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ABSTRACT 

Optimized Acid/Base Extraction and Structural Characterization of β-glucan from 

Saccharomyces Cerevisiae 

by 

Shardrack O. Asare 

 

β-glucan is a major component of the fungal cell wall consisting of (1→3)-β linked glucose 

polymers with (1→6)-β linked side chains. The published classical isolation procedure of β-

glucan from Saccharomyces cerevisiae is expensive and time-consuming. Thus, the aim of this 

research was to develop an effective procedure for the extraction of glucans. We have developed 

a new method for glucan extraction that will be cost effective and will maintain the native 

structure of the glucan. The method that we developed is 80% faster and utilizes 1/3 of the 

reagents compared to the published classical method. Further, the method developed increases 

the yield from 2.9 % to 10.3 %. Our new process has a branching frequency of 18.4 down from 

197 and a side chain of 5.1 up from 2.5. The data indicate a more preserved native structure of 

isolated glucans.  
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CHAPTER 1 

INTRODUCTION 

 

 The yeast Saccharomyces cerevisiae is a model organism that is commonly referred to as 

baker’s yeast. It is used as a leavening agent in the production of bread. It generates carbon 

dioxide which causes the bread’s aerated structure as well as adds flavor to the bread.1,2 

“Cerevisiae” is a scientific name which was derived from an ancient terminology used to 

describe beer. It belongs to the fungus or mold family. S. cerevisiae is a single celled organism 

that contains a nucleus and other membrane organelles. Yeast undergoes rapid cell growth and 

division that produces daughter cells under different conditions in a process called budding. The 

size of the yeast varies and depends on the species of interest; its typical range is between 3-40 

µm in diameter.1-3  

               When S. cerevisiae is exposed to numerous environmental conditions such as osmotic 

pressure, heat, and desiccation, its growth reduces and this affects its metabolic activity. In order 

to retain metabolic activity and improve bio-production under these environmental stress 

conditions, one must employ yeast which can grow under these environmental stress conditions.3                

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Micrometre
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The Fungal Cell Wall  

             The fungal cell wall is a unique structure that maintains the shape and structure of the 

fungal cell and acts as the main point of contact between the cell and its environment.4-7 The cell 

wall is a tough, flexible layer, but can sometimes be fairly rigid. It is found outside the cell 

membrane providing the cell with protection as well as serving as a filtering mechanism. The cell 

wall is primarily composed of four main components: glucan, chitin, mannan, and mannoprotein 

as shown in Figure 1. 

                    

Figure 1. Detailed structure of the cell wall of yeast Saccharomyces cerevisiae.7 
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             The fungal cell wall acts as a pressure vessel that protects the cell from over-expansion 

when water enters the cell. There are theories of heavy cross-linking between the cell wall 

components but the actual nature of this cross-linking has yet to be established.8,9 The fungal cell 

wall also plays an essential role in various biological processes that determine the reproduction 

of cell-cell and cell-matrix interaction, with other physical activities.10 

             Saccharomyces cerevisiae is of great importance because of its wide range of 

applications. The cell wall of S. cerevisiae is composed of a complex cross-linked network of 

glucans and chitin. Chitin is a linear carbohydrate polymer of N-acetylglucosammine which is 

believed to be attached to a number of glucans. It is typically found at the budding sites of the 

cell and represents about 1-2% of the total mass of the cell.10,11  Even though it forms a relative 

small composition of the total cell wall mass, it is important for the viability of the cell. Chitin 

has the ability to form complexes with the glucan. These complexes normally form a crystalline 

structure, which acts as a foundation upon which the rest of the cell wall is built.10,12 

