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ABSTRACT 

Synthesis of Phenothiazinium Derivatives 

by 

Selorm J. Fanah 

Photodynamic therapy (PDT) employs photosensitizing drugs for treating cancer.  Once 

introduced into the body and localized in tumor cells, these photosensitizers are irradiated with 

light to produce active singlet oxygen radicals which kill cancer cells. The current drugs used in 

PDT have low quantum yield and always require a high energy radiation (normally laser). There 

is always a need for more effective drugs that have a high quantum yield and can be activated by 

visible light, in order to eliminate side effects caused by laser radiations.  

In this work we synthesized derivatives of phenothiazine and phenothiazinium chromophores 

from the commercially available phenothiazine (1).  These derivatives include: 3,7-

dibromophenothiazinium perbromide (2), N-acetyl phenothiazine (5), N-acetyl-3,7-

dibromophenothiazine (6),  3,7-dinitrophenothiazine (10), N-acetyl-3,7-dinitrophenothiazine 

(11), N-acetyl-3,7-diaminophenothiazine (12), thionine chloride (15) and 3,7-

phenothiaziniumdinitrile (14). Synthesis of 3,7-phenothiazinium dicarboxylic acid was attempted 

using 1 and 15 as starting materials by exploring various synthetic routes for carboxylic acids. 
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CHAPTER 1 

INTRODUCTION 

 Developing alternative therapeutic ways of treating cancer and tumor cells have become 

an important field of study and much interest for scientists. Although chemotherapy has been 

widely used, its associated side effects and cost have paved way for photodynamic therapy. 3  

The key component of photodynamic therapy (PDT) is the use of a suitable drug 

(photosensitizer) that can absorb radiation at a specific wavelength.  However, there are 

limitations for the use of photosensitizers in PDT, such as poor absorptivity, contamination by 

other compounds, low photostability of the drug, toxicity, and the ability of the drug to be 

localized in neoplastic tissues.4,5 A good number of compounds and their analogues have been 

synthesized for this method over the last few decades. Among them are some phenothiazine 

derivatives which have shown distinctive characteristics in photo antimicrobial activities.5  

The primary purpose of this work is to synthesize derivatives of phenothiazine that 

satisfy most of the requirements mentioned above.  For example, a potential advantage of 

attaching a carboxylate group to phenothiazine is to convert the aromatic chromophore into one 

which would have a high singlet oxygen quantum yield when exposed to light.11, 17 Such 

derivatives can have further application in dye sensitized solar cells (DSSC), and syntheses of  

new generations of metal-organic frameworks (MOF’s). 

Photodynamic Therapy (PDT)  

Photodynamic therapy (PDT) employs drugs which are sensitive to light 

(photosensitizers) in the treatment of cancer cells. This treatment uses light rays of a specific 

wavelength in the treatment of the cells. The wavelength of the light used determines which parts 



 

15 
 

of the body with tumor cells can be treated. Also, the type of photosensitizers used at a time 

determines which wavelength of light to be used since each of the light sensitive drugs can only 

absorb photons produced at specific wavelengths of light.  When photosensitizers absorb 

photons, they are excited. These excited photosensitizers transfer energy to tissue oxygen which 

generates singlet oxygen to kill cancer cells.1-3 The light source for irradiating the cells can be 

from lasers which is directed through fiber optics to the affected areas during treatments.2 

Photosensitive agents which are introduced into the body by injection are absorbed into 

the blood streams by all body cells and tumor or cancer cells, but their life span in the cancer 

cells are much longer than the normal body cell due to their strong selective binding to cancer 

cells. This selective binding of photosensitizers to cancer cells is made possible by such features 

as a larger volume, larger fraction of macrophages, leaky microvasculature, poor lymphatic 

drainage, lower extracellular pH, larger amount of newly formed collagens, and numerous 

receptors for lipoprotein.6 

Approximately one or two days after they are introduced into the body, most of the drugs 

would leave the normal host cells but remain in higher concentrations in  tumor cells. These cells 

are then exposed to red light of a specific wavelength (600 nm) which activates the 

photosensitizing drugs to produce reactive singlet oxygen radicals that kill the cancer cells as 

shown in Figure 1.1,5 

In addition to killing cancer cells, this therapy appears to destroy and reduce the diameter of 

tumor cells through some other routes. The photosensitive drugs damage blood vessels of tumor 

cells cutting the supply of blood nutrients to them and also activate the body immune system to 

attack tumor cells.1-4 
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This breakthrough of treating cancer cells can be traced to the work of Rabb Oscar, a 

medical student of Prof. Herman Von Trappeiner in 1900.5 In his work, he noticed an elevated 

harmfulness of acridine orange towards paramicium in the presence of light. Von Trappeiner 

reported his first test for the treatment of skin carcinoma using eosin solution. He later named 

this method the photodynamic therapy (PDT) in 1943.5 

Despite the advantage of this method of treating cancer over chemotherapy, it has a few 

limitations. Undoubtedly, one of these limitations is the small number of photosensitizing drugs 

available in the market.3 

 

Figure 1:  The mechanism of action for Photodynamic Therapy.5                   

    

Photosensitizers 

Photosensitizing agents are compounds that can activate singlet oxygen upon exposure to 

light of a specific wavelength at which the compound can absorb. The wavelength of operating 

light for PDT ranges between 600 nm to 900 nm.6   Light of wavelength below 600 nm tends to 

be absorbed by endogenous molecules such as hemoglobin; light of wavelength above 900 nm 
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does not produce enough reactive singlet oxygen radicals. Moreover, a light source with higher 

wavelength can penetrate body tissues more easily leading to severe side effects.6 

Although there are a number of photosensitive agents, only a few can be employed in 

PDT based on specific criteria which they need to meet. A photosensitizer needs to be nontoxic,  

highly soluble in lipids, produce a high amount of active singlet oxygen radicals when exposed 

to radiations (i.e., of a high quantum yield),8 selective towards hyper-proliferating tissues,7 and 

needs to be photostable.9 All these requirements need to be met for a photosensitizer to be used 

clinically.7-9 

  Some porphyrin derivatives have over the years been the most used photosensitizers for 

clinical PDT.10 Garbo, Keck and Selman reported in their work that dihematoporphyrin 

derivatives, which are widely used as photosensitizers for clinical photodynamic therapy, have 

poor absorption in the visible region; therefore there is a need for new photosensitizers.10    Other 

groups of photosensitizers include purpurins, porphycenes, pheophorbids, and most recently 

phenothiazine.11 

 

Phenothiazine 

Over the years, photosensitizers with phenothiazinium chromophore have found 

considerable use in PDT and photodynamic antimicrobial therapy (PACT). Phenothiazinium 

dyes, under the influence of light, are known to inhibit viral growth.18 The major compound of 

this group is methylene blue which is still used in most cancer treatments, photo disinfection of 

oral cavity, and blood plasma photo decontamination.12  
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Despite the useful effects of these lead compounds, developing other analogues with 

different side groups are slowly emerging.12 Work by Tiana et. Al., showed that the tissue 

absorption rate of some phenothiazine-based compounds is very high, and that some of these 

compounds can be used in dye-sensitized solar cells (DSSC).11, 17 Other useful derivatives of 

phenothiazine that are used in DSSC technology are thionine, azure C, and toluidine blue.11,12 

 

Methylene Blue 

           Methylene Blue (MB) is a phenothiazine derivative that contains two dimethyl amino 

groups. The dimethyl amino auxochromes and the phenothiazine chromophore make up the body 

of this dye. This lead compound and its derivatives have been used in drug research for treating 

various viral and bacterial infections.17  

           Methylene blue was part of the first group of drugs ever synthesized as an antiseptic for 

clinical therapy.17 This dye’s λ max values of 608 and 668 nm are within the suitable range of 

wavelength for PDT photosensitizers .16 Clinically, methylene blue (MB) is available as an 

aqueous solution (1% w/v; 10 g/ L or 26.7 mM), and the recommended dose is between 1 and 4 

mg per kg of body weight.15 

            Although this derivative of phenothiazine meets most of the requirements for application 

in PDT, its poor lipophilicity decreases its uptake by damaged and cancer cells. Therefore, any 

work leading to improving lipophilicity of methylene blue and increasing its ability to photo 

cleave DNA is considered attractive.19  

 



 

19 
 

 

Methylene blue 

 

Thionine 

Another name for thionine is Lauth’s violet. This metachromatic dye is mostly used in 

biological staining.13 It is sometimes used to mediate electron transfer in microbial fuel cells.13,14 

Thionine is used in place of Schiff’s reagent in the quantitative staining of the DNA.14 When 

both amines on the phenothiazine rings are methylated, the product is the widely known 

phenothiazinium compound methylene blue, and the intermediate compound is azure C 

(monomethyl thionine).14 

 

Thionine 

 

Basic Mechanism of Photosensitization 

              Photosensitization is a reaction that is initiated  by a light-absorbing molecule 

(photosensitizer) which is capable of transferring energy to other species.30 Molecules used in 

this reaction must absorb photons before they can have an effect in their environment. In some 

instances, the light-absorbing molecules are chemically altered after the absorption of photons, 

but they do not   react with other molecules in the system.30  
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             On the other hand, in some cases, there are alterations of other molecules (substrate or 

acceptor) in the system after photons or light have been absorbed by the photosensitizers. This 

reaction can occur in living cells or tissues, or can take place in pure chemical systems.30 PDT is 

much concerned with the reaction of light-absorbing species in the living cells and tissues.  

