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ABSTRACT

Consensus Model of Families of Images

using Tensor-based Fourier Analysis

by

Joel Shelton

A consensus model is a statistical approach that uses a family of signals or in our

case, a family of images to generate a predictive model. In this thesis, we consider a

family of images that are represented as tensors. In particular, our images are (2, 0)-

tensors. The consensus model is produced by utilizing the quantum Fourier transform

of a family of images as tensors to transform images to images. We write a quantum

Fourier transform in the numerical computation library for Python, known as Theano

to produce the consensus spectrum. From the consensus spectrum, we produce the

consensus model via the inverse quantum Fourier transform. Our method seeks to

improve upon the phase reconstruction problem when transforming images to images

under a 2-dimensional consensus model by considering images as (2, 0)-tensors.
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1 INTRODUCTION AND BACKGROUND

In a previous thesis, Andrew Young used signal processing techniques to obtain

a consensus model for a family of one dimensional EEG signals [18]. In this thesis,

we extend some of Mr. Young’s techniques to families of two dimensional images.

Young’s model works well for one-dimensional signals. However, his model would fail

– no longer be a predictive model – for two or higher-dimensional models. In other

words, his model would not be able to reconstruct the phase from the original signal.

Phase is always an issue for dimension D ≥ 2 models. What if we could improve

phase related issues by considering another approach?

In our approach, we redefine the problem to allow for a tensorial structure. By

using this tensorial approach, we seek to produce a predictive consensus model for

two-dimensional images as tensors under the quantum Fourier transform (QFT). Fur-

thermore, when using the inverse quantum Fourier transform (iQFT), one should see

an improvement in the phase between the original image and the reconstructed image.

Finally, the improvement is seen in our consensus model.

The phase reconstruction problem or image distortion [3] is always an issue when

dealing with two-dimensional or higher-dimensional image processing, because the

phase is not always well-defined under transformations, processing or any model deal-

ing with images of these sort. In this thesis, we seek to improve upon the distortion

problems in two-dimensional image processing by considering images as tensors. Rep-

resenting images as tensors allow for the phase to be well-defined for two-dimensional

images. This method will be seen throughout this thesis. We first present an overview.

We note that we use concepts from several fields of study such as multilinear algebra,

8



image processing, bioinformatics and Fourier analysis.

The QFT is special because its properties allow us to unitarily transform a family

of images X to a family of images X . That is, QFT : X → X in a way that preserves

their structure and geometry. In our case, the family of images is represented as

(2, 0)-tensors and defined in a way to reduce the image distortion under the QFT.

Furthermore, the inverse quantum Fourier transform iQFT will also take a family

images to a family of images, iQFT : X → X . This is implemented as a two-

dimensional QFT. We use this two-dimensional QFT to produce what is known as a

consensus model for tensor representations of images.

However, before moving into developing this useful QFT to generate our consensus

model, we require a strong mathematical introduction to the concepts needed for

developing this particular model for image processing. This thesis is structured in

the following way: Chapter 2 consists of the mathematical background needed for

understanding tensors and Fourier analysis. Chapter 3 is an elementary introduction

to image processing and consensus modeling. Chapter 4 is our implementation process

in Python. Finally, chapter 5 is the potential future development of our problem and

expansion of our consensus model in image processing.
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2 MATHEMATICAL BACKGROUND

We begin with a review of some important concepts from linear algebra, which

is useful for our discussion of multilinear algebra. It should be noted that we are

assuming the reader has a rudimentary understanding of linear algebra. We review

some basic definitions from linear algebra, because of how often they are referenced

in this thesis.

2.1 A Brief Review of Linear Algebra

We begin our review with some notation, before looking at formal definitions. Let

V be a real vector space. Suppose {b1, . . . , bn} is a subset of elements or vectors of

V . Also, consider {α1, . . . , αn} as the scalars in R. We use this notation, along with

additional notation, once we begin defining new objects.

Definition 2.1 The vectors {b1, . . . , bn} in V are linearly independent if

α1b1 + · · ·+ αnbn = 0

implies that α1 = 0, . . . , αn = 0.

Definition 2.2 The vectors {b1, . . . , bn} in V form a basis of V if the following are

true [9]:

1. The vectors are linearly independent.

2. The vectors span V , which is to say that every vector in V can be written as a

linear combination of {b1, ..., bn}.

10



Example 2.3 Let V = Rn. Then δ1 = (1, 0, 0, . . . , 0), δ2 = (0, 1, 0, . . . , 0), . . . , δn =

(0, 0, 0, . . . , 0, 1) is a basis for Rn. In fact, this is called the standard basis for Rn.

We note that this basis is used extensively in this paper.

Recall, that a linear transformation, f : V → V is a transformation which satisfies

the property

f(αv + βw) = αf(v) + βf(w),

where α, β ∈ R and v, w ∈ V [6]. It’s common to say that f is linear or that f is a

linear map, which just means that f is a linear transformation.

2.2 Multilinear Algebra and Tensors

Tensors were first introduced at the end of the nineteenth century [4]. Since,

the arrival of tensors, they have proven useful in physics, engineering, differential

calculus, algebra, geometry, and computer science. In this thesis, we consider images

to be tensors. We begin by discussing what tensors are and how tensors will be used

in the duration of this thesis. First, we must introduce multilinear algebra.

Definition 2.4 Let V be a real vector space. A linear functional on V is a map

L : V → R if for every α, β ∈ R and for every v, w ∈ V , we get the following:

L(αv + βw) = αL(v) + βL(w).