                  Of the major cell wall components in Saccharomyces cerevisiae, glucan represents 

about 50% of the cell wall mass.13 Both the chitin and the glucan confer a very high mechanical 

resistivity to the cell wall. Table 1 gives the percentage range of the various components of the 

cell wall of S. cerevisiae. Beta-glucans can also be linked to cell wall proteins (CWP) via 

covalent bonding. CWP accounts for about 35-40% of the cell wall and it is characterized by 

high mannose N- and/or O-glycosylated proteins. The complex structure of the fungal cell wall 

makes it an important target for antifungal therapy.10,14 
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Table 1. The cell wall components of Saccharomyces cerevisiae.13 

Component Cell wall mass 

(%, dry weight) 

Glucans 50-55 

Lipids 1-3 

Mannoprotein complex 35-40 

Chitin 1-2 

 

 

General Applications of Fungi 

              Fungi have been used extensively in the production of food for decades. In recent times, 

the wide application of fungi has been exploited in the pharmaceutical, flavoring, and chemical 

industries. Due to their importance, detailed research has been carried out on the physiological 

activity of these fungi. S. cerevisiae is the most studied fungal species due to its wide range of 

applications in the industrial world, particularly in the food and pharmaceutical industries.15 

Microbial proteases that are derived from different type fungal sources have been proven 

to be useful in meat tenderization due to its substrate specificity.15,16 Aspergillus Oryzae is the 

most common fungal protease that has been employed commercially for the production of 

various foodstuffs like soy sauce and butter.16 A. oryzae has been proven to be a safe and reliable 

source of proteases. A typical A. oryzae protease example, aspartic protease, has maximal 

activity between the pH ranges of 2.5-6.0, which makes it effective in the application of food 

tenderizing because table meat cuts have a typical range of pH 5.4-5.8.10 Another useful fungi in 
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the food production industry is Lactobacillus bulgaricus and Streptococcus thermophilus, it is 

used in the production of yogurt as a bio-preservative agent.17 

             The application of fungi is not only limited to the food industries, plant endophytic fungi 

has a potent and novel natural bioactive activity, that has wide applications in the agricultural 

and medicinal industries.18 Over the decades, many important bioactive compounds, such as 

antimicrobials, insecticidal, and anticancer agents, have been synthesized from endophytic fungi. 

Taxol (Paclitaxel), a highly potent anticancer drug, was classically isolated from the pacific yew 

tree Taxus spp. However, the production of Taxol from Taxus spp. was very low due to 

insufficient yew trees. With the increase in demand for Taxol, there was a need to find new ways 

of producing it apart from the usual source of Taxus spp. The bioactive compound Taxol was 

later discovered in Taxomyces andreanae.18 Fungi Siderophores which is one of the widely used 

fungi in medicine have been utilized in the treatment of iron overload conditions such as b-

thalassaemia.19 

 

Cell Wall Glucan 

                In general, β-glucan is a natural polymer of D-glucose which is produced by many 

different types of organisms. It is found in the cell walls of fungi, plants, and algae.  The glucose 

monomers are linked together by β-glycosidic bonds.20-22 -glucan is the major constituent of the 

cell wall of cereal grains, fungi and yeast.23,24 The glucans resulting from the various sources 

have varied structures which  determines the physical properties of the β-glucan, such as 

viscosity and solubility. Several β-glucans differ in glycosidic linkage position.25,26 
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β-glucan from Saccharomyces cerevisiae 

              β-Glucan from Saccharomyces cerevisiae consist of (1→3)-β-D-glucan backbone and  

(1→6)-β-D-glucan sidechains that forms a single structure as shown in Figure 2.23,27 The (1→3)-

β-D-glucan is responsible for the strength of the cell wall; it forms a triple helix 3-dimensional 

structure which has a spring-like mechanical properties. It is believed that the (1→6)-β-D-glucan 

links the (1→3)-β-D-glucan to the chitin and mannoprotein, but the actual linkages have not 

been determined.27 The fungal cell wall’s mechanical strength is largely due to (1→3)-β-glucan 

chains.28-30 (1→3)-β-glucan chains belong to the hollow helix family; its shape is similar to a 

flexible wire spring that can exist in different forms. This unique property of β-glucan helps to 

explain the elasticity of the fungal cell wall.28,31 Krainer and co-workers used 13C-NMR on living 

cells to confirm that a portion of  (1→3)-β-glucan have a helical structure.28,32 When cells are in 

stationary phase, (1→3)-β-glucan molecules have been found to made up of about 1500 

monomers of glucose unit. In their mature state, (1→3)-β-glucan are branched and contain 