            The process is initiated by excitation of photosensitizers (D*) to energy rich states when 

photons are absorbed. These excited  photosensitizers have a half-life between 10-6 to 10-9 

seconds during which the excited molecules undergo internal reactions that ultimately lead to the 

alteration of the chemical nature of substrates.30 The molecules then either relax to the ground 

state via  fluorescence or via intersystem crossing to other excited energy states, usually the 

triplet states where the excited molecule tend to have a much longer half-life of 10-3 seconds.11,30 

It is the prolonged interaction of photosensitizers with tissue oxygen in the triplet excited state 

that generates high amounts of singlet oxygen  species; for destroying tumor cells. This occurs in 

one of two types of reactions as seen in Figure 2.11 

 

 

Figure 2: Reactions for the Type I vs Type II Photosensitization processes.11, 30-32 



 

21 
 

          Photosensitizer in the type I path reacts directly with the substrate to produce a radical or a 

radical ion in the substrate as well as the photosensitizer as a result of an electron transfer that 

takes place during the reaction process. The electron transfer can proceed from any of the 

reactants.  Photosensitizer usually accepts an electron from the substrate which results in the 

formation of a photosensitizer radical anion (D.-) and a substrate radical cation (Substrate.+).30,32 

When oxygen is present, these radicals further react to produce oxygenated molecules leading to 

the loss of the photosensitizer due to its conversion to the oxidized product. Regeneration of the 

original photosensitizer is also possible from the type I pathway, when there is a direct transfer 

of an extra electron from the photosensitive radical anion to oxygen to produce superoxide form 

of the radical anion (O2
.-).30,31 

           In pathway II, excess energy is transferred from the photosensitizer to a ground-state 

molecular oxygen (3O2) which is naturally in the triplet state to produce singlet oxygen species 

(1O2). The original form of photosensitizers in the ground-states are generated in this pathway as 

the excited singlet oxygen reacts with substrates to form oxidized products.30 

           These singlet oxygen species have a life span shorter than 0.01- 0.04 μs and diffusion 

distance between 0.01-0.02 μm per second.6,11 Quantum yields for lipophilic photosensitizers are 

much higher compared to hydrophilic ones due to the high diffusion rate of singlet oxygen in 

lipophilic photosensitizers.11 This high diffusion rate also makes them more selective in 

localization in cell and tissue parts with high lipid concentrations.11  

           Nuclear membranes, mitochondria, and reticulum lysosomes are typical examples of parts 

in living cells with higher concentrations of lipids where the photosensitizers can selectively 

accumulate to enhance apoptosis (cell death) when irradiated with red light.11 Photooxidation 
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further enhances apoptosis by activating phospholipase enzymes in cell membranes which 

ultimately results in dynamism in the permeability of cell membrane and inhibition other 

enzymes such as mitochondrial enzymes. This inhibition of cell enzyme action is believed to be 

the major cause of cell death in photodynamic therapy.11 

 

Metal Organic Frameworks (MOF) 

Metal Organic Frameworks (MOF’s) are porous crystalline compounds in 1, 2, or 3 

dimensional robust structures.24 These materials are formed from joining metal ions with organic 

linkers (dicarboxylic acids), using strong bonds to create a crystalline metal cluster with 

permanent porosity.24 Materials and crystals of high porosity and stability are of high importance 

because they allow other molecules to be trapped in these pores.25 These pore apertures control 

the size of molecules that may pass through by providing the surface and pore gaps to perform 

the desired functions.24,25 The challenge over the years has been the making of materials and 

crystals with pores suitable for trapping large organic, inorganic, and biological molecules.29 The 

largest reported aperture for a pore is 32 by 24 Å, and the largest internal pore diameter reported 

is 47 Å, both of which were present MOFs.28, 29 

This exceptional porosity of MOF’s makes them potential materials for many industrial 

applications such as gas storage, separation, and catalysis.25  They have become an extensive 

subject of study, specifically in the energy industries due to their high thermal stability and for 

their potential application in energy technologies such as fuel cells, super capacitors, and 

catalytic convertors.26 To maximize the storage capacity of gases in these highly porous 

crystalline materials, it is important to increase the number of absorptive sites within the MOF 
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structure.25,26 This can be achieved by modification of the organic linkers to give ultra-high 

porosity.     

   However, large linkers lead to fragile frameworks and to lattice interpenetrations which 

reduces the porosity.25, 26 The use of expanded linkers mixed with second linkers has resulted in 

stable frameworks with the highest known porosity and surface area.  MOFs have limitless future 

applications due to the porosity, larger surface area, adjustable compositions and tunable pore 

size.27 The surface area to volume makes them perfect to replace zeolites at every level when 

produced on a large scale.27 As solid structures produced from coupling of mechanical and 

chemical properties on molecular scale, MOF’s have very unique electrical properties which can 

be explored for production of energy on a large scale or even used as good electric conductors.25 

The pores on their surfaces also make them good and effective materials for drug loading.27 

 

MOF’s as Potential Drug Carriers 

 MOF’s have over the years been developed as capable materials for drug delivery, owing 

to their high porosity which enables high drug loading, versatile functionality, larger surface 

area, biodegradability, and chemical stability.27 Large amount of drug materials that are absorbed 

into pore apertures of MOFs including procainamide, ibuprofen, and nitric oxide can be released 

once they are introduced into the body (see Figure 3).27 

 Recent developments have seen MOF materials scaled down to nanosizes to serve as 

carriers for selective delivery in cisplatin prodrugs.27 Despite the remarkable improvement made 

in the use of MOF’s for delivery of drugs, many other feature developments must occur in order 

for them to become viable nano-therapeutic agents.27 Limitations of current therapeutics such as 
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poor pharmacokinetics, rapid clearance, high doses, and high side effects must see some 

advancement in disease treatment.27 Most of these limitations associated with small molecular 

drugs can be relieved by making use of novel systems from MOF’s which has improved 

characteristics such as biocompatibility, kinetics of drug release, high loading ability, size, and 

surface properties.27 

Moreover, these nanoparticles can specifically be designed to target tissues of certain 

disease (e.g. tumor and cancer cells) by conjugation present in targeting ligands.27 They can be 

engineered to contain agents which provide both imaging and therapy, which is much difficult to 

achieve in conventional therapeutic methods.27 Abraxane and Doxil demonstrate the clinical 

success of the nanoparticle therapeutic approach.27 

 

Figure 3: Formation of a 1D MOF and the loading of a drug material by physical encapsulation 

into the pore aperture of the MOF (modified from Huxford et. Al.).27 
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Dye-Sensitized Solar Cells (DSSC) 

DSSC (shown in Figure 4) are third generation solar cells based on a photo 

electrochemical system with a semiconductor formed between an electrolyte and a photo-

sensitized anode.34 They include Cadmium telluride (CdTe), Copper Indium Gallium Selenides 

solar cells (CIS or CIGS) and other amorphous solar cells.35  

The production cost of this solar cell concept compared to the traditional silicon and cells 

is predicted to be about five times lower, with a conversion efficiency of about 6-10% depending 

on the size and thickness of dye used.36 Although their construction is simple and less expensive, 

DSSC suffer some major challenges such as low efficiency, low scalability and low stability.37  

Factors such as internal resistance, open circuit voltage (Voc), short circuit current (Isc), 

and fill factor of dyes affect the efficiency of DSSC greatly.37 The current output of DSSC can be 

improved through the reduction of the internal resistance by modifying the roughness factor, 

adjusting the thickness of conducting layer and making the gaps between electrodes much 

smaller.36,37 The employment of chemically aggressive liquid electrolytes makes the use of silver 

fingers very difficult for current collection and also affect the upscale of the cell.37 

 

Operating Principle of DSSC 

The photo-electrode is coated with nanocrystalline TiO2 (Titanium Oxide) which is 

porous to provide a large surface area for adsorption of the photosensitive dye. This porous TiO2 

layer allows for charge transfer upon excitation. The quality of the TiO2 electrode significantly 

affects the efficiency of photo conversion in DSSC. When photons are absorbed, the molecules 

of the dye are excited from the ground state highest occupied molecular orbitals (HOMO) to the 
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excited states lowest unoccupied molecular orbital (LUMO) as shown in Figure 4. Once excited, 

electrons are injected into the conduction band of the nanostructured semiconductor TiO2 film, 

and transported between the oxide nanoparticles (refer to Figure 4).38, 39  

The transported electron is then extracted to a load where it delivers electrical energy as 

its work done.38 Once the injection of the electron occurs, the dye becomes oxidized.38 Injected 

electrons are replenished from the dye in the excited states from the electrolyte (3I- → I3
- + 2e-) 

such as the iodide/triiodide couple (electrolyte). The couple receives electrons from an external 

circuit and is regenerated by reduction (I3
- + 2e- → 3I-) of the triiodide at the cathode38. In other 

words, the iodide-triiodide (I-/I3
-) couple electrolyte serves as an electron mediator between the 

