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ABSTRACT

Peptide Identification: Refining a Bayesian Stochastic Model

by

Theophilus B.K. Acquah

Notwithstanding the challenges associated with different methods of peptide identi-

fication, other methods have been explored over the years. The complexity, size and

computational challenges of peptide-based data sets calls for more intrusion into this

sphere. By relying on the prior information about the average relative abundances

of bond cleavages and the prior probability of any specific amino acid sequence, we

refine an already developed Bayesian approach in identifying peptides. The likelihood

function is improved by adding additional ions to the model and its size is driven by

two overall goodness of fit measures. In the face of the complexities associated with

our posterior density, a Markov chain Monte Carlo algorithm coupled with simulated

annealing is used to simulate candidate choices from the posterior distribution of the

peptide sequence, where the peptide with the largest posterior density is estimated

as the true peptide.
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1 INTRODUCTION

The proclivity to the use of highly sensitive biological mass spectrometry has re-

sulted in the surge of many proteomic strategies and the need for effective, efficient,

and accurate methods for protein identification. The pursuit for cutting edge methods

has ameliorated inaccuracy in protein identification and sustained high-throughput

proteomics. It is our goal in this thesis to enrich and improve the identification of

proteins through refining an already developed Bayesian approach to protein identi-

fication.

1.1 Brief Overview

The neologism ‘omics’ informally points to fields of study in biology such as pro-

teomics, genomics, or metabolomics, ending in -omics [28]. The entry point for view-

ing the other ‘omics’ sciences is genomics [10]. Genomics is the study of the genetic

composition of organisms, a science that deals with the discovery and identification of

all the sequences in the complete genome of a particular organism. The fundamental

principle of molecular biology is a motivating factor for explaining the basic flow of

genetic information. The DNA, which is a 6 billion letter code, is what stores our ge-

netic instructions; the information that programs all of our cell activities. The DNA

is transcribed into a form known as ribonucleic acid (RNA), a nucleic acid present

in all living cells, which acts as a messenger carrying instructions from DNA for con-

trolling the synthesis of proteins. The entire set of RNA or the sum total of all RNA

molecules expressed from the genes of an organism (also referred to as its transcrip-

tome) is subject to some editing, metamorphosed into messenger-RNA (mRNA). The
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messenger-RNA (mRNA) is a large family of RNA molecules that carries information

to the ribosome, the protein factory of the cell, which in-turn translates the message

into a protein.

1.2 Role of Proteins

Proteins are responsible for an endless number of tasks of cellular life, including

inner organization and cell shape, product manufacture, waste cleanup and routine

maintenance. Cells employ proteins to undertake tasks because the reproductive

machinery is equipped to produce proteins. The chemically nimble nature of proteins

accounts for the set up of the reproductive machinery. Proteins are substantially the

most functionally sophisticated and structurally complex molecules known, from a

chemical perspective. Through a covalent peptide bond, a protein molecule consists

of a long chain of these amino acids, each linked to its neighbor. The 20 types of amino

acids in proteins each has a different chemical property. Many thousands of different

proteins are known, each with its own distinct amino acid sequence. Proteins can act

as a catalyst, a fundamental task that can increase the rate of virtually all the chemical

reactions within cells. Even though RNAs are able to catalyze some reactions, most

biological reactions are catalyzed by proteins. Proteins can also act as scaffolds,

transporters, signals or fuel in watery or greasy environments, and can alternate

between hydrophobic and hydrophilic situations. There are several classes of proteins

and many proteins may actually fit into more than one of these categories. In order

to access the versatility of proteins, we can break down these roles to give a glimpse

of how they function within and between cells. The foremost, and conceptually
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simplest, class of protein are structural proteins, which executes mechanical roles

in organisms. Another class of proteins worth considering are enzymes, which are

biological catalysts that reduces the activation energy of a reaction that takes place

in a biological system. Electron-transport proteins are another class of proteins,

connected clearly in electron transport by facilitating the passage of electrons from

one molecule to another. Other classes of proteins worth mentioning are storage

and transport proteins, hormones, receptors and nucleic-acid-binding proteins. From

regulating bodily activities, providing structure to cells, acting as storage sites for

amino acids and innumerable others, it is inevitable that proteins play a vital role in

most biological processes.

1.3 The Proteomics Field and Protein Identification in Proteome Analysis

Proteome describes the entire complement of proteins expressed by a genome,

cell, tissue or organism at a certain time. The term “proteome” is a blend of a “pro-

tein” and a “genome.” Proteomics is therefore the study of the entire compendium

of proteins, which are expressed by a genome, particularly their structure, functions,

abundances, variations and modifications [11]. The objective of proteomics is to ex-

plain how the structure and function of proteins facilitate what they perform, interact

with, and how they contribute to life processes. A usual biological sample may contain

a plethora of different forms of protein. The vast diversity of proteins is acknowledged

to the extent of tens of thousands of genes that results in hundreds of thousands of

mRNAs, which successively generate potentially a million or more forms of proteins

along with post-translational modifications. The information required to make func-
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tional molecules called proteins are contained and carried out by most genes and

other molecules are produced by a few genes that help proteins to be assembled by

cells. Consisting of two major steps, transcription and translation also known as gene

expression, the migration from gene to protein is a complex process tightly controlled

within each cell. With an understanding of the structure and function of proteins,

scientists in proteomics start with the protein and work backwards to find the exact

gene responsible for its production.

Reasons can be advanced for the tremendous progress in the study and proclivity

towards proteins compared to mRNA or DNA. Being driven by both genetic and

environmental factors, proteins do not only show risk or disposition but also a mea-

sure of actual biological and disease status [3]. Proteins are therefore a useful source

of potential biomarkers. Proteomic tests can therefore be carried out on serum and

urine, which are effortlessly and easily accessible, unlike mRNA or DNA [11, 17]. A

sub-discipline of proteomics is clinical proteomics, which entails the application of

proteomic technologies on clinical specimens like urine, blood and serum [18]. Can-

cer is a model disease for applying such technologies with the aim of identifying

unique biomarkers and biosignatures for prognosis, diagnosis and therapeutic predic-

tion. The rapid progress in cancer genomics over the years is limited to furnishing us

with a glimpse of what may be determined by the genetic code. However, the need

to access in real time what is happening in a patient leads to finding revealing and

significant proteins that provides understanding into the biological processes of cancer

development. The underlying factor is that genes are only the “recipes” of the cell,

while the proteins encoded by the genes are fundamentally the functional and useful
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players driving both normal and disease physiology [18]. Eliciting and provoking con-

siderable protein-focused research for the search of biomarkers is the accessibility of

cancer-related proteins to help diagnose variety of cancers, diseases, or viruses with

the aim of early detection. Further development in the work of proteomics is aiding

clinicians in the early diagnosis of colorectal or colon cancer, the third leading type

of cancer in males and fourth in females in the US. In essence, proteomics may soon

help clinicians in the early and rapid incisionless treatment of colorectal cancer. The

SimpliPro Colon test by the Applied Proteomics, Inc, is one such test that provides

results for the risk of colorectal cancer and advanced adenoma [3]. The test measures

and analyzes 11 protein markers connected with a risk of colorectal cancer and ad-

vanced adenoma [3]. With proteomics having the ability to cross-examine a variety of

biospecimens for their protein contents and accurately measuring their concentration,

the efficacy of most drugs is hinged on targeting proteins and some being proteins

themselves [11, 18]. It is worth noting that protein drugs are receiving overwhelming

acceptance in therapeutics. A drug’s efficiency is connected to the level of its bind-

ing with the proteins in the blood serum, such that the less bound a drug is, the

more efficiently it can diffuse through the cell membrane (Meyer and Guttman, 1968;

Koch-Wester and Sellers,1976) [8]. Having an understanding of the structure and

functioning of abnormal proteins, identifying and isolating them will help researchers

locate the precise piece of mutated gene causing protein malfunction, and remedy the

defective DNA [19]. The process of unlocking the previously opaque functioning of

our cells and cellular machinery is not very distant, owing to the constant inspection

of our genomic DNA and its protein products [19]. The advancement in proteomics
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is leading to the stage where scientists ultimately hope to make personalized or preci-

sion medicine tailor made for an individual, enhancing its effectiveness with less side

effects [11].