(1→6)-β-glucan linked glucose unit. The degree of branching of (1→3)-β-glucan may also 

depend on environmental conditions such as growth phase. In general, (1→6)-β-glucan is a 

highly branched water-soluble polymer which consists of about 130 monomer units of glucose. It 

is believed that the (1→6)-glucan’s function is to connect Glycosylphosphatidylinositol-

modified (GPI) dependent proteins to the (1→3)-β-glucan network system. In the case of cell 

wall stress, (1→6)-β-glucan can function as acceptor site for chitin.28   
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Figure 2. Chemical structure of β-glucan from Saccharomyces cerevisiae.9 

 

Applications of β-glucan 

There is a wide range of applications for β-glucans in food production such as a fat 

substitute, a thickening agent, and an emulsifier.9,33  β-glucans have been used in the food 

industry in the production of frozen desserts, sauces, salad dressings, soft dough, and cake 

filling. β-glucans has the ability to retain water and has an oil-binding property allowing it to be 

used in the production of sausages and other meat products.34    

            β-glucan has been shown to be an immunostimulant for humans. It has been used as a 

therapeutic for people with immunosuppressed diseases to help improve their immune system.35-

37 It has been proven experimentally that β-glucans protect mammals from various kinds of 

infections and increase immune system cell’s cytotoxicity against cancer.25 β-glucans have also 

been proven to be involved in a process related to the reduction in postprandial blood glucose 
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and cholesterol levels.38,39 β-glucan has been recently included on the list of products that 

contributes to the reduction of cholesterol in blood by FDA (United States Federal Drug 

Administration) and EFSA (European Food Safety Authority), and in so doing, has a 

recommended daily intake of 3 g to attain this positive effect.38-40  

 

Classical Method for Extracting β-glucan from Cell Wall of Fungi 

               The classical method for extracting glucan from a fungal cell wall was developed in 

1941.  This classical method requires sequential base, acid, and ethanol extractions of the yeast 

from the fungal cell wall for several days.41 This method is not only time consuming, but it also 

requires large volume of acid (HCl), base (NaOH) and ethanol for the extraction which is not 

environmentally friendly. While the classical method is known to effectively isolate the glucan 

from all other components of the fungal cell wall, it degrades the glucan to a high extent by 

reducing the polymeric chains. The final product obtained therefore does not reflect the actual 

nature and the native structure of the glucan in the fungal cell wall.41,42 

The actual native structure of the beta-glucan is not known. However, the literature 

supports the assumption that the lower branching frequency and higher side chain length, the 

closer the beta-glucan is to the native structure. Lowman and coworkers used the classical 

extraction method to study the structure of beta glucans in S. cerevisiae. By working on a 

standard S. cerevisiae, they reported a branching frequency and side chain length of 198.8 and 

0.37 respectively. Their NMR spectra proved that the classical method has been able to isolate 

the glucan from all other components of the fungal cell wall. However, due to the higher value of 

branching frequency and smaller value of side chain, the glucan isolated had most of its 
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polymeric chains reduced. Due to the degradative nature of the classical method of extraction, it 

was imperative for a new method for the extraction of glucan from the fungal cell wall to be 

developed in order for the structure of the glucan to be determined.41  

 

