
East Tennessee State University East Tennessee State University

Digital Commons @ East Tennessee State University Digital Commons @ East Tennessee State University

Master of Fine Arts in Digital Media Culminating
Experience Student Works

5-2024

LODs and Nanite within Unreal Engine 5: The Future of 3D Asset LODs and Nanite within Unreal Engine 5: The Future of 3D Asset

Creation for Game Engines Creation for Game Engines

Stephen R. Overton
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/digitalmedia-culminating-experience

 Part of the Art and Design Commons

Recommended Citation Recommended Citation
Overton, Stephen R., "LODs and Nanite within Unreal Engine 5: The Future of 3D Asset Creation for Game
Engines" (2024). Master of Fine Arts in Digital Media Culminating Experience. Paper 6.
https://dc.etsu.edu/digitalmedia-culminating-experience/6

This Culminating Experience is brought to you for free and open access by the Student Works at Digital Commons
@ East Tennessee State University. It has been accepted for inclusion in Master of Fine Arts in Digital Media
Culminating Experience by an authorized administrator of Digital Commons @ East Tennessee State University. For
more information, please contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/digitalmedia-culminating-experience
https://dc.etsu.edu/digitalmedia-culminating-experience
https://dc.etsu.edu/student-works
https://dc.etsu.edu/digitalmedia-culminating-experience?utm_source=dc.etsu.edu%2Fdigitalmedia-culminating-experience%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1049?utm_source=dc.etsu.edu%2Fdigitalmedia-culminating-experience%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

LODs and Nanite within Unreal Engine 5:

The Future of 3D Asset Creation for Game Engines

A Culminating Experience

presented to

the faculty of the Department of Digital Media

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Fine Arts in Digital Media

by

Stephen R. Overton

May 2024

Jacy Richardson, Chair ________________________________

Todd Emma ________________________________

Cheryl Cornett ________________________________

Keywords: unreal engine 5, nanite, LODs, modular assets kits

2

ABSTRACT

LODs and Nanite within Unreal Engine 5:

The Future of 3D Asset Creation for Game Engines

by

Stephen R. Overton

In the video game industry, developers utilize game engines to bring their creations from

concept to reality. However, the most widely used engine in the industry currently is Unreal

Engine 5 or UE5, which has challenged established practices used by game developers since the

early creation of 3D interactive media. One of these challenges is eliminating LODs or Level of

Detail-based asset integration with the introduction of Nanite, an automatic LOD creation tool

introduced in Unreal Engine 5. With this development, it is still being determined whether

Nanite should immediately replace LODs due to its ability to cut out work required for LOD-

based integration. This uncertainty has led to the purpose of this study, which is to research and

understand the background and utilization of LODs and Nanite in 3D game asset creation while

showcasing how both processes intertwine inside UE5.

The following research questions will guide this study in answering questions and setting

up foundation knowledge into LODs and Nanite to understand the importance of each

optimization technique and why their usage matters to the future of 3D asset creation. First, what

are LODs, and why are they used in 3D asset creation within the video game industry? Second,

what is Nanite, and how does this process differentiate itself from the methods utilized in LOD

creation? Third, what are the benefits and consequences of using either LODs or Nanite in 3D

asset creation? Lastly, can both processes be utilized in tandem inside Unreal Engine 5.2.1 to

allow developers to use the best abilities of both methods in their 3D asset creation pipelines?

3

Copyright 2024 by Stephen R. Overton

All Rights Reserved

4

DEDICATION

For Nichole and Stephen, a.k.a. Mom and Dad. You both have pushed, taught, and given

me experiences throughout my life that have shaped me today as an artist and person, and I will

always be thankful for these times now and forever.

 For Elisabeth, you have been a constant support pillar throughout my life. I am deeply

thankful for our bond and for having a sister who has always been there for me just as I have

been there for you.

 For Weston Hopper, you were one of the best parts of coming straight into the M.F.A.

program from undergrad. I will never forget our time as desk mates when we talked and

discussed films and games as we worked on our artwork while having movies playing in the

background.

 For my fellow grad students, our time together has been a treasure. We have worked,

laughed, and enjoyed each other’s company, formed memories, inside jokes, and a deep

connection as we braved through our M.F.A journeys. I eagerly anticipate the heights and paths

we will take in the future, knowing that we all have the potential to achieve anything we set our

creative minds towards doing.

 Lastly, this paper and project are in remembrance of my late grandmother, grandfather,

and uncle Edith “Blondie” Overton, James R. Overton, and James “Derek” Overton, who

provided me with a lifetime of memories, helped start me down the path of pursuing professional

video game development and gave me the drive to seek out and complete the most challenging

obstacles I have tackled in my life, no matter the difficulty.

5

ACKNOWLEDGMENTS

I want to express my gratitude to the committee chair, Jacy Richardson, for always

supporting me in my growth as a mentor in 3D art, pushing me to improve myself both

academically and professionally, and telling me when I asked for feedback, “Hmmm I think it

needs more trash.” I also want to extend this gratitude to my fellow committee members, Todd

Emma and Cheryl Cornett, who have extended their expertise to help aid me in my research and

professional practices for this project and my professional development as a 3D artist. I want to

extend gratitude to the rest of the ETSU Digital Media faculty as I have learned so much from

you all, which has shaped me into the artist I am today. Lastly, I want to thank Dr. Joe D. Moore

and Dr. Dennis Depew, who allowed me to pursue my studies further in graduate school and

reach this point in my academic journey.