Protein extraction, separation, identification and characterization forms major

steps in proteome analysis. Protein identification is a very useful procedure in de-

termining and discovering the identity of a protein-protein interaction, characterizing

proteomes to recount biological processes and to discover disease-related biomarkers,

pharmaceutical targets and protein functions. An obvious and fundamental way to

identify a protein is to go through the excruciating process of finding its sequence

of amino acids. The process involves but is not limited to employing restriction en-

zymes, running gels and finding masses. Properly sequencing microbial genome is

not only necessary for producing accurate reference genomes for microbial identifica-

tion but also other comparative genomic studies. However, the challenge surfaces in

protein identification precisely in microbial samples, when an organism’s genome has

not been sequenced [11]. Being the foundation of the biosphere, judging from both

an environmental and evolutionary viewpoint, it is estimated that microbial species

accounts for about 60% of the Earth’s biomass [4]. The search for antibiotics is on

the surge with microbiologists discovering new ways to explore the extensive universe

of undiscovered microbes [6]. Hugely inhibiting scientific knowledge of microbial life

and the hunt for new antibiotics is the fact that only 1%—10% of microbes in the

ecosystem can be cultured and an estimated 85% —99% of bacteria and archaea are

unable to be grown in the lab [6, 11]. The minimal progress made in the field of en-

vironmental proteomics is not only restricted to the countless unidentified microbes
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but also the evidence of post translational modifications displayed by microbes that

are cultured [11]. In what has come to be known as ‘the mysterious dark matter

of the microbial world’, researchers are yearning for alternative ways to investigate

the array of uncultured organisms [6]. Correctly identifying these microbes via pro-

tein identification is of enormous significance specifically in ecological samples such

as soil and water samples (Schulze, 2004) [11]. The move will go a long way to

aid in the advancement of cultivation methods and uncover breathtaking amounts

of microbial diversity in samples cutting across soil to permafrost, marine sponges,

hydrothermal vents and the crevices of the human body [6]. As discussed previ-

ously, proteins are known for carrying out the tasks of life and keeping us healthy

through guiding our bodies activities and defending us against infection. Having the

ability of controlling cell functions, defects in the instructions for making a protein

can prevent the cell from functioning properly. Proteins in their mutant forms or

enhanced proteolytic degradation of mutants proteins is a common molecular patho-

logical mechanism causing genetic diseases such as cystic fibrosis, alpha-1-antitrypsin

deficiency, phenylketonuria, mitochondrial acyl-COA dehydrogenase, and hemophilia

[22]. Correctly identifying proteins will therefore generally help in the advancement

of clinical proteomics such as determining whether an organism has a genetic disease.

The scope and complexity of any proteome is so vast that current technologies

are not sufficient to provide complete detection and quantification of the proteins

present [30], a reason necessitating more methods in the area of protein identification.

Further corroborating this assertion, is the fact that the human genome has about

20, 300 protein-encoding genes and the total number of proteins in human cells is
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estimated to be 0.25− 1× 106 [30]. A broad range of methods coupled with tools are

easily accessible to complement various proteomic approaches and ensure, as much

as possible, proteins within any particular experiment are identified correctly. The

limitation with current methods of protein identification, emanating from inadequate

number of genome sequences, incomplete ion sequences, and noisy data, are also

hindering, more critically, the accuracy and effectiveness of protein identification [11].

Researchers are relentlessly on the hunt for the most-up-to-date methods to aid in

the maximization of true protein identification and curtail inaccurate identifications.

In this thesis, we seek to refine an already developed Bayesian approach which aims

to enhance and improve the identification of proteins.

1.4 Overview of Thesis

The arrangement of the thesis is as follows. Chapter 2 highlights some technolog-

ical advancement made in proteomics by way of obtaining the proteomic profile of a

sample. The fundamental concepts of peptide fragmentation is discussed in Chapter

3, leading us to the construction of the theoretical spectrum. Chapter 4 highlights

our refined Bayesian model. Inherent in this is our likelihood function in section 4.2

and the priors we use in our model. Section 4.8 defines our posterior distribution.

Chapter 4 ends with discussions on the Markov Chain Monte Carlo algorithm and

how we aided our search of the true peptide with simulated annealing. Chapter 5

gives results for our work. Chapter 6 concludes the thesis with a discussion.
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2 TECHNOLOGY OF PROTEOMICS AND DEVELOPMENTS IN PROTEIN

IDENTIFICATION METHODS

The advancement of various techniques with increase sensitivity resolution, high-

throughput applications and capability to analyze complex samples has led to the

transition from protein chemistry to the modern proteomic field. Several technologies

have given means to obtaining the proteomic profile of a sample as well as providing

an understanding of cell physiology by way of depicting the molecular biodescriptors

of gene expression, the proteins [11, 15].

2.1 Two-Dimensional Gel Electrophoresis

In the 1970s, the 2D gel electrophoresis (2DE) was one of the oldest technologies

developed. Forming the premise of protein separation in a lot of proteome studies,

the resolving capacity of 2D gel electrophoresis for protein separation is demonstra-

ble and unparalleled. As a primary application, the 2DE can be used for protein

expression profiling. Protein expression of any two different samples are examined

and compared both quantitatively and qualitatively [21, 11]. The 2DE also has the

capacity to resolve proteins that have been through some sort of post-translational

modifications and different forms of proteins arising from proteolytic processing [21].

In spite of setting the gauge for protein separation procedures, the 2DE has not rid

itself of several critisms. Even though large number of proteins can be visualized and

separated, the collective and unaddressed procedure creates identification difficulties

for any individual protein.
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2.2 Mass-Spectrometry (MS)-Based Proteomics

Paving way for greater productivity in proteomics, and the formalization of the

proteomics field, is the combining effect of techniques for large-scale protein sepa-

ration (2DE) with high fidelity, rigorous mass spectrometry-based methods to the

characterization and analysis of the separated proteins [15]. Dawning as the ba-

sic tool for protein identification and the linchpin of proteomics, mass spectrometry

has become an indispensable tool to correlate proteins to their genes. With the

overwhelming impact made in mass spectrometry, it is unusual, based on the mass

analysis of protein-peptide for the identity of hundreds of proteins, to be unfolded in

a sole proteome project [15]. Mass spectrometry has also seen improvements in terms

of speed, accuracy and sample weight range over the years, making them complaisant

to greater applications in proteomics and other areas of life sciences [16]. On a broad

assessment, mass spectrometry and proteomics can be used for mining of proteomes,

sequencing of proteins, identification of the type locations of post-translational mod-

ifications (PTMs), protein profiling and identification of protein networks. In terms

of sequencing, structural information relating to peptide masses or amino acid se-

quences obtained from mass spectrometry is useful in the identification of protein by

searching through protein databases and nucleotide [21]. The three important stages

involved in the harvesting of protein information by mass spectrometry are sample

preparation, sample ionization and mass analysis [21].

A good sample preparation for mass-spectrometry is useful for optimization of a

sample and critical for good data. One common approach in most proteomics by

which complex protein mixtures is resolved is by using a 1 —or —2D polyacrylamide
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gel electrophoresis (PAGE) [21]. The clear goal is to refine the sample and analyze

it by mass spectrometry by first extracting the protein or its constituent peptides

from the gel. In order to enhance the efficiency of extraction from the gel, a protein is

often “in-gel” digested with a protease and now predominantly applied to both 1 —or

—2D gels [21]. Also, very instrumental in the process of sample preparation of the

peptide is sample purification, which is often required before being analyzed by mass

spectrometry. The reverse-phase chromatography, available in a range of forms, is

one such approach of peptide purification together with others such as Framingham,

ZipTips (Millipore), mass or by high-pressure liquid chromatography (HPLC) [21].

Intrinsic in the analysis of peptides and proteins, and of all biological samples, is

the ability to have molecules that are dry and charged. This is attainable by con-

verting them to gas-phase ions from charged molecules [21, 29]. Due to the challenge

imposed by hard ionization techniques, such as whole degradation of samples, matrix-

assisted laser desorption ionization (MALDI) and electrospray ionization (ESI), are

the two “soft ionization” methods that have overcome the limitations without re-

markable loss of sample coherence [21]. ESI creates fine mists of charged droplets

by a potential difference placed between a capillary and the inlet to the mass spec-

trometer, through a liquid sample flow from a micro capillary tube into the outlet

of the mass spectrometer [21, 29]. The solvent evaporates through the application

of either drying gas or heat, ultimately resulting in the formation of desolvated ions.

Peculiar with ESI is the creation of highly charged ions devoid of fragmentation [29].

Stemming from depth of work into the usage of lasers for ionization of biomolecules,

MALDI is a pulse ionization approach where sample is incorporated into a matrix and
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analyte mixture and eventually subjected to radiation by laser. MALDI also comes

with benefits of having the full procedure and analysis being automated, as well as

samples often used directly without any purification after in-gel digestion [21, 29].

Mass spectrometry as a systematic method does not only apply ionization in its

process, but also mass analysis of the compounds. Attaining this mission is a mass an-

alyzer, a part of the mass spectrometer that conveys ionized mass and disperses them

based on the mass-to-charge (m/z) ratios and yields them to the detector [21]. This

is eventually detected and converted to a digital output. Mass analyzers commonly

used in mass spectrometry for the separation of ions are quadrupole mass analyzer,

time of flight (TOF) mass analyzer, magnetic sector mass analyzer, electrostatic sec-

tor mass analyzer, quadrupole ion trap mass analyzers and ion cyclotron resonance.