Other Developed Methods for β-glucan Extraction from Fungal Cell Wall 

              Freimund and coworkers developed a method that produced a less degraded β-glucan 

that is free from other components of the fungal cell wall of S. cerevisiae.43 In their method, 

yeast cell wall was treated with hot water and enzymatic Savinase. This method was efficient in 

isolating the glucan from other components of the fungal cell wall; it also enabled the isolation of 

mannoprotein, which is a physiologically active compound of big interest. They used NMR 

spectroscopy to confirm the structure of the isolated glucan.43 However, this method is time 

consuming, and most importantly, it involves enzymatic Savinase, which is very expensive, and 

hence does not make the method cost-friendly. Other methods developed by Lui and coworkers 

and also by Javmen and coworkers involved the autolysis of the fungal cell wall, and further 

treatment with protease.25,44 These methods also involve the use of enzymes that makes the 

extraction process expensive. 

 

Optimized Extraction Method 

                 To overcome the most important barrier in glucan extraction, that is, the cost involved 

when using protease enzyme used other documented methods, it is imperative to develop a new 

method for the extraction of β-glucan from the fungal cell wall. In order for this new method to 

be acceptable, it has to overcome the challenges of the earlier developed methods, that is, it has 
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to be very simple, less time consuming, and, most importantly, must be cost-effective. This new 

method should be able to isolate the glucan from all other components of the fungal cell wall and 

must also enable further analysis and characterization of the glucan extract. A new method, 

which involves the treatment of the yeast sample with a mild acid and base extraction was 

developed by Dr. Greene. My project was primarily to determine the optimum extraction method 

where the glucan extracted has the most native structure while also producing a pure product that 

is free of traces of other components of the cell wall. The treatment of the yeast sample with hot 

acid and base dissolved the proteins and other polysaccharides in the yeast, and after centrifuging 

the solution, the solid remaining was the glucan.39 In order to remove all residual lipids, the solid 

glucan was treated with ethanol. Proton NMR analysis was used to confirm the structure and 

whether the glucan isolated was free of other components of the cell wall. 

 

Calculating the Average Branching Frequency and Average Side Chain Length 

             In order to determine the extent of degradation of the isolated glucan, the branching 

frequency and side chain length were calculated. The BF gives information about the branching 

of the 1,6-β-glucan side chain unit from the 1,3-β-glucan main backbone unit. This calculated 

number gives information of the number of repeat units of 1,3-β-glucan between two 1,6-β-

glucan branching units. A low BF means the average distance between two branching 1,6-β-

glucan unit is less, which means there is more branching unit of the 1,6-β-glucan. Reduced BF 

means increased branching units, which means less degradation has been done to the glucan 

extract. The side chain length, gives the average length of the 1,6-β-glucan side chain. A higher 

SC means less degradation to the glucan structure. A schematic showing how the glucan forms 

the 1,3-β-glucan with 1,6-β-glucan side chains is given in Figure 3.20  
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To determine the average branching frequency and the side chain length, the integrated 

areas of the resonances assigned to H1 of side chain non reducing terminal (H1 SC NRT), H1 of 

side chain (H1 SC), and H6 of side chain (H6 SC) glycosidic bond as shown in an example NMR 

in Figure 4 were compared to H1 of the (1→3)-β-linked repeating units in the polymer backbone. 

The BF and SC were calculated from the equations below. Equation 1 gives information of the 

peak area for one glucose unit. Equation 2 gives information of the length of the side chain based 

upon the number of glucose repeat units. Equation 3 gives the branching frequency; it is a ratio 

of side chains to repeat glucose units. The assigned protons in Figure 4 refer to the glucosyl 

repeat units in the polymer (1→3)-β-linked backbone. The expanded region of the spectra from 

4.32 to 3.96 ppm represent the multiple repeating points in the resonances for the anomeric 

proton, H1 SC, and one of the methylene protons of the H6 SC, of the (1→6)-β-linkage of the 

side chain respectively.20 

 

    

                                 

 

 

 

        



25 
 

  

 

Figure 3. A schematic diagram of the structure of poly-(1→6)-β-D-glucan side chain which  

contains n repeat units and is attached to a (1→3)-β-linked backbone chain.20 

 