Example 2.5 Let x = [x1, . . . xn]T be a set of vectors in Rn, which is represented

as column vectors. Then any linear functional say L, there exists a row vector

[a1 . . . , an] such that

11



L(x) = [a1 . . . , an]

x1...
xn

 = a1x1 + · · ·+ anxn

We also define V ∗ = {L : V → R | L(αv + βw) = αL(v) + βL(w)} to be the

dual space of V . The components of a linear functional L are said to be covariant.

That implies that the components will change by L if the basis for a given vector also

changes by L. A linear functional is known as a covariant tensor or a (1, 0)-tensor,

denoted by T 0
1 . This is also called a rank-1 tensor. In the above definition, we think of

the elements of V as columns and the elements of V ∗ as rows. Once we look at tensor

spaces, this will become more clear. Let us now expand our knowledge of functionals

to include both bilinear and multilinear functionals.

Definition 2.6 A bilinear functional on V is a map G : V × V → R such that

G(u, τv + µw) = τG(u, v) + µG(u,w)

G(τu+ µw, u) = τG(v, u) + µG(w, u)

for every τ, µ ∈ R and for every u, v, w ∈ V .

The definition of a bilinear functional extends naturally to that of multi-linear func-

tions.

Definition 2.7 A multilinear functional [2] is a map T : V1 × V2 × · · · × Vn → R

which is linear with respect to each variable, where Vj, j = 1, . . . , n are real vector

spaces.

12



We say that the multilinear functional T is a covariant (0, n)-tensor, denoted by

T 0
n . Using the definition of multilinear functional, we begin developing our under-

standing of tensors to (m,n)-tensors and the rank structure of tensors.

Definition 2.8 A tensor of type (m,n) is a multilinear mapping of the form Lnm :

V × . . .× V × V ∗× . . .× V ∗ → R, where there are n copies of V and m copies of V ∗.

Definition 2.9 The rank of an arbitary (m,n)-tensor T , denoted R = rank(T ), is

the minimal number of rank-1 tensors that yield T in a linear combination [5].

Let V = Rk and denote v ∈ V with respect to the standard basis by v =
〈
v1, v2, ..., vk

〉
.

Similarly, v∗ ∈ V ∗ is denoted 〈v∗1, . . . , v∗k〉. An elementary Riesz representation the-

orem [1] says that if T nm ∈ T nm(V ), then there exists coefficients T i1,...,inj1,...,jn
∈ R such

that

T nm(v1, . . . , vn, v
∗
1, . . . , v

∗
m) =

k∑
i1,...,in,j1,...,jm=1

T i1,...,inj1,...,jm
vj1 . . . vjmv∗i1 . . . v

∗
in .

It follows that T1(V ) = T 0
1 (V ) = V ∗∗ ∼= V . Consequently, it also follows that

T 1(V ) = T 1
0 (V ) = V ∗. We study monochrome images in this thesis which are type

(2, 0) tensors T2. Color images are type (3, 0) tensors, but neither (2, 0) or (3, 0)

tensors are “matrices” in the usual sense. Indeed, consider the (1, 1) tensor

L(v, v∗) =
k∑

i,j=1

T ijv
jv∗i

= [v∗1, . . . , v
∗
k]


∑
T ijv

j

...∑
T ijv

j∑
T ijv

j

 .
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Then T ij maps v ∈ V → w ∈ V , which is a linear transformation. One could say

that linear algebra is the study of T 1
1 tensors, but these are not (2, 0) tensors. This

will be important later when we use column vectors of tensors to model families of

images. Since we have introduced tensors and multilinear algebras, it is time to look

at the tensor product.

The tensor product of two real vector spaces V and W is the vector space of

bilinear mappings of the form L : V ∗ ×W ∗ → R. The set of all (m,n) tensors over

a vector space V is denoted T nm(V ), and are said to have rank m + n. The tensor

product of vector spaces V and W is denoted V ⊗W [6]. However, we also want to

consider the formal definition and existence of the tensor product, as it will allow us

to define the tensor product of two vectors.

Definition 2.10 The tensor product V ⊗W is defined in the following way. Suppose

S = V ×W is a set [16]. Then consider E to be a vector space on S. This means an

element of E is represented by the linear combination,

m∑
i=1

αi(vi, wi),

where wi ∈ W, vi ∈ V and αi ∈ R. If F ⊂ E is the smallest subspace containing all

linear combinations, then it is either of the following forms:

(αv1 + v2, w)− α(v1, w)− (v2, w)

or

(v1αw1 + w2)− α(v, w1)− (v, w2).

We define V ⊗W = E/F . We write v⊗w for Im(v, w) ∈ V ⊗W . Then elements of

14



V ⊗W are formally expressed as

m∑
i=1

αi(vi ⊗ wi).

Let us now introduce a highly important concept, namely, the Kronecker delta func-

tion.

Definition 2.11 The jth Kronecker delta function is a function of the form

δj(k) =


1 if k = j

0 if k 6= j.

Example 2.12 Let V = Rk. Consider the following:

x = [δ1|δ2| . . . |δn]


x1
x2
...
xn


It follows that x takes the form:

x = 〈x1, x2, . . . , xn〉

= x1δ1 + x2δ2 + · · ·+ xnδn.

Theorem 2.13 If {ei} is a basis for V and {fj} is a basis for W , then {ei ⊗ wj} is

a basis for V ⊗W .