6

TABLE OF CONTENTS

ABSTRACT .. 2

DEDICATION .. 4

ACKNOWLEDGEMENTS .. 5

LIST OF FIGURES .. 7

Chapter 1. Introduction ... 8

Chapter 2. Literature Review .. 10

Chapter 3. Research Methodology .. 17

Chapter 4. Data Analysis .. 27

Chapter 5. Results ... 37

Chapter 6. Conclusion & Future Research ... 40

References ... 42

APPENDIX: Professional Terminology ... 44

VITA ... 45

7

LIST OF FIGURES

Figure 1. Modular Asset Kit Breakdown from KitBash 3D’s Dark Fantasy Kit (KitBash 3D) .. 18

Figure 2. European City Moodboard for Modular Asset Kit’s Theme ... 19

Figure 3. Reference Image of Amsterdam Buildings Utilized in Development 20

Figure 4. Developmental Building Testing Grayout Image .. 21

Figure 5. Aaron Church Broken Down Reference Image (PICFAIR, Artur Bogacki) 23

Figure 6. In-Development Shaded Render Building Breakdown inside Autodesk Maya 24

Figure 7. Model Topology Breakdown Smoothness/LODs Levels .. 24

Figure 8. Asset Amount Showcase for LODs and Nanite: 3D Model Parts 29

Figure 9. Asset Amount Showcase for LODs and Nanite: Textures and Materials 29

Figure 10: Model, Texture, and Material set up for LOD Levels 0-2: Front View 30

Figure 11: Model, Texture, and Material set up for LOD Levels 0-2: Side View 30

Figure 12: Nanite Showcase with High and Low Topology Far Camera View 32

Figure 13: Nanite Showcase with High and Low Topology Far Camera View Wireframe 32

Figure 14: Nanite Showcase with High and Low Topology Close Camera View 33

Figure 15: Initial Lamp Prop – Testing Nanite with Non-Opaque Materials 34

Figure 16: Finalized Lamp Prop – Showcasing Initial and Final Implementation 35

Figure 17: Finalized Lamp Actor BP using Nanite, Glass Material, and Point Light Source 35

Figure 18: Modular Asset Kit Environment In-Development Showcase in UE5 - Shaded View 39

Figure 19: Modular Asset Kit Environment In-Development Showcase in UE5 – Nanite View 39

8

Chapter 1. Introduction

Within the game industry, the production requirements of high-quality and optimized 3D

assets are of top priority for developers in developing games ranging from indie to triple-A

(AAA) due to developers being tasked with creating 3D assets that retain high amounts of

graphical fidelity while still being optimized for use within game productions. In addition,

developers are usually limited in how they can optimize their games because they must tailor the

gameplay experience for their lowest-targeted platform while retaining more significant fidelity

details for higher-end platforms, such as personal computers (PCs). With this need for high-

quality assets and limitation based upon targeted platforms, developers must utilize optimization

methods to efficiently control the number of details present in objects to optimize the gameplay

experience in visual and technical performance to improve the overall player experience. The

current design technique for this task is Level of Detail (LODs), which requires multiple

instances of static meshes and environments that are swapped out to lower-quality versions of

themselves depending on how close the player’s renderable viewing aera is to said object.

Recently, in Epic Games’s release of Unreal Engine 5, a new technique of asset optimization and

rendering has emerged called Nanite, which utilizes the base principles of LODs but differs by

only using the initial object to perform procedural decreasing of details and rendering the areas

of the asset the player can visibly see during gameplay.

With the introduction and implementation of Nanite in UE5, the future use of LOD assets

has become unclear in the greater gaming industry. At the same time, information about Nanite

is limited to Unreal Engine 5’s documentation and showcase videos published directly by Epic

Games. This uncertainty in both Nanite and the future of LODs in the game development

industry has led to the purpose of this study which is to research and understand the background

9

and utilization of LODs and Nanite in 3D game asset creation while showcasing how both

processes intertwine with each other, regarding 3D assets, inside of Unreal Engine 5.2.1. In

addition, the methodology that will be used to highlight this paper research findings will utilize

my pre-existing professional skillset in 3D game asset creation by making a traditional

environment asset kit, with Nanite in mind, and displaying this kit by using it to create a small

showcase environment inside of Unreal Engine 5. In doing this, the goal will be to display what

pros and cons come from making assets for Nanite in mind, what limitations there are when

developing for Nanite vs. LODs, and what takes aways there are when creating assets for use

with Nanite inside of Unreal Engine 5.

10

Chapter 2. Literature Review

Developers must solve the problem of maintaining a higher amount of graphical fidelity

while still optimizing 3D assets so that user experience during gameplay is not negatively

impacted, no matter what the targeted platform is. From this need to balance detail and

performance, developers utilize the method of LODs as the primary way to balance these two

aspects of 3D asset creation for video games. LODs are described as instances or copies of a

static mesh that are manually or procedurally lowered in terms of polygon count and texture

detail and then swapped in and out during gameplay depending on a set percent distance of the

virtual camera or the player’s view to the LOD object or environment (Methods and Systems,

2022). In using LODs for asset optimization, game developers can utilize the initial high-detail

assets and textures in combination with lower visual copies to create game environments that hit

the optimization requirements of less powerful platforms while still delivering higher visual

quality and performance to more powerful platforms.

 Although using LODs helps developers optimize 3D assets and environments, their

inclusion can improve a game's performance if the developers appropriately integrate them

properly. For instance, when creating LODs, developers must decide how much fidelity show

will be present on each LOD and at what percentage or distance each LOD should be loaded in

and swapped with the current mesh during gameplay. If developers do not correctly set up the

percent values in which higher or lower-quality static meshes should be loaded, they could risk

pixel popping during gameplay. Pixel popping happens when the switch between each LOD

mesh is apparent and happens in almost snapping movement instead of a smooth transition

between each LOD model (Methods and Systems, 2022.) In addition to potential pixel popping,

when creating LODs meshes, developers must account for the initial model's fidelity and

11

positioning inside of the game's environment to ensure that the copies retain the defining features

of the initial mesh while also being able to properly represent the mesh from any position it

could be viewed during gameplay (McRoberts & Hardy, 2007). In the case that the model

position is not considered when setting up LOD thresholds, developers will run the risk of

incorrect LOD levels being loaded in at the untended distance due to improper swapping

percentages that do not account for all areas surrounding the mesh, such as its height or

positioning in the environment, harming the overall player experience of the game. LODs are

powerful tools when used correctly, allowing developers to deliver games with high performance

and visuals to various platforms. However, a new model optimization method recently

introduced to Epic Games's Unreal Engine 5 has changed how 3D assets are optimized as it is an

evolution of the concept of LODs.