As one of the simplest mass analyzers operating without an electric or magnetic field,

TOF instrument separates ions based on the kinetic energy and velocity of the ions

[21]. The m/z ratio of an ion for a TOF analyzer is measured by accessing the time

required to cut across the length of a flight tube. Incorporating into some TOF mass

analyzers is an ion mirror, placed at the end of the flight, to reflect ions back to

the detector through the flight tube. The ion mirror plays the role of increasing the

length of the flight tube, as well as correcting for small energy difference among ions

[21].
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2.3 Mass Spectrometry Methods

Though mass spectrometers may have various components, four fundamental fea-

tures common with most mass spectrometers are an ionization source, one or more

mass analyzers, an ion mirror and a detector [21]. The diverse mass spectrometry

platforms are evident of, and also a result of, the different set-ups of the mass spec-

trometer components, most of which trace their names from the ionization source

and mass analyzer. The special design of these instruments go a long way to aid

in measuring the masses of the constituents inherent in the samples in question.

Some of the most common mass spectrometers are the triple quadrupole, more of-

ten used to obtain amino acid sequences, the quadrupole-TOF, which is a “hybrid”

mass spectrometer emerging from combining different ionization sources with mass

analyzers [21]. Others are the Fourier-transform ion cycloton resonance (FT-ICR)

mass spectrometer, the matrix-assisted laser desorption and ionization-time of flight

mass spectrometry (MALDI- TOF), surface-enhanced laser desorption and ionization

mass spectrometry (SELDI-TOF), MALDI-QqTOF and ESI/TOF mass spectrome-

ters. In this section, we discuss two relatively novel mass spectrometry methods,

the matrix-assisted laser desorption and ionization-time of flight mass spectrometry

(MALDI-TOF) and surface-enhanced laser desorption and ionization mass spectrom-

etry (SELDI-TOF).

In MALDI-TOF, prior to loading the proteomic sample into the mass spectrome-

ter, it is mixed with an energy absorbing matrix (EAM). The mixture is then allowed

to crystallize on a metal plate, often a stainless steel plate, and consequently loaded

into the instrument.
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Coming from this paradigm is a modification and variation of the matrix-assisted

laser desorption and ionization- time of flight mass spectrometry (MALDI- TOF),

referred to as the surface-enhanced laser desorption and ionization mass spectrom-

etry (SELDI-TOF) MALDI-TOF. In SELDI-TOF, there is extra chemistry on the

targeted such that the mixture is spotted on a surface transformed with a chemical

functionality such as binding affinity [11, 12]. This helps keep proteins from complex

mixtures according to the specific properties of the proteins, as well as carefully and

selectively binding to a subset of molecules from crude preparations [11, 12]. H50

(hydrophobic surface, similar to C6-C12 reverse phase chromatography), IMAC30

(metal-binding surface), and Q10 (strong anion exchanger) are some surfaces nor-

mally adopted, whiles surfaces can also be modified with antibodies, other proteins

with proper binding properties, or even DNA [12]. In order to ensure that only

oppositely charged proteins stick to the surface, some SELDI chips can be made us-

ing an electrically charged surface. The point of departure between SELDI-TOF and

MALDI-TOF mass spectrometry ends after the sample is cleaved with a protease, and

a matrix solution added. The procedure that follows is similar to the MALDI-TOF.

A time-of-flight mass spectrometry (TOF-MS) is typically what is used to analyze

samples spotted on a SELDI surface [12]. The metal plate is fixed in a vacuum cham-

ber and the crystallized mixture obtained hit with pulses from a nitrogen laser [11].

The energy produced from the laser is consumed by the matrix crystallized molecules

and transfers it to the proteins [11]. The proteins at this stage can be desorbed and

ionized, creating ions in the gas phase. The process takes place in the presence of

an electric field. The electric field accelerates the ions down into a flight tube. The
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ion then hits a detector that measures ions as they reach the end of the tube. Being

sensitive to low-molecular-weight proteins, crude biological samples that are not apt

for conventional MALDI-TOF, such as serum, can be added directly to the sample

chip [12]. This has aided the progress made by SELDI-TOF mass spectrometry in

cancer detection and diagnosis. Figure 1 show a simplied pictorial representation of

the MALDI-TOF mass spectrometry.

Figure 1: A representation of the MALDI-TOF Mass Spectrometry Method by Max

Planck Institute For Plant Breeding Research (2003-2017) generated by Dr Thomas

Colby.
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2.4 Mass Spectrum

As earlier discussed, mass spectrometry as a vast analytical procedure yields

charged particles or ions from the biomolecules or chemical substances to be ana-

lyzed. Various kinds of mass spectrometers use magnetic or electric fields to exert

forces on charged particles and separates them based on their mass-to-charge ratios.

The data and output from the mass spectrometry generates a vast sequence of value

pairs. Each pair contains a measured intensity, depending on the amount of the

biomolecule detected, and a mass-to-charge ratio, based on the molecular mass of

detected biomolecules. A spectrum is the result of all these processes in a proteomic

analysis; a plot of the mass-to-charge (m/z) values is on the horizontal index (x-axis)

and relative abundances on the vertical index (y-axis), as shown in Figure 2. A base

peak is the peak recorded with the highest intensity, usually set at 100% abundance

in the spectrum, corresponding to the most abundant ion. The representation of

the peptide in the current sample is by the peaks. A quadratic transformation is

what aids the computation of the m/z values in the mass spectrometry [5, 11]. A

small number of molecules (usually between 3 and 7) with known masses are used

to generate a spectrum, which aids in establishing the coefficients for the quadratic

transformation [5, 11]. Consequently, a count of peaks corresponding to the known

masses in the spectrum is obtained. The method of least squares determines the

coefficient, given the set of (time, mass) pairs [5, 11]. The final data spectrum is the

line plot of pairs of intensities and m/z values resulting from calculations carried out

in a preprocessing stage [5].
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Figure 2: This figure shows a simplified representation of a mass spectrum as a line

plot of pairs of intensities and m/z values.

2.5 Tandem Mass Spectrometry

Facilitating the identification of a considerable number of proteins and interspersed

with fast speed, great ionization methods, high sensitivity and simple sample prepa-

rations, tandem mass spectrometry has emerged as a preferred method for high-

throughput protein identification. Tandem mass spectrometry (MS/MS) is a two-

stage mass spectrometry process with some form of fragmentation occurring in be-

tween the stages. The two stage of mass analysis allows the examination of individual

ion fragmentation in a mixture of ions. Before analyzing with a mass spectrometer

in the MS/MS experiment, a mixture of proteins is digested with an enzyme, thereby
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breaking the proteins into shorter peptides. The resulting peptide is then separated

by liquid chromatography and converted into electrically charged particles. Various

types of instruments and scan modes are employed in tandem mass spectrometry. The

accomplishment of the multiple stage MS/MS experiment is by two key instrument

types with individual mass spectrometer elements separated in space or employing a

single mass spectrometer with the MS steps separated in time. The first category of

instrument is an instrument in which two mass spectrometers are assembled in tandem

with the separation elements physically separated and distinct. This is also referred

to as tandem mass spectrometry in space or using a sequence of mass spectrometers

in space, signifying the physical separation of the instrument components. The sec-

ond type of instrument can be described as doing tandem mass spectrometry in time.

The MS/MS instrument in this category comprises analyzers such as the quadrupole

ion trap or Fourier transform ion cycloton resonance (FTICR) instrument that has

the ability to store ions. Separation in this regard is attained with ions captured in

the same place and multiple separation procedure taking place over time. The triple-

quadrupole mass spectrometer, also referred to as QqQ, is the most generally used

tandem mass spectrometer. The first and third quadrupoles in a triple-quadrupole

mass spectrometry act as mass filters whiles the second quadrupole causes fragmen-

tation of the analyte by allowing ions of any mass to pass through. Inferring from

its name, the quadrupole mass analyzer, also known as the quadrupole mass filter,

consists of four cylindrical rods that are fixed parallel to each other. In the context

of mass spectrometry, the quadrupole plays the role of filtering sample ions, based

on their m/z values. The product ion, precursor ion, and neutral loss scans are the
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three scan experiments commonly used in tandem mass spectrometry. As often is the

case, in the product ions scan, ions of a particular m/z value are selected in the first

mass spectrometer, transferred and analyzed in the second mass spectrometer after

going through fragmentation. This results in the product ion spectrum. The process

is more explained by the precursor ion first held in quadrupole 1 (MS1), undergoing

a CID and fragmentation in Quadrupole 2 and scanning resulting in a spectrum of

fragment, known as the product ion spectrum.