TiO2 electrode and the counter electrode coated with carbon (see Scheme 1 and Figure 4).38,39  

 Moreover, the dye molecules are regenerated from their oxidized form by accepting 

electrons from the redox I-/I3
- electron mediator.38,39 The internally donated electron which is 

injected to the oxide layer is substituted by electron from  I3
-
 which gets reduced to I- ion 

(Scheme 1).39 Electric power generation in DSSC cause no permanent transformation in 

chemical composition. This is as a result of electron movements through the wider band gap 

present in the conduction band of the nanostructured semiconductor. This is accompanied by 

charge-compensating diffusion of cations in the electrolytic layer of the nanoparticle surface.39  

D + photon                   D*                                                          (Excitation process) 

D* + TiO2                          e
-
(TiO2) + D+                                                                  (Injection process) 

 e-
 (TiO2) + C.E                         TiO2 + e-

(C.E) + electrical energy     (Energy generation) 

 D+ + 
3

2
I-                       D + 

1

2
I-

3                                                                             (Regeneration of Dye) 

 
1

2
 I-

3    +       e
-
(C.E)                        

3

  2
I-

   +   C. E                                                        (Electron Recapture)  

Scheme 1: Principal reactions that occur in DSSC.39 
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Figure 4: A typical structure of the DSSC (modified from Khalil et. Al.).39 

 

Sensitizers (Dyes) 

The most prominent and promising group of dyes used in DSSC are ruthenium (II) 

complexes and metal-free organic dyes.39 These Ru (II) complexes show high rates of charge 

transfer to ligand in the visible region of the electromagnetic spectrum; a pre-requisite for 

injecting electrons efficiently into the wide conduction band of the TiO2 semiconductor.39  
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However, due to the scarcity of ruthenium, Ru dyes used in DSSC are very expensive.40 

Metal-free organic dyes, on the other hand, have high molar extinction coefficients, are less 

expensive, are flexible in molecular tailoring, and are environmentally compatible.40 Some of the 

metal-free organic dyes used extensively in studies for construction of dye moieties in DSSC 

include triphenylamine (TPA), carbazole, coumarins, indole-dye, porphyrin, and phenothiazine 

(PTZ).39,40  

Recent studies on phenothiazine-based sensitizers show promising improvement on the 

efficiency due to their electronic and structural properties.39,40 Anchor dyes of phenothiazine 

with strong electron withdrawing groups such as cyanides (CN) and carboxylic acids (-COOH) 

effectively inject electrons into the conduction band of the TiO2 due to the extension of their π-

system.40 This effective electron injection is further confirmed with calculations on the 

adsorption energies on the TiO2 surfaces after preferred anchoring configurations were 

established.40  

 

Catalytic Hydrolysis:  Role of Carboxylic Acids 

Carboxylic acid hydrolysis is depicted in all amino acids which play essential roles as 

building units of proteins and as intermediates in metabolism. For instance, certain conserved 

amino acid residues of protein tyrosine phosphatases (PTPases) are strongly involved in catalytic 

activities at the enzyme active site.42 Investigations of the role of aspartic acids confirmed its 

essential role in the enzyme’s catalytic activity. 42 

             Kinetic analysis by Lohse et. Al. on aspartic acid reactions with mammalian 

phosphatases at different pH suggests a phosphoryl group transfer, which leads to the hydrolysis 
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of dipeptide bonds.42 Other findings by Denu et. Al., in an efforts to understand the structure, 

function and biological properties of PTPases through kinetic analysis, showed that the aspartic 

acid residues were conserved and involved in a general acid catalytic mechanism.42 

 

General Acid-Base Ester Hydrolysis 

The partial transfer of a proton by a Bronsted acid to a reactant in the transition state 

denotes general acid catalysis, while the acceptance of the proton by a Bronsted base leads to an 

increase in the reaction rate which results in the basic catalysis.44 Side chains of aspartic and 

glutamic acids have considerable acidic and basic properties and would likely behave as catalysts 

in general acid-base reactions in cells. Hydrolysis of carboxylic acids and phosphate esters, 

carbonyl additions and amino lysis of esters are typical acid-base reactions of aspartic acids44.  

Also, due to the amphoteric nature of amino acids, aspartic acid readily undergoes 

nucleophilic and electrophilic reactions at different pH as shown in Figure 5 below. These 

properties make aspartic acid catalyze both acidic and basic reactions.44 

 

 

Figure 5: Tautomerism of aspartic acid at different pH. 
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General Acid Catalyzed Ester Hydrolysis 

The initial step in the proposed mechanism under acidic condition as shown in Scheme 2 

involves the abstraction of a proton from the protonated amino group (-NH2) in the aspartic acid 

(amino acid). This facilitates the nucleophilic attack of water on the carbonyl carbon with a 

corresponding proton transfer of proton between the water molecule and aspartic acid.43 This 

proton transfer step stabilizes the intermediate formed.43 Tautomerism between the alcohol group 

and carbonyl group easily releases the alkoxy group by proton abstraction from the protonated 

amino group of aspartic acid.  Finally in step 4, aspartic acid abstracts a proton which is 

transferred to water, leaving the carboxylic acid and alcohol formed as the final product.43 

 

 

Scheme 2: Proposed mechanism for the hydrolysis of esters by aspartic acid under acidic 

conditions. 43 

 

 



 

31 
 

General Base Catalyzed Ester Hydrolysis 

The base catalyzed mechanism (Scheme 3) involves the addition of a nucleophile which 

is followed by the abstraction of a proton by the amino group from water while the water 

molecule in turn attack the carbonyl group of the ester.43   

 

 

Scheme 3: Proposed mechanism for the hydrolysis of esters by aspartic acid under basic 

conditions. 43 

 

Phosphodiester Bonds 

         Amino acids such as aspartic acid and glutamic acids have shown an ability to increase the 

rate of hydrolysis of many molecules because of their amphoteric nature.20 Phosphodiester bonds 

are found in every part of the biological systems.  They are essential to all life since they 

constitute the backbone of deoxyribonucleic acids (DNA), ribonucleic acids (RNA), and also 

exist in various parts of cell membranes (Figure 6).20  
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           In cellular membranes, phosphodiester bonds function as linkages in phospholipids.  

These linkages are strong covalent bonds existing in between phosphate groups and two ring 

pentoses over two ester bonds.21 The phosphodiester covalent bonds holding the pentose groups 

of DNA and RNA can be broken through alkaline hydrolysis through hydrophobic or hydrophilic 

interactions of the tail ends of polar groups present in their bonds.20,21  

 

T: Thymine 

A: Adenine 

Figure 6: A section of the DNA showing phosphodiester bonds. 20,21 

Phosphodiester bonds of RNA have received a lot of scientific interest over the years; 

further studies on the mechanism of their hydrolysis by enzymes are needed to provide more 

insight and to develop artificial enzyme models.44 The function of a base in hydrogen abstraction 

depicted by aspartate plays an essential role in the cleavage of the phosphodiester bonds of RNA 

(Scheme 4).44 A similar mechanism is the hydrolytic cleavage of the phosphodiester bonds of 

RNA and DNA.45 
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Scheme 4: Proposed hydrolysis of the phosphodiester bond of RNA by aspartate.45 

 

Research Objectives 

The major aim of this research is to synthesize selected phenothiazinium derivatives for 

potential applications in photodynamic therapy, DSSC, and MOFs technologies. Synthesis of 

phenothiazinium derivatives with two carboxylic acid side groups are of special interest for their 

relevance to hydrolytic enzymes that utilize carboxylic groups in their catalytic activities.  

Carboxylic groups are encountered in amino acids, proteins, enzymes, and fatty acids. This 

functional group has important biological activities; it can be easily masked into alkyl or aryl 

esters and can be regenerated in the body during metabolism. This feature enhances the 
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lipophilicity of phenothiazine derivatives to selectively concentrate more in malignant tissues, 

while leaving the chromophore intact for irradiation in PDT. The excess alkyl esters in the body 

can be readily cleaved by esterase in blood, liver, and other body tissues to ensure their 

decomposition in the body at a faster rate than those present in malignant tissues. Moreover, 

photosensitizers bearing carboxylic groups and hydroxy groups have been reported in literature 

to be non-toxic (Asmiyenti et Al. 2012), 41 therefore we expect the new derivatives to be 

nontoxic. 

The specific positions of certain side groups on the phenothiazinium ring make them 

attractive as organic linkers for metal organic frameworks (MOF’s). Binding of the metal ions to 

organic linkers which are not too large and too small such as the three core aromatic rings of 

phenothiazine will increase the robustness and right pore aperture for metal organic frameworks 

synthesized from our derivative for potential application in the energy industry. MOF’s with the 

right size of their surface pores can be used gas capture and storage for hydrogen gas alongside 

drug delivery by storing drug materials in their pores and discharging them to targeted sites in 

the human body. 

