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ABSTRACT 

Description, Taphonomy, and Paleoecology of Late Pleistocene Peccaries 

(Artiodactyla: Tayassuidae) from Bat Cave, Pulaski County, Missouri 

by 

Aaron Levi Woodruff 

The late Pleistocene faunal assemblage from Bat Cave, central Ozarks, Missouri provides an 

opportunity to assess specific aspects of behavior, ecology, and ontogeny of the extinct peccary 

Platygonus compressus. All identifiable elements referable to this taxon were catalogued and 

examined, and a minimum number of individuals of 70 was determined for the sample. The 

presence of distinct, non-overlapping age groups suggests that P. compressus utilized Bat Cave 

on a seasonal basis. A predator-prey relationship with Canis dirus, the second most abundant 

vertebrate from the Bat Cave site, is also described in this study. Damage patterns suggest that 

the feeding patterns of C. dirus at Bat Cave were consistent with its extant relative, and that these 

predators would periodically enter the cave to hunt and/or scavenge peccaries. Overall, the fossil 

material from Bat Cave is virtually unweathered and represents one of the most extensive and 

well-preserved late Pleistocene faunas from the Ozarks. 
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CHAPTER 1 

INTRODUCTION 

The huge sample of peccary remains recovered from Bat Cave (BC), which have been 

referred to the late Pleistocene (Rancholabrean) taxon Platygonus compressus, provides the 

opportunity to examine the paleobiology of this species. Hawksley et al. (1973) identified 6,339 

elements corresponding to a minimum of 98 individual peccaries from Bat Cave, making these 

by far the most numerous species recovered from the site. In spite of its abundance, however, the 

peccary remains at Bat Cave were never analyzed in any great detail. Instead, Hawksley et al. 

(1973) noted that detailed measurements and comparisons would be included in a proposed 

paper by Elaine Anderson and John Guilday, which was never published. Dr. Blaine Schubert 

has visited Bat Cave on several occasions to further assess the deposit. On these trips, additional 

peccary and other vertebrate remains were collected and a preliminary survey was conducted. 

Carnivoran modification and rodent damage was also noted on some of the peccary bones from 

the cave (Schubert, personal communication) but that information has not been published. 

This thesis focuses on the Bat Cave peccary material collected by Hawksley et al. (1973). 

The Hawksley Collection is curated at the Illinois State Museum, and the material collected by 

Schubert is currently housed at East Tennessee State University. For the present study, the 

complete Bat Cave Hawksley collection was borrowed from the Illinois State Museum so that 

descriptive and taphonomic analyses were carried out.  

Some of the fossils collected from the initial excavations were catalogued by Hawksley 

and students at Central Missouri State University (CMS). These fossils were eventually donated 

to the Illinois State Museum (ISM) for curation (Schubert, personal communication). A vast 
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number of the fossils remained uncatalogued and unidentified since the initial collection of the 

sample. Furthermore, many of the catalogued elements were misidentified, and the paired 

elements were never differentiated. Consequently, a major focus of this project was to catalogue 

these remains accurately, a process which first required thorough examination and description of 

all the peccary material.  

The original minimum number of individuals for the Bat Cave P. compressus reported by 

Hawksley et al. (1973) was determined to be 98 based on 77 lower left canines and 21 upper left 

deciduous canines. However, that study did not elaborate how they differentiated the canines and 

examination revealed that some of the isolated dental material was misidentified. The MNI was 

therefore reevaluated in the present study. In addition, skeletal part representation and age 

demographics were recorded where possible.  

Many of the peccary elements show bitemarks which are consistent with those of a large 

canid. Although Schubert (personal communication) had previously noted wolf-like bite damage 

on several of these bones, this has not been published. Thus, taphonomic analysis of the Bat 

Cave fauna was conducted to identify, assess, and describe the evidence of carnivore utilization 

on the peccary material. Additional taphonomic forces such as rodent gnawing, invertebrate 

damage, and weathering were also reported for the first time.  
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CHAPTER 2 

BACKGROUND 

Bat Cave, Missouri 

Bat Cave is located 8km northwest of Waynesville in Pulaski County, Missouri in the 

central Ozarks (Hawksley et al. 1973). It is one of several caves located in the Bear Ridge that 

developed in Gasconade dolomite of Ordovician age. The Ozark Plateau is an uplifted region 

that makes up about half the state of Missouri and portions of northern Arkansas, northeastern 

Oklahoma, and southwestern Illinois (Figure 1). The core of this range existed as an island in the 

Paleozoic seas, as evidenced by reef complexes which occur in the sedimentary layers 

surrounding it (Unklesbay and Vineyard 1992). Dissolution has led to the formation of numerous 

karst features such as springs, losing streams, sinkholes, and thousands of caves in the limestones 

and dolomite bedrock, all of which characterize the region today (Vineyard and Feder 1974). The 

Ozarks have remained unglaciated throughout the Quaternary and the region is presently covered 

in thick, Quercus-dominated forests with mixtures of less abundant deciduous trees and a 

grassland-forest ecotone which has been variable since the Pleistocene (King 1973; Thom and 

Wilson 1980).  
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Figure 1. Location of Bat Cave in relation to the Ozark Plateau and Pulaski County, Missouri 

 

Bat Cave itself was recognized for its paleontological potential as early as the late 1950s. 

Portions of the cave were excavated throughout the 1960s by students and faculty from Central 

Missouri State University (now University of Central Missouri). Excavations were primarily 

under the guidance of Dr. Oscar Hawksley and focused on the section of the cave known as the 

Bone Passage, though fossils were also recovered from Devil’s Kitchen (Figure 2). The Bone 

Passage is a low, narrow crawlway about 150m long. According to Hawksley et al. (1973), most 

bones were found within the upper 30cm of a matrix with minimal moisture content, thus 

forming an ideal environment for preservation of the fossils. Some bones were found in the 

center of the floor and consisted of the more durable skeletal elements such as teeth. The 

majority of the material, however, was apparently found along the sides of the passage. 

Furthermore, there is evidence that the terminal end of the Bone Passage was once an entrance 
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that may have been utilized by ancient animals. According to Hawksley et al. (1973) the matrix 

there is wetter, indicating seepage of moisture from the outside. Hawksley et al. (1973) 

suggested in their report that the fossil animals found in the cave likely entered the cave 

voluntarily or were introduced there by a predator. They also noted that it was unlikely that the 

remains were deposited by water due to the relative lack of fluvial-action abrasion. Following his 

own excursions to Bat Cave, Dr. Blaine Schubert (personal communication) noted that a large 

portion of this deposit is still undisturbed and deserves further attention; the region closest to the 

potential Pleistocene entrance but farthest area to reach in current passageways. 

 

Figure 2. Map of Bat Cave, Pulaski County, Missouri showing: (A) potential ancient entrance to Bone 

Passage, (B) Devil's Kitchen, (C) upper bluff entrance, (D) 3m drop-off in main passage, (E) passage 

junction, and (F & G) other current entrances. Redrawn from Hawksley et al. (1973). 
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Hawksley et al. (1973) identified about 45 terrestrial and semiaquatic vertebrate taxa, 

many of which are extant (Table 1), and based on this interpret the paleoecology as a well-

watered forest-grassland ecotone with a strong taiga influence. Aquatic vertebrates from the Bat 

Cave fauna include hellbender salamander (Cryptobranchus alleganiensis), American beaver 

(Castor canadensis), and muskrat (Ondatra zibethica); the presence of which suggest that the 

site lay very near a substantial water source such as a stream (like the nearby Gasconade River). 

Open woodland and plains-adapted taxa include meadow vole (Microtis pennsylvanicus), eastern 

cottontail (Sylvilagus floridanus), snowshoe hare (Lepus americanus), and coyote (Canis 

latrans). Boreal forest taxa whose extant range limits lie far north of the site include yellow-

cheeked vole (Microtis xanthognathus), northern bog lemming (Synaptomys borealis), and fisher 

(Martes pennanti). If these identifications are correct, the presence of these taxa suggest an 

overall cooler climate was present at the time of deposition. This climatic signal is supported by 

unpublished radiocarbon dates which indicate an age of last glacial maximum (Blaine Schubert, 

personal communication). Based on this date and the recorded paleofauna, the paleoenvironment 

immediately surrounding Bat Cave may be interpreted as an open forest habitat with Pinus and 

Picea being dominant and Quercus less so, as noted by King (1973). Other noteworthy extant 

vertebrates from the site include American black bear (Ursus americanus), red fox (Vulpes 

vulpes), and common raccoon (Procyon lotor). Extinct taxa include giant short-faced bear 

(Arctodus simus), dire wolf (Canis dirus), and flat-headed peccary (Platygonus compressus); the 

latter being not only the most abundantly represented taxon, but also the only ungulate reported 

from the site by Hawksley et al. (1973). 
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Table 1: List of Vertebrates Identified from the Bat Cave Site by Hawksley et al. (1973) 

Taxon  NISP MNI Range 

AMHPIBIA 

Caudata: Cryptobranchidae 

Cryptobranchus sp. Hellbender salamander 3 1 P 

Anura: Bufonidae 

Bufo sp. Unidentified toad 1 1  

Anura: Ranidae 

Rana sp. Unidentified frog 1 1  

REPTILIA 

Serpentes: Colubridae 
Pituophis sp. Gopher snake    

Serpentes sp. Unidentified snake    

AVES 
Passerine Unidentified passerine bird 1 1  

MAMMALIA 

Insectivora: Soricidae 
Sorex cf. S. cinereus Masked shrew 1 1 N 

Sorex cf. S. longirostris Southeastern shrew 1 1  

Blarina brevicauda Short-tailed shrew 3 2 N 

Chiroptera: Vespertilionidae 
Myotis cf. M. lucifugus Little brown bat 1 1 P 

Myotis cf. M. griscescens Gray bat 10 3 P 

Myotis sodalis Indiana bat 1 1 P 

Myotis spp. Unidentified vespertilionid 10 7  

Pipistrellus subflavus Pipistrelle 1 1 P 

Eptesicus fuscus Big brown bat 8 2 P 

Lasiurus cf. L. cinereus Hoary bat 3 1 P 

Lasiurus cf. L. borealis Red bat 3 2 P 

Chiroptera spp. Unidentified chiropterans 142   

Lagomorpha: Leporidae 
Sylvilagus floridanus Eastern cottontail 30 3 P 

Lepus americanus Snowshoe hare 142 4 N 

Rodentia: Sciuridae 
Marmota monax Woodchuck 68 6 P 

Tamias striatus Eastern chipmunk 1 1 P 

cf. Tamias unidentified chipmunk 1 1  

Tamiasciurus cf. T. 

hudsonicus 

Red squirrel 8 1 N 

Rodentia: Geomyidae 
Geomys bursarius Plains pocket gopher 15 3 P 

Rodentia: Castoridae 
Castor canadensis American beaver 3 1 1 

Rodentia: Cricetidae 
Peromyscus sp. White-footed mouse 12 3 P 

Neotoma floridana Eastern woodrat 44 5 P 
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Table 1 (continued) 

Clethrionomys cf. C. gapperi Red-backed vole 1 1 N 

Microtis pennsylvanicus Meadow vole 9 1 N 

Microtis xanthognathus Yellow-cheeked vole 26 4 N 

Microtis sp. or Pitymys Unidentified vole 9 2  

Microtis sp. Unidentified vole 2   

Ondatra zibethica Muskrat 1   

Synaptomys borealis Northern bog lemming 1   

     

Rodentia: Muridae 
Rattus sp. Unidentified rat 1 1  

Carnivora: Canidae 
Canis dirus Dire wolf 177 6 E 

Canis latrans Coyote 5 2 P 

Vulpes vulpes Red fox 2 1 P 

Carnivora: Ursidae 
Arctodus simus Giant short-faced bear 45 1 E 

Ursus americanus Black bear 1 1 P 

Carnivora: Procyonidae 
Procyon lotor Common Raccoon 1 1 P 

Carnivora: Mustelidae 
Martes pennanti Fisher 1 1 N 

Mustela frenata Long-tailed Weasel 1 1 P 

Carnivora: Felidae 
Lynx rufus Bobcat 1 1 P 

Artiodactyla: Tayassuidae 
Platygonus compressus Flat-headed Peccary 6339 98 E 

 

N=extant range lies north of Missouri or Ozarks, E=extinct, P=occurs in the region in historic times. This 

table represents the original identifications, and does not address revisions in taxonomy, phylogenetic 

systematics, or potential misidentifications. The Rattus is considered to be a contaminent. 

 

Differences Between Pigs and Peccaries 

The family Tayassuidae (Palmer 1897), more commonly known as the peccaries, share a 

common ancestry and are superficially similar to true pigs (Suidae) in general appearance; both 

sharing a distinctive cartilaginous nasal disc used for digging through soft substrates (Sowls, 

1997). However, the two families diverged very early in the Oligocene (Colbert 1980). Although 

fossil records show that peccaries were once present in Eurasia and Africa (Pearson 1927; 
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Colbert 1933; Hendy 1976), much of their evolutionary history has taken place in North America 

and they have been restricted to the Old World since the Pliocene (Scott 1913; Simpson 1950; 

1980; Woodburne 1969a; 1969b). Pigs, on the other hand, are restricted to the Old World and 

there is no evidence of them ever being present in North America prior to European colonization 

(Simpson 1980).  

A number of behavioral, anatomical, and ecological differences further differentiate the 

two families. Both pigs and peccaries have continually growing canines which occlude against 

each other, keeping them reasonably short in length and maintaining sharpened edges (Sowls 

1997). In peccaries, however, the canines are oriented vertically and are concealed behind the 

lips when the mouth is closed (Simpson 1946; Sowls 1997). Pigs have true canine-tusks that 

protrude laterally and curve upward, remaining externally visible at all times (Simpson 1946). 

Because they are no longer contained behind closed lips, the tusks of some pig species may grow 

to quite impressive lengths and shapes. Extant peccaries possess 38 teeth with a consistent dental 

formula of I 2/3, C 1/1, P 3/3, M 3/3 (Simpson 1946; Wetzel 1977; Sowls 1997). Pigs are more 

variable in their dentition, having 34 to 44 teeth with a dental formula of I 1-3/3, C 1/1, P 2-4/2-

4, M 3/3 (Simpson 1946). Compared to pigs, peccaries have more compact bodies with longer, 

more slender limb proportions for sustained running, as well as a vestigial tail composed of 6 to 

9 caudal vertebrae (Sowls 1997).  
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Figure 3. Anterior view of the skulls of a pig, Sus scrofa ETVP 5260 (left), and a peccary, Pecari tajacu 

ETVP 5253 (right). Note the difference in the orientation of the canines. Those of the pig point laterally 

and upward, and would be permanently visible even with jaws occluded. Those of the peccary are more 

vertically-oriented, and as such would be concealed behind the lips during jaw occlusion. Photography by 

Aaron Woodruff. 

 

Extant Peccaries 

The collared peccary (Pecari tajacu) (Figure 4) is the smallest and most widely 

distributed of all extant peccaries; occurring from southern Texas, New Mexico, and Arizona in 

the United States, south through northwest Sonora in Mexico to Peru west of the Andes, and 

Santiago del Estero in Argentina east of the Andes (Oliver 1993; Gongora et al. 2011). 

Pleistocene-age fossils attributed to this species are also known from the southeastern United 

States (Hulbert et al. 2009), showing that its range was once even more expansive in the past. It 

is adapted to live in a wide variety of habitats including deserts, arid woodlands, oak woodlands, 
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and tropical rainforests (Oliver 1993; Sowls 1997). Diet varies in accordance to its range of 

habitats to include a wide variety of fruits, nuts, roots, tubers, and the edible parts of green 

plants.  

 

Figure 4. Collared Peccary (Pecari tajacu) at Petencito Zoo, Santa Elena, Guatemala. Photography by 

Bernard Dupont, used with permission. 

 

The white-lipped peccary (Tayassu pecari) (Figure 5) is also widely distributed, albeit to 

a lesser extent than the collared peccary. Its range extends from Veracruz and Oaxaca in southern 

Mexico, through Central America, and south to Ecuador west of the Andes, and Entre Rios in 

Argentina east of the Andes. It generally favors areas of higher rainfall and thicker bush cover 

than either the collared or Chacoan peccary (see below); occurring in tropical rainforests and 

savannas with ready access to a permanent water source such as a river, lake, or marsh (Oliver 
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1993). It is currently the only land mammal in the Neotropics that regularly forms large herds, 

which can number in the hundreds. White-lipped peccaries are more frugivorous than the other 

extant peccaries. Their diet comprises of fruits, seeds, and roots, but they will occasionally eat 

invertebrates, small vertebrates, fungi, and carrion (Oliver 1993). 

 

Figure 5. White-lipped Peccary (Tayassu pecari) at Petencito Zoo, Santa Elena, Guatemala. Photography 

by Bernard Dupont, used with permission. 