Collision-induced dissociation (CID), also known as collisionally activated dis-

sociation (CAD), is used in tandem mass spectrometry to fragment a peptide and

subsequently obtain a spectrum. It entails the collision of an ion with a neutral atom

in the gas phase and successive separation of the ion. In a precursor ion scan, only

ions with a given m/z value passes through the second mass spectrometry. Further

elaborating the process, the m/z value of a particular product ion is held fixed at

quadrupole 3 and quadrupole 1, scanned across the desired m/z range. A spectrum

of precursor ions is then produced. The neutral loss scan employs a combination of

scanning to identify precursor ions that fragment through a particular neutral loss

amid the CID fragmentation. By this process, the first M/S scans all the masses and

the second M/S scans at a particular offset different from the first mass spectrometry

[7].
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3 THE FUNDAMENTAL CONCEPTS OF FRAGMENTATION AND

SPECTRUM ANALYSIS

The ability to meaningfully manage and interpret mass spectrometry data goes a

long way in the maximization of true protein identification and the minimization of

inaccurate identification. A fundamental goal in any protein identification method,

in a quest to define a protein as already identified or novel, is to match an observed

spectrum against a theoretical spectrum of the peptide in question [11].

An important technology in mass spectrometry-based proteomics is peptide se-

quencing. The sequencing of proteins began with the purification of a substantial

amount and a technique known as Edman degradation was used, developed by Peer

Edman (Epstein et al 1996) [13, 25]. This approach not only requires much exper-

tise, but a considerable amount of sample is needed. The popularity generated by

mass spectrometry, in terms of high sensitivity and efficiency, has supplanted Edman

degradation as a technique in peptide sequencing. Protein analysis by mass spec-

trometry makes use of two main approaches: the top-down or bottom up approach

[13]. The top-down method focuses directly on intact protein, and challenges such

as difficulties in the separation of intact proteins, the complexity of the data and

lack of automation limits the output of the top-down strategy [13]. The bottom-up

approach, a fundamentally easier approach, focuses on peptides rather than intact

proteins, generated from enzymatic digestion.

Proteins are complex molecules made up of strands of amino acids. The favorable

consideration for peptides over proteins in the identification process is attributable

to factors such as greater solubility of peptides, and the higher sensitivity of the

30



mass spectrometer for smaller molecules such as peptides than for high mass proteins

[13]. The difficulty of identifying intact protein leads to proteins being broken into

short peptides and examined separately. The problem of identifying a protein is

thus reduced to the problem of identifying peptides. The benefit primarily is higher

sensitivity for smaller molecules by mass spectrometry and the better fragmentation

behavior of peptides when compared with proteins. A very critical procedure in

peptide sequencing is fragmentation in the mass spectrometer.

A peptide is formed when the amine and carboxylic acid functional groups in

amino acids come together to form amine bonds in a chain of amino acid unit. A

peptide is, therefore, a chain or sequence of amino acids, each of which is represented

by one of 20 letters. That is, a peptide is a string over the 20 - letter alphabet of

amino acids, with each amino acid assigned a non-negative molecular mass, measured

in daltons (Da). A dalton is the standard unit used for denoting mass of an atomic

or molecular scale. Table 1 shows a list of all 20 amino acids with their corresponding

3 letter and 1 letter codes. The single letter code is used throughout the thesis to

simplify notation. Structurally, proteins and peptides are very similar, being made up

of chains of amino acids that are held together by peptide bonds (also called amine

bonds). The basic distinguishing factors are size and structure, with peptides being

less well defined in structure than proteins, which can adopt complex conformations

known as secondary, tertiary, and quaternary structures. Peptide fragmentation as

pertaining to mass spectrometry, is triggered by collisions with residual gas where

the bond breakage occurs through cleavage of the amine bonds [25]. The theoretical

spectrum consists of m/z values and intensity of possibly occurring ions. Compounds,
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a molecule composed of atoms from different elements, can have the same molecular

weight or m/z value but exhibit different chemical composition. However, breaking

them into fragments allows peptides to be identified. Through an ionization process,

the peptides are metamorphosed into electrically charged particles called ions. An ion

is an electrically charged atom or group of atoms, formed by the loss or gain of one

or more electrons. The peptide is broken into pairs of complementary fragment ions,

with the most common ones being b and y ions. It is the intensities of the ions that

are detected in the mass spectrometer and subsequently presented in a spectrum as

a vertical line graph, representing ions having a specific mass-to-charge ratio (m/z)

and relative abundance of the ion indicated by the length of the line. The theoretical

spectrum of a peptide is a set of peaks with the position of each peak at the m/z

value of each ion type. There are spikes at each peak location and zeros everywhere

else [11]. Figure 3 shows the theoretical spectrum for the peptide TGMSNVSK using

only the b and y ions. The b ions are represented by the solid lines and the dashed

lines refers to the y ions.
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Table 1: The 20 amino acids with their corresponding 3 letter and 1 letter codes.

Amino Acid 3 Letter 1 Letter Amino Acid 3 Letter 1 Letter
Code Code Code Code

Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K

Asparagine Asn N Methionine Met M
Aspartic Acid Asp D Phenylalanine Phe F

Cysteine Cys C Proline Pro P
Glutamine Gln Q Serine Ser S

Glutamic Acid Glu E Threonine Thr T
Glycine Gly G Tryptophan Trp W

Histidine His H Tryosine Try Y
Isoleucine Ile I Valine Val V

Peptide fragment ions that emerge from tandem mass spectrometry are indicated

by a specific notation [20]. The notation is assigned based on the fragment ion types

that emerge by various bonds along the peptide backbone and side chain [27]. Peptide

fragment ions are indicated by a, b or c if the charge is maintained on the N-terminus

(also referred to as the amino-terminal fragment) and by x, y or z if the charge is

retained on the C-terminus (also referred to as the carboxyl-terminal fragment). The

process of generating the theoretical spectrum begins by splitting the true peptide

sequence into all viable ion combinations. Albeit there are several ion types, the

ability to correspond to cleavage of the amine bond, makes b and y ion the most

useful sequence ion types, hence why they are used in practice. The b and y ions

for a given peptide represents the two halves formed by splitting the original peptide

between various amino acids. Figure 4 and Figure 5, portrays the two parts for the b

and y ions respectively for the peptide TGMSNV SK that is formed by splitting it

between various amino acids.
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Figure 3: Theoretical spectrum for the peptide TGMSNV SK using only b and y

ions. The b ion is denoted by solid lines and the y ion is denoted by dashed lines.

The presence of an ion is represented 1 and 0 represents the absence of an ion.

A b-ion is a fragment ion, that is the beginning of the peptide containing the

N-terminus and is terminated by an amino acid with a free amine group (−NH2),

resulting in the charge being retained by the amino-terminal fragment. Amines are

organic compounds (hydrocarbons) whose functional group contains basic nitrogen

atom with a single pair. Thus, an amine group is any group of organic compounds

containing a nitrogen functionality. A y-ion extends from the C-terminus and is the

complement of the b-ion. An ion is classified as y ion if the carboxyl-terminal fragment

(C-terminus) retains the charge. The C-terminus also called carboxyl-terminus is the

end of an amino acid, terminated by a free carboxyl group (−COOH). A carboxyl

group also referred to as the carboxy group and symbolized as COOH is an organic

functional group, having a carbonyl and hydroxyl group linked to a carbon atom.
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Figure 4: Illustration of the fragmentation for b ions.

Figure 5: Illustration of the fragmentation for y ions.
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On the other hand, a carbonyl group is a carbon double-bonded to an oxygen and

a hydroxyl as an OH group, composed of a hydrogen atom covalently bonded to an

oxygen atom. In effect, the carboxyl group has both a carboxyl and a hydroxyl group

attached to the same carbon atom.

After the peptides are broken down into fragmented ions, the mass of each ion is

determined. The mass for any given ion is found by adding the parent mass of the

peptide to an offset value. Thus, for any given ion, the mass is found by:

k∑
i=1

m(pi) + δ`

where k is the number of amino acids in the ion sequence, pi is the amino acid in the

i th position, m(pi) is the mass of the amino acid in the i th position, ` denotes the

type of ion such that ` ∈ (b, y), and δ` is the offset for ion type `. Table 2 shows a

list of all twenty amino acids together with corresponding mass in daltons (Da).

Table 2: The 20 amino acids with their corresponding masses in daltons.

Amino Acid Mass Amino Acid Mass

A 71.0371 M 131.04
C 103.009 N 114.043
D 115.027 P 97.0528
E 129.043 Q 128.059
F 147.068 R 156.101
G 57.0215 S 87.032
H 137.059 T 101.048
I 113.084 V 99.0684
K 128.095 W 186.079
L 113.084 Y 163.063

Peptide fragmentation in tandem mass spectrometry is determined by offsets that

correspond to the peaks and represents the ion types produced by a given mass
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Table 3: Information about ion types. Here M denotes
∑k

i=1m(pi).