We further anticipate these derivatives to effectively inject electrons into conduction 

bands in DSSC when excited by sunlight light. This feature is a key characteristic of the dyes 

employed in DSSC. These derivatives with two carboxylic acid groups directly attached to the 

phenothiazinium ring are expected to counter the electron withdrawing effect of the electron- 

deficient sulfur cation. These derivatives are expected to effectively bind to the surface of 

titanium oxide (TiO2) through the carboxylic groups. This binding can improve the efficiency of 

DSSC. 
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CHAPTER 2 

RESULTS AND DISCUSSIONS 

           Various simple monosubstituted carboxylic acid derivatives of phenothiazine have been 

reported in literature, which have shown remarkable antimicrobial activities. A number of these 

derivatives have also been tested in PDT and DSSC and have proved to be efficient 

photosensitizing agents in these fields.11, 16, 17, 33, 40 In all these reports, mono-substituted 

carboxylic acid derivatives were more successfully synthesized and found to be of low toxicity in 

PDT applications.41, 48 

            However, these mono substituted derivatives were difficult to purify and were of low 

percentage yields. 48 We observed similar drawbacks in our attempts to synthesize 3,7-

phenothiazinium dicarboxylic acid (PTZ dicarboxylic acid), Schemes 5-7.  All compounds that 

were synthesized in this work were characterized by NMR and IR spectroscopy. TLC was used 

for monitoring the progress of reactions and checking the purity of products.  

 

Scheme 5:  Proposed synthetic route for the PTZN dicarboxylic acid from unprotected 

phenothiazine using Grignard reaction. 
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Scheme 6: Proposed synthetic route for the PTZN dicarboxylic acid from protected 

phenothiazine using Grignard reaction. 

 

 



 

37 
 

 

Scheme 7: Proposed synthetic route of the PTZN dicarboxylic acid using Sandmeyer reaction. 
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Synthesis of phenothiazine-5-ium tetra iodide hydrate (PTZN) 

          This compound was synthesized using a modified procedure from the one reported by 

Wainwright (Reaction 1) upon addition of a solution of iodine to phenothiazine over a period of 

1 hour (Reaction 1).12, 17 A dark blue product was obtained in 72 % yield, with physical data 

consistent with that reported in literature.  

          Initial TLC analysis of the product in chloroform/ methanol mixture (3:1, v/v) showed 

three spots of different Rf values and colors. One of the spots was colorless with Rf = 0.550 

comparable to that of phenothiazine starting material (this spot was oxidized to a blue compound 

upon exposure of the TLC plate to air).  The TLC indicated that the reaction was incomplete. 

          A second TLC analysis of the product, after washing of the crude product thoroughly with 

chloroform (CHCl3), showed only two spots. The spot which disappeared after washing with 

excess chloroform is believed to be from excess iodine used as an oxidizing agent in the reaction.  

The remaining two spots were separated by column chromatography to give 0.157 g (72%) as 

dark blue to green product. The product (PTZN) had a higher Rf (0.702) compared to 

phenothiazine (0.553). 1H NMR analysis of this compound showed two doublets and two triplets. 

There was no singlet peak for N-H as seen in phenothiazine; indicating the oxidation of the 

aromatic ring (ref. to spectra in Appendix I 1 and I 2).   

 

   (Reaction 1) 
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Synthesis of 3,7-dibromophenothiazinium perbromide (2) 

          This compound was prepared by suspending phenothiazine in an excess amount of 

bromine in glacial acetic acid (Reaction 2). The dark red solution was stirred for 16 hours at 

room temperature, and then treated with an adequate amount of sodium sulfite to reduce the 

excess bromine.    

       A green solid that precipitated out was obtained by filtration, and further recrystallized from 

a mixture of ethyl acetate/hexane (8:1, v/v), to give (2) in 75 % yield. TLC analysis of the 

product (mp = 263-265 oC) showed one spot which has a relatively lower Rf (0.535) value 

compared to phenothiazine.  

        The physical appearance of the product was consistent with literature reports.46 Proton 

NMR analysis of the product showed two doublets and a singlet at 7.360 (d, J =8.4 Hz), 7.778 

(d, J =8.0 Hz), and 8.199 (s) respectively (refer to the spectrum in Appendix A). The absence of 

a second singlet peak (N-H) in this product comparable to phenothiazine indicates the product is 

in the oxidized as seen in Reaction 1.   The counter ion reported for this oxidized product is the 

tribromide.46 

                          

(Reaction 2) 
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Synthesis of N-acetyl phenothiazine (5) 

         Compound 5 was prepared by refluxing phenothiazine in acetic anhydride for 3-5 hours 

(Reaction 3). After washing with acetone, the product was obtained in 95% yield as a yellow 

solid, (mp 197-198 oC, lit. 196-197 oC) .22  

           TLC analysis of the product after recrystallization from acetone gave a single spot which 

is a little higher in Rf value compared to the starting phenothiazine compound. 1H NMR 

spectrum of the product was consistent with that reported in literature,23 which showed two 

triplets and two doublets in the aromatic region, and one singlet in the aliphatic region (refer to 

the spectra in Appendix B1 and B2).  13C NMR of the product showed 6 peaks, in the aromatic 

region, 1 in the alkane region and 1 peak in the amide region confirming the protection of the 

aromatic ring. 

                         

  (Reaction 3) 

 

Synthesis of N-acetyl-3,7-dibromophenothiazine (6) 

           Synthesis of this compound was carried out under two different conditions (Reaction 4). 

First, the amide derivative (N-acetylphenothiazine, 5) was stirred for 16 hrs, at room temperature 

in glacial acetic acid, with excess bromine. A green product (6) was obtained, but of ~ 10%yield.      

The second reaction which involved refluxing (110-120 oC) compound 5 with bromine in glacial 
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acetic acid gave 62% yield of the product (pale green in appearance). The product obtained by 

this approach was found to be the unprotected 3,7-dibromophenthiazinium,  6B (mp 206-208 

oC). The melting point of 6B is different from compound 2. This may be due to the difference in 

counter ion of this product (6B) compared to compound 2. Reported work by Plater and co-

workers indicates that the counter ion in this product is either a mono bromide (Br-) or a 

tribromide (Br3
-) ion.46 

            TLC analysis of the product showed one spot indicating the compound is pure.  1H NMR 

of this product showed only three signals, with all of them in the aromatic region: a doublet of 

doublet, a doublet, and a singlet (refer to the spectrum of Appendix H1and H2). Lack of CH3 

signal in the aliphatic region of the spectrum indicates that de-protection and oxidation of 

phenothiazine to phenothiazinium took place. When the reaction is conducted at 70-80 ºC 

(instead of refluxing) a dark-purple product is isolated alongside 6B.  1H NMR of this side 

product shows two doublets in the aromatic region and a singlet in the aliphatic region (for the 

protecting acetyl group).  The melting point value of the purple product is 227-229 oC. This 

product is could be the tetra bromophenothiazine amide (6A) resulting from poly bromination of 

the compound 5 as the reaction progressed. 

                   

   (Reaction 4) 
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Synthesis of phenothiazin-3,7-dicarboxylic acid (4) and  

N-acetyl-3,7-phenothiazinedicarboxylic acid (8) 

           We attempted to synthesize compound 4 and 8 starting with 2 (Reaction 2) and 6B 

(Reaction 4). A series of trials failed to yield the expected products (4 and 8). One major 

challenge was the insolubility of starting materials in diethyl ether (the solvent that is commonly 

used in the Grignard reaction).  One starting material (6B) was quite soluble in THF when 

heated, but failed to react with Mg to form the Grignard intermediate.  Other trials using t-butyl 

methyl ether and 1,4-dioxane as solvents experienced the same challenges mentioned above. 

 

Synthesis of 3,7-dinitrophenothiazine (10) 

           In this procedure, the nitration of phenothiazine was done using sodium nitrite in a 

mixture of chloroform and acetic acid to give 70% yield of 10 as a brown solid (Reaction 5). 

TLC analysis of the brown product (chloroform-methanol, 3:1, v/v as eluent) gave only one spot 

(Rf =0.667).  1H NMR of the product showed three signals in the aromatic region; a doublet of 

doublet, two doublets, and a singlet in the alkane region. 13C NMR of the product showed the 

expected 6 peaks in the aromatic region and two additional peaks in the alkane region and   

amide region. These peaks may be from DMF contamination of the product or acetate counter 

ions from acetic acid used in the reaction (ref. to spectra in Appendix C1, C2, C3 and C4). IR 

analysis showed a medium sharp peak around 3400 cm-1 (N-H) indicating a secondary nitrogen. 

The melting point (220-222 oC) value of the product indicates that the product is pure.  
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           Several other attempts were made in synthesizing this derivative via other routes. The first 

attempt involved nitrating phenothiazine amide (5) using sulfuric acid and nitric acid in 1:1(v/v) 

and 1:3(v/v) ratios, respectively, as nitrating reagents. The reaction yielded an orange solid, 

which is reported as 3,7-dinitrophenothiazin-5-oxide in literature.48 This formation of this 

product is a result of the high oxidative nature of the concentrated nitric acid and the high 

affinity of oxygen by sulfur.  Another attempt using sodium nitrite in the presence of 

hydrochloric acid in situ yielded an intractable reddish brown precipitate; no further attempts 

were made to characterize this product.  