 

The Chacoan peccary (Catagonus wagneri) (Figure 6) has the most restricted distribution 

of any extant peccary. This species was first identified from subfossil remains from Santiago del 

Estero Province, Argentina, which were later described by Rusconi (1930). It was thought to 

have been extinct until living populations were discovered by Wetzel et al. (1975). The only true 

fossil record for this species comes from the Sopas Formation in Uruguay, a late Pleistocene 
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locality that lies far away from its known historic distribution (Gasparini et al. 2013). It currently 

inhabits the semi-arid thorny forests of dry Chaco in western Paraguay, southeastern Bolivia, and 

northern Argentina that have high temperatures and low rainfall year round (Mayer and Wetzel 

1986; Oliver 1993; Gasparini et al. 2006; Gasparini et al. 2013). 

 

Figure 6. Chacoan peccary (Catagonus wagneri) at Beardsley Zoo, Bridgeport, Connecticut. 

Photography by James Dowling-Healey, used with permission. 

 

Flat-Headed Peccary (Platygonus compressus) 

The flat-headed peccary (Platygonus compressus) was first identified in 1806 and was 

fully described in the mid-19th century (LeConte, 1848). It was the most common North 

American peccary species during the late Pleistocene and had a wide distribution, ranging from 

east coast to west coast and from Canada to Mexico (Kurtén and Anderson 1980; Schmidt 2008). 
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It is particularly abundant in cave deposits around the United States (Hoare et al. 1964; Slaughter 

1966; Davis 1969; Guilday et al. 1971; Hawksley et al. 1973; Wilson et al. 1975; Schubert and 

Mead 2012) (Figure 7), suggesting that such subsurface shelters were important to the ecology of 

this species.  

 

Figure 7. Known Rancholabrean sites which have yielded Platygonus fossils, represented by green 

circles (P. compressus) and green triangles (P. sp). Hollow stars denote the occurrence of Platygonus in 

cave deposits. Coordinate data recovered from the MIOMAP/FAUNMAP, 2011. 

 

Compared to extant peccaries, P. compressus was highly specialized in a number of 

aspects (Figure 8). The Chacoan peccary (Catagonus wagneri), which currently resides in the 



26 
 

Gran Chaco region of South America, is thought to be the closest living relative of P. 

compressus (Mayer and Wetzel 1986). Both these species are somewhat specialized with many 

features that point to a preference for more open or lightly-wooded habitats such the 

development of relatively longer and more slender limbs for fast running (Kurtén and Anderson 

1980; Sowls 1997). Both Platygonus and Catagonus have reduced the number of toes on their 

hindfeet to just two, instead of the more plesiomorphic three seen in other peccaries (Mayer and 

Wetzel 1986). In addition to this, Platygonus has lost the lateral toes on the manus, thus 

becoming fully didactyl (Guilday et al. 1971; Kurtén and Anderson 1980). Their eyes are also set 

higher up on the skull than other peccaries, an adaptation which is more extreme in Platygonus 

and is interpreted to reflect more derived long-range vision; making it easier to spot predators in 

open areas or while feeding on ground level vegetation (Guilday et al. 1971; Kurtén and 

Anderson 1980; Mayer and Wetzel 1986). In addition, the teeth have higher, zygolophodont 

cusps to handle more leafy plant matter than what is regularly ingested by other peccaries 

(Wetzel 1977; Kurtén and Anderson 1980; Mayer and Wetzel 1986); although those of 

Catagonus are proportionally larger and more robust than those of Platygonus (Guilday et al. 

1971; Wetzel et al. 1975). The rostra of both genera are also deeper and house enlarged sinuses 

and complex turbinates which, at least in the extant C. wagneri, help to cope with dry, dusty air 

(Finch et al. 1972; Mayer and Wetzel 1986). Platygonus compressus, however, seems to be more 

associated with relatively well-watered localities (Kurtén and Anderson 1980), and thus heavily 

turbinated nostrils in this taxon may have been more of an adaptation for enhanced olfaction or 

to help warm and humidify incoming air during the winter months. Overall, P. compressus is 

generally thought of as a highly cursorial animal adapted to relatively open environments (Finch 

et al. 1972; Wetzel 1977; Kurtén and Anderson 1980). 
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Figure 8. Composite skeleton (A) and life reconstruction (B) of the flat-headed peccary, Platygonus 

compressus. Photography by Osborn at the American Museum of Natural History. Artwork by Aaron 

Woodruff, 2015. 
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Most past interpretations of the dental morphology of P. compressus have suggested that 

it was a browser (Holman 2001; Schmidt 2008). Kurtén and Anderson (1980) stated that “the 

hypsodont teeth were adapted to chew coarse vegetation, and the dentition suggests browsing 

habits.” These early interpretations stem from observations of the post-canine dentition, which is 

more hypsodont even when compared to other Platygonus species. The molars, as noted above, 

further differ from the bunodont pattern seen in most peccary taxa and have become 

zygolophodont, with tall cusps adapted to crush hard browse. Finally, Schmidt (2008) performed 

low magnification dental microwear analysis of P. compressus and compared its profile to those 

of several extant grazers, mixed feeders, and browsers. The microwear profile of P. compressus 

was found to be most consistent with those of browsing herbivores. 

Demographics 

The huge P. compressus sample collected from Bat Cave provides the opportunity to 

obtain demographic and ontogenetic information about the population. Hawksley et al. (1973) 

noted in their report that various age groups from very young to very old animals are present in 

the sample. The three extant peccary species may be defined as territorial and highly social, 

existing in close knit herds that may hold the same home range over many generations (Bigler 

1974; Taber 1991; Taber et al. 1993). Through phylogenetic bracketing it can be inferred that 

similar behavior was present in P. compressus (Witmer 1995). Further evidence to this end 

comes in the form of the shear abundance of P. compressus fossils at a given locality, often 

vastly outnumbering all other taxa (Kurtén and Anderson 1980), as well as a number of caves 

with extensive peccary trackways (Schubert, personal communication).  
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Evidence of Predation 

As defined by Haynes (1983a), tooth marks are produced when an animal bites down on 

a bone, deforming it under pressure up to a point and leaving behind impressions on the bone 

surface. This is typically marked by fragments of cortical bone pushed inward and left embedded 

in the underlying trabecular bone (Schubert, personal communication) (Figure 9), which itself 

often becomes compacted under the pressure. Such marks are usually found on the proximal or 

distal ends of the long bones, ribs, pelvis, vertebrae, and sternebrae (Haynes 1980; 1982; 1983a). 

Furrows, scratches, or incisions may be produced when the animal moves its clenched teeth over 

the bone surface (Haynes 1980; 1982; 1983a). Such marks are generally most common on the 

ends of the remaining bone or bone fragments, especially on shaft fragments near the epiphyses 

where the predator’s cheek teeth are commonly used to shear away cancellous or thin compact 

tissue (Haynes 1980; 1982; 1983a).  

Carcass utilization by large carnivorans is surprisingly patterned with marked sequences, 

and family-level identification can be determined based on the diagnostic damage patterns left on 

compact bones (Haynes 1980; 1982; 1983a). In the case of wolf damage, this usually takes the 

form of circular puncturing-crushing impressions left by the premolars and carnassials (Figure 

8). This damage pattern is the prevalent type observed among the Bat Cave peccary bones and 

supports the predator responsible as a large canid of the genus Canis as has been suggested by 

Schubert (personal communication). There is no evidence of large felid or ursid utilization; the 

former of which typically leave behind V-shaped cuts whereas the latter produces more of a 

grinding-crushing pattern. In comparison to hyenas (Crocuta and Hyaena) which have 

specialized durophagous dentition, wolves will spend much more time chewing on bones at 

killsites or dens, thus leading to characteristically differential tooth marking (Haynes 1983a).  
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Figure 9. Distal portion of a peccary humerus from Bat Cave showing the characteristic circular puncture 

marks made by a wolf carnassial. Scale bar = 1cm. 

 

The dire wolf (Canis dirus) was a large, widely-distributed, hypercarnivorous canid of 

the late Pleistocene (Kurtén and Anderson 1980). It is the second most abundant vertebrate from 

the Bat Cave fauna, with Hawksley et al. (1973) reporting 177 identified elements and minimum 

of 6 individuals (based on four right metacarpal III and two left metacarpal III which vary 

considerably in length from the rights). This predator is therefore suspected to be the most likely 

culprit behind the bite marks left on the Bat Cave peccary bones. In addition to Bat Cave, dire 

wolf fossils are often found in the same fossil localities as flat-headed peccaries, many of which 

are cave sites (Hawksley et al. 1963; Slaughter 1966; Davis 1969; Guilday et al. 1971; Parmalee 

and Oeseh 1972; Schubert and Mead 2012), suggesting a possible predator-prey relationship 

between these two species which has never been described until the present study (Figure 10). 
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Figure 10. Known Rancholabrean sites which have yielded Platygonus (green circles and triangles) and 

Canis dirus (red circles). X symbols denote Canis specimens which have yet to be identified to species-

level but are not attributable to extant taxa. Note the degree of overlap between Platygonus and Canis. 

Coordinate data recovered from MIOMAP/FAUNMAP, 2011. 

 

Rodent Gnawing 

 In addition to predator modification, Schubert (personal communication) noted extensive 

rodent damage on many of the bones recovered from Bat Cave. Rodent gnaw marks on bony 

tissue occur as a series of paired, shallow grooves (Fiorello 1989) (Figure 11). It has been 

documented that rodents will opportunistically gnaw on bones and antlers to obtain the minerals 

required to sustain their hypselodont dentition and to help keep their incisors worn to a 

reasonable length (Klippel and Synstellien 2007).  
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Figure 11. Ventral view of an anterior peccary mandible fragment from Bat Cave which bares rodent 

gnaw marks along its medial surface. Scale bar = 1cm. 
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CHAPTER 3 

METHODS 

Abbreviations Used 

BC (Bat Cave), MC (metacarpal), MT (metatarsal), ETSU (East Tennessee State 

University, CMS (Central Missouri State University; this institution is now named the 

University of Central Missouri), ISM (Illinois State Museum), MNI (minimum number of 

individuals), NISP (number of identified specimens), Pe. tajacu (Pecari tajacu), I (upper 

incisor), i (lower incisor), C (upper canine), c (lower canine), P (upper premolar), p (lower 

premolar), M (upper molar), m (lower molar). 

Specimen Preparation 

ISM catalogue numbers were given to each of the BC peccary fossils. The fossils were 

grouped together according to element, differentiated to left and right sides where applicable, 

and numbered accordingly. A base coat of B-98 was placed on each element over the area to be 

labeled. White acrylic paint was then applied to the treated area. ISM numbers were written on 

the marked areas using a black archival ink pen. The label was then covered by a single layer of 

B-72 for preservation. B-76 glue was used to repair those elements which had been broken 

during collection or preparation.  

In several instances during preparation it was necessary to disassemble elements which 

had been previously and erroneously glued together during the initial CMS preparation (Figure 

12). In these instances acetone was dripped in between individual elements to soften the glue so 

that it could be safely pulled apart. Multiple elements which were thought to be representative of 



34 
 

a single individual based on staining, articulation, and age were singled out, recorded, and stored 

together. Similarly, pathologic specimens within the sample were also noted.  

 

Figure 12. A juvenile peccary forearm comprised of three separate elements (radius, ulna, and distal 

epiphysis) from three different individuals pieced together by CMS. This is one of several composite 

specimens from the Bat Cave peccary sample. 

 

Demographic Assessment 

Sexual Dimorphism―Sexual dimorphism in peccaries may be determined via certain 

measurements of the skull: greatest skull length, greatest skull width, ratio of skull length to skull 

with, and angle of the skull (Miller 1970; Sicuro et al. 2011). This method is not possible for the 

BC population because no intact skulls are preserved. Instead, the length and width of each m3 

was measured and plotted against each other to test for bimodality. The Bat Cave measurements 

were then plotted together with similar measurements taken for P. cumberlandensis from the 

collections at University of Florida, a taxon that has been demonstrated to possess pronounced 

sexual dimorphism in its cranial morphology (Wright 1993). The m3s were selected for study 

because of their relative abundance and determinate growth. Although bimodality may be 

observed in peccary canines (Wright 1993), these teeth were not measured due to their semi-

hypselodont nature, irregular placement of the enamel-dentine junction for isolated specimens, 

and age-related variability in basal width. 
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Age & Ontogeny―Age demographics for the BC peccary population were investigated 

first by referencing Kirkpatrick & Sowls (1962), in which the age-at-tooth eruption was recorded 

for the extant Pe. tajacu (Table 2). It is assumed that the age-at-eruption does not vary 

significantly between the extinct and extant taxa. For adult specimens with fully-erupted 

dentition, tooth wear was examined as a proxy for age. Special focus was placed on the m3 

because it is the last of the permanent dentition to erupt (Kirkpatrick and Sowls 1962), and tends 

to be the most hypsodont tooth in the mouths of ungulates (Ozaki et al. 2009); making it a 

reliable indicator of physical maturity. Similar aging methods have been performed with extant 

white-tailed deer (Severinghaus 1949; Knight 2001; Cain and Wallace 2003); a taxon whose 

maximum life expectancy in the wild is comparable to that of extant peccaries. In addition, O. 

virginianus is a reasonable proxy for P. compressus because the two taxa are similar in terms of 

size and presumed browsing or mixed-feeding dietary regime (Kurtén and Anderson 1980; 

Schmidt 2008). Furthermore, the postcanine dental formula in cervids is the same as that of 

peccaries and have been demonstrated to erupt in the same sequence and at a similar rate 

(Kirkpatrick and Sowls 1962; Knight 2001; Cain and Wallace 2003), making these ungulates 

reasonable analogues for comparison with the BC peccaries. 
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Table 2: Age of Tooth Eruption in Extant Peccaries 

Tooth Age (days) Age (weeks) Age (years) 

di1 28-49 4-7 0.07-0.13 

di2 45.5-91 6.5-13 0.12-0.25 

dc1 At birth At birth At birth 

dp2 21-35 3-5 0.05-0.1 

dp3 14-21 2-3 0.03-0.06 

dp4 28-52 4-7.5 0.07-0.14 

i1 280-420 40-60 0.7-1.2 

i2 364-504 52-72 1-1.4 

c1 203-280 29-40 0.5-0.8 

p2 462-581 66-83 1.2-1.6 

p3 Not recorded Not recorded Not recorded 

p4 Not recorded Not recorded Not recorded 

m1 119-161 17-23 0.3-0.4 

m2 252-350 36-50 0.7-0.96 

m3 518-658 74-94 1.4-1.8 

 

This table shows the age at which the lower dentition begin to erupt in the extant collared peccary, Pecari 

tajacu, depicted in days, weeks, and years. Adapted from Kirkpatrick & Sowls (1962). 

 

Evidence of Predation 

Comparative Sample― Wolf-eaten bones of white-tailed deer (Odocoileus virginianus), 

whose carcasses had been fed to captive gray wolves (Canis lupus), were used for direct 

comparison to the Bat Cave peccary material (Figure 13). These modern remains were collected 

from Bays Mountain Park in Kingsport, Tennessee by Blaine Schubert. In terms of linear 

measurements, many of the bones of white-tailed deer are roughly the same size, shape, and 

density as those of flat-headed peccary, particularly the upper limb and vertebral elements. This 

similarity makes the Bays Mountain Park deer material ideal subjects for comparison. To further 

assess the degree of damage, intact white-tailed deer bones from ETSU collections were also 

used for reference. Observations were then verified by referencing the work of Haynes (1980; 

1982; 1983a; 1983b), who has done extensive work with bone damage inflicted by carnivorans.  



37 
 

 

Figure 13. Wolf-eaten bones of white-tailed deer (ETVP 489) that were used as the comparative sample 

when identifying carnivore damage in the Bat Cave sample. The deer carcasses were road-killed animals 

which had been fed to the captive gray wolves at Bays Mountain Park in Kingsport, Tennessee. 
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Stages of Utilization―To assess and categorize the degree to which bones were modified by 

carnivorans, a four-stage system loosely based on Behrensmeyer’s weathering stages (1978) was 

established (Figure 14, 15, 16). By doing this, it is possible to observe the frequency and method 

in which particular skeletal elements are utilized, and to compare the results to the feeding 

patterns of extant predators. This method was used for all limb bones except the fibulae, patella, 

and those which comprise the manus and pes. Vertebral, rib, carpal, and tarsal elements were 

examined as well, but not to the same degree of scrutiny as the long bones due to their smaller 

size. Smaller scapular and cranial fragments were left out of the assessment as these are more 

likely to have been fragmented due to trampling over a period of time, although those elements 

which bear obvious signs of carnivore processing (i.e., scratch or gouge marks) are noted.  

 Stage 0: An intact bone which shows now evidence of bite damage.  

 Stage 1: For long bones, the shaft is intact but has attained bite damage and the 

epiphyseal ends may be partially or completely absent. For scapulae, the scapular spine is 

complete with portions of the fossae absent or bite damage to the distal end. For pelvises, 

a portion of the ilium or ischium may be absent but is otherwise mostly intact. 