Ion Terminus Offset Value Position

b N 0.85 (M + 0.85)
b-H2O N -17.05 (M -17.05)

a N -27.15 (M -17.05)
b-NH3 N -16.15 (M -16.15)

b-H2O −H2O N -35.20 (M-35.20)
b-H2O −NH3 N -34.20 (M-34.20)

a-NH3 N -44.25 (M+44.25)
a-H2O N -45.15 (M-45.15)

y C 18.85 (M+18.85)
y-H2O C 0.90 (M+ 0.90)

y2 C 20.05 (M+ 20.05)/2
y-NH3 C 1.90 (M+ 1.90)

y2 −H2O C 2.30 (M+ 2.3)/2
y-H2O −NH3 C -16.10 (M-16.10)
y-H2O −H2O C -17.15 (M-17.15)

spectrometer. That is, the offsets match up to be the peaks in a given spectrum, and

thus denote the different ion types created in the given mass spectrometer (Dančik

et al.,1999). The offsets, determined by Dančik et al (1999), are the result of either

N-or C-terminal cleavage. Table 3 lists the different ion types with their terminus

position, the offset value, and calculation of the mass of the ion.
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Dančik et al. (1999) developed an offset frequency function to describe ion type

tendencies for specific mass spectrometers. To enable software to accurately analyze

spectra obtained from any type of mass spectrometer, the offset frequency function

was introduced. The usage of the offset frequency function to ascertain the ion-types

specific to a mass spectrometer is useful in determining the ordering of amino acids

in a fragment sequence.

Consider the peptide TGMSNVSK, as an example for illustrating the theoretical

spectrum. There are seven b ions and seven y ions that we generate by splitting

the peptide. The ions we obtain from the b ions are as follows: T, TG, TGM,

TGMS, TGMSN, TGMSNV, and TGMSNVS. The first b ion, T, has a mass of

101.048 + 0.85 = 101.898 Da. The second b ion, TG, has a mass of 101.048 +

57.0215 + 0.85 = 158.9195 Da. Continuing with the process, we obtain the following

additional b ions: TGM, TGMS, TGMSN, TGMSNV, and TGMSNVS with masses

289.9595, 376.9915, 491.0345, 590.1029, and 677.1349 daltons, respectively. Refer

back to Figure 4 for the illustration of the splitting of the b ions and the seven ions

generated.

Similarly, for the y ions, we obtain the following ions: K, SK, VSK, NVSK,

SNVSK, MSNVSK, and GMSNVSK. The first y ion, K, has a mass of 128.095+18.85

= 146.9450 Da. The second y ion, SK has a mass of 87.032 + 128.095 + 18.85 =

233.9770 Da. Continuing with the splitting, we obtain the following additional

ions : VSK, NVSK, SNVSK, MSNVSK, and GMSNVSK with masses 333.0454,

447.0884, 534.1204, 665.1604, and 722.1819 daltons, respectively. Refer back to
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Figure 8 for the illustration of the splitting of the y ions and the seven ions gen-

erated. In summary, the theoretical spectrum for the peptide TGMSNVSK is the

set of masses 101.8980, 158.9195, 289.9595, 376.9915, 491.0345, 590.1029, 677.134,

722.1819, 665.1604, 534.1204, 447.0884, 333.0454, 233.9770, 146.9450 daltons.
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4 A BAYESIAN MODEL

We focus on refining a Bayesian model in an earlier work by Lewis (2013), a

model that seeks to identify the true peptide based on the observed spectrum [11].

The Bayesian model in identifying this true peptide uses a Markov chain Monte

Carlo (MCMC) algorithm to simulate candidate peptide sequences from the posterior

distribution [11].

4.1 Pre-Processing of Data

Data produced by mass spectrometry is extremely large, depicting the abundance

(intensity) of biomolecules showing certain mass-to-charge ratio (m/z) values [14].

Generally, the broad processes involved in mass spectrometry-based proteomics ex-

periments consist of a data generation phase, data preprocessing and a phase for

analyzing data [14]. Preceding spectra data analysis is the data preprocessing phase,

a process that removes or curtails problems with data by way of spectrum noise

and contaminant clean up. Coming from a process of sample preparation, sample

ionization and activities with the instrument itself, it is not surprising that mass

spectrometry data are quite noisy [14]. As a result, the observed spectrum first needs

to be thresholded [14]. In the process, peaks with intensity values below a thresh-

old will be removed, and emphasis given to m/z values having intensities above the

threshold [11]. The data employed in our model consist of the retained intensity

values and their corresponding m/z values [14]. Each integer m/z value is assigned

a distinct threshold value, which is computed and denoted by T = (T1, T2, ..., Tq∗).

q∗ represents the total number of m/z values [11]. In thresholding, both a constant
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and a moving threshold are calculated. [11]. This has become necessary because the

mass spectrometer does not always capture all peaks at the beginning and the end of

the spectrum [11]. Focusing on only a constant threshold has the ability to eliminate

peaks that are truly signal peaks and not noise peaks. Thresholding is therefore done

using a combination of a constant and moving thresholds as a weighted average of

the thresholds [11].

4.2 Likelihood for the Bayesian Model

For our Bayesian model, we work at improving a likelihood function in earlier

work by Lewis (2013) that incorporates additional ions to the model. The likelihood

function we specify, and employ in our model, gives a measure of how well the observed

spectrum and theoretical spectrum agree [11]. As a cardinal part of any Bayesian

inference, we establish our parameters and models. There is an overall goodness of

fit measure, which penalizes any candidate peptide whose theoretical spectrum does

not align well with the observed spectrum [11]. However, a candidate peptide is

rewarded by this overall goodness of fit measure if the theoretical spectrum aligns

nicely with the observed spectrum [11]. As discussed earlier, data generated by mass

spectrometers are plagued by noise, owing to various factors therefore, we do not

discount the possibility of noise peaks in the data set even after thresholding. This

has necessitated the incorporation of an overall goodness of fit measure tasked to

penalize a candidate peptide displaying too many noise peaks near the theoretical

spectrum [11]. Signal peaks in a mass spectrometer appear as a local maxima in

the spectrum. However, not every signal peak is captured by the mass spectrometer.
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The challenge is amplified when a peptide with low abundance is concealed by noise,

resulting in increasing false rate of peak detection. To ameliorate this trend, we

include an indicator function in our likelihood function that represents the presence

or absence of a peak [11].

4.3 Explaining the Likelihood Function

The original likelihood function from the work of Lewis (2013) is comprised of the

b and y ions and is defined as:

L(X|θ,η, κ1, κ2) ∝ κs1 exp(−κ1S1)κ
t−s
2 exp(−κ2S2). (1)

The size of the likelihood function is driven by two overall goodness of fit measures

S1 and S2.

S1 =

p∑
i=1

λbi min
j
d(xj − τ bi ) + λyi min

j
d(xj − τ yi ) (2)

S2 =
t∑

j=1

min
i,k
|xj − τ ki | (3)

with d(xj − τ ki ) = min{|xj − τ ki |, δ}. The interpretation of our parameters will be

explained in our refined one.

The proportion of detected ions was calculated for each of the ions in Table 3 for

all 1, 206 peptides from our data. We assume the ion is present if the observed m/z

value is within 0.5 Da of the theoretical m/z for that given peptide. As expected, the

b and y ions had the highest proportion ions. We found that b −H2O was the next

ion with the highest percentage for this data. Similar results were found in Dančik et
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al (1999). Figure 6 provides the histogram, the mean, and five number summary for

the proportion of detected ions for the b, y, and b −H2O ions. Based on this work,

we chose to add the b−H2O ion into the likelihood.

Figure 6: Numerical summary and plot for b, y and b−H20 ions of the proportion of

the detected ions.
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The revised likelihood function with the additional b−H2O ion has the form

L(X|θ,η, κ1, κ2) ∝ κs1 exp(−κ1S1)κ
t−s
2 exp(−κ2S2) (4)

where our parameter vector θ = (τ b1 , . . . , τ
b
p , λ

b
1, . . . , λ

b
p, τ

y
1 , . . . , τ

y
p , λ

y
1, . . . , λ

y
p,

τ b−H1 , . . . , τ b−Hp , λb−H1 , . . . , λb−Hp ), η signifies string of amino acids for the candidate

peptide and X is the observed pairs of m/z values and intensities for a particular

spectrum [11]. Here t represents the total number of m/z values after thresholding

and s is the total number of b, y and b−H2O ions combined. The notations b, y and

b−H as used in this context denotes b ions, y ions and b−H2O ions respectively.

Let xj be the observed m/z values with peaks that are above some specific

threshold T , j = 1, ..., n. We write N to denote the set of observed noise peaks,

where for label j ∈ N we have |xj − τ ki | ≥ δ for all i, k, or there exists a j′ 6= j such

that |x′j − τ ki | < |xj − τ ki | < δ for some i, k, where i= 1,..., p and k ∈ {b, y, b−H}

[11]. We take δ = 3 Da. The goodness of fit measures of the candidate spectrum to

the observed spectrum that drives the size of the likelihood function are defined as:

S1 =

p∑
i=1

λbi min
j
d(xj − τ bi ) + λyi min

j
d(xj − τyi ) + λb−H

i min
j
d(xj − τ b−H

i )(5)

S2 =
t∑

j=1

min
i,k
|xj − τ ki | (6)

and d(xj − τ ki ) = min{|xj − τ ki |, δ}.