Epic Games best describes Nanite as a virtualized geometry system that renders static

meshes based upon what is seen in the camera view and does not render unseeable details while

creating automatic LODs transition within only the initial static mesh (Nanite Virtualized

Geometry, 2022). When utilizing Nanite inside of Unreal Engine 5, its visual core is reliant on

triangles, which is the base representation of any 3D model, because the goal with Nanite is not

to disrupt established industry art production pipelines or software toolsets but rather to improve

current methods in geometry rendering and processing for in-game assets and using triangles

ensures that developers can utilize all of the features with Nanite without having to change their

existing production pipelines. (SIGGRAPH, 2021). In utilizing triangle clusters, Nanite differs

from traditional LODs in two ways: by only rendering clusters that are renderable in the current

camera view and by actively selecting the maximum LOD amount per cluster, meaning that it

will only pick specific clusters to give a greater detail LOD to depending on the player's view in

12

the level which saves on both storage memory and rendering power during gameplay (Nanite in

UE5, 2021).

 When discussing Nanite, the process adopts traits synonymous with LODs but has

distinctive properties that make it stand out as a geometry rendering and processing system. For

example, Nanite can process and render static meshes comprised of millions upon millions of

polygons without dipping in gameplay or rendering performance, which is impossible when

utilizing LODs due to the constant loading and unloading of static meshes during gameplay

(Nanite in UE5, 2021). As an example of this, authors Zhong et al. (2021) proposed a new

method of implementing Nanite into their pipeline for processing high poly 3D mesh

reconstructions of images, commonly known as photogrammetry, by utilizing Nanite on a

reconstructed mesh directly from Reality Capture (Zhong et al., 2021). With the implementation

of Nanite, Zhong et al. (2021) were able to eliminate a significant portion of their established

photogrammetry production pipeline that included modeling practices such as retopology and

texture baking where an artist would have to take the high-quality outputted mesh from Reality

Capture and manually lower its polycount for use in LOD creation, while also handling baking

the initial texture maps back onto the newly lower polygon models (Zhong et al., 2021). In using

Nanite in their pipeline, Zhong et al. (2021) were able to cut out a sizeable portion of work by

directly importing their high poly reconstructed meshes from Reality Capture into Unreal Engine

5 due to Nanite’s ability to create small clusters of LODs automatically without the immediate

need for asset optimization that is commonly seen with traditional LOD creation. With the

introduction of Nanite, a new evolution in asset optimization, processing, and rendering has been

established that has the groundwork for future development in perfecting how assets are

optimized for use within Unreal Engine 5. However, both Nanite and LODs have their respective

13

benefits and consequences when used during 3D asset creation, and thus, pushes developers to

properly understand and recognize when and where to utilize either Nanite or LODs.

Developers must consider certain benefits and limitations when implementing either

process in their development pipeline. For instance, when creating custom models or actors for

an environment, it is currently beneficial for developers to utilize LODs over Nanite. The

reasoning for this choice is that LODs allow developers more freedom in the types of actor

actions available for them to use, where Nanite does not support specific actor actions such as

mesh deformation or non-opaque materials, thus limiting the choices developers have when

utilizing this toolset over LODs. As an example, during The Matrix Awakens: Generating a

World showcase, the development team created custom deck pieces that would fit the organic

curvature of the roadways, making instancing almost impossible due to each piece being custom-

made for the given curvature and the need to be potentially destroyed (Generating a World,

2022). In using custom static meshes, LODs are better suited as they retain the ability to be

deformed or destroyed while retaining the optimization benefits by swapping out with higher or

lower variations, which Nanite currently does not support in Unreal Engine 5.2.1.

In contrast, if the created static mesh is designed solely for decoration purposes, is

repetitive in the environment, or does not need the ability to be destroyed or deformed, Nanite

would be the better choice since it can handle instances of high polygon statice meshes and

actors without any negative consequences to performance both in the editor and during

gameplay. For example, during the Building Open Words in Unreal Engine 5 showcase, Unreal

Engine Instructor Sam Deiter discusses a feature called packed level actors, which takes current

objects within a level and replaces them with instanced static mesh copies and then groups them

into a single actor for more manageable level editing and smoother processing during gameplay

14

(Building Open Worlds, 2022). In addition, Deiter demonstrates this tool by combining 37

ground tile static mesh actors, with Nanite enabled on each mesh, into a single pack level actor to

efficiently group them, thus saving on resource space, and showcase how developers can use

packed actors with Nanite to create detail environment with little time and effort (Building Open

Worlds, 2022).

In using repeatable static meshes, Nanite would be a better fit for this task than LODs

because multiple copies of high poly static meshes are combined into a single packed actor,

which is then further copied on its own and placed around an environment. In addition, a

developer would save on overall environment resources and rendering power since Nanite can

handle duplication of high poly static meshes and could help control the overall rendering costs

of the ground tiles due to it determining when finer details are needed and not needed during

gameplay. With these few examples, both LODs and Nanite have strengths and weaknesses in

using them for asset creation and development inside and outside of game engines. However, the

idea of LODs and Nanite being used together is something developers must consider due to each

process benefiting from each other’s strengths while covering each other’s shortcomings. In

discussing the consequences and benefits of using either LODs or Nanite during asset and

environment creation inside Unreal Engine 5, it is shown that both LODs and Nanite have their

respective uses inside Unreal Engine 5. However, the question remains if it is possible to utilize

both processes simultaneously to allow developers to benefit from both toolset's strengths while

using them to cover each other's shortcomings.