 Stage 2: For long bones, at least one of the epiphyseal ends is absent, along with a portion 

of the shaft. For scapulae, up to half of the scapular spine may be absent along with 

considerable portions of the spinous fossae. For pelvises, both the ilium and ischium are 

heavily damaged and mostly absent. 

 Stage 3: For long bones, a bone which is so heavily damaged that only the epiphyseal end 

or a fragment of the shaft remains present. For scapulae, the scapular spine has been 

completely lost and only the distal neck or edge of the spinous fossae remain present. For 
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pelvises, consist only of the acetabulum and surrounding bone, or a broken ilium or 

ischium. 

 

Figure 14. Examples of the four stages used to assess the extent of carnivore utilization among the Bat 

Cave peccary long bones. (A) Stage 0 bones exhibit no evidence of carnivore damage, (B) Stage 1 bones 

retain an intact shaft with damaged or absent epiphyseal ends, (C) Stage 2 bones exhibit complete 

removal of one of the epiphyseal ends and part of the shaft, (D) Stage 3 bones exhibit complete 

destruction of the bone with only a shaft fragment or epiphyseal end remaining. 
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Figure 15. Examples of the four stages used to assess the extent of carnivore utilization to the Bat Cave 

peccary scapulae. (A) Stage 0 scapulae exhibit no evidence of carnivore damage, (B) Stage 1 scapulae 

retain a complete spine but have lost portions of the spinous fossae, (C) Stage 2 scapulae have lost 

portions of the spine in addition to the spinous fossae, (D) Stage 3 scapulae lack the scapular spine and 

have been reduced to the neck and glenoid fossae or fragment of the fossae. 
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Figure 16. Examples of the four stages used to assess the extent of carnivore utilization to the Bat Cave 

peccary pelvises. No examples of Stage 0, or fully intact peccary pelvises, are available from within the 

Bat Cave sample. (A) Stage 1 pelvises have minor damage to the ilium and/or ischium, (B) Stage 2 

pelvises lack both the ilium and ischium, (C) Stage 3 pelvises consist only of the acetabulum and 

surrounding bone or the broken ilium or ischium. 
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CHAPTER 4 

BAT CAVE MATERIALS 

The following is a summary of all the Bat Cave peccary material, all referable to the taxon 

Platygonus compressus, which were identified, catalogued, and analyzed in the present study. 

Supplementary tables are present in Appendix A, B, & C. 

Isolated Dentition 

 Deciduous incisors― Compared to extant peccaries, individuals of P. compressus have 

incisors that are reduced both in size and in number; with two lower incisors instead of three. 

The dI1 and dI2 of both the upper and lower jaws are similar in morphology and difficult to 

differentiate from each other, thus both elements were grouped together and labeled accordingly. 

There are 11 lower left (ISM 499236), 9 lower right (ISM 499237), 7 upper left (ISM 499238), 

and 5 upper right (ISM 499239) isolated deciduous incisors (Figure 17). 

 

Figure 17. Diagram of the left upper (A) and lower (B) deciduous incisors of P. compressus shown in 

anterior view. Scale bar = 1cm. Artwork by Aaron Woodruff. 

 

Deciduous canines― Upper and lower dC1 are oval-shaped in cross section. Lower dC1 

are identifiable by the presence of the wear facet on its posterior-lingual surface which results 

from occlusion with the upper dC1. The upper dC1 are, in turn, identifiable by the presence of 

the wear facet on its anterior tip of the crown. There are 11 lower left (ISM 499240), 9 lower 
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right (ISM 499241), 13 upper left (ISM 499242), and 21 upper right (ISM 499243) isolated 

deciduous canines (Figure 18). 

 

Figure 18. Diagram of the left upper (A) and lower (B) deciduous canines of P. compressus shown in 

labial view. Scale bar = 1cm. Artwork by Aaron Woodruff. 

 

Deciduous premolars― Upper deciduous premolars are broader than those of the lower 

jaw, which are more labio-lingually narrow (Figure 19). In general, the deciduous premolars are 

more molariform than their permanent counterparts due to the absence of true molars. The dP2 

differ in that they are less molariform than the other deciduous premolars, instead resembling the 

permanent premolars in overall shape and function. There are two lower left (ISM 499244), two 

lower right (ISM 499245), three upper left (ISM 499246), and one upper right (ISM 499247) 

isolated dP2 from the BC peccary sample. Upper dP3 are molariform and trapezoidal in shape 

whereas the lower dP3 is intermediate in form between a premolar and a molar; with a triangular 
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lateral profile and an expanded talonid basin for grinding. There are three lower left (ISM 

499248), three lower right (ISM 499249), and two upper left (ISM 499250) isolated dP3. Upper 

dP4 resembles a true molar very closely in its quadrate shape and in the arrangement of the cusps 

(Lundelius 1960), differing from the M1 mainly in its noticeably smaller size. The lower dP4 is 

elongated and has three transverse ridges that form six indistinct cusps (Lundelius 1960; Sowls 

1997). There are six lower left (ISM 499252), six lower right (ISM 499253), three upper left 

(ISM 499254), and four upper right (ISM 499255) isolated dP4.  
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Figure 19. Diagram of the left upper (A & B) and lower (C & D) deciduous cheek tooth row of P. 

compressus shown in labial and occlusial views. Note the molariform shape of the dP3 and dP4. Such 

features such as an elongated lower dP4 bearing six cusps and an upper dP3 with a trapezoidal shape are 

diagnostic characters within Tayassuidae. Anterior is to the left. Scale bar = 1cm and anterior is to the 

left. Artwork by Aaron Woodruff. 
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Permanent incisors―As with the deciduous incisors, the I1 and I2 are difficult to 

differentiate beyond left and right side, and so both were grouped together accordingly. There are 

45 lower left (ISM 499200), 39 lower right (ISM 499201), 18 upper left (ISM 499202), and 11 

upper right (ISM 499203) identified permanent incisors (Figure 20). 

 

Figure 20. Diagram of the left upper (A) and lower (B) permanent incisors of P. compressus shown in 

anterior view. The permanent incisors are distinguishable by their relatively larger size and more robust 

roots when compared to the deciduous incisors. The two lower incisors of P. compressus are small and 

closely spaced together. The upper I1 is enlarged but is proportionally smaller than that of extant taxa and 

the I2 may be vestigial or absent. Scale bar = 1cm. Artwork by Aaron Woodruff. 

 

Permanent canines― Isolated permanent canines may be differentiated by several means 

(Figure 21). The enamel is generally higher on the lingual side than it is on the labial side, 

reflecting the slightly angled position of these teeth, thus assisting in the identification of isolated 

teeth. In the initial unworn state, the C1 is elliptical in cross-section. As the C1 continues to 

lengthen and begins to occlude with the c1, a large and flat wear facet develops on the anterior 

surface of the crown with a distinctive series of parallel grooves running diagonally and 

downward toward the lingual edge. Left and right C1 may therefore be differentiated by the 

direction in which these grooves slope; a right-to-left downward slope indicates a right C1 and a 

left-to right downward slope indicates the left C1. A secondary facet may also be present on the 

proximal anterio-lingual surface. In the initial unworn state, the c1 are triangular in cross-section. 

The C1 crown and roots are straighter, the c1 is more curved down its overall length. As it 

lengthens and begins to occlude with the C1 a large, flat wear facet develops on the posterior 
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surface of the crown. Similarly to the C1, a series of parallel grooves run diagonally and upward 

toward the lingual edge of the crown which can assist in identifying the tooth; a right-to-left 

upward slope indicates a right c1 and a left-to-right upward slope indicates a left c1. A lateral 

groove may also be present running down the lingual side of the root. A total of 200 isolated 

permanent canines are documented from among the BC sample: 56 left lower (ISM 499204), 53 

lower right (ISM 499205), 39 upper left (ISM 499206), and 52 upper right (ISM 499207), 

making these the most numerous of all the isolated dental elements.  

 

Figure 21. Diagram of the left upper (U) and left lower (L) permanent canines of P. compressus shown in 

occlusial (A), labial (B), and lingual (C) views. Apart from their larger size, permanent canines are 

characterized by their more pronounced wear facets. Unworn upper canines are elliptical in cross-section 

and have a relatively straight profile whereas unworn lower canines are triangular in cross-section and are 

more curved. Lefts and rights may be distinguished by the placement of the enamel-dentine junction on 

either side or by the slope of the linear scratches on the occlusial surfaces. Scale bar = 1cm. Artwork by 

Aaron Woodruff. 
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Permanent premolars―Unlike the deciduous premolars, the permanent premolars are not 

molariform and do not differ in overall shape (Figure 22). P2 are the smallest of the premolars 

and the smallest cheek teeth overall. There are six lower left (ISM 499208), four lower right 

(ISM 499209), four upper left (ISM 499210), and four upper right (ISM 499211) isolated 

permanent P2. P3 is intermediate in size between P2 and P4. There are four lower left (ISM 

499212), eight lower right (ISM 499213), three upper left (ISM 499214), and nine upper right 

(ISM 499215) isolated permanent P3. P4 is the largest of the permanent premolars and the first 

to erupt. There are eight lower left (ISM 499216), seven lower right (ISM 499217), six upper left 

(ISM 499218), and six upper right (ISM 499219) isolated permanent P4. 

Permanent molars― Upper and lower molars are easily distinguishable by the 

morphology of their roots. Upper molars are broader with labial roots which point vertically and 

lingual roots which point medially into the palate. Lower molars are transversely narrower with 

all roots pointing vertically into the dentaries. M1 is the smallest of the molars and the first to 

erupt. The upper M1 is very similar to the upper dP4 in shape and appearance, but the two may 

be distinguished by the latter’s smaller size. There are 6 lower left (ISM 499220), 8 lower right 

(ISM 499221), 10 upper left (ISM 499222), and 9 upper right (ISM 499223) isolated M1. M2 is 

intermediate in size between M1 and M3. There are 15 lower left (ISM 499224), 13 lower right 

(ISM 499225), 8 upper left (ISM 499226), and 6 upper right (ISM 499227) isolated M2. M3 are 

the largest of the molars and the last teeth to erupt (Kirkpatrick and Sowls 1962). It is elongated 

by an enlarged hypoconulid that effectively functions as a fifth cusp. The width of this tooth is 

greatest across the anterior pair of cusps and taper posteriorly (Lundelius 1960). Pe. tajacu 

displays considerable variation in the number and placement of their accessory cusps. Pl. 

compressus, in contrast, displays more uniformity in the M3 with notable expansion of the 
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primary cusps and reduction of the accessory cusps. There are 8 lower left (ISM 499228), 14 

lower right (ISM 499229), and 2 upper right (ISM 499231) isolated M3. 

 

Figure 22. Diagram of the left upper (A & B) and lower (C & D) permanent cheek tooth rows of P. 

compressus shown in labial and occlusial views. Upper cheek dentition are characterized by their broader 

shape and by having lingual roots which point slightly laterally into the palate. In lower cheek teeth, the 

lingual cusps are generally higher whereas the opposite is true of the upper cheek teeth. Scale bar = 1cm 

and anterior is to the left. Artwork by Aaron Woodruff. 
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Axial Skeleton 

Dentary―Peccaries exhibit a particularly strong fusion of the two dentaries which occurs 

very early in their development (personal observation). As a result, the anterior part of the 

mandible often survives as a single specimen as opposed to two separate halves split at the 

symphysis. For the purposes of this project, mandibles are defined as an intact mandibular 

symphysis with any portion of the right or left dentaries. However, where the mandibular 

symphysis is absent leaving only a single dentary and its associated dentition, the element will 

simply be referred to as either the left or the right dentary. A total of 22 mandibles (ISM 499097) 

are present, together with 35 left dentaries (ISM 499098) and 38 right dentaries (ISM 499099). 

Of the mandibles, only elements ISM 499097.1 and ISM 499097.2 are reasonably complete 

missing only the P2 and pieces of the angular process. 

Skull―The most complete skull from the BC peccary sample is a single specimen (ISM 

499100.1) whose pieces are held together with plaster. From this specimen, much of the right 

and left facial area from the medial maxilla to the occipital condyle from the posterior maxilla to 

the auditory bullae respectively, as well as the internal system of turbinates (Figure 23). In 

addition to this, there are 3 other fused maxillae, 13 left maxillae (ISM 499101), and 13 right 

maxillae (ISM 499102), 19 of which retain intact but variable dentition. The remaining cranial 

material recovered from BC consists of moderate to small-sized bone fragments from various 

parts of the skull. Peccary skull bones appear to fuse relatively early during the lifespan starting 

at about 17 weeks of age with sutures being no longer visible by 2 years (Figure 24). This 

characteristic can make identification of individual cranial elements difficult, however there are 

8 identifiable frontals (ISM 499103 and ISM 499104), 19 identifiable jugals (ISM 499105 and 

ISM 499106), 2 parietals (ISM 499209), 9 occiputs (ISM 499210), and 6 auditory bullae (ISM 
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499211 and ISM 499212). The remaining cranial elements are small, unidentifiable fragments 

which were left uncatalogued.   

 

Figure 23. The most complete P. compressus skull from the Bat Cave sample, ISM 499101.1, in left (A) 

and right (B) lateral views. 

 

Figure 24. Skulls belonging to a juvenile collared peccary ETVP 7229 (A) roughly 17 weeks in age 

alongside that of a young adult specimen ETVP 17584 (B) of about two years. Note that in the older 

individual the sutures are completely fused and are no longer visible. Specimens aged based on tooth 

eruption. 
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Vertebral Column―A total of 334 pre-sacral vertebrae have been identified (Figure 25). 

There are 19 atlases (ISM 499175), 11 axises (ISM 499176), 62 other cervical vertebrae (ISM 

499179). Thoracic vertebrae are characterized by rib facets. Given the large size and 

demographic range of the BC sample, it has proven most practical to group the thoracic and 

lumbar vertebrae under the number ISM 499183 and ISM 499184 respectively. There are a total 

of 140 thoracic and 102 lumbar vertebrae. In mammals, the sacrum is the fusion of the five sacral 

vertebrae and connects the vertebral column with the pelvic girdle. There are 22 peccary sacra 

(ISM 499185).  

 

Figure 25. Examples of vertebral elements from the Bat Cave peccary sample; (A) atlas, (B) axis, (C), 

cervical VI, (D) anterior thoracic, (E) lumbar, (F) sacrum, and (G) caudal vertebrae shown in lateral (1), 

dorsal (2), ventral (3), anterior (4), and posterior (5) views. Scale bars = 1cm. 

 

Sternum, ribs, & costal cartilage―The sternum is a unit comprised of six segments 

(Figure 26). A total of 46 sternebrae have been identified; there are 8 long and laterally 

compressed first sternebra (ISM 499187), 6 second sternebra (ISM 499188) which have a 
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laterally compressed anterior end and a dorsoventrally compressed posterior end, 16 hourglass-

shaped third sternebra (ISM 499189), 11 rounded fourth sternebra (ISM 499190), 4 fifth 

sternebra (ISM 499191), and 1 sixth sternebra (ISM 499192). 278 rib elements were identified 

by counting the articular ends. There are many more fragmentary rib elements which have yet to 

be counted. There are 54 specimens of costal cartilage from the BC sample. 

 

Figure 26. Examples of each of the six sternal elements: first (ISM 499187.3, ISM 499188.1, ISM 

499189.2, ISM 499190.4, ISM 499191.2, and ISM 499192.1) of P. compressus with a reconstruction of 

the intact sternum in lateral and ventral views. The anterior sternum is laterally compressed for the 

attachment of the pectoralis major muscle, while central elements bear facets on their lateral-ventral 

surfaces for the articulation of the costal cartilage. Scale bar = 1cm and anterior is to the left. 

Appendicular Skeleton 
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Scapula―A total of 92 individual scapulae were catalogued; 50 left (ISM 499115) and 

35 right (ISM 499114). These include nearly complete to fragmentary elements. Here, a full 

scapula is defined as having an intact or unbroken spine running the full length of the bone, 

although portions of the spinous fossae may be absent. Only four scapular specimens may be 

defined as such with ISM 499114.1 being the most complete among the sample, missing only a 

small fragment from its infraspinous fossa. This particular specimen is therefore the best subject 

to be used for comparative purposes. Among the scapulae, 24 specimens retain an intact glenoid 

fossa and neck but possess a broken scapular spine. Other elements include 11 glenoid fossae, 43 

fragmented elements which lack the distal region, and 6 small elements belonging to fetal or 

newborn individuals (Figure 27). Other scapular elements are present, but these were so 

fragmentary that they were impossible to differentiate to side and therefore left uncatalogued.  

Humerus―There are a total of 73 individual humeri; 38 left (ISM 499116) and 35 right 

(ISM 499117). Of these, seven elements were originally misidentified as femoral fragments by 

CMS, a mistake has been corrected as of this study. 10 of the humeri are reasonably complete 

with intact shafts and both epiphyses. Included among the sample are eight small specimens 

belonging to fetal or newborn individuals.  