As previously discussed, not every peak in the theoretical spectrum is captured

by the mass spectrometer, due to different factors, mentioned in section 4.1. This
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phenomenon has the potential of increasing the value of S1 if the peak is missing, as

the m/z value for the next closest peak may be far from the candidate peak and thus

increasing the likelihood value, which could cause the model to incorrectly estimate

the true peptide [11]. In order to forestall this from throwing off our model, a penalty

term, δ = 3 Da is incorporated to mitigate the effect of the missing peak [11].

Moreover, τ bi , τ yi , and τ b−Hi are the m/z values for the b, y and b − H2O ions

respectively, of the candidate peptide and κ1 and κ2 signify weights [11]. Here κ1

follows a Gamma prior distribution with a shape parameter a1 and a scale parameter

b1, while κ2 follows a Gamma prior distribution with a shape parameter a2 and a

scale parameter b2. We also have λbi , λ
y
i and λb−Hi ∈ {0, 1} as indicator functions that

signify whether the ith b, y and b −H2O has a corresponding observed peak, where

i = 1, ..., p. Hence, λbi = 1 denotes the presence and λbi = 0 denotes the absence of

a b-ion at position i, λyi = 1 denotes the presence and λyi = 0 denotes the absence

of a y-ion at position i [11]. Similarly, λb−Hi = 1 denotes the presence and λb−Hi = 0

denotes the absence of a b − H2O ion at position i. S1 separately fixes each b-ion,

y-ion and b − H2O ion of the candidate peptide and measures the closeness of the

nearest peak to it. That is, S1 measures the sum of the minimum absolute distances

between the closest observed m/z above a threshold and each m/z peak value of

the candidate peak [11]. S2 fixes each observed peak and measures the closeness of

the nearest “candidate peak” to it. More formally, S2 measures the closeness of the

nearest candidate peak to each observed peak. S1 and S2 are simply two reasonable
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measures of closeness, and our likelihood combines them (weighting them by κ1 and

κ2) [11]. It stands to reason that, the closeness of the candidate peaks to the observed

peaks makes S1 small. Similarly, the presence of fewer noise peaks or closeness of the

noise peaks to the candidate peak makes S2 small [11].

4.4 Priors

As earlier discussed, the collision-induced dissociation (CID), also referred to as

collisional activated dissociation (CAD), entails the collision of an ion with a neutral

atom in the gas phase and successive separation of the ion. Thus, the fragmentation

process is very much reinforced by CID during the gas phase. The b and y ions

have the ability to correspond to cleavage of the amine bond among several ions,

making them the most useful sequence ion types. The inspiration about cleavages

in the amino acid pair and cleavage pair abundance, comes from Huang et al [9],

who estimated the average bond cleavage abundance for each amino acid pair for

both the b and y ions for gas-phase dissociation spectra [9, 11]. It is during the CID

that a peptide bond fragments, resulting in cleavage into distinct fragments with a

cleavage pair such as the b and y ion pair present in the peptide. Consider the peptide

TGMSNV SK, for example. Recall from Chapter 3, that one of the seven b ions of

the peptide TGMSNV SK is TG, and thus the complement MSNV SK as the y

ion. The cleavage between the amino acids G and M results in these complementary

ions. To develop prior information to identify the true peptide, we are inspired with
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information from Huang et. al (2004) concerning cleavage pair abundance and when

to expect cleavages in the amino acid pairs.

4.5 Cleavage Prior

From the prior information, we obtain prior probabilities of “seeing” the b-ion

peak and y-ion corresponding to each complementary pair of ions in a peptide. The

cleavage prior used in our posterior is from the work by Lewis (2013).

Let λ = (λb1, . . . , λ
b
p, λ

y
1, . . . , λ

y
p) be a vector of binary indicators of whether a peak

occurs in the spectrum at the m/z values corresponding to each b- and y-ion. We

define a cleavage pair prior as (here p is the number of cleavage pairs):

π(λ) =

p∏
i=1

P (λbi , λ
y
i )

with

P (λbi = λyi = 1) = ρbyi × γi × βi

P (λbi = 1, λyi = 0) = ρbyi × (1− γi)× βi

P (λbi = 0, λyi = 1) = ρbyi × γi × (1− βi)

P (λbi = λyi = 0) = 1− ρbyi + [ρbyi × (1− γi)× (1− βi)]

where ρbyi is the geometric mean of the average relative abundance of bond cleav-

ages of b and y ions for a particular amino acid pair for i = 1, ...., p derived from

Huang et al.(2004), γi is the probability of the presence of a y ion, and βi is the

47



probability of the presence of a b ion [11]. Further details about the cleavage prior

can be found in the work by Lewis (2013).

4.6 Sequence Prior

There is also a sequence prior from the work by Lewis (2013). This is a prior

distribution for a particular sequence (string) of amino acids in a peptide [11]. The

string or sequence prior, π(η) which represents the probability of any particular amino

acid sequence, computes the probability of a sequence of amino acids appearing con-

secutively in a peptide sequence [11].

The sequence prior is defined as

π(η) =
√
π(ηF )× π(ηR) (7)

Here η is the ordered sequence of the amino acids in the current peptide under

consideration, π(η) is a probability for this particular sequence, π(ηF ) is the joint

probability of any particular amino acid sequence calculated from left to right, π(ηR)

is the joint probability of any particular amino acid sequence calculated in the reverse

direction [11]. In-depth information about the sequence prior can be found in the work

by Lewis (2013).

48



4.7 Prior for κ1, κ2

Our previous discussion of the likelihood function has κ1 having a Gamma prior

distribution with a shape parameter a1 and a scale parameter b1 and κ2 follows a

Gamma prior distribution with a shape parameter a2 and a scale parameter b2 [11].

Thus, our concentration parameters, κ1 and κ2, are estimated to have independent

Gamma (a1, b1) and Gamma ((a2, b2) prior distributions respectively [11]. These are

independent of the other parameters.

4.8 Posterior Distribution

From Bayes’ Theorem, the posterior density can be written as

π(η, ω, λ, κ1, κ2|X) ∝ L(X| ω, τ , η, κ1, κ2)× π(λ)× π(η, τ )× π(κ1, κ2)

= L(X|θ,η, κ1, κ2)× π(λ)× π(η)× π(κ1, κ2).

where λ, η, and κ1, κ2 are assumed independent. The set of m/z locations given by

τ = (τ b1 , . . . , τ
b
p , τ

y
1 , . . . , τ

y
p , τ

b−H
1 , . . . , τ b−Hp )T are determined by the sequence η, which

signifies the string of amino acids, and as such P (τ |η) = 1. Here ω is defined

as (λb1, . . . , λ
b
p, λ

y
1, . . . , λ

y
p, λ

b−H
1 , . . . , λb−Hp ). It is worth stressing that the posterior

density is only known up to a constant and the actual form of the posterior density

is quite complicated [11].
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4.9 A Markov Chain Monte Carlo Algorithm (MCMC)

The complexity of our posterior density and the fact that it does not represent a

known distribution leads us to use a Markov chain Monte Carlo algorithm (MCMC)

method to sample the parameters [1, 23, 24, 26].

A starting peptide for the MCMC is found by taking a random sample from the

results of PepNovo. Since the mass spectrometer yields the overall weight for the

corresponding observed spectrum, we only consider candidates with the correct mass

(within a tolerance) [11].

Once we have a reasonable “initial candidate” peptide, we evaluate how closely

it matches the observed spectrum by calculating the posterior probability of that

candidate [11]. Then we propose a new candidate peptide and use the Metropolis-

Hastings algorithm to decide whether to “accept the move” to the new candidate

peptide, or whether to “reject the move” and retain the current candidate peptide.

This produces a Markov chain in which each state is a candidate peptide (a sequence

of letters). The initial peptide is called the current peptide and denoted ηcurr. The

β and γ vectors are pre-determined and remain constant throughout the algorithm.

The vector λcurr is generated using the β and γ vectors.

In summary, the algorithm starts by generating a new candidate peptide by ran-

domly replacing one, two, or three amino acids of the current peptide with one, two,

or three amino acids while still ensuring the total weight is within a tolerance of

0.5 of the true weight [11]. The posterior probability for both the new and cur-
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rent peptide is calculated and denoted as ζ1 and ζ2, respectively [11]. As part of

the MCMC procedure, proposal densities are calculated for our priors. The pro-

posal densities are q(λcurr|λnew), q(λnew|λcurr), q(ηcurr|ηnew), and q(ηnew|ηcurr) [11].

We then generate a value from a standard uniform distribution, U ∼ U(0, 1). If

U <

(
ζ1
ζ2
× q(λcurr|λnew)

q(λnew|λcurr)
× q(ηcurr|ηnew)

q(ηnew|ηcurr)

)
, then the new peptide becomes the cur-

rent peptide, and λnew becomes λcurr. Otherwise, both the current peptide and λcurr

remain unchanged [11] and the algorithm starts again [11].