 

               

 (Reaction 5) 

 

Synthesis of N-acetyl-3,7-dinitrophenothiazine (11) 

           This synthesis involved the protection of the phenothiazine ring through amide bond 

formation which is carried out at reflux temperatures between 120-130 ºC. The product obtained 

was a yellow solid in 71 % yield (mp 213-214 oC), after purification by column chromatography 

and recrystallization from acetone (Reaction 6). TLC analysis of the yellow product 

(chloroform-methanol, 3:1, v/v as eluent) gave only one spot of Rf (0.645) which was lower than 

compound 10.  1H NMR of 11 showed four signals; a doublet of doublet and two doublets (all 

corresponding to the aromatic protons between 7-8.5 ppm) and a singlet for the acetyl group in 
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the alkane region (ref. to spectra in Appendix D1 and D2). Integrations of these individual peaks 

showed a 1:1:1 ratio for protons in the aromatic region and 1.5 for the singlet in the alkane 

region; corresponding to 2H for each of the aromatic signals and 3H for the acetyl group. 13C 

NMR gave 8 peaks as expected with the characteristic amide carbon and alkane carbon at 

168.696 (C=O) and 23.397 (CH3) ppm respectively (ref to spectra in appendix D3 and D5).  IR 

spectrum (ref. to spectrum at Appendix D5) showed a peak at 1710 cm-1 for C=O stretching in 

the acetyl group.  

          Other attempts which involved nitrating the amide derivative (5) with nitric acid (HNO3) 

in the presence of sulfuric acid were not successful. This could be due to the protonation of the 

carbonyl bond (C=O) or the de-protection of the ring via amide hydrolysis which readily occurs 

in acidic medium. Another reason could be due to the mono nitration product which is formed in 

low yield that may affect the overall yield of the product. 

 

  

   (Reaction 6) 

 

Synthesis of N-acetyl-3,7-diaminophenothiazine (12) 

           This product was isolated as a blue solid from Reaction 7 below. TLC analysis of the 

product gave one spot with a higher Rf (0.688) value compared to compound 11. The melting 

point value of the product was 172-174 ºC; indicating the isolated product is pure. 1H NMR 
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showed four peaks; a doublet-doublet and two other doublets, all corresponding to the aromatic 

protons in the regions of 7-8.5 and two characteristic singlet peaks for the acetyl group in the 

alkane region and the amino group (-NH2) at 5-6 ppm, respectively (ref. to spectra at Appendix 

E1 and E2). The singlet peak for the NH2 was broad. Integrations of these individual peaks 

showed a 1:1:1 ratio for protons in the aromatic region and 1.5 and 2 for the singlet at 2 ppm and 

5.6 ppm for the -CH3 and -NH2 respectively. IR analysis also showed a stretching frequency 

around 1710 cm-1 for C=O and 3350 cm-1 for the two peaks of the primary amine resulting from 

the reduction of the nitro groups (ref. to spectrum at Appendix E3).  

           Other attempts using tin (II) chloride in hydrochloric acid yielded less than 13% of the 

product, mixed with unreacted amounts of compound 11. This could be a result of the 

protonation of the carbonyl group by HCl which may undergo further hydrolysis of the amide.            

 

                   

 (Reaction 7) 

 

Conversion of thionine acetate and N-acetydiaminophenothiazine (12) into thionine chloride (15) 

           This derivative was synthesized using two different starting materials (thionine acetate or 

thionine amide) under different conditions as shown in Scheme 8. The first approach which 

involves the use of thionine amide (12) was refluxed in hydrochloric acid at temperatures 
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between 110-120 ºC for 2-3 hrs (Scheme 8b). The product precipitated as a blue solid upon 

cooling. 

           The second approach using thionine acetate as the starting material was carried out at 

room temperature.  This reaction proceeded readily at room temperature (Scheme 8a). 43 TLC 

analysis of the product using chloroform/ methanol mixture (3:1, as eluent) showed a single spot 

of Rf (0.698). 13C NMR spectrum showed six peaks corresponding to carbons in the aromatic 

region (ref. to spectra at Appendix F1 and F2). 

 

 

 

Scheme 8a: Proposed mechanism for the conversion of thionine acetate into thionine chloride.43 
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Scheme 8b: Proposed mechanism for the conversion of thionine amide into thionine chloride.43 

 

Synthesis of 3,7-phenothiaziniumdinitrile (14) 

           The synthesis of this derivative follows a two-step synthetic pathway. The first step 

involved the formation of diazonium salts from thionine chloride or thionine amide and 

converting it to the nitrile derivative. The diazonium salt is prepared in-situ by dissolving the 
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amino derivatives (12 or 15) in dilute hydrochloric and stirring in ice. The reaction was carried 

out at a constant temperature between 0-4 ºC in order to prevent the decomposition of the 

diazonium salt through coupling.  

           The second step involved the conversion of the intermediate diazonium salt into the nitrile 

upon reaction with cuprous cyanide, to give a dark solid as shown in Scheme 9.  IR analysis of 

the solid shows a medium sharp peak for the CN stretching between 2200-2400 cm-1 and medium 

sharp peak for C=C around 1600 cm-1 (ref spectrum at Appendix G5).    1H NMR showed a 

doublet of doublets, a doublet, and two singlets in the aromatic region. There was no singlet peak 

in the alkane region even when thionine amide is used in this reaction. This may be due to the 

simultaneous de-protection of the ring through hydrolysis as the diazotation reaction proceeds 

(ref. to spectra at Appendix G1 and G2).13C NMR analysis showed more than 7 peaks as 

expected in the product (ref. to spectra at Appendix G3 and G4). The extra peaks could be 

resulting from coupling products that are common in Sandmeyer’s reaction. Another reason 

could be due to the formation of monocyanide side product resulting from the reaction. 

         Other attempts using potassium cyanide in the second step of the reaction also yield low 

amounts of the dark product. 
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Scheme 9a: Conversion of N-acetyl diaminophenothiazine into the phenothiaziniumdinitrile 

derivative. 

 

 

 

Scheme 9b: Conversion of thionine chloride into the phenothiaziniumdinitrile derivative. 
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CHAPTER 3 

EXPERIMENTAL 

Materials and General Method 

           All reactions proceed from phenothiazine which was commercially obtained from Sigma 

Aldrich. Every chemical reagent and solvent listed were also obtained from commercial sources 

and used without further purification unless stated.  

           The compounds synthesized were characterized by 1H NMR and IR spectroscopy. All 

NMR spectra were recorded on a JEOL-NMR Eclipse-400 MHz spectrophotometer. The 

different chemical shifts of all peaks are quoted in parts per million (ppm) using the high-

frequency position conversion, and the coupling constants value (J) are reported in Hz. The 

splitting patterns of resonance were described as follows: singlet (s), doublet (d), doublet of 

doublet (dd), triplet (t), quartet (q), and multiplet (m).  All IR spectra were recorded from 

Shimadzu 1R Prestige-21 FT-IR spectrometers. Melting points of synthesized compounds were 

measured without correction from a Cambridge Melt-Temp device. Chromatographic techniques 

(thin layer chromatography and column chromatography) were also carried out in order to obtain 

the pure form of synthesized compounds. 

 

 

Experimental Procedures 

Synthesis of phenothiazin-5-ium tetra iodide hydrate (PTZN) 

           A solution of iodine (0.83 g, 3.3 mmol) in 19 mL of chloroform was added drop wise to a 

solution of phenothiazine (0.21 g, 1.1 mmol) in 7.5 mL of chloroform. After the addition was 
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complete, the solution was stirred for half an hour in an ice bath, the resulting mixture was 

filtered and the precipitate was washed with 20 mL of chloroform until filtrate was colorless and 

dried under reduced pressure to give 0.157 g (72% yield) of the desired product. 17 

NMR (DMSO-d6): δH = 6.231 (d, 2H, J = 8.4 Hz), δH= 6.843 (t, 2H), δH = 6.949 (t, 2H), δH = 

7.029 (d, 2H, J = 7.6 Hz) 

 

Synthesis of 3, 7-dibromophenothiazin-5-ium perbromide (2) 

           Phenothiazine (0.20 g, 0.20 mmol) was suspended in 7.2 mL of glacial acetic acid.  

Br2 (1.5 mL, 0.063 mol) in 20 mL of glacial acetic acid was added all at once to the reaction 

mixture with vigorous stirring, stirring continued for 24 more hours at room temperature. The 

reaction was then cooled with an ice bath and 0.25 g (0.50 mmol) of sodium sulfite (Na2SO3) was 

added to the reaction mixture.46  About 1-2 mL of water was added to the reaction mixture to 

form a deep-violet color within three hours of stirring.  A 1 M sodium hydroxide (NaOH) 

aqueous solution was added to the solution with stirring for 30 minutes. A dark-purple solid 

precipitated out of solution which was filtered off and stirred in excess hot ethyl acetate/hexane 

mixture (1:8, v/v).49  0.23 g (88% yield, mp 263-265 ºC) of the product was obtained as a green 

powder which was filtered off and dried under vacuum. 