Radius & Ulna―In peccaries, the radius and ulna become fused by the time physical 

maturity is achieved (Sowls, 1998). Unfused elements can therefore be used to distinguish adult 

individuals from subadults and juveniles individuals. For this reason, both radius and ulna were 

treated as a single element for the purposes of this project. There are 83 identifiable radii/ulnae; 

42 left (ISM 499118) and 41 right (ISM 499119) elements. Of these, five elements are 

reasonably complete retaining an unbroken shape. Another 19 elements consist of fused 
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radii/ulnae which have been broken in various places. Also included within this sample are 15 

unfused radii, 26 unfused ulnae, and 11 elements belonging to fetal or newborn individuals.  

 

Figure 27. Examples of forelimb elements from the Bat Cave peccary sample; scapula ISM 499114.1 

(A), humerus ISM 499117.1 (B), and radius/ulna ISM 499119.1 (C). Scale bar = 1cm.  
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Carpals―The carpus is comprised of eight small bones which lie between the forearm 

and metacarpals (Figure 28); scaphoid, lunar, cuneiform, pisiform, unciform, magnum, 

trapezoid, and trapezium. The following carpal elements have been identified; 

 Scaphoid―15; 8 left (ISM 499120) and 7 right (ISM 499121).  

 Lunar―12; 4 left (ISM 499122) and 8 right (ISM 499123).  

 Cuneiform―11; 7 left (ISM 499124) and 4 right (ISM 499125).  

 Pisiform―5; 4 left (ISM 499126) and 1 right (ISM 499127).  

 Unciform―10; 3 left (ISM 499128) and 7 right (ISM 499129).  

 Magnum―12; 7 left (ISM 499130) and 5 right (ISM 499131).  

 

Figure 28. Examples of each of the carpal elements from the Bat Cave peccary sample. From left to right, 

top to bottom; lunar ISM 499122.2 (A), scaphoid ISM 499120.4 (B), unciform ISM 499128.1 (C), 

cuneiform ISM 499124.4 (D), magnum ISM 499130.2 (E), and pisiform ISM 499126.1 (F). Scale bar = 

1cm. 
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Metacarpal III & IV―In peccaries, the third and fourth metacarpals do not fuse until the 

animal has reached a relatively advanced age. Thus, only four metacarpal pairs are fully fused 

forming a true cannon bone. These elements may therefore be interpreted as having come from 

relatively aged individuals. Other metacarpals are isolated, although many have been recognized 

as belonging to the same III-IV pair and were subsequently glued together. There are 9 left (ISM 

499135) and 17 right (ISM 499136) metacarpal pairs are preserved. Also preserved are 15 left 

MC3 (ISM 499137), 12 left MC4 (ISM 499139), 17 right MC3 (ISM 499138), and 16 right MC4 

(ISM 499140) isolated metacarpals which had not yet fused (Figure 29).  

 

Figure 29. Example of a left metacarpal pair (ISM 499135.2) from the Bat Cave peccary sample. Scale 

bar = 1cm. 

 

Pelvis―The two halves of the pelvis normally fuse at the symphysis, and this fusion is 

typically described as a single element. Among the BC material, however, no fully intact 

pelvises remain. At most, just the left or right halves of the pelvises remain. There are 26 left 

(ISM 499141) and 11 right (ISM 499142) peccary pelvis halves and fragments, making 37 in 

total (Figure 30).  
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Femur, Patella, & Tibia―There are a total of 92 individual femora; 48 (ISM 499143) left 

and 41 (ISM 499144) right. Of these, only one is reasonably complete retaining both epiphyses. 

Included among the sample are nine small specimens belonging to fetal or newborn individuals. 

In addition, there are 13 individual patella; 4 left (ISM 499167) and 9 right (ISM 499168). A 

total of 49 individual femora have also been identified; 21 (ISM 499145) left and 28 (ISM 

499146) right. Of these, five are reasonably complete retaining both epiphyses.  

Fibula―In peccaries, the fibula is a thin rod of bone which articulates with the proximal 

tibia and the calcaneus. When differentiating the left and right fibulae from each other, the distal 

articular end is the most useful.  There are 18 left (ISM 499169) and 22 right (ISM 499170) 

distal fibulae. There are also 163 fibulae shaft fragments of various sizes which could not be 

confidently differentiated, and thus were left uncatalogued. 
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Figure 30. Examples of hindlimb elements from the Bat Cave peccary sample. From top to bottom; 

pelvis ISM 499142.1 (A), femur ISM 499144.1 (B), tibia ISM 499145.1 (C), and fibula ISM 499170.1 

(D). Scale bar = 1cm. 

 

Tarsals― The tarsus is comprised of six small bones which lie between the tibia and 

metatarsals (Figure 31): calcaneus, astragalus, navicular, cuboid, ectocuneiform, mesocuneiform, 

and entocuneiform. The following tarsal elements have been identified;  
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 Calcaneus―57; 30 left (ISM 499147) and 27 right (ISM 499148) 

 Astragalus―52; 31 left (ISM 499149) and 21 right (ISM 499150). 

 Navicular―17; 9 left (ISM 499151) and 8 right (ISM 499152). 

 Cuboid―17; 7 left (ISM 499153) and 10 right (ISM 499154). 

 Ectocuneiform―4; 1 left (ISM 499155) and 3 right (ISM 499156). 

 

Figure 31. Examples of each of the tarsal elements from the Bat Cave peccary sample. From left to right, 

top to bottom; navicular ISM 499151.5 (A), astragalus ISM 499149.1 (B), ectocuneiform ISM 499155.1 

(C), cuboid ISM 499153.4 (D), and calcaneus ISM 499147.2 (E). Scale bar = 1cm. 

 

Metatarsal III & IV―As in MC3, MT3 is distinguishable from MT4 in having a 

proximal articular facet that is much broader and appears concave in anterior view. In peccaries, 

the MT3 and MT4 fuse together to form a single cannon bone by adulthood. Among the Bat 

Cave sample, 21 left (ISM 499161) and 17 right (ISM 499162) cannon bones are preserved. 

There are also 4 left MT3 (ISM 499163), 8 left MT4 (ISM 499165), 4 right MT3 (ISM 499164), 

and 5 right MT4 (ISM 499166) isolated juvenile metatarsals which had not yet fused (Figure 32). 
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Figure 32. Example of a left metatarsal pair (ISM 499161.3) from the Bat Cave peccary sample. Scale 

bar = 1cm 

 

Phalanx―Peccaries, like all artiodactyls, have a stance in which the body weight is 

distributed through digit III and digit IV. As a result, many have undergone a reduction or 

complete loss of the lateral digits. Peccaries have hypertrophied digit III and IV with cloven 

hooves with digit II and/or digit V being reduced to shortened dewclaws which never contact the 

ground. Digit I is always absent. P. compressus has undergone further reduction of the digits 

becoming fully didactyl. For the BC sample, the phalanxes were unable to be differentiated to 

digit III, digit IV, manual, or pedal. The extent to which differentiation was able to be accurately 

carried out was to left and right digit. There are 164 proximal, 111 medial, and 87 distal 

phalanges.   
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CHAPTER 5 

RESULTS AND OBSERVATIONS 

Bone Quality and Preservation 

Observations point to the Bat Cave site being an excellent environment for fossil 

preservation. All bones examined exhibit stage 1 weathering (Behrensmeyer 1978) with no 

evidence of bleaching, indicating that the sample was never exposed to extreme temperature 

fluctuations or direct sunlight which would accelerate the weathering process (Behrensmeyer 

1978). The structural integrity of the bones has been substantially weakened due to leaching with 

many skeletal elements becoming very brittle with a consistency similar to that of porcelain. 

Otherwise, the bones retain their original shape and surface morphology with no deformation or 

warping, possibly due to the relatively young age of the site and relative lack of overlying 

sedimentation. Although the outer surface of most of the bones are stained by various minerals, 

the internal structure of recently broken elements is bright white in color, similar to the fresh 

condition. Overall, the condition of the bones suggests that they have remained in a relatively 

stable environment since the time of deposition. 

Skeletal Part Representation 

In the present study, about 2,700 elements out of the 6,300 noted by Hawksley et al. 

(1973) were complete enough for identification and all of these were catalogued with ISM 

numbers except for the ribs, of which 278 were counted based on the presence of the articular 

facet. Many other unidentifiable rib, cranial, and limb bone fragments remain to be examined. 

The following is a summary of the overall representation of particular skeletal elements within 

the BC peccary sample. 
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Dental Representation― Of all the isolated dentition, the permanent canines are by far 

the most numerous. This may be partly due to these teeth being the largest teeth in the jaws. The 

permanent incisors, which could not be differentiated to I1 or I2, are the second most abundant 

dental elements represented in the BC peccary sample. Isolated post-canine dentition are 

extremely rare, particularly the smaller premolars and first molars (Figure 33A). The deciduous 

dentition, although being far less abundant overall, mirror the permanent dentition in terms of 

relative abundance; the deciduous canines are the most numerous by a large margin, followed by 

the incisors, and with the post-canine dentition being much scarcer, numbering less than 10 per 

side per element (Figure 34A). When cranial and mandibular elements are factored into the tooth 

count, this basic pattern slightly adjusted with the addition of the emplaced post-canine dentition 

nearly doubling the relative abundance of these elements, although they are still not as numerous 

as the canines or incisors (Figure 33B, 34B).  
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Figure 33. Total representation of permanent dentition from the Bat Cave peccary sample; (top) isolated 

dentition only, (bottom) isolated and emplaced dentition. 
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Figure 34. Total representation of deciduous dentition from the Bat Cave peccary sample; (top) isolated 

dentition only, (bottom) isolated and emplaced dentition. 

 

Postcranial Representation― The larger, proximal limb elements are among the most 

numerous of all the postcranial elements, surpassed only by the vertebrae and phalanges.  An 
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interesting inverse exists in the representation of metapodials of the forelimbs and hindlimbs; the 

number of paired metacarpals is far fewer than the number of paired metatarsals, whereas there 

the number of isolated metacarpals is much greater than that of isolated metatarsals. This 

difference reflects the rate of fusion among these elements. In peccaries, the metatarsals tend to 

fuse relatively early in life of the animal forming a single cannon bone (Sowls 1998). In contrast, 

the metacarpals generally remain as separate elements and only fuse once the animal has reached 

an advanced age (Sowls 1998). The smallest bones, particularly those which comprise the 

carpals and tarsals, are represented in very low numbers; the scaphoid, lunar, cuneiform, 

pisiform, unciform, magnum, navicular, and cuboid all being represented by 10 or fewer 

individual elements per side. By contrast, the largest of the tarsal bones, the calcaneus and 

astragalus, are much better represented in the sample with a combined 61 calcanei and 52 

astragali (Figure 35). 

 

Figure 35. Abundance of all paired postcranial elements from the BC peccary sample. 

 

Collection bias―As noted above, many of the smaller elements are severely lacking in 

number, particularly the smaller carpal and tarsal elements. The reason for this scarcity may be, 
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in part, due to collection bias during the original excavations of Bat Cave. During these 

excavations, bones were found mostly by surface collecting with some picking and 

screenwashing (Hawksley et al. 1973). In an interview with Blaine Schubert, Hawksley stated 

that much of the excavation work was performed using tools such as screwdrivers. The bones 

were then placed in simple containers, such as coffee cans, which were then packed with 

sediment for stability before being transported to the surface (Schubert, personal 

communication). This collection method generally favors the larger skeletal elements over those 

smaller ones.  

Preparation bias―1435 of 2652 (54.11%) of the elements examined had been previously 

catalogued by CMS. During the cataloguing process, the original preparators of the BC sample 

appear to have shown a preference for those elements which were relatively large with broad, flat 

surfaces. Another factor appears to have been the potential of particular elements to be utilized 

for MNI calculation. More numerous elements such as canines, phalanges, calcanei, astragali, 

and metatapodials are among the most frequently catalogued with each having a frequency of 

over 90% bearing the CMS label. In particular, 98.51% of permanent and 98.15% of deciduous 

canines bear CMS catalogue numbers. Other, larger elements within the sample were catalogued 

ranging in frequency from 89.47% for atlases to 41.3% for scapulae. A low number of 

mandibles, tibiae, radii/ulnae, and sacrums were cataloged prior to the present study ranging 

from 13.25% for radii/ulnae to 7.89% for dentaries. The remaining elements within the sample, 

mostly the smaller, isolated dental elements, were not catalogued prior to the present study.   

Minimum Number of Individuals 

The original MNI for the Bat Cave P. compressus reported by Hawksley et al (1973) was 

determined to be 98 based on 77 lower left canines and 21 upper left deciduous canines. The use 
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of the canines, the most abundant of all the dental elements, is the most effective means in 

determining the MNI of the BC peccary populations. However, the original study failed to 

elaborate on how Hawksley et al. (1973) differentiated the canines and some specimens have 

been found to be erroneously identified during the cataloguing process. For the present study, 

comparative morphological observations of the canines were carried out (summarized in Chapter 

4) and the MNI was reevaluated based on these criteria. 

 

Figure 36. Total number of isolated and emplaced canines from the BC peccary sample. 

 

A total of 200 isolated permanent are documented; 56 lower left, 53 lower right, 39 upper 

left, and 52 upper right. With the inclusion of the rooted canines produces a total of 228 

elements; 70 lower left, 64 lower right, 41 upper left, and 53 upper right. A total of 54 isolated 

dC1 are also documented; 11 lower left, 9 lower right, 13 upper left, and 21 upper right (Figure 

36). The present study has demonstrated that lower left C1 remains the most numerous dental 

element despite having decreased from the estimation achieved by Hawksley et al. (1973). The 

number of upper right dC1 reported in the original report is determined to have been correct. 
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Therefore, a new MNI of 91 individuals may be obtained based on 70 lower left C1 and 21 upper 

left dC1. It should be noted, however, that a considerable number peccaries from BC are 

juveniles between the ages of 9 to 12 months old. At this age, peccaries may possess both 

permanent and deciduous canines although the latter are in the process of being lost. This fact 

raises a problem with the inclusion of both canines in the MNI calculation as it is possible that a 

single animal may have been counted twice. Therefore, a more conservative MNI estimate of 70 

individuals based solely on the lower left canines is favored. This estimate may change after 

additional excavations are performed at the BC site.  

Associated Materials 

The following groups of elements are those which are believed to represent part of a single 

individual based on a number of elements including staining and articulation (Figure 37).  

A. ISM 499097.14 & ISM 499205.46―An anterior mandible fragment and an isolated right 

lower canine. The mandible has the left canine in place but the right canine alveolus is 

empty. The isolated tooth closely matches the exiting tooth in size, age, and color and fits 

into the empty space. 

B. ISM 499097.6 & ISM 499204.38―A mandible which retains most of the right dentary 

and an isolated left lower canine which matches it in coloration and fits perfectly within 

the alveolus.  

C. ISM 499097.10 & ISM 499205.44―An anterior mandible fragment with an open right 

canine alveolus and an isolated right lower canine displaying the same staining along 

posterior surface.  

D. ISM 499098.29 & ISM 499099.1―Left and right dentaries, both of which share the same 

length from the dP2 alveoli to the posterior M2 alveoli and share the same coloration. 
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Although ISM 499098.29 has lost its dentition, the dentition was clearly in the same stage 

of eruption as its counterpart based on the remaining M1 and M2 roots and alveolar 

depth. ISM 499098.29 appears to have been treated with a preservative agent by CMS 

based on its shiny appearance whereas ISM 499099.1 was not prior to this study. 

E. ISM 499097.15, ISM 499098.1, & ISM 499099.3―Three mandibular fragments 

belonging to a young juvenile around one year of age. This assessment is based on all 

three elements having the same color staining and the dentition on the left and right 

toothrows are at the same stage of eruption and wear.  

F. ISM 499097.16 & ISM 499098.2―An anterior mandible fragment with part of the left 

dentary of a yearling. Both elements appear to have been plastered together at one point 

and share the same speckled staining pattern. 

G. ISM 499116.10 & ISM 499118.3―A left humerus, radius, and ulna which appear to be 

from the same individual based on their similar coloration and perfect articulation. 

H. ISM 499116.1, ISM 499118.1, ISM 499135.1, ISM 499147.1, ISM 499161.2―A left 

humerus, radius, ulna, metacarpal pair, metatarsal pair, calcaneus, and medial phalanx. 

All are darker in color than other, comparable elements from the BC peccary sample and 

are also noticeably heavier. This may, in part, be due to the concretion which is still 

adhered to some of them. It appears that, while trying to remove this sediment, 

excavators and preparators at CMS inadvertently fractured the larger bones. None show 

signs of carnivore modification, suggesting that the individual was undisturbed after 

death and was relatively quickly covered over by sediment.  

I. ISM 499114.1, ISM 499119.1, ISM 499175.2, & ISM 499176.3―Right scapula, radius, 

ulna, atlas, and axis. No evidence of predation is visible. White coloration suggests that 
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these elements remained at the surface after the soft tissue was removed until their 

recovery. Rodents appear to gnaw on some of the bones. 