Let us look at an idea which is fundamental for our understanding of images. This

idea is known as a tensor space or an image space.

Definition 2.14 The tensor space T nm(v) is the vector space of all real-valued, mul-

tilinear functionals on the Cartesian product of n copies of V with m copies of V ∗.

15



In general, we obtain linear transformations on a tensor spaces from tensor products

on the tensor factors of that space. Let’s look at an example.

Example 2.15 Suppose A : Rm → Rm and B : Rn → Rn are linear transformations

given coefficient wise by A = [aij] and B = [bkl]. The action of A on Rm is given by

Ax =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

an1 an2 an3 . . . ann


x1...
xn

 =
[∑

aijxj

]n
i=1
.

Furthermore, [x1, ..., xn]T implies that x = x1δ1+· · ·+xnδn. Hence, x1 = 〈x1, δ1〉, . . . , xn =

〈xn, δn〉. The result is

Ax =
[∑

aijxj

]n
i=1

=
(∑

a1jxj

)
δ1 + · · ·+

(∑
anjxj

)
δn

More compactly,

Ax =
n∑
i=1

n∑
j=1

aijxjδi.

Here, we can say the dyadic product of A and B is defined

(A⊗B)(x⊗ y) = Ax⊗By

=
n∑

i,j=1

m∑
k,l=1

aijxjbklylδi ⊗ δk

=
n∑

i,k=1

m∑
j,l=1

aijbklxjylδik

where δij = δi ⊗ δj is 1 at index i, j and 0 elsewhere, and y = [yl]
m
j=1. In general, if

t ∈ T 0
2 ,

(A⊗B)t =
n∑

i,j=1

m∑
k,l=1

aijbkltjlδik.
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Now, let B(V ) be the set of bounded linear transformations, B : V → V . Suppose

Γ ∈ B(Rm ⊗ Rn). Then

Γt =
[ m∑

ij

n∑
kl

γijkltjl

]
.

If ekl = bk ⊗ cl, then

ekl = bk ⊗ cl =
∑
s

∑
t

bksδs ⊗ ctlδl

=
∑
s

∑
t

bksctδs ⊗ δl

=
∑
s

∑
t

bkscltδst.

We write the inner product of 〈eij, ekl〉 as

〈∑
k

∑
l

bikcjlδkl,
∑
s

∑
t

bkscltδst

〉
=

∑
kl

∑
st

bikcjlbksclt〈δkl, δst〉

=
∑
kl

∑
st

bikcjlbksclt.

Let s ∈ T 2
0 . Then s = [sij]

m,n
i,j=1 with respect to the standard basis

s =

m,n∑
i,j

sijδij.

Let t ∈ T 2
0 . Then t = [tkl]

m,n
k,l=1 with respect to the standard basis

t =

m,n∑
k,l

tklδkl.

Now,

〈s, t〉 =
〈 m,n∑

i,j

sijδij,

m,n∑
k,l

tklδkl

〉
=

m,n∑
i,j

m,n∑
k,l

sijtkl〈δij, δkl〉

17



Since, 〈δij, δkl〉 is an orthonormal basis, it follows that 〈δij, δkl〉 = 0 when i 6= j and

k 6= l. Hence,

〈s, t〉 =
∑
ij

sijtij.

Dyads are of the form δij = δi ⊗ δj.

2.3 Singular Value Decomposition

Since we are utilizing images, it is useful to understand what a singular value

decomposition is and how it is implemented. The singular value decomposition of a

matrix is commonly abbreviated by SVD.

Consider A = [aij] to be an invertible matrix. We wish to find vectors {v1, . . . , vi}

in the row space Rm, the vectors {w1, . . . , wi} in the column space Rn and the positive-

valued scalars {α1, . . . , αi} so that the vi’s and wi’s are orthonormal for which the

following is true:

Avi = αiwi.

Since A is square, we want to find orthonormal matrices say V and U , where U

and V are square. Also, we want a square diagonal matrix Σ so that

AV = UΣ.

Since, V is orthonormal, it follows that V −1 = V T . Hence, A = UΣV T . Consequently,

AT = V ΣTUT .

18



From here,

ATA = V ΣU−1UΣV T

= V Σ2V T

= V


α1 0 0 · · · 0
0 α2 0 · · · 0
0 0 α3 · · · 0
...

...
...

. . .

0 0 0 αn

V T .

We now find V through the diagonalization of our symmetric, positive-definite matrix,

ATA, where the columns of V are the eigenvectors of ATA and the eigenvalues of ATA

are the α2
i ’-values. To find U , we use the same process with AAT [15].

2.4 The Phase Problem

An important topic in image processing is the phase reconstruction problem, which

deals with the significance of phase and magnitude when studying a particular image

[13]. The reason is that the phase and magnitude of an image are both needed to

reconstruct the original image from its Fourier transform. It should be noted that

neither the magnitude nor the phase of an image are sufficient for the reconstruction

of an image. It is possible to reconstruct an image based on phase, but there must be

a sufficient amount of zeroes in the signal [11]. In both cases, however, the original

image is difficult to recognize or is of poor quality.

For the purpose of this thesis, we look at a FFT applied to images (later, as

tensors). When dealing with a 1-signal (Andrew Young’s model) [18] under the FFT,

the phase is well-defined. This means that we reconstruct an image from its Fourier

transform. However, when dealing with a 2-dimensional images under the FFT2, the

19



phase is not well-defined. As expected, this means the image becomes difficult to

recognize or in the below example, it becomes distorted:

Figure 1: Input Image of Old Man

Figure 2: Reconstructed Image of Distored Old Man under FFT2

This phase distortion issue can be improved by looking at images as tensors.

