Apr 5th, 8:00 AM - 12:00 PM

Amphibians and reptiles as a source of Salmonella – a review of Salmonella outbreaks in a period of last ten years

Mateusz Drozdz
Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw

Gabriela Bugla-Plooskonska
Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Poland

Follow this and additional works at: https://dc.etsu.edu/asrf

Part of the Animal Diseases Commons, Bacterial Infections and Mycoses Commons, and the Epidemiology Commons

https://dc.etsu.edu/asrf/2018/schedule/161

This Oral presentation is brought to you for free and open access by the Events at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Appalachian Student Research Forum by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
Amphibians and reptiles as a source of *Salmonella* – a review of *Salmonella* outbreaks in the period of last ten years

Mateusz Drozdz and Gabriela Bugla – Ploskonska,
Department of Microbiology, Institut of Genetics and Microbiology, University of Wroclaw, Poland,
e-mail: mateuszdrozdz5@tlen.pl, gabriela.bugla-ploskonska@uwr.edu.pl

Introduction
Increasing trends of keeping reptiles and amphibians as pets have been observed. These vertebrates can be asymptomatic carriers of *Salmonella* species and can cause infection by transmission of pathogen to humans, especially in infants, young children and people with immunodeficiencies.

Goal
The goal of this review is to document the most dangerous outbreaks of salmonellosis caused by contact with amphibians and reptiles that appeared in last ten years. This review is based on the analysis of the available literature.

Salmonellosis
Salmonella strains isolated from amphibians and reptiles differ genetically from strains isolated from humans. The differences rely mainly on the activation of virulence factors that cause pathogenicity in humans.

Examples of vertebrates
- Alligator Mississipiensis
- Timon lepidus
- Pogona vitticeps
- Caiman yacare
- Anolis carolinensis
- Hemidactylus frenatus
- Bufo marinus

Table 1: The most often isolated from amphibians and reptiles *Salmonella* strains causing outbreaks

<table>
<thead>
<tr>
<th>Year of outbreak</th>
<th>Isolated pathogen</th>
<th>Species of vertebrates</th>
<th>Reference</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>S. enterica subsp. arizonae</td>
<td>Pantherogrius guttatus</td>
<td>1</td>
<td>France</td>
</tr>
<tr>
<td>2011</td>
<td>*S. Paratyphi B var. L (+)</td>
<td>Small turtles</td>
<td>5</td>
<td>USA</td>
</tr>
<tr>
<td>2012</td>
<td>S. Amsterdam, S. Poona, S. Bareily</td>
<td>Naja kaouthia, Hoplobatrachus rugulosus</td>
<td>6</td>
<td>Thailand</td>
</tr>
<tr>
<td>2017</td>
<td>S. Oranenburg</td>
<td>Pogona vitticeps</td>
<td>7</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>2015</td>
<td>S. Welteworden</td>
<td>Hemidactylus frenatus</td>
<td>11</td>
<td>Costa Rica</td>
</tr>
<tr>
<td>2012</td>
<td>S. Tennessee 6.7:29</td>
<td>Pogona vitticeps</td>
<td>2</td>
<td>Germany</td>
</tr>
<tr>
<td>2017</td>
<td>S. Pomona</td>
<td>Alligator Mississipiensis</td>
<td>8</td>
<td>USA</td>
</tr>
<tr>
<td>2016</td>
<td>S. enterica subsp. houtenae serovar IV 43.12</td>
<td>Agkistrodon bilineatus taylori</td>
<td>9</td>
<td>USA</td>
</tr>
<tr>
<td>2016</td>
<td>S. Thompson</td>
<td>Pet turtles</td>
<td>10</td>
<td>China</td>
</tr>
<tr>
<td>2014</td>
<td>S. Saintpaul, S. Mississipi</td>
<td>Sphenodon punctatus, Pachyplaga turtur, Oligosoma spp.</td>
<td>12</td>
<td>New Zealand</td>
</tr>
<tr>
<td>2012</td>
<td>S. Newport 6.8.e:1.2:</td>
<td>Pantherogrius guttatus</td>
<td>2</td>
<td>Germany</td>
</tr>
<tr>
<td>2014</td>
<td>S. Oranenburg</td>
<td>Anolis carolinensis</td>
<td>13</td>
<td>Japan</td>
</tr>
<tr>
<td>2014</td>
<td>S. Pomona</td>
<td>Trachemys scripta elegans</td>
<td>14</td>
<td>China</td>
</tr>
<tr>
<td>2011</td>
<td>S. Kubisi, S. enterica subsp. salamae serovars 41:z10:z6 and 18:z10:z6</td>
<td>Timon lepidus</td>
<td>15</td>
<td>Spain</td>
</tr>
<tr>
<td>2011</td>
<td>S. infantis, S. Nottington</td>
<td>Caiman yacare, Caiman latroisotri</td>
<td>16</td>
<td>Argentina</td>
</tr>
<tr>
<td>2013</td>
<td>S. Thompson, S. Typhimurium</td>
<td>Emys orbicularis Trachemys scripta elegans</td>
<td>3</td>
<td>Spain</td>
</tr>
<tr>
<td>2013</td>
<td>S. Javana, S. Rubislaw</td>
<td>Bufo marinus</td>
<td>17</td>
<td>Grenada</td>
</tr>
<tr>
<td>2010</td>
<td>S. Rubislaw</td>
<td>Pogona vitticeps</td>
<td>4</td>
<td>Australia</td>
</tr>
</tbody>
</table>

References

Table 2: Recommendation of WHO

The World Health Organization (WHO) has made the following recommendations to minimize the risk of salmonellosis, due to RAS salmonellosis (reptile – associated salmonellosis)[18].

- Clean the amphibians/reptiles’ living area outside the home.
- Limit the contact of infants, young children and persons with reduced resistance with reptiles/amphibians.
- Avoid keeping reptiles/amphibians in places where meals are prepared or consumed.
- Change clothes after each contact with reptiles/amphibians.
- Avoid contact with amphibians and reptiles while eating, drinking or smoking.
- Don’t kiss or snuggle with reptiles.
- Wash your hands after each contact with reptiles/amphibians.
- All reptiles and amphibians kept in houses should be considered as a potential source of pathogens.