NMR (DMSO-d6: δH = 7.360 (d, 2H, J = 8 Hz), δH= 7.778 (d, 2H, J = 8.4 Hz), δH= 8.199 (s, 2H) 

ppm.  
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Synthesis of 1-phenothiazin-10-ylethanone (5) 

           Phenothiazine (1 g, 5 mmol) was suspended in 10 mL of acetic anhydride. The mixture 

was refluxed for 3-5 hrs and monitored with TLC. The warm solution was allowed to cool to 

room temperature and further cooled in an ice bath. A pale yellow solid precipitated, which was 

filtered and recrystallized from acetone to produce 1.220 g (92.5% yield, mp 197-198 ºC) of the 

product.  

NMR (DMSO-d6): δH = 7.550 (d, 2H, J= 6.4 Hz), δH= 7.641(d, 2H, J = 8 Hz), δH= 7.403 (t, 2H, J 

= 6.8 Hz), δH= 7.308 (t, 2H, J =6.4 Hz), δH= 2.150 (s, 3H); δC = 168.982 (C=O), δC = 139.228 

(ArC), δC = 132.527 (ArC), δC = 128.416 (ArC), δC = 128.018 (ArC), δC = 127.827 (ArC), δC = 

127.544 (ArC), 23.271 (CH3) ppm. 

IR (νmax/cm-1): 1700 (s, C=O), 1600 (w, C=C), 1470 (m, C=C) 

 

Synthesis of N-acetyl-3,7-dibromophenothiazine (6) 

Approach 1: 

          Compound 5 (0.9637 g, 3.9 mmol) was suspended in 38 mL of glacial acetic acid and 

stirred for 10 minutes. To the stirring mixture, 0.64 mL (12 mmol) Br2 in 38 mL of glacial acetic 

acid was slowly added to the reaction mixture and stirred for 16 h at room temperature. The 

reaction was cooled with an ice bath and 1.25 g (9.9 mmol) of Na2SO3 was added to the reaction 

mixture. By adding a little water (1.0 mL), a deep-violet color formed within three hours. After 

the addition of a solution of 1% of KOH aqueous solution, a pale green solid formed which was 
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filtered. The solid was washed with cold isopropanol to give 0.410 g (29 % yield) of the titled 

product. 

Approach 2: 

          Compound 5 (0.3 g, 1.24 mmol) of was suspended in 12 mL of glacial acetic acid and 

stirred for 10 minutes. To the stirring mixture, 0.2 mL (3.95 mmol) Br2 in 38 mL of glacial acetic 

acid was slowly added to the reaction mixture and maintained at reflux for 16 hrs at temperatures 

between 70-80 ºC and 120 ºC respectively, while monitoring with TLC. A purple precipitate was 

obtained from reaction conditions of 70-80 ºC temperature and a pale green solid was obtained 

from reaction conditions at 120 ºC. After cooling the solution to room temperature and further on 

ice, the precipitates were filtered and washed with cold isopropanol and dried to give 0.450 g (65 

% yield) of the purple (6A) product and 0.320 g (72.5 % yield, mp 206-208 ºC) of  the pale green 

(6B) product. 

 

Grignard synthesis of phenothiazin-3,7-dicarboxylic acid (4) and  

N-acetyl-3,7-phenothiazinedicarboxylic acid (8) 

          Anhydrous diethyl ether (0.5 mL) was added to 50 mg (2 mmol) of magnesium powder in 

a dry test tube sealed with a septum. In a second dry test tube, 1 mL of anhydrous diethyl ether 

was added to 100 mg of 3,7-dibromophenothiazine (2) using the same syringe. About 0.1 mL of 

the dibromophenothiazine-ether mixture was added dropwise to the magnesium-ether mixture 

with a syringe and mixed by shaking the testube. The septum was pierced with a clean syringe 

for pressure relief while the reaction progressed vigorously. The remaining 

dibromophenothiazine-ether mixture was added dropwise when the reaction is less vigorous until 
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all the mixture was exhausted. A magnetic stirrer was added to the reaction tube and stirred until 

only a small amount of the metal was left. While the reaction progressed, the volume of the ether 

was checked periodically to make sure the volume has not decreased and a little more ether was 

added when the volume was low. Since the Grignard reagent deteriorates on standing, the next 

step was done immediately; the solution was separated from the magnesium metal left. 

           Carbon dioxide gas was bubbled through the Grignard solution for about 20 to 30 minutes 

in a dry test tube sealed with a septum. The septum was pierced with a syringe to relieve the 

pressure built up in the tube. To the pale yellow viscous solution formed, 3 ml of 3 M 

hydrochloric acid was added. The aqueous layer was removed and discarded.  The ether layer is 

then shaken with 1mL of water and left to stand for a few minutes. The aqueous layer was once 

again removed and discarded. The product was extracted from the ether layer with 3 x 1 mL of 3 

M aqueous sodium hydroxide solution. The ether layer was discarded and the clear solution was 

heated briefly to drive off the excess dissolved ether. 3 M hydrochloric acid was added to the 

mixture until the solution tested acidic. The mixture was cooled on ice and the product collected 

by vacuum filtration. The solid was recrystallized from water. These steps in Grignard synthesis 

were also carried out on the 10-acetyl-3,7-dibromophenothiazine. 

 

Synthesis of 3,7-dinitrophenothiazine (10) 

           Sodium nitrite (0.2 g, 3 mmol) was added to a mixture of phenothiazine (0.2 g, 1 mmol), 

0.4 mL of acetic acid and 1mL of dichloromethane (CH2Cl2) and stirred for 10 minutes. An 

additional 0.4 mL of acetic acid, 1 mL of dichloromethane, and sodium nitrite (0.2 g, 3 mmol) 

were added to the mixture.  1.2 mL of acetic acid was further added to break the thick reaction 
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mixture and stirred for 3 to 5 hours.47 The solid suspension was filtered out and washed with 1 

mL of ethanol, followed by 1 mL of water and finally 1 ml of ethanol to give a purple-brown 

solid. The residue was stirred in a minimum volume (5 mL) of hot DMF (Dimethylformamide),47 

and allowed to cool before filtering out to give 0.1744 of the product (70 % yield, mp 220-222 

ºC) which was washed with another 3 mL of ethanol and dried under vacuum.  

NMR (DMSO-d6): δH=6.835 (d, 2H, J = 8.8 Hz), δH= 7.729 (d, 2H, J = 2.4 Hz), δH= 7.845 (dd, 

2H, J = 6.4 Hz), δH = 1.830 (s, 3H); δC = 173.693 (C=O), δC =146.134 (ArC), δC = 142.868 

(ArC), δC = 125.304 (ArC), δC = 122.168 (ArC), δC = 117.194 (ArC), δC = 115.516 (ArC), δC = 

26.750 (CH3) ppm. 

IR (νmax/cm-1): 3400(s, N-H), 1510 and 1575 (m, N-O), 1600 (m, C=C) 

 

Synthesis of N-acetyl-3,7-dinitrophenothiazine (11) 

           A mixture of 3,7-dinitrophenothiazine (1 g, 3.45 mmol) and acetic anhydride (6 mL, 63.4 

mmol) were stirred in pyridine (10 mL) at reflux for 24 hrs. The warm solution was carefully 

poured over crushed ice and allowed to stand for a few minutes to form a precipitate. The 

precipitate formed was then filtered, dissolved in dichloromethane and dried over anhydrous 

sodium sulfate. The solution was filtered and concentrated to give a brown-orange solid which 

was purified by column chromatography (silica gel, 2:3 ethyl acetate and petroleum ether, loaded 

as dichloromethane solution) to give 0.8128 g (71 % yield, mp 213-214 ºC) of  the product.47 

 NMR (DMSO-d6): δH= 7.962 (d, 2H, J = 9.2 Hz), δH= 8.290 (dd, 2H, J =6.8 Hz), δH= 8.482 (d, 

2H, J = 2.4 Hz), δH= 2.250 (s, 3H); δC = 168.696 (C=O), δC = 146.317 (ArC), δC = 143.683 
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(ArC), δC = 133.520 (ArC), δC = 128.825 (ArC), δC = 123.904 (ArC),δC =123.568 (ArC) , δC = 

23.397 (CH3) ppm. IR (νmax/cm-1): 1700 (s, C=O), 1510 (s, NO), 1550 (w, NO) 

 

Synthesis of N-acetyl-3,7-diaminophenothiazine (12) 

           A mixture of 10-acetyl-3,7-dinitro-phenothiazine (0.3 g, 0.9 mmol), tin (II) chloride 

dihydrate (2.1195 g, 3 mmol), and ethanol (3 mL) was heated to reflux and stirred at this 

temperature for 5 hours.47 The mixture was then cooled to room temperature and poured over ice 

water. The pH was adjusted to 7 with 5% sodium hydrogen carbonate before the product was 

extracted with ethyl acetate (3 x 3 mL).47 The extracts were washed with brine and dried over 

anhydrous sodium sulfate, filtered, and concentrated to give 0.1890 g (77.4 % yield, mp 172-174 

ºC) of the product. 