2.5 Fourier Transform

The Fourier transform FT has many important applications in various fields of

study. Fourier transforms are commonly used in analyzing differential equations,

spectroscopy, quantum mechanics, and image processing. We utilize the FT and
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its properties to the study of image processing. In particular, we apply the Fourier

transform to a tensor structure, in the form of the Quantum Fourier transform QFT.

Before, let us formally define the Fourier transform. We look at the Fourier transform

on Rn. Recall, that periodic functions f ∈ L1([−1, 1]) can be written using a Fourier

series:

f(x) =
a0
2

+
∞∑
m=1

am cos(mπx) +
∞∑
m=1

bm sin(mπx).

Definition 2.16 Suppose f and h are continuous signals. Let f : Rn → C. Then the

Fourier transform of f is defined as

F{f}(u) =

∫
Rn

f(x)e−2πi〈x,u〉dx

where x ∈ Rn and u ∈ Rn if it exists.

There’s also an inverse Fourier transform, which is given by the Fourier inversion

theorem. We formally define it below.

Definition 2.17 Suppose f and h are continuous signals. Let f : Rn → C. Then the

Inverse Fourier transform iFT of f is defined as

F−1{f}(x) =

∫
Rn

f(u)e2πi〈x,u〉du

where x ∈ Rn and u ∈ Rn if it exists.

Also, let us note the following concepts from functional analysis, which come from

the existence of the Fourier transform. If f ∈ L1(Rn), then F (f) exists. Also, F

maps L1(R) onto L∞(R). If f ∈ L1(Rn) ∩ L2(Rn), then F (f) and F−1(f) exist.

Furthermore, F−1F (f) = f. There are cases in which there exists f ∈ L1(R) and

g ∈ L2(R) for which the above do not hold. Let us consider one of these cases.
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Example 2.18 Define, for 1
2
< α < 1 the function,

h(x) =


0 if x < 1

x−α if x ≥ 1

Then h(x) ∈ L2(R) but F (h) does not exist, because

F (h) =

∫ ∞
1

x−αe−iuxdx

we see that F (h) does not converge absolutely.

Now, we look at a particular property which is of great importance to the study of

image processing. This is the property of the FT known as convolution.

Definition 2.19 Suppose f and h are functions in L1[−∞,∞]. Then the convolution

of f and h is the function f ∗ h defined by

(f ∗ h) =

∫ ∞
−∞

f(t− x)h(x)dx.

We also have the discrete Fourier transform DFT. This is referenced often throughout

this thesis. Especially, when we introduce the Quantum Fourier transform QFT. We

consider the DFT in 2-dimensions.

Definition 2.20 Suppose f is a discrete signal. Let x = x1e1 + x2e2. Define f :

{0, ..., N1 − 1} × {0, ..., N2 − 1} → Cn×n. The Discrete Fourier transform in 2D is

defined as

DFT{f}(u, v) =

N1−1∑
i=0

N2−1∑
j=0

f(x)e−2π(iu+jv)/N .

We also have an inverse discrete Fourier transform iDFT.
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Definition 2.21 Suppose f is a discrete signal. Let x = x1e1 + x2e2. Define f :

{0, ..., N1 − 1} × {0, ..., N2 − 1} → Cn×n. The Inverse Discrete Fourier transform in

2D is defined as

DFT−1{f}(x) =

N1−1∑
i=0

N2−1∑
j=0

f(u)e2π(iu+jv)/N .

Fourier transforms are successful in the study of image processing for a number

reasons. One of those reasons is the existence of a fast algorithm approach known

as the fast Fourier transform FFT. This algorithm computes the DFT, but reduces

the computational complexity of the DFT from O(n2) → O(n log n). The way this

works is that the original algorithm assumed that the dimensions of the images are

of the form N = 2k, where k ∈ Z. Then the algorithm recursively divided the even

and odd elements. Hence, reducing the complexity and making the FFT incredibly

useful to dealing with images. Modern FFTs allow for a dimension of any size. This

is of particular interest for our implementation process in Python. Let us look at an

example in R4.

Example 2.22 Consider V = R4. The (FFT) in R4 is

F =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1
1 −1 −1 1

 .
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3 IMAGE PROCESSING AND CONSENSUS MODELING

3.1 Fundamentals of Image Processing

The development of modern technology has allowed us to manipulate a variety

of multi-dimensional signals, which have a system of signals that range from basic

circuits to high-performance computers. This makes the study of image processing of

fundamental importance for the future of technological advancement. One of the ways

we work with signal manipulation is through image processing. In image processing,

we receive a signal called an image as an input and eventually, we receive another

signal called an image, but this time as an output.

More advanced aspects of image processing include that of image analysis, which

studies the informational properties of an image. This means that an image comes

in the form of an input, while a measurement is released as an output. Both image

processing and image analysis is used extensively in this thesis. First, we must define

an image.

Definition 3.1 A digital image in 2D discrete space, denoted a[m,n], is derived

from an analog image a(x, y) in 2D continuous space by a sampling process known as

digitalization.

More specifically, the 2D analog image a(x, y) has N -rows and M -columns [19].

When we take the intersection of the rows and columns, we obtain what is known

as a pixel. For a discrete digital image a[m,n], we have the following for the N -rows

and M -columns, m = {0, 1, 2, . . . ,M − 1} and n = {0, 1, 2, . . . , N − 1}. Consider the

image in Figure 3.