J. ISM 499100.1 & ISM 499105.6―A skull and isolated jugal which fits in place. Same 

color and staining. 

 

Figure 37. Examples of elemental collections which may be representative of single individuals. Letters 

correspond to the above text. Scale bars = 1cm. 
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Pathologies  

The following are elements of the BC peccary sample which exhibit bone pathology (Figure 38). 

A. ISM 499097.8―A juvenile mandible which exhibits prominent swelling of the post-

symphysis left dentary. The potential cause of this pathology has not yet been confirmed, 

but it is possibly the result of an infection within the bone. 

B. ISM 499122.4―A left lunar which is highly deformed, possibly due to severe arthritis. 

C. ISM 499141.17―A left pelvis with rugose, deformed bone surrounding the remaining 

acetabulum. 
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Figure 38. All elements from the Bat Cave peccary sample with bone pathology shown alongside 

comparable, healthy elements. (A) A left dentary with noticeable swelling possibly due to bone infection. 

(B) Highly deformed, possibly arthritic left lunar. (C) Left pelvic fragment with arthritic bone growth 

around the acetabulum. Scale bar = 1cm. 
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Demographics 

Sexual Dimorphism―The M3 measurements (Figure 39) failed to identify any notable 

bimodality among the BC peccaries, thus confirming Wright’s (1993) conclusion that P. 

compressus displayed minimal sexual dimorphism in terms of size. Notable bimodality may be 

noted in the P. cumberlandensis from the Leisey Shell Pit 1A site, with larger specimens inferred 

to be males and the smaller specimens inferred to be females (Wright 1993). The Coleman II P. 

cumberlandensis, however, are shown to plot well above the individuals recorded from Leisey 

Shell Pit 1A. Such separation between two populations within a narrow geographic range is 

somewhat unusual and may be attributable to temporal distinction or perhaps the presence of two 

taxa.   

 

Figure 39. Scatter plot showing the M3 measurements of the Bat Cave Platygonus compressus (orange 

circles) as compared to the Irvingtonian species P. cumberlandensis from Coleman II, Florida (red 

squares) and Leisey Shell Pit 1A, Florida (green triangles). 
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To determine sexual dimorphism among P. compressus a different approach is required. 

The mandibular keel has been described by Wagner (1903) who believed it to be a sexually 

dimorphic character, with those of males being particularly “strong and protuberant”. Although 

this hypothesis is feasible, no comparative analysis has ever been performed to test this. Among 

the Bat Cave sample, 16 mandibles are preserved. One skull, 499097.2, which we hypothesize to 

be an older male based on its thickened canines, worn molars, and heavy muscle scarring, bears 

the most prominent mandibular keel. From the 8 juvenile mandibles in the sample, it appears that 

the keel begins as a rudimentary ridge which increases in prominence with age. A larger 

collection of intact mandibles is needed to test this hypothesis. 

Age Demographics―On initial examination, it is readily evident that every age group 

from fetuses and newborn infants to elderly adult individuals are represented in the BC sample. 

On closer examination, the maturation of individuals and age at the time-of-death could be 

tracked using the eruption sequence as plotted by Kirkpatrick and Sowls (1962) and occlusial 

wear patterns. Particularly apparent among the younger individuals, clearly-definable age groups 

which show no observable overlap with one another could be established, each group being 

developmentally separated from each other by approximately 9 to 12 months based on 

Kirkpatrick and Sowls (1962). Similarly, 4 marked age groups can be observed among the 

collective limb elements based on size and fusion of the epiphyses (Figure 40). However, the 

dentition is recognized as the most useful part of the mammalian anatomy for the purposes of 

determining age (Severinghaus 1949; Spinage 1973; Skogland 1988; Kaiser et al. 2009). Using 

the dentition, 10 distinct age groupings were established and defined below (Figure 41, 42). 
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Figure 40. Examples of peccary humeri from Bat Cave which represent three non-overlapping age 

designations. From left to right: a neonate (ISM 499117.34), yearling (ISM 499117.4), and full grown specimen 

(ISM 499117.1) of unknown age. Scale bar = 1cm. 

 

 Newborn―Only 3 specimens are attributable to this age group; ISM 499098.36, ISM 

499098.37, and ISM 499099.39. All appear to be within their first month of life, no older 

than 3 weeks, as indicated by their extreme small size and the erupting dP3. ISM 

499098.37 appears to be slightly older than ISM 499098.36 due to its larger size and 

more advanced state of eruption. 

 Year 1―The lower C1 is only partially erupted and, as an isolated specimen, is hollow 

and very brittle. The dC1 alveoli are usually still present, but the teeth themselves may be 

absent. The dP4 is present with noticeable wear facets on its cusps. M1 is fully-erupted 
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and exhibits minor wear facets on the labial cusps. M2 is just beginning to erupt and may 

not yet have begun to emerge above the gumline. The muscle depressions of the angle are 

weakly-developed. Where the posterior portion of the lower jaw remains intact, the M3 

bud may be visible within as is the case for ISM 499099.1. Based on these observations, 

12 individuals have been placed within this age group. 

 Year 2―The permanent C1, M1, and M2 have all fully erupted. M3 is just beginning to 

erupt and may not yet have begun to emerge above the gumline. The dP4 is still present, 

but has been worn smooth and is weakly rooted in the alveoli as it is gradually being 

replaced by the underlying P4. Similarly, the remaining deciduous premolars still remain 

present although the permanent premolars may be visible within the crypt where the 

anterior dentary is damaged, as is the case for ISM 499097.6, ISM 499097.8, ISM 

499097.9, ISM 499097.10, ISM 499098.8, and ISM 499099.5. The M1 exhibits 

noticeable wear facets on the apicies. The M2 cusps retain intact apicies with no evidence 

of premortum pitting. The angle exhibits more prominent muscle depressions and greater 

depth than that of the previous age group, with some lateral flaring of the ventral edge 

beginning to take place. Based on these observations, 12 individuals have been placed 

within this age group. 

 Year 3―P2 and M3 have now fully erupted, although the posterior base of the latter may 

still lie partially in the crypt. The lingual cusps of the M1 have been worn so that they 

form, level transverse ridges with a labial slope. Dentine is now visible. M2 now exhibits 

a similar to that of the year-2 M1 with noticeable wear facets on the apicies, particularly 

on the labial side. Any wear on the M3 is almost indistinguishable without magnification, 

particularly the hypoconulid. The lower C1, when present, shows minimal signs of 
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occlusion with the upper C1. Further deepening and thickening of the angle has taken 

place. Based on these observations, 12 individuals have been placed within this age 

group.  

 Year 4―The M1 ridges are still distinguishable but have been worn down significantly. 

M2 now exhibits wear similar to that of the year-3 M1, forming transverse ridges with a 

labial slope. The M3 cusps have begun to wear but retain intact apicies with no evidence 

of premortum pitting. Based on these observations, 15 individuals have been attributed to 

this age group. 

 Year 5―Deterioration of the M1 has progressed so that the anterior and posterior ridges 

have been worn almost smooth. The anterior and posterior M2 have been worn down 

further and some pitting may be evident. The M3 apicies have been worn considerably 

but are still distinguishable. Based on these observations, 9 individuals have been 

attributed to this age group. 

 Year 6―M1 has now been worn almost completely smooth although there is still some 

separation between the anterior and posterior cusps. The anterior portion of M1 is worn 

down to the same level as the posterior edge of the P4 forming a single, continuous 

surface. M2 is now in a similar state of wear as the year-5 M1 with its anterior and 

posterior cusps still forming ridges but bearing pits which expose the dentine. The apicies 

of the M3 cusps have been worn so that an almost level ridge is formed. The hypoconulid 

has worn so that a concave depression now exists between it and the posterior cusps. 

Based on these observations, 7 individuals have been attributed to this age group. 

 Year 7―M1 is now worn completely smooth with no discernable separation between the 

anterior and posterior cusps. M2 is almost worn smooth with some distinction between 
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the anterior and posterior cusps. The individual cusps of the M3 are still notable but have 

been worn down with heavy pitting. Based on these observations, 5 individuals have been 

attributed to this age group. 

 Year 8―Based on two M3s bearing three distinct, smoothed basins in the former areas of 

the anterior cusps, posterior cusps, and hypoconulid, the latter having now been worn to 

the gumline on its posterior edge. M1 and M2 are worn smooth. A single M2 which has 

been worn almost completely smooth may also be attributable to this age group.  

 Year 9―A single individual has been placed in this group based on a left lower M3 that 

has become completely worn smooth and dished out with no traces of individual cusps. 

 

Figure 41. Ontogenic changes in the lower dentition of the Bat Cave P. compressus. Toothrows shown in 

right-lateral view. Scale bar = 1cm. 
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Figure 42. Age demographics of the Bat Cave peccary population. 

 

Carnivore Damage 

Most of the BC peccary bones display damage patterns that are identical to that of the 

Bays Mountain Park deer material, and both samples match the descriptions the detailed 

descriptions reported by Haynes (1980; 1982; 1983a; 1983b) regarding wolf bite damage on the 

bones of mid-sized ungulates. This confirms that the BC bones were processed by large canids, 

the most likely culprit being the dire wolf, the second most abundant vertebrate from the site. In 

association, linear spiral fractures are more common and indicate that predator utilization 

occurred soon after death and while the carcasses were relatively fresh, as opposed to a more 

stepped or jagged breakage which is more likely to occur if the bone was exposed to air for an 

extended period of time (Haynes 1982). The following is a summary of predator modifications 

observed among the BC material. 

Limb Bones―Compared to the rest of the BC peccary material, predator modification is 

most frequent among the upper limb segments with at least 66.25% of scapula, 89.23% of 
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humeri, 73.61% of radii/ulnae, 89.19% of pelvises, 89.33% of femora, and 70.83% of tibiae 

bearing the typical bite impressions and breakage patterns typical of wolf predation (Figure 43) 

which ranges from minor (stage 1), moderate (stage 2), to extreme (stage 3). However, it must be 

noted that predator modification could not be confirmed in a number of elements due to the 

presence of secondary taphonomic forces such as rodent gnawing or trampling, which either 

obscure or remove any evidence of bite damage that may have been present on the original bone. 

These, along with all unfused epiphyses which lack diagnostic tooth impressions, were placed in 

a separate category referred to as “undeterminable”. About 33% of scapulae, 9% of humeri, 18% 

of radii/ulnae, 8% of pelvises, 17% of femora, and 27% of tibiae fall under this distinction. The 

overall severity of predator damage appears to decrease from the proximal segments toward the 

distal segments (Figure 44), which also matches observations made by Haynes (1982; 1983) and 

Hill (1989).   

 

Figure 43. Frequency of predator-modified limb elements from the Bat Cave peccary sample. 
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Figure 44. Pie charts depicting the extent of predator modification observed among each respective 

collection of limb elements. 

 

The scapulae and pelvises together exhibit greater proportions of stage 2 to stage 3 

damage (Figure 45). Where the distal end is present, most of the modified scapulae exhibit 

puncture wounds to the scapular neck and fraying of the glenoid fossa. Others possess spinous 
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fossae with considerable portions having been removed. At minimum, all of the predator-

modified BC peccary pelvises are broken at the symphysis and show removal of the anterior 

ilium. This particular element, however, is consistently one of the most heavily damaged of all 

the limb elements with only a single specimen (ISM 499142.1) being mostly complete with an 

intact obturator foramen and only the anterior rim of the ilium and posterior ischium being 

absent, and the remaining elements showing moderate to extreme damage. Among these are 16 

elements which lack large portions of the ilium and ischium and 6 elements which consist only 

of the acetabulum and surrounding bone. 

 

Figure 45. Examples of wolf-damaged scapulae (A) and pelvises (B) from the Bays Mountain Park deer 

comparative sample (ETVP 489) and the Bat Cave peccary sample (ISM 499114, ISM 499115, ISM 

499141, and ISM 499142). In each case, the modern deer elements are on the left, and the fossil peccary 

material is on the right. Scale bar = 1cm. 

 

In all documented cases of predation, the upper portions of the limbs are generally 

attacked first because of the larger muscle masses that are concentrated there (Haynes 1982), and 

the (Figure 46). The femora often show the most extensive damage compared to any of the other 
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long bones. Where the proximal femur is present, the greater trochanter is always absent and 

gouge marks left by teeth is present on the femoral head when it is present. Frequently, both the 

proximal and distal articular ends have been bitten off, leaving behind a hollow shaft. In other 

instances, the proximal portion is eaten away to varying extents, leaving behind the distal 

articular end which often bears quite large puncturing and shearing tooth impressions. The 

humeri place second in terms of severity of predator modification, with the most frequent 

damage being the destruction of the proximal articular surface and shaft to varying extents.  

 

Figure 46. Examples of wolf-damaged humeri (A) and femora (B) from the Bays Mountain Park deer 

comparative sample (ETVP 489) and the Bat Cave peccary sample (ISM 499116, and ISM 499117, ISM 

499143, ISM 499144). In each case, the modern deer elements are on the left, and the fossil peccary 

material is on the right. Scale bar = 1cm. 

 

Damage to the medial limb elements tends to be less severe and relegated to the proximal 

halves of these elements. Among the BC peccary sample, the forearms and tibiae appear to be 

very comparable in terms of the severity of predator damage (Figure 47). The most frequent 

damage observed among the ulnae is the puncturing or complete removal of the olecranon 

process and the removal of the proximal end is the most common damage to the radius. Damage 
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to the tibiae typically consists of removal of the proximal condyles or tibial crest, or the absence 

of entire proximal portion.  

 

Figure 47. Examples of wolf-damaged radii/ulnae (A) and tibiae (B) from the Bays Mountain Park deer 

comparative sample (ETVP 489) and the Bat Cave peccary sample (ISM 499118, ISM 499119, ISM 

499145, and ISM 499146). In each case, the modern deer elements are on the left, and the fossil peccary 

material is on the right. Scale bar = 1cm. 

 

Manus & Pes―Among the carpals and tarsals, the calcaneus is the most frequently and 

extensively damaged during carnivore feeding with 39.34% of elements showing signs of 

predator modification, the most frequent damage being the puncturing or complete removal of 

the distal portion, especially the epiphyseal end. Scratches and puncture damage are also 

commonly observed on the lateral and medial surfaces, and tooth abrasion may be present the 

proximal articular facets. 3.85% of astragali, the second most abundant carpal/tarsal elements 

after the calcanei, exhibit predator modification ranging form of small punctures, scratches, and 

cracks, to one particular specimen (ISM 499149.31) which appears to have been picked up by a 

predator and chewed for a period of time. The remaining carpals and tarsals show no signs of 
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damage apart from a single left scaphoid (ISM 499120.2). Predator modification is rare among 

the metapodials although it appears to be more frequent among the metatarsals; 12.9% of 

metatarsals show signs of predator modification as opposed to just 1.59% of metacarpals. 

Among the 383 phalanges, only two elements (ISM 499172.30 and ISM 499173.50) show 

damage that may be attributable to predator modification.  

Skull & Mandible―Among the skull material, only the frontal fragments ISM 499103.2 

and ISM 499103.3 bear surface gouge marks that may be directly attributable to predator feeding 

(Figure 48). All other cranial specimens are highly fragmented and do not bear such marks. 

However, it is noted by Haynes (1982) that wolves are capable of destroying much of the skull of 

a mid-sized ungulate, often leaving behind nothing but the toothrows. Although other forces may 

have acted upon the remains (see below), it cannot be ruled out that wolves were at least partially 

responsible for the overall lack of more complete cranial material for the BC peccary sample. 

When subjected to repeated biting by a large predator, the bones of the skull may be expected to 

shatter relatively more easily than the limb bones due to their relatively thin walls and general 

lack of internal buttressing, as opposed to the limb bones whose shafts require greater force to 

break and often retain their shape although sustaining obvious gouge and puncture wounds on 

the cancellous end regions. 
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Figure 48. Two Platygonus compressus frontal bone fragments (ISM 499103.2 & ISM 499103.3) which 

bare gouge marks that may be attributable to predator utilization. Scale bar = 1cm. 

 

In contrast to the skulls, mandibular material is relatively well represented, although the 

majority of these demonstrate varying degrees of breakage that are consistent with canid 

utilization (Figure 49). When utilization is minimal, the angle of one or both dentaries’ may be 

broken off once the throat has been opened and the tongue consumed (Haynes 1982). The 

mandibles may also be broken apart at or posterior to the symphysis or the lower borders of the 

dentary may be broken off (Haynes 1982). When the carcass is utilized particularly heavily, 

often the only parts of the mandible that remain are the lower tooth rows or isolated teeth 

(Haynes 1982; Munson 2013).  
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Figure 49. Examples of predator-modified mandibular elements of Platygonus compressus from Bat 

Cave. 