 During The Matrix Awakens: Creating a World tech talk, hosted by Technical Art

Director Jerome Platteaux from Epic Games, the concept of simultaneously utilizing both LODs

and Nanite is explored when Platteaux discusses how the development team behind the "The

15

Matrix Awakens: An Unreal Engine 5 Experience" set up their city environment inside of Unreal

Engine 5. For example, Platteaux's team started their open world setup by utilizing Hierarchical

Level of Detail (HLOD) grids to control how actors are loaded and unloaded in memory during

gameplay; for this instance, the team created three grids named main grid, HLOD0, and HLOD1

based upon the technical and visual complexity of each grid aera (Creating a World, 2022).

HLOD toolsets are systems that use custom HLOD layers, broken up into cells at runtime, to

organize static mesh actors into a single generated mesh and material, thus increasing

performance in large open-world environments (World Partition, 2022).

The main grid level, as described by Platteaux, is a 128m loading range comprised of

nine cells surrounding the player that loads all actor types placed within the level, such as static

mesh buildings, props, and collision boxes, while also noting that anything changes with the

main grid level would cause changes to HLOD 0 and 1 which would lead to recalculations for

both HLOD levels (Creating a World, 2022). For HLOD0, it starts after the 128m range of the

main grid level and stretches to a 768m loading range, with each cell within HLOD1 being

comprised of four individual cells from the main grid aera while having four unique actors that

combine objects and turns them into Instant Statice Meshes (ISMs), which are instances or

copies of existence meshes present in the level environment, to help save on resources used

during run time (Creating a World, 2022).

In addition, HLOD0 uses data layers to control which elements from the main grid aera

are present with each of its cells to lower the actor count while improving the overall loading and

rendering of each of its cells without sacrificing detail for the player experience (Creating a

World, 2022). Lastly, with HLOD1, its cell size is everything in the level loaded past the 768m

boundary found in HLOD0 and is always present in the game's memory by combining all present

16

actors into a singular Nanite mesh, which creates a LOD that will not take up additional memory

and rendering due to using a singular Nanite mesh to represent the furthest outward point from

the player's position in the level (Creating a World, 2022). With Platteaux’s team’s example of

utilizing HLODs and Nanite within the same environment, developers can implement both

process without worrying about the adverse side effects associated with each process due to them

complementing each other’s strengths both in the level editor and during gameplay.

With the research done into LODs and Nanite, both processes have substantially

impacted 3D asset development for use within game engines. However, both LODs and Nanite

have negative consequences, such as potential asset pop-in and out seen with LODs or Nanite

being only able to support opaque actors and not handling deforming or destructible static

meshes. With these downsides, developers must understand when and where Nanite or LODs

should be implemented to benefit their game environment's performance and fidelity. However,

if this line of caution is exercised, 3D asset and world developers now have access to two

extremely powerful development toolsets, and if used in conjunction, the types of environments

utilizing them will be able to become almost limitless in terms of overall detail and performance

capability.

17

Chapter 3. Research Methodology

 In researching the benefits of LODs and Nanite, the main point I found was a lack of

direct resources comparing the two processes together by utilizing the same 3D assets to

showcase what effects and practices need to be implemented when creating, developing, and

implementing finalized assets into an Unreal Engine 5 environment. With a lack of direct

comparison showcasing LODs and Nanite in professional studies, I started researching the best

professional methods to showcase the development practices required to showcase LODs and

Nanite being used together inside Unreal Engine 5. In my research, I found that the professional

practice of creating a modular asset kit would serve my needs to showcase the difference

between the use of LODs and Nanite, which would lead back to the goal of this project of

showing the benefits and consequences of using the process inside of Unreal Engine 5. From

here, I shifted my focus towards deciding what theme would be utilized to create my modular

asset kit for testing LODs and Nanite in Unreal Engine 5.

 When deciding upon the theme and workflow for this project’s modular asset kit, I

researched what types of modular kits are used professionally in the industry to establish a

desired workflow for how I should develop the modular asset kit for researching and

demonstrating both LODs and Nanite. During this process, I discovered a professional modular

asset kits company called KitBash 3D, which specializes in creating modular asset kits with

varying themes and detail levels for use in film and game environments. After reviewing their

professional kits, I decided to use their approach to asset kit development to serve as the

foundational guide for what I wanted to emulate in my workflow when creating the project’s

experimental modular asset kit. Following the decision to use KitBash 3D as a foundational

guide for this project’s kit, the next step was to decide on what theme would be used during

18

development since asset kits utilize a uniform theme, showcased in Figure 1, to ensure the asset

kit is consistent in its overall art style, level of details present in its assets, and overall usability

and versatility of the finalized assets within the intended game engine.

Figure 1: Modular Asset Kit breakdown from KitBash 3D’s Dark Fantasy Kit (KitBash 3D)

I started researching potential themes by developing mood boards of possible

environments that both fit the asset kit conditions and showcase my understanding of

professional practices in modeling, texturing, and asset implementation inside of Unreal Engine

5. The chosen environment for this showcase was Amsterdam, the capital of the Netherlands,

showcase in Figure 2. In using Amsterdam as the asset kit’s theme would provide an overall art

style in the asset kit theme would provide an overall art style in the kit and the environment

having a unifying level of detail in the architectural structures and environment design that is

unique to Amsterdam, and the cities structures lend themselves to a high level of usability as

they can be broken into modular parts and sections as seen in Figure 1. When deciding upon

Amsterdam for the asset pack’s theme, the main conditions that were considered were, “Could

the environment handle the three defining features of an asset kit?” and “Could the environment

19

provide a unifying level of detail in asset creation as it relates to the needs for showcasing LODs

and Nanite in Unreal Engine 5?”

Figure 2: European City Moodboard for Modular Asset Kit’s Theme

After finalizing the theme for the project's asset kit, the last stage of the pre-development

work was to break down the proposed asset kit into what assets needed to be made, gather

references for each listed asset type, and create what would be used within the final environment

inside Unreal Engine 5. The first step of this process was to break the bulk of the kit into

different sections, such as modular buildings, decorative props, and environment assets, such as

roads, bridges, and foliage. After breaking down each asset type into its respective group, the

next step was to decide what would be made and gather references to plan out each asset type.