After a large number of iterations, the algorithm stops. Whichever peptide (among

those searched) that has the largest posterior probability is our estimate for the true

peptide [11]. To ensure that our chain is irreducible, every 1000 steps we propose a

completely random peptide (regardless of the current peptide) [11]. The state space

is assumed finite, because for any given spectrum, the peptide cannot be arbitrarily

long. Since our algorithm uses only the m/z values that have intensities above a

threshold, we will instead generate a spectrum with signal and noise peaks that are

already assumed to be above a threshold. For a given peptide, we will know the

locations of the true peaks. In-depth discussion of this algorithm can be found in the

work by Lewis (2013).
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4.10 Simulated Annealing

To aid our search of the true peptide and optimization of our posterior density

from a large parameter space, simulated annealing, a probabilistic technique, is ex-

plored. The idea fundamentally is designed similar to the physical process of heating

a substance and lessening the defect by reducing the temperature. The procedure

consolidates our model with a temperature parameter, allowing for more exploration

at high temperature values and restraining of the exploration at lower temperature.

Our likelihood function now becomes :

L(X|θ,η, κ1, κ2)1/T ∝ κs1 exp(−κ1S1)κ
t−s
2 exp(−κ2S2)

from our old likelihood function of :

L(X|θ,η, κ1, κ2) ∝ κs1 exp(−κ1S1)κ
t−s
2 exp(−κ2S2)

where T is the temperature parameter. We set a temperature value for our large

temperature at 500 catering for the first 95% of iterations. The last 5% of iterations

caters for our small temperature parameter and this is set to 1, ensuring we are back

to our likelihood function.
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5 RESULTS

Our motivating data set is from the Pacific Northwest National Laboratory (PNNL)

which can be accessed publicly online [2]. For these data, the true peptide is known

for each spectrum [11]. Consisting of 1, 206 peptides, the dataset has peptides with

lengths ranging from 7 to 31 amino acids with an average length of 15.16 [11]. The

total mass for each peptide is given along with the set of intensities and m/z values.

Proceeding our spectra data analysis is the data preprocessing phase [11]. We remove

the doubly charged parent ion from the dataset and use a threshold of 75% to remove

“noise peaks” [11]. We set our tolerance level to be 0.5 Da. As indicated earlier, κ1

and κ2 follows a Gamma prior distribution and signifies the weights parameters with

s being the number of b, y , b−H2O as used for our model [11]. The constants for this

distribution is set to be a1 = 5.5, b1 = 0.1 and a2 = 3, b2 = 100. We set the initial

components of pb1 = 0.05 and py1 = 0.10. These probabilities are fixed low because

the mass spectrometer seldomly captures the first b and y ion [11]. We set all other

pbi and pyi to be equal to 0.80 for i = 2, ..., p. Thus, presence or absence probability

vectors β and γ are set to be (0.05, 0.80, . . . , 0.80) and (0.10, 0.80, . . . , 0.80). Going

by these percentages, there is a 5% chance that we will see the first b ion and 80%

chance of seeing the other b ions. The parameters set are the same used by Lewis

(2013). After extensive numerical simulation and search, the best parameters for our

new ion, b−H2O were determined. We set the initial components of pb−H1 = 0.05
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and pb − H2 = pb − H3 = 0.10. All other pb − Hi are set to be equal to 0.60 for

i = 4, ...p. As with the b and y ions, the first b − H2O ion is set to be low because

the mass spectrometer rarely captures the first ion. Because the b −H2O ions tend

to have low intensity values near the beginning of the data, they are more likely to

be considered noise and will be removed in the pre-processing step. Therefore, it will

appear that the peak is missing and the likelihood will be penalized for the missing

peak. Hence, we set probability for the next two b−H2O ions to be low as well. We

observe from the beginning that because these intensities are low, it is more likely to

be considered noise.

Using the same parameter values as Lewis (2013), we set the large temperature to

be 500 catering for the first 95% of iterations [11]. The small temperature parameter

is set to 1 for the last 5% of iterations [11].

5.1 Example 1

Figure 7 is a plot of the observed versus the theoretical spectrum including only

the b and y ions for the peptide TGMSNVSK and the Figure 8 is a plot of the observed

versus the theoretical spectrum including only the b, y, and b−H2O for the peptide

TGMSNVSK. In both plots, one can see there is noise in the center of the spectrum

but over all the theoretical and observed spectrum align fairly well. One can see

from Figure 8, by incorporating the additional ion, b−H2O, the observed spectrum

is better aligned with the theoretical spectrum because what was once identified as

noise is now correctly being identified as a b−H2O.
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Figure 7: The observed spectrum plotted against the theoretical spectrum for the

peptide TGMSNVSK, showing only two ions used in our model: b and y ions. Plotted

below the zero axis is the theoretical spectrum and the observed spectrum is plotted

above the zero axis.
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Figure 8: The observed spectrum plotted against the theoretical spectrum for the

peptide TGMSNVSK, showing the three ions used in our model: b ions, y ions and

b −H2O used in our model. Plotted below the zero axis is the theoretical spectrum

and the observed spectrum is plotted above the zero axis.
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Table 5.1: The top estimated peptides from the MCMC algorithm along with

their corresponding log posterior densities and log likelihood for the peptide TGM-

SNVSK. The true peptide is in bold.

Peptide Log Posterior Log Likelihood

TGMSNVSK 35.21 63.30

TGMDSVSK 14.17 46.46

ASMSGGGEQ 7.26 37.22

ASEFGVSK 2.40 31.35

KCSRGSK -0.07 32.62

GTMSGGVTN -1.73 27.01

ASMSGKDK -3.77 26.19

SAAFNWK -3.99 27.04

A starting peptide, CQSNDAK was obtained from the results of PepNovo, which

has a total mass of within 0.5 Da of the weight of the true peptide. Our best estimate

for the true peptide is TGMSNVSK after 200, 000 iterations with a log posterior

density of 35.21 (up to a constant). The top estimated peptides for this example

along with their corresponding log likelihood value is shown in Table 5.1. We see the

true peptide is estimated as having the largest log posterior density.
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5.2 Example 2

Figure 9 shows the plot of the observed spectrum for the peptide DLVESAPAALK.

Figure 10 is a plot of the observed versus the theoretical spectrum including the b,

y, and b−H2O ions for the peptide DLVESAPAALK. In both plots, the theoretical

and observed spectrum align fairly well. However, there is noise in the center of the

spectrum. One can see from Figure 10, by incorporating the additional ion, b−H2O,

the observed spectrum is better aligned with the theoretical spectrum because what

was once identified as noise is now correctly being identified as a b−H2O.

Figure 9: The observed spectrum plotted against the theoretical spectrum for the

peptide DLVESAPAALK, showing only two ions used in our model: b and y ions.

Plotted below the zero axis is the theoretical spectrum and the observed spectrum is

plotted above the zero axis.
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Figure 10: The observed spectrum plotted against the theoretical spectrum for the

peptide DLVESAPAALK, showing the three ions used in our model: b ions, y ions

and b−H2O used in our model. Plotted below the zero axis is the theoretical spectrum

and the observed spectrum is plotted above the zero axis.

Table 5.2: The top estimated peptides from the MCMC algorithm along with

their corresponding log posterior densities and log likelihood for the peptide DLVESAPAALK.

The true peptide is in bold.

Peptide Log Posterior Log Likelihood
DLVESAPAALK 102.99 141.08

VEVETPQALQ 73.63 109.28
NNVESAPAALK 72.03 109.47

LDVEYYALQ 72.02 111.07
EVPAFAPAALK 69.73 107.81

NNVESFYLQ 68.96 107.47
EVVNGANVALK 68.52 107.74
NNVETPKALK 67.99 105.21
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Setting an initial peptide of QVVESLFK from the results of PepNovo, our best

estimate for the true peptide is DLVESAPAALK after 50, 000 iterations. It is worth

noting why a smaller number of iterations was used compared to Example 1. First,

note that the length of the peptide in Example 1 is shorter, 8 compared to 11, respec-

tively. We noticed the refinement worked better for peptides whose sequences were

longer because they have more data. The top estimated peptides for this example

along with their corresponding log likelihood value is shown in Table 5.2, where the

true peptide is estimated as having the largest log posterior density.
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6 DISCUSSION

To strengthen research in the proteomics field, we refined a Bayesian model, which

relies on prior information of the peptides in generating the best estimate of the true

peptide. The complexities of our posterior density influenced us to use a Markov chain

Monte Carlo algorithm coupled with simulated annealing to obtain the posterior

probabilities. By incorporating an additional ion into the original Bayesian model

proposed by Lewis (2013), we saw the true peptide was estimated having the largest

posterior density in both examples. We understand to have more competitive results,

numerous peptides of varying length must be used to determine if we see similar

results.