 

Axial skeleton―During predator feeding, the relatively soft bones of the sternum are 

usually fully consumed (Haynes 1982) and this part of the skeleton is noticeably rare among the 

BC sample. Where it is present, certain sternal elements bear clear puncture wounds and 

breakage typical of canid feeding (Figure 50A, B). Similarly, the costal cartilage is usually 

consumed by feeding wolves, although some of the more ossified elements that remain bear 

similar puncture damage to that noted for the sternebrae (Figure 50C). Although the ribs were 
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not analyzed in detail, the majority of those examined have absent sternal ends, another pattern 

which is typical of wolf feeding (Haynes 1982).  

 

Figure 50. Examples of predator-modified sternebrae (A & B) and costal cartilage (C) from the Bat Cave 

peccary sample. Scale bar = 1cm. 

 

Vertebae―135 of 334 (40.42%) catalogued pre-sacral vertebrae bear one or more of the 

following signs of predator modification; visible puncture marks or tooth depressions, a sheared 

centrum, damage to one or both articular surfaces, broken neural spines, complete removal of the 

neural arch, and complete removal of the centrum (Figure 51, 52). In general, the cervical, 

thoracic, and lumbar vertebrae are comparable in terms of the overall frequency of particular 

damage patterns although the lumbar vertebrae appear to be the least frequently modified, 

possibly due to their larger size (Figure 53). Across all the pre-sacral vertebrae, damage to the 

neural spine is the most frequent damage observed followed closely by the occurrence of 

bitemarks in the form of pushed-in cortical bone. The peccary sacrums show particularly 

abundant signs of canid utilization, perhaps due to their articulation with the pelvis. 
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Figure 51. Column chart depicting the frequency at which specific damage patterns occur among 

predator-modified vertebral elements from the Bat Cave peccary sample. 

 

 

Figure 52. Examples of predator-modified vertebrae. The left element is a white-tailed deer vertebra from 

the Bays Mountain Park (ETVP 489) comparative sample and the remaining two element are peccary 

vertebrae from the Bat Cave sample. Scale bar = 1cm. 
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Figure 53. Column chart depicting the frequency of predator-modified vertebral elements from the Bat 

Cave peccary sample. 

 

Other Predators―Although dire wolf predation appears to be the primary agent for the 

damage inflicted on the BC peccary bones, closer examination of several of the catalogued 

specimens reveals shallower tooth impressions which are similar to those left by the wolves. 

These additional marks are, however, much smaller and fail to inflict any more severe damage to 

the bone. This implies that a smaller predator was present and was actively exploiting the 

peccary carcasses, perhaps after the wolves finished feeding. Based on the size of the bite 

impressions and the BC faunal assessment reported by Hawksley et al. (1973). 

Other Biotic Taphanomic Factors 

Rodent Modification―Rodent modification is frequently observed throughout the BC 

sample, varying from relatively minor and unnoticeable to extensive to the point at which the 

element has become highly deformed (Figure 54). On the limb bones, rodent gnawing is most 

frequently found in association with predator damage. Gnaw marks are concentrated around the 

edges of bone breakages. Sometimes the internal trabecular portion of a disembodied epiphysis 
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may be scooped out. Damage to skull and mandibular fragments is frequent, and is generally 

concentrated along the toothrows. Often, this is so extensive that the underlying dental roots are 

left exposed and partially removed. Among isolated teeth, rodent modification is frequently 

evident on the dentine, whereas the harder enamel is left undamaged. In several instances, most 

of the dentine portion of the tooth was removed, leaving behind only the tooth crown. Overall, 

rodent modification appears to be most frequently encountered among bones which bear 

thickened cortical tissue. 

 

Figure 54. Examples of peccary humeri from Bat Cave (ISM 499116.10, ISM 499117.8, and ISM 

499117.10) which bare varying degrees of rodent modification. Scale bar = 1cm. 
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Invertebrate Modification―A few remains from the BC peccary sample exhibit evidence 

of invertebrate utilization. These traces consist of shallow, circular pits and removal of the bone 

surface (Figure 55). Potential examples of invertebrate modification occur on mandibular 

elements ISM 499097.1 and ISM 499097.7, tibia ISM 499146.7, and radius/ulna ISM 499119.4, 

the latter two also appearing to be in a slightly more advanced state of weathering compared to 

the other tibiae, perhaps indicating that these spent more time at the surface and/or near the cave 

entrance where weathering processes are more extreme.  

 

Figure 55. Examples of extant white-tailed deer (left; ETVP ##) and Bat Cave peccary (right; ISM 

499119.4) limb elements which bare traces of invertebrate modification best attributable to dermestid 

beetles. 

 

Trampling―The highly fragmented nature of many elements from the BC sample, many 

of which lack any discernable predator modification, may indicate that these bones tread upon, as 

could be expected if the native peccaries were utilizing the site regularly. Furthermore, Hawksley 

et al. (1973) noted that most of the larger elements were collected from the edges of the cave 

passage and smaller, more fragmentary remaining and isolated teeth were collected from the 

center. In a den or other such confined setting, it may be expected for debris to be actively or 

passively pushed out of the more heavily trafficked areas and toward the relatively less utilized 
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periphery (Haynes 1983). Smaller debris, particularly thin-walled skeletal elements, are more 

likely to be broken up or pushed into by repeated trampling over a period of time with others 

simply being pushed into the substrate (Haynes 1983).  
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CHAPTER 6 

DISCUSSION 

Behavioral Interpretations of the Bat Cave Platygonus compressus 

Seasonal Behaviors―Previous authors have presented evidence of seasonal behavioral 

patterns in extinct mammal populations based on tooth eruption and wear patterns (e.g. Jefferson 

and Goldin 1989). However, the present study marks the first time this principle was applied to a 

fossil peccary population. Extant peccaries occur in close-knit herds which adhere to a set home 

range and territory over the course of many generations (Taber et al. 1993). Within this area, 

they will habitually travel to and utilize different locations at regular intervals and at particular 

times of the year to correspond with the availability of resources (Bigler 1974). Furthermore, the 

communal utilization of caves as a means of withstanding temperature extremes is well 

documented among extant taxa (Bissonette 1978; Schubert and Mead 2012). Phylogenetic 

bracketing (Witmer 1995) and mass accumulations of P. compressus at numerous fossil localities 

throughout North America (Hoare et al. 1964; Slaughter 1966; Davis 1969; Guilday et al. 1971; 

Hawksley et al. 1973; Wilson et al. 1975; Schubert and Mead 2012) suggests that these 

behaviors were true of this taxon as well.  

The distinct age groupings reported from the BC peccary population, each spaced 

temporally by about 9 to 12 months, strongly suggests that 1) the cave site was utilized annually 

and on a seasonal basis, most likely during the winter months when such behavior would be most 

advantageous and 2) that reproduction for this taxon, at least within the BC locality, was a 

seasonal occurrence. Aseasonal reproduction is typical among ungulate populations occurring in 

the tropics and subtropics, which live under constant to near-constant warm temperatures, 
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precipitation, and food availability (Rutberg 1987; Gottdenker and Bodmer 1998). Under these 

conditions, breeding and birthing is often a year round occurrence with peaks at certain months 

(Rutberg 1987; Ramos et al. 2014). If such a reproductive strategy was utilized among the BC 

peccary population, we would expect intermediate growth stages between the age groupings 

identified in the present study.  

Seasonal reproduction is a more practical strategy among ungulates occurring in areas of 

high seasonality, which are subjected to annual fluctuations in temperature, precipitation, and 

food availability. Cold, wet, and windy weather, combined with food scarcity and the reduced 

ability of lactating females to produce milk, have been shown to reduce the probability of 

survival for the newborns of many temperate and subarctic species (Slee 1971; Nowosad 1975; 

Dunbar 1980; Rutberg 1987; Cornell et al. 1998). Conception and birthing must therefore be 

synchronized so that offspring are born during periods where resources are more readily 

available and conditions are more favorable; thus ensuring that the young-of-the-year are able to 

gain large body size by autumn to increase the likelihood of winter survivorship (Dauphine and 

McClure 1974; Bunnell 1980; Clutton-Brock et al. 1982; Rutberg 1987; Cornell et al. 1998). 

This is demonstrated among the BC peccary population, for which the number of fetal and 

neonate individuals are extremely rare; whereas the number of yearling specimens being 

considerably more abundant.  

The relative lack of very young juveniles under the age of nine months in the BC peccary 

population may suggest that these animals were not giving birth at the site under normal 

circumstances. Following the hypothesis that the local peccaries used the BC site as a winter 

shelter, it can be inferred that these animals would give birth in early to mid-spring when 

temperatures were more favorable and vegetation was in abundance. Extant herbivores which 
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live in highly seasonal environments follow the same general reproductive pattern; breeding 

taking place during early- to mid-fall, gestation throughout the winter, and birthing taking place 

from mid- to late-spring (Slee 1971; Dauphine and McClure 1974; Bunnell 1980; Dunbar 1980; 

Rutberg 1987; Owen-Smith 1990; Cornell et al. 1998). The few late-term fetuses and infants 

identified from the BC peccary sample may then represent early births, or perhaps indicate 

occasional fluctuations in the annual climate which caused the animals to remain at the site 

longer than usual. 

Age Structure & Longevity―The age demographic obtained from the examination of the 

BC peccary population shows that the composition of animals from one to four years of age was 

relatively stable, with the number of individuals age five to nine years old gradually declining. 

This trend matches demographic studies of extant peccaries (Ramos et al. 2014). As one may 

expect, relatively young and healthy animals form the bulk of the population with older 

individuals steadily dying off due to predation or complications associated with advanced age. In 

mammals, dental wear is a major factor limiting longevity, with death occurring from the 

inability to feed effectively and procure adequate nutrients (Skogland 1988; Kaiser et al 2009; 

Ozaki 2009). Along with other ailments associated with old age such as arthritis, progressive 

tooth wear makes older animals more likely to suffer during periods of food shortage as they are 

less able to compete with their younger counterparts (Skogland 1988). For the BC peccary 

population, this helps explain the downward trend of older adults beyond the age of four. The 

maximum life expectancy for extant peccaries in the wild is about ten years with most animals 

dying prior to this due to predation or other natural causes (Grzimek 1990; Owen-Smith 1990; 

Cornell et al. 1998). 
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Predation & Other Biotic Taphonomic Forces 

Causes of Bone Accumulation―Despite the high frequency of predator modification 

attributed to Canis dirus, the fact that P. compressus is the only ungulate to be recovered from 

the BC site (Hawksley et al. 1973) suggests that the site does not represent a wolf den, but rather 

a site in which peccaries would gather periodically and occasionally died. In a typical predator 

den or cache site, the disarticulated remains of multiple prey species are represented, often 

alongside the remains of multiple articulated remains of the predators which accumulated them 

over a period of time (Maguire et al. 1980; Hill 1989; Cruz-Uribe 1991; Mondini 2002; 

Pickering et al. 2004). The vast abundance of P. compressus remains, some of which have 

remained partially articulated, together with the scant remains of six dire wolves, two coyotes, 

and one red fox (Hawksley et al. 1973). It is therefore more likely that the local dire wolves were 

opportunistically entering the cave to either hunt live peccaries or to scavenge the carcasses of 

animals which died of natural causes. A similar bone accumulation of mountain goats 

(Oreamnos americanus) is reported by Jim Mead (personal communication) from a recent cave 

site in which grey wolves either killed or scavenged these animals inside the cave. Hunting of the 

BC peccaries by wolves is most likely to have taken place during late winter when they are likely 

to have been most vulnerable to predation. Smaller predators appear to have utilized the cave 

periodically and scavenged from any carcasses left behind. It is worth noting here that many of 

the smaller vertebrates represented at the site, such as American beaver and hellbender 

salamander (Hawksley et al. 1973), could have been transported there by smaller carnivores who 

would have utilized the cave when the peccaries were absent. 

Feeding behavior of Canis dirus―Based on the taphonomic and faunal analysis of the 

remains it is hypothesized that the dire wolf was primarily responsible for carcass modification 
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on the peccaries at Bat Cave. From this, the feeding behavior of the dire wolf at Bat Cave is 

strikingly similar to the modifications inflicted on deer carcasses by gray wolves at Bays 

Mountain Park. As observed within the comparative sample, the proximal limb segments of the 

Bat Cave peccary bones appear to have been the most frequently utilized portions of the 

carcasses due to the larger muscle masses concentrated in these areas. The hindquarters in 

particular are the most heavily damaged elements among the BC sample. The relatively large 

size, laterally compressed nature, and close proximity to the upper limb segments make the 

calcaneus the most susceptible to predator modification among the carpals and tarsals. This may 

be due to the relatively large size of these bones compared to the other, smaller bones which 

comprise the wrists and ankles. Despite articulating directly to the tibia and being comparable to 

the calcanei in abundance and size, the astragali appear to be much more resistant to predator 

modification, most likely due to the compact and rounded shape of this element. The remaining 

bones which comprise the manus and pes are the least susceptible to predator modification 

because muscle attachment in this area is minimal, and could therefore be considered to be less 

palatable to feeding predators. Indeed, extant predators frequently ignore this part of the carcass 

completely often leaving the fully articulated limb extremity complete with skin (Haynes 1982).  

It has been noted by Haynes (1982) that scavenged carcasses are utilized less fully and 

are abandoned more intact, whereas prey that is procured by the wolves themselves are 

consumed much more completely. The extreme damage and disarticulation noted in most of the 

BC peccary material seems to indicate that the dire wolves were actively hunting these animals 

more often than they took advantage of found carcasses. One possible exception in which wolves 

may fully utilize a scavenged carcass is during a period of relative food scarcity and when a 

particularly large number of wolves are involved during the feeding process. Social predators 
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generally consume the entire kill onsite when the carcass is relatively small or when a 

particularly large number of predators are involved. When a carcass is relatively large or if fewer 

feeding predators are involved, portions of the kill, most commonly the limbs (Haynes 1982; Hill 

1989), may be removed and carried offsite to be consumed in relative privacy. The great 

abundance of limb elements are present among the Bat Cave sample suggests that the carcasses 

were not regularly being transported and supports the hypothesis that the wolf-eaten peccary 

bones were the result of wolves actively entering the cave to hunt or scavenge them. 

Rodent Damage―Klippel and Synstellien (2007) demonstrated that rodent modification 

typically takes place between one and two years after death, long after the flesh has been 

removed from the bones. Furthermore, their study seems to imply that though omnivorous 

rodents are more likely to attack the fat-laden cancellous bone, more herbivorous rodents will 

tend to focus on the edge or on the protuberance of a bone after the fat has been leached away 

and where the cortices are thick. The pattern among the rodent modified elements from the BC 

sample suggest that the latter scenario occurred more frequently and is reinforced by the known 

presence of numerous herbivorous taxa such as eastern woodrat (Neotoma floridana). Also, 

rodent gnawing appears to be particularly pronounced around the edges of predator-inflicted 

bone breakages, perhaps due to these bones being broken into smaller fragments that are more 

manageable for gape of many rodents. Perhaps due to the relative thinness of the cortical bone in 

these elements, rodent modification to the skull and mandible is often particularly severe often 

leading to the damage and loss of teeth. Isolated teeth, in turn, appear to be highly sought after 

by rodents most likely due to the relatively high mineral content of the dentine.   

Trampling―Trampling by ungulates includes inadvertent kicking and placement of the 

hoof directly upon an object on the surface of the ground (Haynes 1983). Impact damage due to 



101 
 

trampling is generally minimal when bones are whole and fresh, even after predators have 

removed the epiphyses. Dried or weathered bones, being much more brittle, tend to suffer much 

more impact damage and fracturing when subject to ungulate trampling (Haynes 1983). At 

minimum, trampled bones may simply be kicked several centimeters to several meters from their 

site of deposition. This typically occurs in high-traffic areas and partially explains why most of 

the bones collected from BC were collected from the sides of the cave. Most of the elements 

recovered from the cave center consisted of more enduring elements such as teeth. Continued 

trampling over a period of time often results in bones disappearing into the mud or being broken 

into ever smaller fragments. Skulls, ribs, vertebra, and scapulae may be crushed or splintered. 

Mandibles may be segmented into the ascending ramus, central cheek toothrow minus the lower 

border, and the forward part of the ramus. Pelvises may be broken in half or into several 

fragments, with bone surrounding the acetabulum surviving the longest. Spiral fractured long 

bones may develop additional linear fractures branching from the initial break. Even after 

subjected to particularly heavy carnivore utilization, individual elements are generally still 

identifiable. When secondarily subjected to trampling, however, elements may be reduced to 

unidentifiable chips and splinters. Such is the case observed among many of the BC peccary 

bones, many of which are so heavily fragmented that they were only identifiable as portions of 

long bone or skull. 
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CHAPTER 7 

CONCLUSIONS 

 Examination of the Bat Cave peccary sample was undertaken to assess demographics, 

predator modification, and other taphonomic factors of the deposit. 

 Maturation of individuals was assessed using tooth eruption sequence and occlusial wear 

patterns for all tooth-bearing mandibular elements and isolated lower dentition, which has 

demonstrated that all age groups are represented within the sample from unborn fetal to 

~nine-year-old individuals. 