For example, when deciding upon the buildings, I decided to limit the kit's building amount to

between 6 and 8 base models to allow for various building types while ensuring that I could

20

produce a baseline level of quality that would be shared across all the created buildings. From

there, I started gathering reference images for each asset to be used in the creation phase,

including images showcasing close-up details for each selected building asset, as seen in Figure

3. After collecting the references for each building type, the last step was to decide how I would

implement each asset type into the final showcase, which, for the buildings, would be by creating

a rough environment outline, seen in Figure 4, which provided with an initial sense of scale and

what should be designed to showcase the finalized asset kit. Once I finalized the usage of each

asset type in the final environment, the focus switched away from pre-development to full-scale

development, which covers the creation of the kit's 3D assets, the challenges and limitations

learned during the creation process, and what was needed to get the 3D assets ready for use with

Nanite inside of Unreal Engine 5.

Figure 3: Reference Image of Amderstdam Buildings Utilized in Development

21

Figure 4: Developmental Building Testing Grayout Image

After I finished the initial research for the asset kit, the development cycle switched to

creating the kit's 3D assets, which included making 3D models and textures of the previously

listed buildings, decorative props, and environment assets. The first step was to take the gathered

reference images and break down each unique section of each model to provide a guide on each

of the unique parts that would make up a model, as seen in Figure 5. This step helps to speed up

the development cycle, ensure consistency across the entire asset, and simplify customization,

which is crucial when dealing with modular assets such as the kit's buildings. After completing

the highlight breakdown, I started modeling each unique part from the highlighted images and

utilized each part to build the finalized building asset, as seen in Figure 6. For the more

commonly used building assets, I would utilize a process called kitbashing, which is a process

that originates in the 1970s, popularized by the film Star Wars IV: A New Hope, where parts

from physical model kits, such as trains, cars, etc. would be mixed or “bashed” to create unique

22

variations that differed from the initial models. With the concept of kitbashing, I utilized the

initially completed building models to make both non-kitbashed and kitbashed variants, allowing

for unique variations without the need to model completely new buildings, thus increasing the

overall number of buildings for use in the environment.

Once the 3D models were completed, I started finalizing the topology levels for the

models to be used with LODs and Nanite. To start this process, I would take the base unsmooth

model, LOD 0, seen in Figure 7, and make two variations, LOD 1 and 2, by increasing the levels

of smoothness, which would subdivide the topology level of the model to hold its high detail

form when exported for texturing and implementation inside of Unreal Engine 5. In

implementing this process, I was able to not only make traditional LOD states for use in Unreal

Engine 5, but I was able to make variations that were ready for use with Nanite since LOD 2 had

the necessary topology amount needed for the automatic LOD creation done with Nanite. With

this step completed, the 3D models were ready for the second part of my creation pipeline, where

I would texture each asset before integrating them for testing in Unreal Engine 5.

23

Figure 5: Aaron Church Broken Down Reference Image (PICFAIR, Artur Bogacki)

24

Figure 6: In-Development Shaded Render Building Breakdown inside Autodesk Maya

Figure 7: Model Topology Breakdown Smoothness/LODs Levels

25

Once I completed the LOD versions for the building assets, the next step was to transition

from 3D model creation to making textures for each asset type. When I started the texturing

process, I kept two main points in mind when designing the textures for each 3D asset within the

modular kit. The first was to create materials that could be reusable, so when creating each asset

texture, I set up each asset to allow for quick and unique texture variations to be made based

upon aspects such as base colors, alpha map decals, surface roughness, etc. The second point I

focused on was creating lower-resolution texture variants of each texture type corresponding to

the LOD levels, shown in Figure 7, to show the effects of an asset utilizing LODs for display in-

engine. To do this, I used a base 2K resolution texture map for LOD level two and half the

resolution for each lower LOD state, where I would get a 1K and 512x map for LOD level one

and zero, respectively. After completing the textures, following the points above, I transitioned

into the last phase of development, where all previously created aspects of the modular asset kit

would be implemented into Unreal Engine 5 for testing to see the difference between LODs and

Nanite versions of the same 3D models.

After the completion of the asset kit, the work process transitioned from researching

professional showcase practices for LODs and Nanite to researching a general theme for the

modular asset kit in Amderstdam, to the full development of the asset kit’s models and textures

for testing, demonstrating, and comparing LODs and Nanite together inside of Unreal Engine 5.

Following the creation of the assets, the next aspect of this project is to use this kit to not only

showcase the use of LODs and Nanite but also to research and understand the unique challenges

for developing assets for these two processes, what needs to be kept in mind for future

developers when working with these two processes in-engine, and what can be taken away for

26

those who wish to future explore and understand the benefits of using both LODs and Nanite in

conjunction with one another.

27

Chapter 4. Data Analysis

 With the completion of the modular asset kit, the project switched from the development

of the kit's assets to the testing and showcasing phases, where the assets would be experimented

with to understand the similarities and differences with implementing assets for use with LODs

or Nanite into a game environment along with seeing what unique situations need to be

accounted for when using these processes separately or together in Unreal Engine 5. During the

testing phase tests, the main points that will be evaluated will be the implementation of each

asset type, what each type requires in terms of resources from both files and engine performance

and the limitations LODs and Nanite have when compared to each other inside of Unreal Engine

5. Following the testing phase, the kit will be used to create a small environment showcase using

the LOD level two assets, with Nanite enabled, to see how groups of higher polygon assets

perform during runtime when utilizing Nanite.