24



Figure 3: Pumpkin Man

A given value that is assigned to a pixel is defined as the average brightness in

the pixel so that it is rounded to the nearest positive integer. In addition to the rows

and columns of an image, we also have what are known as the grey levels of an image,

denoted by L-grey levels. We often find common values for the parameters of a digital

image. For N -rows, we often see the values {256, 512, 525, 625, 1024, 1080}. For M -

columns, we see {256, 512, 768, 1024, 1920} and for L-grey levels, we see {2, 64, 256, 1024, 4096, 16384}.

It is very common to see that case M = N = 2, where K = {8, 9, 10, 11, 12}, because

this case is used in fast computer algorithms such as the fast Fourier transform (FFT).

There are many tools for processing digital images. One of those is a mathematical

tool known as convolution. We have already introduced the notion of convolution with

the FT. Here, we look at the important properties of this concept for the general case,

which is helpful in our understanding of image processing.

Definition 3.2 Let a, b, c, d be arbitrary images. Then convolution is commutative if

c = a⊗ b = b⊗ a.
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Convolution is associative if

c = a⊗ (c⊗ d) = (a⊗ c)⊗ d = a⊗ c⊗ d.

Convolution is distributive if

c = a⊗ (b+ d) = (a⊗ b) + (a⊗ d).

The above convolution properties hold for both discrete and continuous digital

images [8]. Let’s look at some examples of images in a mathematical context.

If x ∈ Rk ⊗ Rk, then ∃xij ∈ R 3

x =
k∑
i=1

k∑
j=1

xijδij

Note that, x is an array or an image, not a matrix, though it can also be written as

a rectangular array as 
x11 x12 x13 . . . x1k
x21 x22 x23 . . . x2k
...

...
...

...
...

xk1 xk2 xk3 . . . xkk


Furthermore, x is a vector in Rk ⊗Rk. Thus, images are vectors in Rk ⊗Rk. Tensors

have great value in the study of images, because the tensor structure allows us to

obtain an orthonormal basis for arrays. In other words, we obtain an orthonormal

basis for Rm ⊗ Rn as follows:

1. b1, . . . , bm being an orthonormal basis for Rm.

2. c1, . . . , cn being an orthonormal basis for Rn.

3. eij = bi ⊗ bj being an orthonormal basis for Rm ⊗ Rn.
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Also,

bi = bi1δ1 + · · ·+ bimδm =
∑
k

bikδk.

and

cj =
∑
l

cjlδl.

Hence,

eij = bi ⊗ cj

=
∑
k

∑
l

bikδk ⊗ cjlδl

=
∑
k

∑
l

bikcjlδk ⊗ δl

=
∑
k

∑
l

bikcjlδkl.

Hence,

 bi1cj1 bi1cj2 . . . bi1cjn
...

...
...

...
bimcj1 bimcj2 . . . bimcjn

 ∈ R2 ⊗ R2.

3.2 The Quantum Fourier Transform

Before we define the Quantum Fourier Transform QFT, we introduce some con-

cepts in quantum information. These concepts will help motivate and clarify some

of the subtly involved with the QFT. Quantum computing and quantum information

are a developing field of interest for computer science, physics and applied mathe-

matics. It was started by a plenary talk and subsequent paper by Richard Feyman

in 1982 [7]. It was originally motivated as a means of testing Quantum Field Theory

Models. Quantum computing uses principle of superposition to solve (some) deter-

ministic non-polynomial time problems in polynomial time. Before defining the QFT,

let’s look at some basic concepts in quantum computing. An understanding of the
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mathematical framework behind quantum information is required for understanding

the QFT. This all starts with Hilbert spaces. Hilbert spaces are of great significance

in quantum information.

Let our vector space be V = Cn, where the n-tubles are complex numbers

(z1, . . . , zn). In this case, the n-tubles are the vectors for V . Now, physicists use

a convenient and accessible notation for an inner product. This is known as bra-ket

notation, denoted by 〈·| (called a ’bra’) and |·〉 (called a ’ket’). Mathematically speak-

ing, these help indicate whether an object belongs to either a row space or a column

space, respectively. For instance, the inner product |u〉 and |v〉 is denoted by 〈u|v〉.

Definition 3.3 Let u, v, w be vectors and α be a scalar in a vector space V . Then

an inner product satisfies the following properties:

1. 〈u|v〉 = (〈v|u〉)∗ (Conjugate symmetry)

2. 〈u|v + w〉 = 〈u|v〉+ 〈u|w〉 (Linearity)

3. 〈u|v〉 ≥ 0. (Positive definite)

Example 3.4 Consider Cn. This vector space has an inner product, defined by,

〈u|v〉 =
n∑
j=1

u∗jvj = (u∗1, . . . , u
∗
n)(v1, . . . , vn)

′
.

Also, an inner product induces a norm, ||u|| =
√
〈u|u〉. This particular example is a

Hilbert space. This brings us to formally defining a Hilbert Space.

Definition 3.5 A Hilbert space is a vector space H with an inner product 〈u|v〉 such

that the norm is defined by

||u|| =
√
〈u|u〉
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and the space is complete in the norm.

We have already seen one example of a Hilbert space. Now, let us look at some more

examples of Hilbert spaces to help illustrate exactly what spaces are Hilbert spaces.

Example 3.6 Consider Rn with the inner product,

〈x|y〉 =
n∑
k=1

xkyk.

