l t . c o l o rba r ( )

p l t . x l a b e l ( ’ x ’ )

p l t . y l a b e l ( ’ t ’ )

p l t . a x i s ( ’ normal ’ )
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p l t . t i t l e ( ’The Nonl inear Schrod inger on a Pe r i od i c Domain ’ )

#p l t . show ()

#pr in t ”Wireframe .”

#f i g = p l t . f i g u r e ( )

#ax = f i g . add subp l o t (111 , p r o j e c t i on =’3d ’)

#t ind = range (0 , l en ( t ) ,10)

#xind = range (0 , l en ( x ) ,5 )

#t t = t [ t i nd ]

#xx = x [ xind ]

#ux = abs ( s o l ) [ : , x ind ]

#uu = ux [ t ind , : ]

#X,T = np . meshgrid ( xx , t t )

#ax . p l o t w i r e f r ame (X,T, uu )

#p l t . show ()

print ( ” WaterFall . ” )

## Redo the sampling

t ind = range (0 , l en ( t ) , 30 )

xind = range (0 , l en ( x ) , 1 )

t t = t [ t ind ]

xx = x [ xind ]

ux = abs ( s o l ) [ : , xind ]
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#The f i g u r e

f i g = p l t . f i g u r e ( )

ax = f i g . gca ( p r o j e c t i o n=’ 3d ’ )

cc = lambda arg : co lo rConver te r . to rgba ( arg , alpha =0.6)

v e r t s = [ ]

for i in t ind :

v e r t s . append ( z ip ( xx , ux [ i , : ] ) )

poly = Po lyCo l l e c t i on ( ver t s , f a c e c o l o r s = [ cc ( ’b ’ ) ] )

poly . s e t a l p h a ( 0 . 3 )

ax . a d d c o l l e c t i o n 3 d ( poly , z s=tt , z d i r=’ y ’ )

ax . s e t x l a b e l ( ’X ’ )

ax . s e t x l im3d(−L/2 ,L/2)

ax . s e t y l a b e l ( ’ t ’ )

ax . s e t y l im3d (0 ,Tm)

ax . s e t z l a b e l ( ’Z ’ )

ax . s e t z l im3d (0 , 1 . 1∗ np . max( abs ( s o l ) ) )

p l t . t i t l e ( ’The Nonl inear Schrod inger on a Pe r i od i c Domain ’ )

p l t . show ( )

p l t . f i g u r e ( )
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p l t . p l o t ( xx , abs ( s o l [ 0 ] ) )

p l t . x l a b e l ( ’X ’ )

p l t . y l a b e l ( ’Z ’ )

p l t . t i t l e ( ’ So lu t i on at T = 0 ’ )

p l t . show ( )

p l t . f i g u r e ( )

p l t . p l o t ( xx , abs ( s o l [ 9 9 9 ] ) )

p l t . x l a b e l ( ’X ’ )

p l t . y l a b e l ( ’Z ’ )

p l t . t i t l e ( ’ So lu t i on at Max Time ’ )

p l t . show ( )

D i f f = np . max( abs ( s o l [0 ] ) ) −np . max( abs ( s o l [ 9 9 9 ] ) )

D i f f = abs ( D i f f )

print D i f f
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