 Throughout the testing phase, the topics covered will help answer what parts are required

for each process's implementation into an Unreal Engine 5 environment, what resources are

needed to use LODs and Nanite properly, and what current limitations exist when using LODs

and Nanite. For the first topic, as seen in Figures 8 and 9, the required amount of assets for LODs

can become relatively high when considering the number of models, textures, and materials

needed to create each unique LOD level necessary for proper optimization within a given

environment. However, when using Nanite, the required amount of assets decreases to the base

textures and models needed for the highest LOD level because Nanite will automatically create

the lower LOD levels necessary for proper optimization during gameplay. For example, in

Figures 10 and 11, the effects of using LODs can be seen where each LOD level would require

separate variations of the assets seen in Figures 8 and 9 and require developers to develop,

28

implement, and optimize three or more variants for each given asset within the environment. In

contrast, if the developer utilizes LOD Level 2 as a Nanite mesh, the number of required models,

textures, and materials would decrease to the amount needed for one instance of the finalized

asset rather than multiple variations seen with LODs.

 With this example, when using LODs, developers would be required to create more

assets, allocating more developmental resources to handle each LOD asset variation regarding its

creation, in-game implantation, and internal and visual performance management during

gameplay. If LODs are utilized, developers are forced to spend time creating unique variations of

every asset, texture, and material multiple time multiple times per asset used in-game, which

takes away from developmental time for polishing each asset, internal resources within the given

game engine, and external resources such as budgets, time constraints, and development

timelines for the given project. In contrast, if Nanite is implemented, developers can utilize their

established workflow to make the highest LOD level for their given project, such as LOD level 2

in Figures 10 and 11, which would cut down on the points made above regarding LOD differing

costs while enabling developers to focus more resources and development time to the creation of

higher detailed models, textures, and materials, which allows for an overall higher fidelity to be

reached without adding more resources that come with traditional development with LODs.

29

Figure 8: Asset Amount Showcase for LODs and Nanite: 3D Model Parts

Figure 9: Asset Amount Showcase for LODs and Nanite: Textures and Materials

30

Figure 10: Model, Texture, and Material set up for LOD Levels 0-2: Front View

Figure 11: Model, Texture, and Material set up for LOD Levels 0-2: Side View

31

For the second topic, when implementing Nanite on an imported static mesh, Unreal

Engine will begin a process where it breaks up the model's topology into small clusters

containing 128 triangles that, when combined, will make the automatic LOD that the engine uses

to lower and raise the given model's viewable polygon count when viewing in close or far away

distance by the player respectively. However, as seen in Figures 12 and 13, if Unreal does not

have a properly smoothed polygon model to use in its cluster calculation for building Nanite on a

given model, the process can produce undesirable results in the final calculation. If the windows

on the right building in Figures 12 and 13 are examined, the issue seen is the one described

above due to the initial placeholder building using a LOD level 0 mesh compared to the finalized

building on the left, which uses LOD Level 2 or smoothness level showcased in Figure 7. In

addition, if the camera or player's view is brought closer to both models, as seen in Figure 14,

then the abnormal artifact disappears due to the closer cluster calculation not needing to change

the initial topology to stretch to make the desirable LOD state for closer viewing by the player.

However, the artifacts are still present due to their shadows still being calculated and cast across

the building model, which cannot be fixed within this Nanite mesh, no matter the level of LOD

used for the visual calculation and showcase. With these examples, it is crucial to ensure that if

using Nanite on a given static mesh, that developer utilizes either a LOD 1 or 2 smoothed model,

seen in Figure 7, to ensure that when the cluster and rebuilding process occurs for a given static

mesh, Unreal has enough usable topology to build the varying automatic LOD states needed for

Nanite to properly visualize the static mesh from the different distances required for use within

game environments.

32

Figure 12: Nanite Showcase with High and Low Topology Far Camera View

Figure 13: Nanite Showcase with High and Low Topology Far Camera View Wireframe

33

Figure 14: Nanite Showcase with High and Low Topology Close Camera View

For the final point, using Nanite allows developers to create automatic LODs for their

finalized assets, allowing quicker creation, integration, and usage within their given

environments. However, there are current limitations with Nanite that developers should avoid

when creating and working with environmental assets during their creation and implementation

into an Unreal Engine 5 environment. For example, when implementing the exterior streetlamps

using Nanite, as seen in Figure 15, the lamp shade section was unable to be assigned to a

transparent material such as glass, while using Nanite, due to the process not currently

supporting non-opaque materials that use transparent textures, double-sided textures, or texture

masks. After this issue was discovered, the devised solution was to separate and import the

different sections of the model, the lamp body and shade, as unique static meshes. From there,

the lamp body was converted into a Nanite mesh, just as the previous process was used for all

34

other models; however, the lamp shade static mesh was left as a normal LOD-based static mesh

to allow for the application of a transparent glass material. After the static meshes were finalized,

the finalized lamp prop was created, as seen in Figure 16, by taking the Nanite enable lamp body

and textures, the LOD static mesh lamp shade and transparent glass material, and a point light

source actor. In creating this combination, the initial concept for the lamp was finalized, as seen

in Figure 16, by overcoming the initial Nanite limitation with the use of LOD creation practices

mixed with Nanite to create an asset that took advantage of benefits from both processes without

sacrificing the initial concept for this given environment prop.

Figure 15: Initial Lamp Prop – Testing Nanite with Non-Opaque Materials

35

Figure 16: Finalized Lamp Prop – Showcasing Initial and Final Implementation

Figure 17: Finalized Lamp Actor BP using Nanite, Glass Material, and Point Light Source

36

After reviewing the examples above, using Nanite benefits asset creators by cutting the

workload by over half of what is required to create, integrate, and implement assets into Unreal

Engine 5 using traditional LOD methods. However, as seen with these same examples, there are

currently issues with using Nanite inside of Unreal Engine 5, such as abnormal automatic LOD

calculations or the support of non-opaque materials that developers will have to understand,

workaround, and integrate into their pipelines when developing assets for use with Nanite. Even

with these current limitations, the benefits of Nanite help to counteract the potential issues

present when using Nanite in the most recent versions of Unreal Engine 5, and as future versions

of the engine are produced, the cons could become completely obsolete, which would allow for

the full use of Nanite in any developer's pipeline for asset creation. With these points made,

Nanite's uses in asset creation are vast and present a leap forward in how assets are created when

compared to the older methods of LODs; however, as previously discussed, completely replacing

LODs with Nanite is only partially feasible at the time of this research project. Until these

limitations become resolved in future versions of Unreal Engine 5, developers can still utilize the

benefits and best practices from both LODs and Nanite that aid them in their given creation

pipelines to create game environments that take advantage of emerging processes in developing

3D game assets.