As part of future development, the Bayesian model can be refined by exploring

more ions such as b−NH3, y−H2O, y−NH3 etcetera. The goodness of fit measures of

the candidate spectrum to the observed spectrum that drives the size of the likelihood

function could be extended as follows:

S1 =

p∑
i=1

λbi min
j
d(xj − τ bi ) + λyi min

j
d(xj − τyi )+λ

b−H
i min

j
d(xj − τ b−H

i ) + λb−N
i min

j
d(xj − τ b−N

i ) + ....(8)

S2 =
t∑

j=1

min
i,k
|xj − τ ki | (9)

and d(xj − τ ki ) = min{|xj − τ ki |, δ}.

Upon adding b−H2O to the likelihood function, we observe that these additional

ions are not as prevalent as the b and y ions. Due to the smaller prevalence of this
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ion type, the algorithm had to be run for longer iterations and thus, taking longer to

estimate the peptide. As future work, more avenues need to be explored to improve

upon ways of making our simulation quicker.

The cleavage prior is set to cater for only two ions, the b-ion and y-ion. As earlier

discussed in Section 4.5, this computes the probabilities of “seeing” the b and y ion

peaks corresponding to each complementary pair of ions in a peptide. This could be

extended to include other potential ions already discussed.

We hope our refined Bayesian approach to peptide identification, will be an in-

valuable contribution to the challenging scope of peptide identification, interspersed

with complex and computationally challenging data set.

.

62



BIBLIOGRAPHY

[1] Andrieu C, de Freitas, N, Doucet, A., and Jordan , M. An introduction to

MCMC For Machine Learning. 2003.

[2] Ansong,C, Tolic, N, Purvine, S, Porwollik, S, Jones, M, Yoon, H.P.S, Martin,

J.,Burnet, M, Monroe, M, Venepally, P, Smith, R, Peterson, S, Heffron, F, Mc-

Clelland, M and Adkins, J. . Experimental annotation of post-translational fea-

tures and translated coding regions in the pathogen salmonella tryphimurium,

bmc genomics. 2011.

[3] applied proteomics inc. The Conversation Of The Body. https://

appliedproteomics.com/pipeline/, 2015.

[4] Clalre M. Fraser, Jonathan A. Elsen Steven L. Saizberg. Microbial Genome

Sequencing. 406, 17 August 2000.

[5] Baggerly K.A Coombes, K.R and J.S. Morris. Pre-processing mass spectrometry

data, fundamentals of data mining in genomics and proteomics. 2007.

[6] Corie Lok. Mining the microbial dark matter. 522, 16 June 2015.

[7] E de Hoffman. Tandem mass spectrometry: A primer journal of mass spectrom-

etry. 1996.

63

https://appliedproteomics.com/pipeline/
https://appliedproteomics.com/pipeline/


[8] Edited by Rossen Donev. Advances in Protein Chemistry and Structural Biology,

Protein Structure and Diseases, volume 83. Academic Press, May 11, 2011.

[9] Huang, Y., Triscari, J.M, Pasa-Tolic, L., Anderson, A.G., Lipton, M.S, Smith,

R. D, Wyosocki, V.H. Dissociation behavior of doubly-charged tryptic peptides

: Correlation of gas-phase cleavage abundance with ramachandran plots. 2004.

[10] International Service For The Acquisition Of Agri-biotech Applications. Pocket

K No. 15: ’Omics’ Sciences: Genomics, Proteomics, and Metabolomics, Novem-

ber 2006.

[11] Lewis, C.N. (2013). Protein Identification Using Bayesian Stochastic Search,

(Doctoral dissertation). Retrieved from http: // scholarcommons. sc. edu/

etd/ 2674 .

[12] Chibo Liu. The application of seldi-tof-ms in clinical diagnosis of cancers, journal

of biomedicine and biotechnology. Vol. 2011:6 pages, .doi:10.1155/2011/245821,

2011.

[13] Yan Luo. Application of proteomics mass spectrometry to the keap1/nrf2 chemo-

prevention pathway. 2008.

[14] M. Cannataro, P.H Guzzi, T. Mazza, and P. Veltr. Preprocessing, Management,

and Analysis of Mass Spectrometry Proteomics Data. 2005.

64

http://scholarcommons.sc.edu/etd/2674
http://scholarcommons.sc.edu/etd/2674


[15] Mark P. Molloy and Frank A. Witzmann. Proteomics: Technologies and Appli-

cations. 4th September,2001.

[16] Leo McHugh and Jonathan W. Arthur. Computational methods for protein

identification for mass spectrometry data. February 29, 2008.

[17] Morris, J. S, Baggerly, K. A, Gutstein, H. B, Coombes, K. R. Statistical contri-

butions to proteomic research, methods in molecular biology. 2010.

[18] National Cancer Institute, Office Of Cancer Clinical Proteomics Research,https:

//proteomics.cancer.gov/whatisproteomics. What is Cancer Proteomics?

[19] Norman N. Hoffman M.D,Inc.,Gary H. Hoffman M.D, Elman Flroozmand

M.D,Liza M. Caplendo M.D,Stephen Yoo M.D . Proteomics-The Incisionless

Cure May be Closer Than You Think.

[20] Roepstorff P and Fohlman J. Proposal for a common nomenclature for sequence

ions in mass spectra of peptide. 1984.

[21] Paul R. Graves and Timothy A. J. Haystend. Proteomics: Technologies and

Applications. Vol.66, 1 March, 2002.

[22] Research Unit for Molecular Medicine, Faculty of Health Sciences and Aurhus

University Hospital,Skejby,Arhus, Denmark. Protein Misfolding And Degrada-

tion In Genetic Diseases. 1999.

65

https://proteomics.cancer.gov/whatisproteomics
https://proteomics.cancer.gov/whatisproteomics


[23] Robert, C. P and Casella , G. Monte Carlo Statistical Methods. 1994.

[24] Sorensa, D and Gianola, D. Likelihood, Bayesian and MCMC Methods in Quan-

titative Genetics. 2002.

[25] Hanno Steen and Marthias Mann. The abc’s(and xyz’s) of peptide sequencing.

Vol. 5, September 2004.

[26] Tierney, L. Markov Chains For Exploring Posterior Distributions. 1994.

[27] Qingfen Zhang Vicki H. Wysocki, Katheryn A. Resing and Guilong Cheng. Mass

spectrometry of peptides and proteins. Methods 35(2005).

[28] Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Omics.

2017.

[29] John R. Yates. Mass spectrometry and the age of the proteome. Vol. 33, 1998.

[30] Zoltan Szabo, Tamas Janasky. Challenges And Developments In Protein Iden-

tification Using Mass Spectrometry. 2015.

66

https://en.wikipedia.org/wiki/Omics


VITA

THEOPHILUS B.K. ACQUAH

Education MS Mathematical Sciences,
East Tennessee State University, 2017.

B.Ed. Mathematics,
University of Cape Coast, Ghana 2011.

Professional Experience Graduate Teaching Associate (ETSU),
Teaching Math 1530 - Probability & Statistics
(Fall 2016),
Teaching Math 1530 - Probability & Statistics
(Spring 2017)

Graduate Teaching Assistant,
Provided tutoring services at the
Center For Academic Achievement,
August 2015 - July 2016

Mathematics Tutor,
Mfantsiman Girls Senior High School,
Saltpond,Ghana,
June 2013 - Aug 2015

Head of Mathematics Department,
Obama College, Ghana,
June 2012 - April 2013

Professional Development (software) Statistical & Mathematical
SAS, R, SPSS, Minitab, Matlab

Scripting Languages
PHP, HTML, Python, Latex

Affiliations American Mathematics Society, 2015-2017,
Abstract Algebra Club, ETSU,
Math & Stats Club, ETSU

67


	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2017

	Peptide Identification: Refining a Bayesian Stochastic Model
	Theophilus Barnabas Kobina Acquah
	Recommended Citation


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Brief Overview
	Role of Proteins
	The Proteomics Field and Protein Identification in Proteome Analysis
	Overview of Thesis

	TECHNOLOGY OF PROTEOMICS AND DEVELOPMENTS IN PROTEIN IDENTIFICATION METHODS 
	Two-Dimensional Gel Electrophoresis
	Mass-Spectrometry (MS)-Based Proteomics
	Mass Spectrometry Methods
	Mass Spectrum
	Tandem Mass Spectrometry

	THE FUNDAMENTAL CONCEPTS OF FRAGMENTATION AND SPECTRUM ANALYSIS
	A BAYESIAN MODEL 
	Pre-Processing of Data
	Likelihood for the Bayesian Model 
	Explaining the Likelihood Function
	Priors
	Cleavage Prior
	Sequence Prior
	Prior for 1, 2
	Posterior Distribution
	A Markov Chain Monte Carlo Algorithm (MCMC)
	Simulated Annealing

	RESULTS
	Example 1
	Example 2

	DISCUSSION
	BIBLIOGRAPHY

