Honors Program

University Honors

Date of Award

5-2017

Thesis Professor(s)

Martin Fitzgerald

Thesis Professor Department

Engineering Technology, Surveying, and Digital Media

Thesis Reader(s)

Jonathan Hounshell, Richard Ignace

Abstract

Modernity in the computer graphics community is characterized by a burgeoning interest in physically based rendering techniques. That is to say that mathematical reasoning from first principles is widely preferred to ad hoc, approximate reasoning in blind pursuit of photorealism. Thereby, the purpose of our research is to investigate the efficacy of explicit electrodynamical modeling by means of the generalized Jones vector given by Azzam [1] and the generalized Jones matrix given by Ortega-Quijano & Arce-Diego [2] in the context of stochastic light transport simulation for computer graphics. To augment the status quo path tracing framework with such a modeling technique would permit a plethora of complex optical effects—including dispersion, birefringence, dichroism, and thin film interference, and the physical optical elements associated with these effects—to become naturally supported, fully integrated features in physically based rendering software.

Publisher

East Tennessee State University

Document Type

Honors Thesis - Open Access

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright

Copyright by the authors.