37

Chapter 5. Results

With the research, development, and testing of the modular asset kit wrapping up, the final

section of the project was to create the finalized environment for showcasing Nanite and LOD

together within the same environment and analyze the results gathered from the final

implementation of the modular asset kit. When creating the showcase environment, as seen in

Figure 18, the design and layout were designed to roughly mimic a 1-mile section of the city of

Amsterdam with identifiable aspects associated with the city, such as its waterway canals,

residential and shopping areas, and unique building architecture, while also highlighting the use

of Nanite and LODs within the finalized modular asset kit. In addition, as seen in Figure 19,

viewers can see how Nanite impacts all assets created in the finalized modular asset pact, where

the result incorporates either Nanite or a mixture of Nanite and LOD-based 3D assets. With the

completion of the final showcase environment, using Nanite and LODs helped to provide and

reinforce the key ideas and aspects learned during this project's research and testing phases.

After this showcase of the environment, the finalized results gathered from both the testing

and showcasing phases showed the use of Nanite to be overall positive in creating modular asset

kits in multiple ways. First, developers can utilize existing LOD-based creation pipelines to

create 3D models and textures with Nanite. In implementing this point, developers do not need to

invest as much time or resources to develop Nanite variations of their modular asset kits, which

allows these extra resources to be used in expanding their given asset kits in terms of overall

details and functionality within Unreal Engine 5. Second, developers can overcome the currently

unsupported aspects presented by Nanite by substituting traditional LOD-based methods, thus

not impacting developers who wish to use aspects unsupported in current versions of Unreal

Engine 5. This point would allow developers to pick and choose when and where Nanite is used,

38

which can be beneficial if said asset uses things not currently supported by Nanite, such as non-

opaque materials or needs if developers need the finalized asset to perform actions that are better

suited for LOD-based assets. Lastly, asset kits developed with Nanite in mind can reduce the

work required to create asset kits compared to LODs while allowing developers the option to

develop LOD kits if needed for a given platform's requirements. When implementing this point,

developers can still create LOD-based assets for the platforms that do not support Nanite and

implement Nanite for those platforms that do support the process without creating separate

unique assets or pipelines that would cause extra work for developers.

After reviewing these results, it is clear that Nanite is a process all asset creation,

environment, and Unreal artists and developers need to learn, experiment with, and utilize in

their future Unreal Engine 5 projects not only to help cut down on system and development

resources but also to cut down on the repetitiveness that comes from using LOD based creation

methods to allow developers to place more time in creating higher detailed models and textures

that would not be possible if using LOD methods alone. In addition, the current research from

the development of this study's modular asset kit points to the current benefits and limitations of

Nanite in the version of Unreal Engine 5 used for this study, UE 5.21, and these benefits and

imitations will change and update as the process if refined in future iterations of Unreal Engine

5. With this said, this study's research and points will eventually need to be re-evaluated and

tested to see what points hold up from the initial research, testing, and implementation and what

parts have been improved upon that help bridge the gap between using solely Nanite instead of a

mixture of Nanite and LODs in modular asset kit creation for use in Unreal Engine 5.

39

Figure 18: Modular Asset Kit Environment In-Development Showcase in UE5 – Shaded View

Figure 19: Modular Asset Kit Environment In-Development Showcase in UE5 – Nanite View

40

Chapter 6. Conclusion & Future Research

 Throughout the gaming industry, the workflow of creating LODs has been utilized to

create 3D assets for use within game engines. This process has allowed developers to build large-

scale game environments while adhering to and overcoming technological limitations that would

otherwise limit the assets developers can implement within their environments. However, with

the release of Unreal Engine 5, the automatic LOD creation process, Nanite, was introduced to

help developers reduce the work required of traditional LODs by automatically creating LOD

model variations during gameplay rather than having to implement multiple separate unique

models and textures that come with LOD creation methods. In addition, Nanite allows for

processing higher-polygon 3D models during the Nanite generation for each 3D model, enabling

developers to reduce the resources needed to create highly detailed 3D assets without sacrificing

the requirements and system limitations that must be kept in check when creating modular assets

kits for use within game engines. With these innovations using Nanite, the question of whether

Nanite would replace LODs as the dominant workflow when creating 3D assets for use within

Unreal Engine 5 arose. Thus, a study was conducted to test this question by researching LODs

and how they impacted assets created for Nanite. After performing the initial research into both

LODs and Nanite, a modular asset kit for specific use with LODs and Nanite was created to test

both processes when implementing the kit's assets and develop the finalized environment to

showcase the process. After testing the kit's asset with both LODs and Nanite, the conclusion

discovered is that Nanite can help developers in creating their modular asset kits, but due to

current limitations when using Nanite, it cannot at this time fully replace traditional LODs in the

asset creation pipeline. However, even with Nanite's current limitations, developers can benefit

from both processes by utilizing Nanite to get automatic LOD generation during gameplay and

41

LODs when Nanite's limitations need to be overcome to get the intended results from the given

3D asset. In future versions of Unreal Engine 5, the limitations associated with Nanite will either

be improved upon or removed altogether, requiring future studies and research into using Nanite

in Unreal Engine 5, which will lead to my future studies of this given topic.