NMR (DMSO-d6): δH= 5.234 (s, 4H), δH= 6.484 (dd, 2H, J = 6 Hz), δH= 6.618 (s, 2H), δ= 7.147 

(d, 2H, J = 8.4 Hz), δH= 2.010 (s, 3H) ppm. 

IR (νmax/cm-1): 3300 (m, NH), 1675 (s, C=O), 1600 (s, C=C), 2850 (w, CH) 

 

Conversion of thionine acetate and N-acetyl-3,7-diaminophenothiazine (12) into thionine            

chloride (15) 

           Two approaches were used in the synthesis of this phenothiazinium derivative using two 

different starting materials. In the first approach, 0.1 g (0.37 mmol) thionine amide (12) which is 

the starting material was hydrolyzed with a few mL of concentrated hydrochloric acid (HCl) for 
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2-3 hours by refluxing at 110 ºC. The hot solution was cooled to room temperature and further in 

ice to obtain 0.0882 g (90 % yield) of the product.  

           In the second approach, commercial thionine acetate (0.5 g, 1.74 mmol) was hydrolyzed 

by first dissolving in water, followed by the addition of a few mL of concentrated hydrochloric 

acid (HCl). This approach gave 0.4363 g (95 % yield) of the product which was blue in color. 

 NMR (DMSO-d6);
 δC 157.122 (ArC), δC =138.840 (ArC), δC = 135.206 (ArC), δC = 134.816 

(ArC), δC = 121.862 (ArC), δC = 107.792 (ArC) ppm 

IR (νmax/cm-1): 3307 (m, NH), 3000 (s, CH), 1602 (s, C=C), 1490 (s, C=C) 

 

Synthesis of 3,7-phenothiaziniumdinitrile (14) 

           Hydrochloric acid (5 mL, 6 M) was added to 0.1 g (0.35 mmol) of thionine chloride and 

stirred until all solids dissolved. The solution was left to cool in ice to 0 ºC.  0.2 g (2.89 mmol) of 

sodium nitrite in 5 ml of cold water was added dropwise until the reaction was complete. After 2-

3 hours of stirring with monitoring by TLC, a solution of 0.3 g (3.35 mmol) copper cyanide in 

3mL of hydrochloric acid (12 M) was added with continuous stirring for 2 hours. A dark-brown 

solid complex precipitated. The mixture was taken off the ice and left to stand for 10 minutes. It 

was then warmed to 40 oC at which point a vigorous reaction ensued (nitrogen gas evolution; 

separation of a solid and foaming). After reacting for half an hour, the mixture was heated on an 

oil bath for 10 minutes at 70 ºC and allowed to cool to room temperature and further in ice. The 

solid product was collected by filtration, washed with a few ml of cold water (2-3 mL) and 

stirred in cold ethanol. The solid was filtered off and dried to give 0.0719 g (66 % yield) of the 

titled product which was purple-brown. 
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NMR (DMSO-d6): δH = 8.825 (s), 7.905 (dd, 2H, J = 9.6 Hz), 7.273 (d, 2H, J = 9.2 Hz), 7.202 (s, 

2H); δC = 136.464 (ArC), δC = 135.730 (ArC), δC =135.164 (ArC), δC =133.799 (ArC), δC 

=133.057 (ArC), δC =130.710 (ArC), δC =125.571 (ArC), δC =125.059 (ArC), δC =123.216 (ArC), 

δC =119.821 (ArC), δC =118.850 (ArC) 

IR (νmax/cm-1): 3040 (w, CH), 2171 (m, CN), 1600 (s, C=C) 
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CHAPTER 4 

CONCLUSION 

           In this project, various derivatives of phenothiazine and phenothiazinium were 

synthesized, using commercially available phenothiazine (1).  These derivatives include: 3,7-

dibromophenothiazinium perbromide (2), N-acetyl phenothiazine (5), N-acetyl-3,7-

dibromophenothiazine (6),  3,7-dinitrophenothiazinium acetate (10), N-acetyl-3,7-

dinitrophenothiazine (11), N-acetyl-3,7-diaminophenothiazine (12), thionine chloride (15), and 

3,7-phenothiaziniumdinitrile (14). Synthesis of 3,7-phenothiazinium dicarboxylic acid was 

attempted using 1 and 15 as starting materials, as shown in schemes 4-6. 

           Synthesis of the dicarboxylic acid derivative via Grignard synthesis was not successful 

after several attempts. This method faced challenges of solubility of phenothiazinium dibromide 

in diethyl ether and t-butyl methyl ether. On the other hand, although solvents such as THF and 

1,4-dioxane could dissolve the  phenothiazinium dibromide, the Grignard reaction failed to yield 

the dicarboxylic acid. 

           Synthesis of the dicarboxylic acid from thionine chloride (15), via the Sandmeyer 

reaction, gave a number of intractable products; with none being the desired phenothiazinium 

dicarboxylic acid. The phenothiazinium dinitrile intermediate was difficult to purify; it’s 1H 

NMR showed aromatic impurities, resulting from unreacted starting material and some coupling 

products of the diazonium salt.   

           Future work would involve further purification of the dinitrile product. After purification 

the dinitrile could be hydrolyzed to the dicarboxylic acid derivatives. Synthesis of 
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phenothiazinium dicarboxylic acid can also be explored by other methods such as the 

Rosenmund Von Braun reaction. 

           After the synthesis and purification of phenothiazinium dicarboxylic acid it will be tested 

in photodynamic therapy (PDT). We will seek collaboration with scientists in the medical field 

for completing this part of this work. The new derivative will also be tested for applications in 

the dye sensitizing solar cells (DSSC), and in the synthesis of metal organic frameworks 

(MOF’s). 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 
 

REFERENCES 

1. Dolmans D.E, Fukumura D, Jain R.K., Photodynamic therapy for cancer. Nature Reviews 

Cancer 2003; 3(5):380–387.  

2. Wilson B.C. Photodynamic therapy for cancer: principles. Canadian Journal of 

Gastroenterology, 2002; 16(6):393–396. 

3. Vrouenraets M.B, Visser G.W, Snow G.B, Van Dongen G.A., Basic principles, 

applications in oncology and improved selectivity of photodynamic therapy. Anticancer 

Research, 2003; 23(1B):505–522.  

4. Dougherty T.J, Gomer C.J, Henderson B.W, et al. Photodynamic therapy. Journal of the 

National Cancer Institute, 1998; 90(12):889–905. 

5. 4. Celli J. P.; Spring B.  Q.; Rizvi, I.; Conor L.  E.; Kimberley S.  S.; Sarika, V.; Pogue, 

B.  W.; Hasan T., Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and 

Optimization.  Chem.  Rev., 2010, 110, 2795–2838. 

6.  Patrice T., Comprehensive series in photochemistry and photobiology; Photodynamic 

therapy, Royal Society of Chemistry, UK, 2003 (2). 

7. Lukšienė Ž., Photodynamic therapy: mechanism of action and ways to improve the 

efficiency of treatment, Medicina, 2003, 39, Tomas, Nr.  12.  

8.  Ron R.A.; Downie G.  H.; Cuenca, R.; Hu, X.; Carter, J.  C.; Sibata, C.  H.,             

Photosensitizers in clinical PDT; Photodiagnosis and Photodynamic Therapy, 2004, 1, 

27-42.  

9. Dolphin D.; New O.  M.  Design and Synthesis of Novel Phenothiazinium            

Photosensitizer Derivatives, Eur.  J.  Org.  Chem.  2009, 2675-2686. 



 

62 
 

10. Morgan, A. R., Garbo, G. M., Kreimer-Birnbaum, M., Keck, R. W., Chau dhuri, K., and 

Selman, S. H., A morphologic study of the combined effect of purpurin derivatives and 

light on transplantable rat bladder tumors, Cancer Res., 1987, 47:496-498.. 

11.  Calin, M.  A.; Parasca, S.  V., Photodynamic therapy in oncology.  Journal of 

Optoelectronics and Advanced Materals,  2006, 8(3), 1173 – 1179 

12. Wainwright, M.; Meegan, K.; Loughran, C.; Giddens, R.  M., Phenothiazinium 

photosensitisers, part VI: photobactericidal asymmetric derivatives.   Dyes and 

pigments, 2009, 82, 387-391. 