 The presence of distinct, developmentally non-overlapping age groups suggest that P. 

compressus engaged in seasonal breeding behaviors, at least in the Bat Cave locality and 

other temperate regions. This finding suggests that caves were ecologically important to 

this species and offers insight into other P. compressus cave assemblages. 

 At the time of deposition, the Bat Cave site appears to have served as a seasonal, 

communal shelter for local peccaries, most likely during winter. 

 Demographic assessment of the Bat Cave peccary population suggests that younger 

individuals comprised the bulk of the population and individuals five and older gradually 

became less abundant.  

 While the site was occupied by peccaries, dire wolves would occasionally enter the cave 

to hunt or scavenge them. 

 Some peccaries, which were killed by wolves or by natural causes, were subsequently fed 

upon by smaller carnivorans and invertebrates. 

 Many of the peccary bones from Bat Cave were modified by rodents long after the flesh 

had been removed. 



103 
 

 Smaller, often unidentifiable bone fragments which bare no evidence of predator 

modification may be attributable to continual trampling by peccaries. 

 Small carnivorans appear to have utilized the cave site, perhaps when the peccaries were 

absent. 

 The relatively stable environment within the Bone Passage region of Bat Cave served as 

an ideal preservational environment for late Pleistocene bones. 

 Skeletal part representation suggests that a size-biased collection method was utilized. 

This supports historical documentation about the excavation and reflects difficulties in 

working in this area of the cave. 

 Initial cataloguing of the Bat Cave peccary material by Central Missouri State University 

focused on those elements which were more numerous and potentially helpful in 

assessing MNI. 

 The MNI for the Bat Cave peccaries has been revised from 98 to 70 individuals based on 

the number of lower left permanent canines. 

 A larger sample of intact P. compressus mandibles is necessary to better assess sexual 

dimorphism in this taxon. 
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APPENDICES 

APPENDIX A 

Number of Identified Elements 

Number of identified deciduous dental elements 

Tooth Lt Isolated Lt Emplaced Lt Total Rt Isolated Rt Emplaced Rt Total 

Lower dI1-2 0 0 0 0 0 0 

Upper dI1-2 0 0 0 0 0 0 

Lower dC1 11 0 11 9 0 9 

Upper dC1 13 0 13 21 0 21 

Lower dP2 2 2 4 2 0 2 

Upper dP2 3 0 3 1 0 1 

Lower dP3 3 2 5 3 1 4 

Upper dP3 2 1 3 0 0 0 

Lower dP4 6 2 8 6 3 9 

Upper dP4 3 2 5 4 1 5 

 

Number of identified permanent dental elements 

Tooth Lt Isolated Lt Emplaced Lt Total Rt Isolated Rt Emplaced Rt Total 

Lower I1-2 45 2 47 39 0 39 

Upper I1-2 18 0 18 11 0 11 

Lower C1 56 14 70 53 11 64 

Upper C1 39 2 41 52 1 53 

Lower P2 6 3 9 4 4 8 

Upper P2 4 0 4 4 3 7 

Lower P3 4 13 17 8 11 19 

Upper P3 3 1 4 9 3 12 

Lower P4 8 14 22 7 16 23 

Upper P4 6 3 9 6 4 10 

Lower M1 6 18 24 8 17 25 

Upper M1 10 5 15 9 7 16 

Lower M2 15 18 33 13 16 29 

Upper M2 8 4 12 6 7 13 

Lower M3 8 12 20 14 19 33 

Upper M3 0 4 4 2 6 8 
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Number of identified postcranial elements 

Element Left ― Right Total 

Scapula 42  50 92 

Humerus 38  35 73 

Radius/Ulna 42  41 83 

Scaphoid 8  8 16 

Lunar 4  8 12 

Cuneiform 7  4 11 

Pisiform 4  1 5 

Unciform 3  7 10 

Magnum 7  5 12 

Trapezoid 0  0 0 

Trapezium 0  0 0 

Metacarpal pair 9  7 16 

Metacarpal III 15  17 32 

Metacarpal IV 12  16 28 

Pelvis 25  11 36 

Femur 48  44 92 

Tibia 21  28 49 

Fibula 18  22 40 

Calcaneus 31  30 61 

Astragalus 31  21 52 

Navicular 9  9 18 

Cuboid 7  10 17 

Metatarsal pair 24  17 41 

Metatarsal III 5  6 11 

Metatarsal IV 5  6 11 

Patella 9  4 13 

Prox. Phalanges 82  82 164 

Med. Phalanges 53  58 111 

Dist. Phalanges 48  40 88 

Atlas  19  19 

Axis  10  10 

Other Cervicals  58  58 

Thoracic Vert.  140  140 

Lumbar Vert.  102  102 

Sacrum  22  22 

Caudal Vert.  25  25 

1st Sternbra  8  8 

2nd Sternebra  6  6 

3rd Sternebra  15  15 
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4th Sternebra  11  11 

5th Sternebra  4  4 

6th Sternebra  1  1 

Ribs  278  278 

Isolated Fibulae  163  163 

Costal Cartilage  54  54 
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APPENDIX B 

Catalogue Numbers 

ISM catologue number assignments 

ISM # Element ISM # Element ISM # Element 

499097 Mandible 499148 Rt Calcaneus 499203 Rt Upper I1-2 

499098 Lt Dentary 499149 Lt Astragalus 499204 Lt Lower C1 

499099 Rt Dentary 499150 Rt Astragalus 499205 Rt Lower C1 

499100 Skull/Palate 499151 Lt Navicular 499206 Lt Upper C1 

499101 Lt Maxilla/Premaxilla 499152 Rt Navicular 499207 Rt Upper C1 

499102 Rt Maxilla/Premaxilla 499153 Lt Cuboid 499208 Lt Lower P2 

499103 Lt Frontal 499154 Rt Cuboid 499209 Rt Lower P2 

499104 Rt Frontal 499155 Lt Ectocuneiform 499210 Lt Upper P2 

499105 Lt Jugal 499156 Rt Ectocuneiform 499211 Rt Upper P2 

499106 Rt Jugal 499157 Lt Mesocuneiform 499212 Lt Lower P3 

499107 Lt Squamosal 499158 Rt Mesocuneiform 499213 Rt Lower P3 

499108 Rt Squamosal 499159 Lt Entocuneiform 499214 Lt Upper P3 

499109 Nasal 499160 Rt Entocuneiform 499215 Rt Upper P3 

499110 Parietal 499161 Lt Cannon Bone 499216 Lt Lower P4 

499111 Occiput 499162 Rt Cannon Bone 499217 Rt Lower P4 

499112 Auditory Bulla 499163 Lt Metatarsal III 499218 Lt Upper P4 

499114 Lt Scapula 499164 Rt Metatarsal III 499219 Rt Upper P4 

499115 Rt Scapula 499165 Lt Metatarsal IV 499220 Lt Lower M1 

499116 Lt Humerus 499166 Rt Metatarsal IV 499221 Rt Lower M1 

499117 Rt Humerus 499167 Lt Patella 499222 Lt Upper M1 

499118 Lt Radius/Ulna 499168 Rt Patella 499223 Rt Upper M1 

499119 Right Radius/Ulna 499169 Lt Fibula 499224 Lt Lower M2 

499120 Lt Scaphoid 499170 Rt Fibula 499225 Rt Lower M2 

499121 Rt Scaphoid 499171 Lt Proximal Phalanx 499226 Lt Upper M2 

499122 Lt Lunar 499172 Rt Proximal Phalanx 499227 Rt Upper M2 

499123 Rt Lunar 499173 Lt Medial Phalanx 499228 Lt Lower M3 

499124 Lt Cuneiform 499174 Rt Medial Phalanx 499229 Rt Lower M3 

499125 Rt Cuneiform 499175 Lt Distal Phalanx 499230 Lt Upper M3 

499126 Lt Pisiform 499176 Rt Distal Phalanx 499231 Rt Upper M3 

499127 Rt Pisiform 499177 CV1 (Atlas) 499236 Lt Lower dI1-2 

499128 Lt Unciform 499178 CV2 (Axis) 499237 Rt Lower dI1-2 

499129 Rt Unciform 499179 CV3-4 499238 Lt Upper dI1-2 

499130 Lt Magnum 499180 CV5 499239 Rt Upper dI1-2 

499131 Rt Magnum 499181 CV6 499240 Lt Lower dC1 
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499132 Lt Trapezoid 499182 CV7 499241 Rt Lower dC1 

499133 Rt Trapezoid 499183 TV1-13 499242 Lt Upper dC1 

499134 Lt Trapezium 499184 LV1-5 499243 Rt Upper dC1 

499135 Lt Cannon Bone 499185 Sacrum 499244 Lt Lower dP2 

499136 Rt Cannon Bone 499186 Caudal vertebrae 499245 Rt Lower dP2 

499137 Lt MC3 499187 1st Sternebra 499246 Lt Upper dP2 

499138 Rt MC3 499188 2nd Sternebra 499247 Rt Upper dP2 

499139 Lt MC4 499189 3rd Sternebra 499248 Lt Lower dP3 

499140 Rt MC4 499190 4th Sternebra 499249 Rt Lower dP3 

499141 Lt Pelvis 499191 5th Sternebra 499250 Lt Upper dP3 

499142 Rt Pelvis 499192 6th Sternebra 499251 Rt Upper dP3 

499143 Lt Femur 499193 Costal Cartilage 499252 Lt Lower dP4 

499144 Rt Femur 499194 Ribs 499253 Rt Lower dP4 

499145 Lt Tibia 499200 Lt Lower I1-2 499254 Lt Upper dP4 

499146 Rt Tibia 499201 Rt Lower I1-2 499255 Rt Upper dP4 

499147 Lt Calcaneus 499202 Lt Upper I1-2   
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Frequency of elements bearing the CMS catalogue 

Element %  Element %  

Metacarpal Pair 100% Humerus 67.12% 

C1 98.51% Magnum 66.67% 

dC1 98.15% Metatarsal III 63.63% 

Metatarsal Pair 97.56% Scapula 41.30% 

Astragalus 96.15% Radius/Ulna 13.25% 

Cuboid 94.12% Sacrum 9.09% 

Proximal Phalanges 93.90% Tibia 8.16% 

Metacarpal III 93.75% Unciform 8% 

Distal Phalanges 93.10% Dentary 7.89% 

Patella 92.30% M2 4.76% 

Calcaneus 91.80% M3 4.17% 

Lunar 91.67% dI1-2 0% 

Metatarsal IV 90.90% dP2 0% 

Atlas 89.47% dP3 0% 

Pelvis 89.19% dP4 0% 

Medial Phalanges 89.19% I1-2 0% 

Navicular 88.89% P2 0% 

Fibula 87.50% P3 0% 

Lumbar Vertebrae 86.27% P4 0% 

Metacarpal IV 85.71% M1 0% 

Axis 81.81% Pisiform 0% 

Scaphoid 80% Trapezoid 0% 

Other Cervicals 77.42% Trapezium 0% 

Mandible 72.72% Caudal Vertebrae 0% 

Cuneiform 72.72% Sternebrae 0% 

Thoracic Vertebrae 72.14% Costal Cartilage 0% 

Femur 71.74% Ribs 0% 
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APPENDIX C 

Summary of Limb Elements 

Scapulae 

Scapula Left Right Total 

Complete spine 1 3 4 

Incomplete spine 15 9 24 

Glenoid fossa 7 8 15 

Fragmented 24 19 43 

Fetal/Neonate 3 3 6 

Total 50 42 92 

 

Humeri 

Humerus Left Right Total 

Complete element 6 4 10 

Absent proximal shaft 11 8 19 

Distal end only 4 7 11 

Proximal end only 9 11 20 

Shaft fragment 4 1 5 

Fetal/Neonate 4 4 8 

Total 38 35 73 

 

Radii & ulnae 

Radius/Ulna Left Right Total 

Complete element 4 1 5 

Incomplete element 8 11 19 

Unfused epiphysis 4 3 7 

Isolated radius 7 8 15 

Isolated ulna 13 13 26 

Fetal/Neonate radius 4 4 8 

Fetal/Neonate ulna 2 1 3 

Total 42 41 83 
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Femora 

Femur Left Right Total 

Complete element 0 1 1 

Incomplete element 3 1 4 

Proximal end only 7 6 13 

Distal end only 16 13 29 

Unfused proximal epiphysis 6 9 15 

Shaft 11 10 21 

Fetal/Neonate 5 4 9 

Total 48 44 92 

 

Tibiae 

Tibia Left Right Total 

Complete element 2 3 5 

Proximal end only 6 10 16 

Distal end only 3 3 6 

Shaft w/ distal end 4 6 10 

Shaft w/ distal end 6 6 12 

Fetal/Neonate 0 0 0 

Total 21 28 49 
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APPENDIX D 

Demographic Assessment 

Lower M3 measurements 

Specimen Taxon (site) Length (mm) Width (mm) 

UF 12090 Platygonus cumberlandensis (Coleman II) 25.28 15.11 

 Platygonus cumberlandensis (Coleman II) 26.88 15.6 

UF 12089 Platygonus cumberlandensis (Coleman II) 25.92 15.47 

 Platygonus cumberlandensis (Coleman II) 27.83 15.67 

UF 12086 Platygonus cumberlandensis (Coleman II) 26.04 14.94 

UF 87819 Platygonus cumberlandensis (Leisey Shell Pit 1A) 23.74 14.09 

UF 63907 Platygonus cumberlandensis (Leisey Shell Pit 1A) 21.74 13.46 

UF 67178 Platygonus cumberlandensis (Leisey Shell Pit 1A) 22.1 13.85 

UF 67177 Platygonus cumberlandensis (Leisey Shell Pit 1A) 23.75 15.01 

UF 87835 Platygonus cumberlandensis (Leisey Shell Pit 1A) 22.11 13.66 

UF 86918 Platygonus cumberlandensis (Leisey Shell Pit 1A) 21.82 13.45 

UF 63909 Platygonus cumberlandensis (Leisey Shell Pit 1A) 23.61 14.47 

UF 63904 Platygonus cumberlandensis (Leisey Shell Pit 1A) 21.79 12.81 

UF 67176 Platygonus cumberlandensis (Leisey Shell Pit 1A) 23.99 14.91 

UF 81551 Platygonus cumberlandensis (Leisey Shell Pit 1A) 21.37 13.48 

UF 65262 Platygonus cumberlandensis (Leisey Shell Pit 1A) 21.46 13.27 

UF 87794 Platygonus cumberlandensis (Leisey Shell Pit 1A) 20.37 12.36 

UF 87772 Platygonus cumberlandensis (Leisey Shell Pit 1A) 22.88 13.67 

UF 80821 Platygonus cumberlandensis (Leisey Shell Pit 1A) 24.42 14.41 

UF 82218 Platygonus cumberlandensis (Leisey Shell Pit 1A) 24.07 15.25 

ISM 499097.1 Platygonus compressus (Bat Cave) 20.46 12.98 

ISM 499097.2 Platygonus compressus (Bat Cave) 21.95 12 

ISM 499097.3 Platygonus compressus (Bat Cave) 21.73 13.24 

ISM 499097.4 Platygonus compressus (Bat Cave) 21.97 12.5 

ISM 499097.5 Platygonus compressus (Bat Cave) 22.28 12.65 

ISM 499097.6 Platygonus compressus (Bat Cave) 22.8 12.77 

ISM 499097.7 Platygonus compressus (Bat Cave) 20.64 11.35 

ISM 499098.3 Platygonus compressus (Bat Cave) 20.74 12.62 

ISM 499098.4 Platygonus compressus (Bat Cave) 20.83 11.74 

ISM 499098.5 Platygonus compressus (Bat Cave) 21.84 12.54 

ISM 499098.6 Platygonus compressus (Bat Cave) 20.71 12.69 

ISM 499098.7 Platygonus compressus (Bat Cave) 20.12 12.73 

ISM 499098.15 Platygonus compressus (Bat Cave) 23.03 12.93 

ISM 499098.16 Platygonus compressus (Bat Cave) 21.24 12.74 
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ISM 499099.1 Platygonus compressus (Bat Cave) 21.69 11.61 

ISM 499099.6 Platygonus compressus (Bat Cave) 20.98 13.2 

ISM 499099.7 Platygonus compressus (Bat Cave) 21.71 12.73 

ISM 499099.8 Platygonus compressus (Bat Cave) 21.63 13.14 

ISM 499099.11 Platygonus compressus (Bat Cave) 22.82 13.71 

ISM 499099.12 Platygonus compressus (Bat Cave) 22.4 12.78 

ISM 499099.13 Platygonus compressus (Bat Cave) 21.74 13.05 

ISM 499099.19 Platygonus compressus (Bat Cave) 22.88 12.79 

ISM 499099.20 Platygonus compressus (Bat Cave) 22.11 13.53 

ISM 499099.21 Platygonus compressus (Bat Cave) 20.85 12.54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