 For future research and testing with Nanite inside of Unreal Engine 5, I plan to

investigate more current advancements made with Nanite inside of UE 5.3.2, which came out

during the middle of this project’s production, to experiment with the new features of Nanite

such as its uses with landscape and foliage creation. In experimenting with these new processes

and techniques, I would continue to either use and expand upon the currently created modular

asset kit from this project’s study, or I would make a new modular asset kit to better take

advantage of both the newer process and the techniques I learn during the creation of this

project’s kit. In addition to these new processes in UE 5.3.2, I plan to continue experimenting

with the concept of Nanite and LODs by creating new modular asset kits that continue to push

the limits of both processes to help expand the knowledge and understanding of those use both

processes together in future iterations of Unreal Engine 5. Lastly, I plan to start integrating

different modeling processes into my experimentation with Nanite in future versions of Unreal

Engine 5, such as procedural or photogrammetry-based modeling, to understand the benefits and

limitations of Nanite outside of LOD-based modeling methods.

42

References

McRoberts, D. A. K., & Hardy, A. (2007, October 1). Level of Detail for Terrain Geometry

Images. ACM Digital Library. Retrieved March 5, 2023, from

https://dl.acm.org/doi/10.1145/1294685.1294689.

Nanite Virtualized Geometry. Unreal Engine | Unreal Engine 5.0 Documentation. (2022).

Retrieved March 5, 2023, from https://docs.unrealengine.com/5.0/en-US/nanite-

virtualized-geometry-in-unreal-engine/.

NewsRX LLC. (2022, April 19). Methods and Systems for Generating Level of Detail Visual

Assets in a Video Game. Gale General OneFile. Retrieved March 6, 2023, from

https://link.gale.com/apps/doc/A700741702/ITOF?u=tel_a_etsul&sid=bookmark-

ITOF&xid=cc4ed738.

SIGGRAPH Advances in Real-Time Rendering. (2021, October 29). A Deep Dive into Nanite

Virtualized Geometry [Video]. YouTube.

https://www.youtube.com/watch?v=eviSykqSUUw.

Unreal Engine. (2022, November 3). Building Open Worlds in Unreal Engine 5 | Unreal Fest

2022 [Video]. YouTube. https://www.youtube.com/watch?v=EEf07ggFWRw.

Unreal Engine. (2022 April 5). The Matrix Awakens: Creating a World | Tech Talk | State of

Unreal 2022 [Video]. YouTube. https://www.youtube.com/watch?v=xLVJP-o0g28.

Unreal Engine. (2022 April 5). The Matrix Awakens: Generating a World | Tech Talk | State of

Unreal 2022 [Video]. YouTube. https://www.youtube.com/watch?v=usJrcwN6T4I.

43

Unreal Engine. (2021, August 3). Nanite in UE5: The End of Polycounts? | Unreal Engine

[Video]. YouTube. https://www.youtube.com/watch?v=xUUSsXswyZM.

World Partition - Hierarchical Level of Detail. Unreal Engine | Unreal Engine 5.0

Documentation. (2022). Retrieved March 5, 2023, from

https://docs.unrealengine.com/5.0/en-US/world-partition---hierarchical-level-of-detail-in-

unreal-engine/.

Zhong, Y., Yun, T. S., & Lee, B. C. (2021, December). The workflow of making realistic 3D

model by combining photogrammetry and nanite. DBpia. Retrieved March 5, 2023, from

https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11025317.

44

APPENDIX: PROFESSIONAL TERMINOLOGY

1. 3D model/asset/mesh – A 3D object created to be used in external programs such as

game engines, animation software, etc.

2. Actors – A Blueprint system in Unreal Engine 5 that has proprieties such as Static

Meshes and Light Sources added to it for easier placement during development.

3. Asset – A exported object whether 3D model, textures, etc. for use within different

3D programs.

4. Level of Detail (LODs) – A process by which developers use lower quality instances

of static meshes to render out high or low visual fidelity depending on player distance

to an object.

5. Materials – A finalized texture, comprised of multiple texture maps or layers, in

Unreal Engine 5 or Substance 3D Painter, respectively.

6. Modular Asset Kit – A 3D development asset pack that is filled with modular 3D

models, textures, etc. for use in 3D software such as Autodesk Maya or Unreal

Engine 5.

7. Nanite – A process by which UE5 uses a base static mesh to constantly calculate the

visual fidelity of a mesh based upon player distance and visibility of parts of the mesh

to the player.

8. Platform – A reference to the hardware that will run video game software once

development is finished.

9. Static Mesh – A 3D model that has been integrated/imported for use inside of Unreal

Engine 4/5.

45

VITA

Stephen R. Overton

Education: M.F.A Digital Media, East Tennessee State University,

Johnson City, Tennessee, 2024

B.S. Digital Media, East Tennessee State University, Johnson

 City, Tennessee, 2021

Professional Experience: Graduate Associate/Lecturer, East Tennessee State University,

College of Business and Technology, Johnson City, Tennessee,

2021-2024

Publications: Guest Speaker at East Coast Gaming Conference 2022. “Lessons

learned in VR training partnerships East Tennessee Children’s

Hospital and ETSU.”

Honors and Awards: American Advertising Awards Online/Interactive Social Media Single

Execution – Silver Addy Award (Student),

AAF Northeast Tennessee, 2022

American Advertising Awards Elements of Advertising

Art Direction– Single – Gold Addy Award (Student),

AAF Northeast Tennessee, 2022

American Advertising Awards Elements of Advertising – Film, Video

& Sound – Animation or Special Effects Gold Addy Award (Student),

AAF Northeast Tennessee, 2022

American Advertising Awards Best of Show (Student),

AAF Northeast Tennessee, 2022

	LODs and Nanite within Unreal Engine 5: The Future of 3D Asset Creation for Game Engines
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Literature Review
	Chapter 3. Research Methodology
	Chapter 4. Data Analysis
	Chapter 5. Results
	Chapter 6. Conclusion & Future Research
	References

	Appendix: Professional Terminology
	VITA