This is a Hilbert space over R.

Example 3.7 An important example from analysis is that of L2(R) with the inner

product,

〈f |g〉 =

∫
fg.

This is a Hilbert space induced by the L2 norm over R.

From the above definition of a Hilbert space, we also get some important definitions

which utilize the concept of a Hilbert space to develop and construct other mathe-

matical objects.

Definition 3.8 An operator L on H

L : H → H, is linear if

the following is true:

L(a |u〉+ b |v〉) = aL(|u〉) + bL(|v〉),

where |u〉, |v〉 ∈ H and a, b ∈ C.
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Definition 3.9 An operator L on H is a self-adjoint operator if L = L∗. In physics,

this is known as a Hermitian operator.

We note that an operator U is a unitary operator if UU∗ = U∗U = I. These are

some key definitions that follow from introducing Hilbert spaces. These definitions

will be of use in later chapters.

In classical computing, computers use transistors to compute ones or zeroes, in-

dividually. However, in quantum computing, quantum computers would be able to

compute ones and zeroes, simultaneously. This is known as a superposition of quan-

tum states. A superposition of a quantum state is a state of information in which

both ones and zeroes are computed at the same time via a quantum bit [14]. Quan-

tum bits are very similar to the concept of a bit in classical computing. For a classical

bit, we have a state of either 0 or 1. Whereas in quantum computing, we have the

notation of a qubit, which has the states |0〉 and |1〉. More specifically, a qubit could

also take the superposition states,

|ψ〉 = α |0〉+ β |1〉 ,

where α, β ∈ C and have the property

|α|2 + |β|2 = 1

called amplitudes. That means the states of a given qubit are vectors of length 1

(called unit vectors), which belong to a complex vector space V = C. Furthermore,

the states |0〉 and |1〉 are an orthonormal basis for the space V . We call this a

computational basis state.
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In mathematics or other related fields, it is often necessary to solve problems by

transforming a given problem into another type of problem so that the solution is

thought to exist there or is defined in a manner to help us understand it better.

This is why the study of transformations are so important to both mathematics and

computer science. The field of quantum computing has led to the discovery that some

transformations allow for faster computations on a quantum computer. This discovery

has created an interest in the construction of fast algorithms in mathematics.

This brings us directly to the quantum Fourier transform QFT. As seen in a

previous chapter, we defined important transformations e.g., the Fourier transform

FT and the discrete Fourier transform DFT. These are useful for our definition of the

QFT, which is a special type of DFT. In particular, the QFT is a DFT that occurs

on an orthonormal basis of quantum states, |0〉 , . . . , |N − 1〉. From here, we define

the QFT as a linear operator L with an action on the basis states. We formally write

the QFT as,

|j〉 → 1√
N

N−1∑
k=0

e−2πijk/N |k〉 .

We could also write this in bra-ket notation as,

N−1∑
j=0

xj |j〉 →
N−1∑
k=0

yk |k〉 .

The result is known as the quantum Fourier transform [10]. Continuing this idea, we

define the inverse quantum Fourier transform (iQFT) by

|k〉 → 1√
N

N−1∑
k=0

e2πijk/N |j〉 .

In bra-ket notation as,
N−1∑
k=0

yk |k〉 →
N−1∑
j=0

xj |j〉 .
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From our earlier look at the Kronecker delta function, we see how to construct

the QFT and its inverse by using this function, and other needed objects from linear

algebra, such as, the notation of a basis B.

Consider the following example:

x = [δ1|δ2|δ3|δ4]BB−1x

= [b1|b2|b3|b4]B−1x.

Thus,

B−1x =


β1
β2
β3
β4


This allows us to define the following, x = β1b1 + β2b2 + β3b3 + β4b4. We look at the

Quantum Fourier Transform QFT. Recall, FX = Fourier Transform. For the QFT,

F


β1
β2
β3
β4

 =


β̂1
β̂2
β̂3
β̂4


All of this implies that, QFT(x) = β̂1b1 + β̂2b2 + β̂3b3 + β̂4b4. Also, there’s an inverse

QFT:

F−1


β̂1
β̂2
β̂3
β̂4

 =


ˆ̂
β1
ˆ̂
β2
ˆ̂
β3
ˆ̂
β4


Therefore, iQFT(x) =

ˆ̂
β1b1 +

ˆ̂
β2b2 +

ˆ̂
β3b3 +

ˆ̂
β4b4. Now, that we have looked the

definition of the Quantum Fourier transform and at how one is constructed, it is

necessary to see how the QFT is used in this paper.
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3.3 Foundations and Goal of Consensus Modeling

We look at a statistical approach from bio-informatics known as a consensus

model. A consensus model utilizes a family of signals for a predictive model. A

consensus model uses what is known as a homological family.

Definition 3.10 A homological family is a family of signals (family of sequences,

family of residue chains, etc) in which each signal represents an individual instanti-

ation of an overall process.

Some examples include, a protein expressed by a common gene that occurs in

several species, mutations of a particular protein family and an (EEG) recording of

the same physiological phenomena. In particular, a family of signals is homologous

if each signal is sampled from the same phenomenon. Now, a consensus model uses

the concept of a homological family.

Definition 3.11 A consensus model of a homological family is a sequence (signal)

of random variables (stochastic process) whose expected value at any given “time”

corresponds to the “most likely occurring” value in the given homological family at a

given time.