13. Edward G., Synthetic dyes in biology, medicine and chemistry Academic Press, London, 

England, 1971 

14.  Eugenii K.; Andrew N. S., Willner I, In; Wolf Vielstich, Handbook of fuel 

cells Fundamentals, Technology, Applications, 4-Volume Set, 2003, Wiley. 

p. 5. ISBN 978-0-471-49926-8  

15. Clifton I.I. J, Leikin J.B, Methylene blue., Am J. Ther,2003; 10:289-91 

16. Wagner S. J, Skripchenku .A, Robinette D; Foley J .W, Cincotta I. Factors affecting 

virus photoinactivation by a series of phenothiazine dyes, Photochem Photobiol 1998; 

67:243-9 

17. Wainwright. M, Crossley K.B., Methylene blue- a therapeutic dye for all seasons?, J 

Chemother, 2002; 14:431-43 

18. Wagner S.J., Skripchenko A., Robinette D., Mallory D.A., Hirayama J., Cincotta L., 

Foley J. , "The use of dimethylmethylene blue for virus photoinactivation of red cell 

suspensions". Dev. Biol. (Basel), 2000,102: 125–9. PMID 10794099 

19. Wainwright, M.  Photosensitisers in Biomedicine; Wiley-Blackwell: UK, 2009. 



 

63 
 

20. “Nomenclature of Lipids - Phospholipids". IUPAC-IUB Commission on Biochemical 

Nomenclature (CBN), Retrieved , 2011 

21. Bruce A., Bray D., Lopkin K., Johnson A., Lewis J., Raff M.,Roberts K., Walter P., –

 Essential Cell biology, edition 3, New York-Garland science, 2010, p. 235 

22. Suad M. A., Mohammad R. A., Luma S. A., Synthesis of New C-Substituted 

Phenothiazine Derivatives, Al-Mustansirya  J. Sci; 2009, 20 (3). 

23. Gal E., Gaina L., Lovasz T., Synthesis and fluorescence properties of new Schiff bases 

containing phenothiazine units. Studia UBB Chemia 2009, 54:17-24 

24. Yaghi O. M. et al., Reticular synthesis and the design of new materials. Nature 423, 

2003, 705 -714. 

25. Mueller U. et al., Metal-organic frameworks—prospective industrial applications. J. 

Mater. Chem., 2006, 16, 626-636.  

26. Jacoby M., Heading to market with MOFs.  Chem. Eng. News, 2008, 86, 13. 

27. Huxford R.C., Rocca J.D., Lin W., Metal-organic frameworks as potential drug carrier, 

Current Opinion in Chemical Biology, 2010, 14 (2), 262 - 268.  

28.  Ma L., Falkowski J. M., Abney C., Lin, W., A series of isoreticular chiral metal-organic 

frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2, 2010, 838–

846.  

29. Deng H., Grunder S., Cordova K. E., Valente C., Large-Pore Apertures in a Series of 

Metal-Organic Frameworks’, 2012, 10. 

30. Oleinick N.L, Basic Photosensitization, [Available online; Photo biological sciences]; 

<www.photobiology.info/Oleinick.html> 



 

64 
 

31. Valenzeno D. P., Membrane Photomodification. In: Photobiological Techniques, 

Valenzeno D.P., Pottier R.H., Mathis P. and Douglas R.H., eds. Plenum Press, New 

York and London, 1991, 99-115. 

32. Spikes J. D., Photosensitization. In: The Science of Photobiology, Kendric C. S., ed. 

Plenum Press, New York and London, 1989, p 79-110. 

33. Gibson, S. L.; Murant, R. S.; Chazen, M. D.; Kelly, M. E.; Hilf, R. In vitro 

photosensitization of tumour cell enzymes by photofrin II administered in vivo. Br. J 

Cancer. 1989, 59(1), 47–53.  

34. Wenham S.R., Green M.A., Watt M.E. and Corkish R., “Chapter 2: Semiconductors and 

P-N Junctions,” Applied Photovoltaics, Earth scan, 2007, pp 31-38. 

35. Lin S.Y., Chou W.Y., Investigation of Pentacene/Perylene Derivative Based Organic 

Solar Cells, National Cheng Kung University, Tainan Taiwan, 2007. 

36. Gerischer H., Electrochemical behavior of semiconductors under illumination, J. 

Electrochem. Soc., 113, 1966, 1174-1182 

37. Lee W.J., E. Ramasamy, D.Y. Lee, Song  J.S., Glass frit overcoated silver gridlines for 

nano-crystalline dye sensitized solar cells, Journal of Photochemistry and Photobiology 

A: Chemistry ,183, 2006, 113-137. 

38. Gratzel M., Review Dye-Sensitized Solar Cells, Journal of Photochemistry and 

Photobiology C, Photochemistry Reviews, 4, 2003, 145-153 

39. Khalil E.J, Dye Sensitized Solar Cells - Working Principles, Challenges and 

Opportunities, Solar Cells - Dye-Sensitized Devices, Prof. Leonid A. Kosyachenko , 

2011, ISBN: 978-953-307-735-2. 



 

65 
 

40. Jing-Jing F., Yu-Ai D., Jian-Zhao Z., Mei-Song G., Yi L., Theoretical investigation of 

novel phenothiazine-based D–p–A conjugated organic dyes as dye-sensitizer in dye-

sensitized solar cells, Journal of Computational and Theoretical Chemistry, p 1045 , 

2014, 145–153 

41. Asmiyenti D. D, Kartasasmita R.E., Ibrahim S. and Tjahjono D. H., Toxicity Prediction 

of Photosensitizers Bearing Carboxylic Acid Groups by ECOSAR and Toxtree, Journal 

of Pharmacology and Toxicology, 7: 2012, 219-230. 

42. Lohse D. L.; Denu J. M.; Dixon J. E.; Santoro N., Roles of aspartic acid-181 and serine-

222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-

phosphatase (PTP1), In: Biochemistry, 1997, 36(15), p4568, 8. 

43. Karty J., Melzer M.; Organic Chemistry, Principles and Mechanisms, 1st Ed, w.w.norton 

and company, New York-London, 2014, 861 and 1011-1014. 

44. Herman R.H., “Principles of metabolic control in mammalian system”,2013,107 

45. Lonnberg H., Cleavage of RNA phosphodiester bonds by small molecular entities: a 

mechanistic insight, Organic and Biomolecular chemistry, 2011, Issue 6. 

46. Plater J.M, Harrison W.T.A, “Characterization of 3,7-dibromophenothiazin-5-ium 

perbromide and its use for enhancing latent fingerprints”, Journal for chemical research, 

2009, no. 6, 384-387. 

47. Wischik, C.M., Rickard, J.E., Harrington, C.R., Horsley, D., Storey, J.M.D., Marshall, 

C., Sinclair, J.P., Baddeley T. “3,7-diamino-10H-phenothiazine salts and their use”: 

WO2007110627, 2011, Patent No. US7888350 B2.  

48.  Massie S.P., “The chemistry of Phenothiazine”, Chemical Review,  1954,  797-833 



 

66 
 

49. Hsin-hung L., Cheng-chun C., Spectroscopic investigations of vinyl-substituted 10H-

phenothiazine, dyes and pigments,2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

67 
 

APPENDICES 

Appendix A: 1H NMR Spectrum for Compound 2 in DMSO-d6 
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Appendix B1: 1H NMR Spectrum for Compound 5 in DMSO-d6 
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Appendix B2: 1H NMR Spectrum for Compound 5 in DMSO-d6 
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Appendix B3: 13C NMR Spectrum for Compound 5 in DMSO-d6 
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Appendix B4: 13C NMR Spectrum for Compound 5 in DMSO-d6 
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Appendix B5: IR Spectrum for Compound 5 
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Appendix C1: 1H NMR Spectrum for Compound 10 in DMSO-d6 
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Appendix C2: 1H NMR Spectrum for Compound 10 in DMSO-d6 
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Appendix C3: 13C NMR Spectrum for Compound 10 in DMSO-d6 
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Appendix C4: 13C NMR Spectrum for Compound 10 in DMSO-d6 
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Appendix C5: IR Spectrum for Compound 10 
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Appendix D1: 1H NMR Spectrum for Compound 11 in DMSO-d6 
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Appendix D2: 1H NMR Spectrum for Compound 11 in DMSO-d6 
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Appendix D3: 13C NMR Spectrum for Compound 11 in DMSO-d6 
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Appendix D4: 13C NMR Spectrum for Compound 11 in DMSO-d6 
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Appendix D5: IR Spectrum for Compound 11  
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Appendix E1: 1H NMR Spectrum for Compound 12 in DMSO-d6 
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Appendix E2: 1H NMR Spectrum for Compound 12 in DMSO-d6 
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Appendix E3: IR Spectrum for Compound 12  
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Appendix F1: 13C NMR Spectrum for Compound 13 in DMSO-d6 
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Appendix F2: 13C NMR Spectrum for Compound 15 in DMSO-d6 
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Appendix F3: IR Spectrum for Compound 13  
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Appendix G1: 1H NMR Spectrum for Compound 14 in DMSO-d6 
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Appendix G2: 1H NMR Spectrum for Compound 14 in DMSO-d6 
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Appendix G3: 13C NMR Spectrum for Compound 14 in DMSO-d6 
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Appendix G4: 13C NMR Spectrum for Compound 14 in DMSO-d6 
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Appendix G5: IR Spectrum for Compound 14 
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Appendix H1: 1H NMR Spectrum for Compound 6B in DMSO-d6 
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Appendix H2: 1H NMR Spectrum for Compound 6B in DMSO-d6 
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Appendix I1: 1H NMR Spectrum for PTZN in DMSO-d6 
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Appendix I2: 1H NMR Spectrum for PTZN in DMSO-d6 
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