Degree Name

MS (Master of Science)

Program

Mathematical Sciences

Date of Award

8-2015

Committee Chair or Co-Chairs

Michele Joyner

Committee Members

Jeff Knisley, Ariel Cintron-Arias

Abstract

Parameter estimation techniques have been successfully and extensively applied to deterministic models based on ordinary differential equations but are in early development for stochastic models. In this thesis, we first investigate using parameter estimation techniques for a deterministic model to approximate parameters in a corresponding stochastic model. The basis behind this approach lies in the Kurtz limit theorem which implies that for large populations, the realizations of the stochastic model converge to the deterministic model. We show for two example models that this approach often fails to estimate parameters well when the population size is small. We then develop a new method, the MCR method, which is unique to stochastic models and provides significantly better estimates and smaller confidence intervals for parameter values. Initial analysis of the new MCR method indicates that this method might be a viable method for parameter estimation for continuous time Markov chain models.

Document Type

Thesis - Open Access

Copyright

Copyright by the authors.