In general, a consensus model combines statistical methods along with signal

processing concepts to build a better representation of a homologous family of related

signals. A consensus model is derived from a consensus spectrum, which is a spectral

representation i.e., frequency or periodicity of the homological family rather than

directly from the family itself. Consensus modeling is a newly developing approach
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with some beneficial applications, such as, the reference Genome for a species of

organisms, an (EEG), and for studying sequences of amino acids [12].

The consensus spectrum has some useful applications such as identifying certain

hot spots in proteins [17]. The hot spots are found by generating a consensus spectrum

from the signal of proteins. From here, the consensus model determines the “peeks”

(hot spots) from the consensus spectrum. For this thesis, our signals are from a

homological family of images as tensors.

3.4 Andrew Young’s Consensus Model

A former graduate student at East Tennessee State University (ETSU), Andrew

Young, also had a consensus model approach in his thesis ”A Consensus Model for

Electroencephalogram Data Via the S-Transform” [18]. In his approach, 32 signals

were taken from an Electroencephalogram (EEG) recording session. This data acts

as the family of signals used in his consensus approach to help produce the consensus

model. He used an S-transform, which is just a special type of Fourier transform, to

produce the consensus. After the consensus was produced, he used a bootstrapping

process to generate the consensus spectrum in MATLAB.

Finally, a consensus model was produced via an inverse S-transform of the con-

sensus spectrum. Earlier in the paper, we saw the important of phase, in particular,

when looking at the phase reconstruction problem and how it is difficult to reconstruct

higher dimensional images. Furthermore, this is highly important because a consensus

model depends on phase. Andrew Young’s model worked well for one-dimensional sig-

nals i.e., Young’s model was a one-dimensional consensus model. However, his model
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runs into phase issues with two-dimensional models under the FFT.

His model fails, because it is no longer a predictive model. In other words, his

model is unable to reconstruct the phase from the original signal. Our approach seeks

to redefine the problem, in such a way, to produce a predictive consensus model for

two-dimensional images as tensors under the quantum Fourier transform QFT. Also,

when we use the inverse quantum Fourier transform iQFT, we are able to see an

improvement in the phase between the original image and the reconstructed image.

We note that we are attempting to merely improve upon the phase related issues with

higher dimensional models.
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4 IMPLEMENTATION OF THE QUANTUM FOURIER TRANSFORM FOR A

CONSENSUS MODEL OF FAMILIES OF IMAGES

Our implementation of the quantum Fourier transform for a consensus model

of families of images seeks to improve upon the phase reconstruction issues with

2-dimensional images. In particular, this implementation process represents square

images as (2, 0)-tensors. From this point, we transform those images under the QFT

to produce a consensus model. Below, we explain our implementation process and

results in a strong theoretical manner. In the appendix section, our Python-based

code can be viewed and used for future related consensus models.

4.1 Implementation of Our Model

We consider a collection of grayscale “Pumpkin Man” images A1, . . . ,Am as n×n

shaped T 0
2 tensors differing only in phase. Define A = [A1, . . . ,Am]t to be a new

matrix. We note that A is the direct sum ⊕ of m-copies of T 0
2 (n). This is a column

vector in m-copies of V ⊕ · · · ⊕ V .

If W = V ⊕ V ∗, then column representation is not a good model of a family of

images. We require another method to build our model, which better represents our

family of images. Recall linear transformations are T 1
1 tensors. This means they are

a mix of V and V ∗. Hence, we must treat images as (2, 0)-tensors, because image

tensors are pure tensors. We only consider an image X to be an n × n picture i.e.,

a square image. Our image X is represented in the SVD as X = UΣVT . However,

this approach is an “ad hoc” tensor approach. We want to formally represent X

as a tensor. We want to transform the SVD approach into a tensor decomposition
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approach. This is conducted in the following way. Let U = [u1|, . . . , |un] and V =

[v1|, . . . , |vn]. Then eij = ui ⊗ vj is a basis for U ⊗ V . The SVD loos like, X =∑
i siui ⊗ vi, where si are the singular values. Furthermore, X =

∑
i,j cijeij, where

cij =


si if i = j

0 if i 6= j.

This becomes our formal representation of X in the eij basis i.e., we have taken the

SVD approach into the tensor decomposition approach.

In matrix algebra, we have an “ad hoc” SVD decomposition of A,

C = A∗A = A∗1A1 + · · ·+A∗mAm

= VΣ2V∗,

where diagonalization of C is given by C = VΣ2V∗ and V = [v1| . . . |vn] is unitary i.e.,

V∗ = V−1. Also, Σ = diag(s1 . . . sn) are the singular values of A. Furthermore, define

uj = 1
sj
Avi for j = 1, . . . , r. Then {u1, . . . , ur} is an orthonormal basis for range(A).

Let us consider our family of images to take the form A1 ≈ A2 ≈ · · · ≈ Am

differing only in phase. By the SVD decomposition,

A = [u1| . . . |um][Σ1, . . . ,Σm]tV t.

Also, our tensor coefficients with respect to V are of the form
∑

j V t, where A =

ui
∑

j V t. Since we have our family of images (differing in phase) represented in the

tensor decomposition, we apply the QFT. Hence,

QFT

(∑
j

V t
)

= t̂j =⇒ tj = QFT
(
t̂j
)
.
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Thus, A consensus spectrum t̂c is obtained via bootstrapping of geometric mean

of t̂1, . . . , t̂m. We used a single geometric mean to get t̂c. Therefore, we obtain

a Consensus model in the following form Ac = QFT∗(t̂c) and Aj = ujAc = uj

QFT∗(t̂c). This explains how our Consensus model was developed. We show in the

next section the results of our model through a series of images that were generated

by importing our family of images in Python and constructing our consensus model

via the quantum Fourier transform.