APPENDIX E 

Predator Damage Assessment 

Frequency of predator damage to scapulae 

Stage 0 Stage 1 Stage 2 Stage 3 Indeterminable 

ISM 499114.1 ISM 499115.1 ISM 499115.3 ISM 499115.17 ISM 499115.9 

 ISM 499115.2 ISM 499115.4 ISM 499115.18 ISM 499115.12 

 ISM 499114.2 ISM 499115.5 ISM 499115.19 ISM 499115.13 

 ISM 499114.3 ISM 499115.6 ISM 499115.20 ISM 499115.27 

  ISM 499115.7 ISM 499115.21 ISM 499115.29 

  ISM 499115.8 ISM 499115.22 ISM 499115.30 

  ISM 499115.10 ISM 499115.23 ISM 499115.31 

  ISM 499115.11 ISM 499115.24 ISM 499115.32 

  ISM 499115.14 ISM 499115.25 ISM 499115.33 

  ISM 499115.15 ISM 499115.26 ISM 499115.34 

  ISM 499115.16 ISM 499115.28 ISM 499115.36 

  ISM 499114.5 ISM 499115.35 ISM 499115.38 

  ISM 499114.6 ISM 499115.37 ISM 499115.39 

  ISM 499114.9 ISM 499115.41 ISM 499115.40 

  ISM 499114.10 ISM 499115.44 ISM 499115.42 

  ISM 499114.11 ISM 499115.47 ISM 499115.43 

  ISM 499114.13 ISM 499114.12 ISM 499115.45 

   ISM 499114.14 ISM 499115.46 

   ISM 499114.15 ISM 499114.4 

   ISM 499114.16 ISM 499114.7 

   ISM 499114.17 ISM 499114.8 

   ISM 499114.18 ISM 499114.23 

   ISM 499114.19 ISM 499114.24 

   ISM 499114.20 ISM 499114.25 

   ISM 499114.21 ISM 499114.27 

   ISM 499114.22 ISM 499114.28 

   ISM 499114.26 ISM 499114.29 

   ISM 499114.35 ISM 499114.30 

   ISM 499114.36 ISM 499114.31 

   ISM 499114.37 ISM 499114.32 

   ISM 499114.38 ISM 499114.33 

   ISM 499114.39 ISM 499114.34 
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Frequency of predator damage to humeri 

Stage 0 Stage 1 Stage 2 Stage 3 Indeterminable 

ISM 499116.1 ISM 499116.2 ISM 499116.9 ISM 499116.18 ISM 499116.27 

 ISM 499116.3 ISM 499116.10 ISM 499116.19 ISM 499116.28 

 ISM 499116.4 ISM 499116.11 ISM 499116.20 ISM 499117.18 

 ISM 499116.5 ISM 499116.12 ISM 499116.21 ISM 499117.27 

 ISM 499116.6 ISM 499116.13 ISM 499116.22 ISM 499117.28 

 ISM 499116.7 ISM 499116.14 ISM 499116.23 ISM 499117.29 

 ISM 499116.8 ISM 499116.15 ISM 499116.24 ISM 499117.30 

 ISM 499117.1 ISM 499116.16 ISM 499116.25 ISM 499117.31 

 ISM 499117.2 ISM 499116.17 ISM 499116.26  

 ISM 499117.3 ISM 499117.7 ISM 499116.29  

 ISM 499117.4 ISM 499117.8 ISM 499116.30  

 ISM 499117.5 ISM 499117.9 ISM 499116.31  

 ISM 499117.6 ISM 499117.10 ISM 499116.32  

  ISM 499117.11 ISM 499116.33  

  ISM 499117.12 ISM 499116.34  

   ISM 499117.13  

   ISM 499117.14  

   ISM 499117.15  

   ISM 499117.16  

   ISM 499117.17  

   ISM 499117.19  

   ISM 499117.20  

   ISM 499117.21  

   ISM 499117.22  

   ISM 499117.23  

   ISM 499117.24  

   ISM 499117.25  

   ISM 499117.26  
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Frequency of predator damage to radii and ulnae 

Stage 0 Stage 1 Stage 2 Stage 3 Indeterminable 

ISM 499118.1 ISM 499118.3 ISM 499118.6 ISM 499118.8 ISM 499118.13 

ISM 499118.2 ISM 499118.5 ISM 499118.7 ISM 499118.9 ISM 499118.14 

ISM 499118.4 ISM 499118.16 ISM 499118.17 ISM 499118.10 ISM 499118.20 

ISM 499118.15 ISM 499118.24 ISM 499118.18 ISM 499118.11 ISM 499118.21 

ISM 499119.1 ISM 499118.27 ISM 499118.19 ISM 499118.12 ISM 499118.33 

ISM 499119.31 ISM 499119.2 ISM 499118.22 ISM 499118.23 ISM 499119.12 

 ISM 499119.3 ISM 499118.25 ISM 499118.28 ISM 499119.13 

 ISM 499119.4 ISM 499118.26 ISM 499118.29 ISM 499119.14 

 ISM 499119.5 ISM 499119.6 ISM 499118.30 ISM 499119.15 

 ISM 499119.17 ISM 499119.7 ISM 499118.31 ISM 499119.16 

 ISM 499119.18 ISM 499119.8 ISM 499118.32 ISM 499119.27 

 ISM 499119.19 ISM 499119.9 ISM 499118.34 ISM 499119.35 

  ISM 499119.10 ISM 499118.35  

  ISM 499119.11 ISM 499118.36  

  ISM 499119.20 ISM 499119.22  

  ISM 499119.21 ISM 499119.23  

  ISM 499119.26 ISM 499119.24  

  ISM 499119.28 ISM 499119.25  

   ISM 499119.29  

   ISM 499119.30  

   ISM 499119.32  

   ISM 499119.33  

   ISM 499119.34  

   ISM 499119.36  
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Frequency of predator damage to pelvises. 

Stage 0 Stage 1 Stage 2 Stage 3 Indeterminable 

 ISM 499142.1 ISM 499141.1 ISM 499141.13 ISM 499141.22 

  ISM 499141.2 ISM 499141.14 ISM 499141.25 

  ISM 499141.3 ISM 499141.15  

  ISM 499141.4 ISM 499141.17  

  ISM 499141.5 ISM 499141.18  

  ISM 499141.6 ISM 499141.19  

  ISM 499141.7 ISM 499141.20  

  ISM 499141.8 ISM 499141.21  

  ISM 499141.9 ISM 499141.23  

  ISM 499141.10 ISM 499141.24  

  ISM 499141.11 ISM 499142.5  

  ISM 499141.12 ISM 499142.6  

  ISM 499141.16 ISM 499142.7  

  ISM 499142.2 ISM 499142.8  

  ISM 499142.3 ISM 499142.9  

  ISM 499142.4 ISM 499142.10  

   ISM 499142.11  

   ISM 499142.12  

 

Frequency of predator damage to femora 

Stage 0 Stage 1 Stage 2 Stage 3 Indeterminable 

 ISM 499143.1 ISM 499143.8 ISM 499143.13 ISM 499143.16 

 ISM 499143.2 ISM 499143.9 ISM 499143.14 ISM 499143.19 

 ISM 499143.3 ISM 499143.10 ISM 499143.15 ISM 499143.32 

 ISM 499143.4 ISM 499143.11 ISM 499143.17 ISM 499143.36 

 ISM 499143.5 ISM 499143.12 ISM 499143.18 ISM 499143.43 

 ISM 499143.6 ISM 499144.2 ISM 499143.20 ISM 499144.14 

 ISM 499143.7 ISM 499144.3 ISM 499143.21 ISM 499144.17 

 ISM 499144.1 ISM 499144.4 ISM 499143.22 ISM 499144.28 

  ISM 499144.5 ISM 499143.23 ISM 499144.29 

  ISM 499144.6 ISM 499143.24 ISM 499144.30 

  ISM 499144.7 ISM 499143.25 ISM 499144.32 

  ISM 499144.8 ISM 499143.26 ISM 499144.33 

  ISM 499144.11 ISM 499143.27 ISM 499144.34 

  ISM 499144.38 ISM 499143.28 ISM 499144.35 

  ISM 499144.39 ISM 499143.29  

   ISM 499143.30  

   ISM 499143.31  
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   ISM 499143.33  

   ISM 499143.34  

   ISM 499143.35  

   ISM 499143.37  

   ISM 499143.38  

   ISM 499143.39  

   ISM 499143.40  

   ISM 499143.41  

   ISM 499143.42  

   ISM 499144.9  

   ISM 499144.10  

   ISM 499144.12  

   ISM 499144.13  

   ISM 499144.15  

   ISM 499144.16  

   ISM 499144.18  

   ISM 499144.19  

   ISM 499144.20  

   ISM 499144.21  

   ISM 499144.22  

   ISM 499144.23  

   ISM 499144.24  

   ISM 499144.25  

   ISM 499144.26  

   ISM 499144.27  

   ISM 499144.31  

   ISM 499144.36  

   ISM 499144.37  

   ISM 499144.40  
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Frequency of predator damage to tibiae 

Stage 0 Stage 1 Stage 2 Stage 3 Indeterminable 

ISM 499145.1 ISM 499145.2 ISM 499145.4 ISM 499145.10 ISM 499145.7 

 ISM 499145.3 ISM 499145.8 ISM 499145.11 ISM 499145.15 

 ISM 499145.5 ISM 499145.9 ISM 499145.12 ISM 499145.16 

 ISM 499145.6 ISM 499145.21 ISM 499145.13 ISM 499145.18 

 ISM 499146.1 ISM 499146.6 ISM 499145.14 ISM 499145.20 

 ISM 499146.2 ISM 499146.7 ISM 499145.17 ISM 499146.9 

 ISM 499146.3 ISM 499146.8 ISM 499145.19 ISM 499146.10 

 ISM 499146.4 ISM 499146.11 ISM 499146.18 ISM 499146.14 

 ISM 499146.5 ISM 499146.12 ISM 499146.19 ISM 499146.17 

  ISM 499146.13 ISM 499146.20 ISM 499146.23 

  ISM 499146.15 ISM 499146.21 ISM 499146.24 

  ISM 499146.16 ISM 499146.22 ISM 499146.25 

   ISM 499146.28 ISM 499146.26 

    ISM 499146.27 

 

Predator damage patterns observed among cervical vertebrae 
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ISM 499177.2 ✓           

ISM 499177.4       ✓     

ISM 499177.5 ✓     ✓     

ISM 499177.6       ✓     

ISM 499177.7       ✓     

ISM 499177.8 ✓     ✓ ✓   

ISM 499177.9 ✓     ✓     

ISM 499177.10 ✓     ✓     

ISM 499177.11 ✓     ✓     

ISM 499177.12 ✓   ✓ ✓     

ISM 499177.13 ✓     ✓     

ISM 499177.14 ✓   ✓ ✓     

ISM 499177.15 ✓   ✓ ✓     

ISM 499177.16 ✓     ✓ ✓ ✓ 
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ISM 499178.3 ✓     ✓     

ISM 499178.4 ✓     ✓     

ISM 499178.5 ✓   ✓ ✓     

ISM 499178.7 ✓   ✓ ✓     

ISM 499178.8 ✓     ✓     

ISM 499178.10 ✓       ✓   

ISM 499178.11 ✓ ✓ ✓ ✓     

ISM 499179.3 ✓     ✓     

ISM 499179.4 ✓   ✓ ✓     

ISM 499179.7 ✓     ✓     

ISM 499179.8 ✓           

ISM 499179.10 ✓ ✓ ✓ ✓     

ISM 499179.12 ✓ ✓ ✓ ✓     

ISM 499179.13 ✓ ✓ ✓ ✓     

ISM 499179.14 ✓   ✓ ✓     

ISM 499179.23             

ISM 499179.24   ✓ ✓ ✓     

ISM 499179.26   ✓ ✓ ✓     

ISM 499179.27 ✓ ✓   ✓     

ISM 499179.28 ✓ ✓   ✓     

ISM 499179.29 ✓       ✓ ✓ 

ISM 499180.4     ✓ ✓     

ISM 499180.5 ✓ ✓ ✓ ✓     

ISM 499180.6 ✓   ✓ ✓     

ISM 499182.11 ✓ ✓ ✓ ✓     

ISM 499182.12 ✓ ✓ ✓ ✓     

 

Predator damage patterns observed among thoracic vertebrae 

Specimen ID 
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ISM 499183.4     ✓ ✓     

ISM 499183.5 ✓   ✓ ✓     

ISM 499183.7     ✓ ✓     

ISM 499183.9     ✓ ✓     

ISM 499183.11 ✓     ✓     
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ISM 499183.12       ✓     

ISM 499183.13 ✓   ✓ ✓     

ISM 499183.14 ✓   ✓ ✓     

ISM 499183.17 ✓     ✓     

ISM 499183.18       ✓     

ISM 499183.22     ✓       

ISM 499183.24       ✓     

ISM 499183.27       ✓     

ISM 499183.28 ✓   ✓ ✓     

ISM 499183.29       ✓     

ISM 499183.35 ✓     ✓     

ISM 499183.36 ✓     ✓     

ISM 499183.40 ✓     ✓     

ISM 499183.41 ✓     ✓     

ISM 499183.44 ✓     ✓     

ISM 499183.49     ✓ ✓     

ISM 499183.51       ✓     

ISM 499183.53 ✓   ✓ ✓     

ISM 499183.54 ✓   ✓ ✓     

ISM 499183.55 ✓   ✓ ✓     

ISM 499183.58 ✓ ✓ ✓ ✓     

ISM 499183.59 ✓   ✓ ✓     

ISM 499183.60 ✓ ✓ ✓ ✓     

ISM 499183.61 ✓   ✓       

ISM 499183.62 ✓   ✓   ✓   

ISM 499183.63     ✓       

ISM 499183.64 ✓ ✓ ✓ ✓     

ISM 499183.65 ✓   ✓ ✓     

ISM 499183.68       ✓     

ISM 499183.73 ✓     ✓     

ISM 499183.75 ✓   ✓ ✓     

ISM 499183.76   ✓         

ISM 499183.78 ✓   ✓ ✓     

ISM 499183.82   ✓ ✓ ✓     

ISM 499183.88 ✓     ✓     

ISM 499183.91 ✓     ✓     

ISM 499183.92     ✓ ✓     

ISM 499183.95     ✓ ✓     

ISM 499183.96       ✓     

ISM 499183.98 ✓     ✓     

ISM 499183.103 ✓   ✓ ✓     
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ISM 499183.104   ✓ ✓ ✓     

ISM 499183.106 ✓ ✓   ✓     

ISM 499183.107 ✓ ✓   ✓     

ISM 499183.110     ✓ ✓     

ISM 499183.111 ✓           

ISM 499183.113   ✓ ✓ ✓     

ISM 499183.114 ✓   ✓ ✓     

ISM 499183.115   ✓ ✓ ✓     

ISM 499183.118 ✓ ✓ ✓ ✓     

ISM 499183.119     ✓ ✓     

ISM 499183.124 ✓     ✓   ✓ 

ISM 499183.126 ✓     ✓   ✓ 

ISM 499183.127 ✓ ✓ ✓ ✓     

ISM 499183.129 ✓     ✓   ✓ 

ISM 499183.130       ✓   ✓ 

ISM 499183.131 ✓     ✓   ✓ 

ISM 499183.133 ✓     ✓   ✓ 

 

Predator damage patterns observed among lumbar vertebrae 

Specimen ID 
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ISM 499184.4 ✓     ✓     

ISM 499184.10 ✓   ✓ ✓     

ISM 499184.11 ✓     ✓     

ISM 499184.20 ✓     ✓     

ISM 499184.21     ✓ ✓     

ISM 499184.22 ✓ ✓ ✓ ✓     

ISM 499184.23       ✓     

ISM 499184.25 ✓     ✓     

ISM 499184.26     ✓ ✓     

ISM 499184.27 ✓   ✓ ✓     

ISM 499184.31 ✓ ✓ ✓ ✓     

ISM 499184.32 ✓   ✓ ✓     

ISM 499184.33 ✓     ✓     

ISM 499184.34 ✓     ✓     
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ISM 499184.35   ✓ ✓ ✓     

ISM 499184.36 ✓     ✓     

ISM 499184.42 ✓     ✓     

ISM 499184.43       ✓     

ISM 499184.50 ✓     ✓     

ISM 499184.52 ✓     ✓     

ISM 499184.55 ✓   ✓ ✓     

ISM 499184.66 ✓ ✓ ✓ ✓     

ISM 499184.73 ✓     ✓     

ISM 499184.84 ✓     ✓     

ISM 499184.85 ✓   ✓ ✓     

ISM 499184.91 ✓ ✓ ✓ ✓     

ISM 499184.92 ✓ ✓ ✓ ✓     

ISM 499184.93 ✓     ✓   ✓ 

ISM 499184.94 ✓   ✓ ✓     

ISM 499184.97 ✓ ✓ ✓   ✓   

ISM 499184.99 ✓ ✓ ✓   ✓   

ISM 499184.101 ✓       ✓   
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