4.2 Results from Our Model

We assessed our method by considering a homologous family of “Pumpkin Man”

images that differ only in phase. Notice in Figure 4 that the “Pumpkin Man” image

is symmetric.

Figure 4: Our main “Pumpkin Man” image

We begin by importing the “Pumpkin Man” in Python and creating versions of

it with differing phases. An example is shown in Figure 5.
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Figure 5: Differing phase of our family of “Pumpkin Man” images

Figure 6 is our family of images with respect to the tensor basis.

Figure 6: Image coefficients in the orthonormal basis

In Figure 7, we see the reconstruction of “Pumpkin Man.” These images were

produced from our implementation in Python, which can be seen in the appendices.
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Figure 7: Reconstruction of “Pumpkin Man”
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5 POSSIBLE FUTURE WORK

There are many different directions in which the ideas from this thesis could be

taken. One of those is to consider the case where a family of images are not merely

approximate, but to develop a consensus model for all images being the same i.e.,

A1 = A2, . . . ,= Am. This allows us to consider the model, A = BUΣV t with an

orthonormal basis for T 0
2 from V = [v1|, . . . , |vn]. Thus, the SVD of any Aj takes the

form, Aj = UΣV t, where V ∈ A∗A. Therefore, developing a Consensus model for the

case of A1 = A2, . . . ,Am leads to Ac = UΣV t.

One could also consider non-symmetric images, non-square images or color images.

However, all of these require an implementation on a cluster. The reason is that

tensor based image structures consume computer memory at an exponential rate,

due to their immense size. This is why we used a family of symmetric square images,

because of limited computational time.
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APPENDIX: Python Code

%pylab inline

import numpy

import numpy as np

np.set_printoptions(precision=5, suppress=True)

#import theano

#import theano.tensor as T

#from theano.tensor.nnet import conv

from scipy.linalg import svd, diagsvd

img = imread(’Batman.bmp’)[:,:,0] #subject to change, depending on image.

img = (img + img.T) /2

m,n = img.shape; m,n

r,s = img.shape; r,s

gray()

imshow( img )

A0 = zeros((60,60), dtype=uint8)

A0[0:50,0:50] = img

A1 = zeros((60,60), dtype=uint8)

A1[1:51,1:51] = img

A2 = zeros((60,60), dtype=uint8)

A2[5:55,5:55] = img

A3 = zeros((60,60), dtype=uint8)

A3[10:,10:] = img

A = vstack( [A0,A1,A2,A3])

A.shape

U,Sigma,Vt = svd(A, full_matrices = 0)
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U

Up = U[:250,:250]

matrix(U)*Up.T

matrix(Up)*diagsvd(Sigma,60,60)*Vt

matrix(Up)*Up.T

matrix(Up).I

def TensorBasis(U,V):

m,r = U.shape

n,s = V.shape

assert m == r

assert n == s

E = np.zeros( (m,n,m,n) )

for i in range(m):

for j in range(n):

eij = np.zeros((m,n))

for k in range(m):

for l in range(n):

eij[k,l] = U[k,i]*V[l,j]

E[i,j,:,:] = eij

return E

Onb = TensorBasis(Vt.T,Vt.T)

tij = Onb[0,0,:,:] # = e00

sij = Onb[1,1,:,:] # = e11

tij

def TensorDot(a,b):

m,n = a.shape

r,k = b.shape

assert m==r

assert n==k
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acc = 0

for i in range(m):

for j in range(n):

acc += a[i,j]*b[i,j]

return acc

TensorDot(tij,sij)

acc = np.zeros(tij.shape)

for i in range(len(Sigma)):

acc += Sigma[i]*Onb[i,i,:,:]

ImCoeffOnb = zeros( A0.shape )

for i in range(60):

for j in range(60):

ImCoeffOnb[i,j] = TensorDot(A0,Onb[i,j,:,:])

imshow(ImCoeffOnb)

QFT = fft2(ImCoeffOnb)

for i in range (10):

for j in range(10):

QFT += ImCoeffOnb[i,j] * Onb[i,j,:,:]

QFT

ImReCon = zeros( A0.shape )

for i in range(60):

for j in range(60):

ImReCon += ImCoeffOnb[i,j] * Onb[i,j,:,:]

imshow(ImReCon)

Comp0 = fft2(ImCoeffOnb)

imshow( abs(Comp0))

ImCoeffOnb1 = zeros( A1.shape )
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for i in range(60):

for j in range(60):

ImCoeffOnb1[i,j] = TensorDot(A1,Onb[i,j,:,:])

ImReCon1 = zeros( A1.shape )

for i in range(60):

for j in range(60):

ImReCon1 += ImCoeffOnb1[i,j] * Onb[i,j,:,:]

imshow(ImReCon1)

Comp1 = fft2(ImCoeffOnb1)

imshow( abs( Comp1 ))

imshow( abs(Comp0))

Comp1*Comp0

imshow(abs(_))

csm = ifft2(sqrt(Comp1*Comp0))

csm.real

ImReConC = zeros( A1.shape )

csmr = csm.real

for i in range(60):

for j in range(60):

ImReConC += csmr[i,j] * Onb[i,j,:,:]

imshow(ImReConC)
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