 
 

Figure 4. Proton NMR spectrum of (1→3,1→6)-β-glucan extracted from C. glabrata.20                    
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                  It was reported by Tada and co-workers that the integration of the resonance assigned 

to H1 SC and H6 SC had a ratio of 1:1 for Grifola frondosa, which means the Grifolan frondosa 

had a single (1→6)-β-linked glucosyl repeat unit in the side chain of the backbone.37 

Interestingly, Lowman and co-workers found that the integrated areas assigned to H1 SC and H6 

SC of the glycosidic linkages in the (1→6)-β-linked side chain have different ratios in glucan 

extracted from Candida glabrata. They determined that the integrated area of the H6 SC (4.02 

ppm) was larger than the integrated area of the H1 SC (4.27 ppm); the integration of the two 

areas gave a ratio of 0.787:1 for H1 SC and H6 SC respectively. The difference in areas of H1 SC 

and H6 SC resonance gives the integral area assigned to the anomeric H1 proton in the SC NRT. 

Based on their 0.787:1 ratio, they found out that in C. glabrata, the side chain contains about 4.7 

(1→6)-β-linked repeating units. Comparing the ratios of areas assigned to H1 of SC NRT and H1 

of the (1→3)-β-linked repeating units in the backbone of the polymer, they found out that the 

side chain is attached to the (1→3)-β-linked polymer backbone on an average of every 21 

repeating units.20 

               In using different extraction conditions to isolate glucan from Saccharomyces 

cerevisiae, it was found that the average side chain length contains 2.5-6.2 (1→6)-β-linked 

repeating units depending on the extraction conditions. Comparing the ratio of the area assigned 

to H1 of SC NRT and 1H of the (1→3)-β-linked repeating units in the backbone of the polymer, it 

was also determined that the side chain is attached to the (1→3)-β-linked polymer backbone on 

an average of every 18.6-196.5 repeating units depending on the extraction conditions. 
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Research Aims  

1. The primary aim of this research was to develop a milder and cost effective method for the 

extraction of β-glucan from Saccharomyces cerevisiae; this method should result in a more 

native glucan structure which has not been greatly degraded. 

2. Another aim of this research was to use NMR spectroscopy to study and characterize the 

structure of β-glucan produced from Saccharomyces cerevisiae using the optimized extraction 

method.  
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CHAPTER 2 

MATERIALS AND METHODS 

Saccharomyces Cerevisiae 

         The yeast used in this research was a commercially available Saccharomyces cerevisiae. It 

was a dry sample purchased from Red Star Yeast and Products Corporation in Wisconsin, USA. 

It was stored in a refrigerator at a temperature of 40 C to maintain the dormancy of the yeast. 

 

Materials 

         All the chemicals that were used were bought from Sigma Aldrich, they were standard 

laboratory chemicals designed for research and development purposes. The base used (NaOH) 

was a laboratory reagent grade with the following specification; vapor density >1 (vs air), vapor 

pressure < 18 mmHg (20 °C), assay ≥ 98 %, form: pellets (anhydrous), impurities ≤ 1.0 % 

sodium carbonate, mp: 318 °C (lit). Two different acids were used. The HCl was a laboratory 

reagent grade with the following specifications; vapor pressure: 3.23 psi (21.1 °C), assay: 36.5-

38.0 % (ACS specification), impurities ≤ 1 ppm free chlorine and ≤5 ppm extractable organic 

substances, color: Alpha: ≤ 10, free from suspended matter or sediment, bp >100 °C (lit.), 

density: 1.2 g/mL at 25 °C (lit.), anion traces: bromide (Br-): ≤ 0.005%, sulfate (SO4
2-): ≤1 ppm, 

sulfite (SO3
2-): ≤1 ppm, cation traces: As: ≤0.01 ppm, Fe: ≤0.2 ppm, NH4

+: ≤3 ppm, heavy 

metals (as Pb): ≤1 ppm.  The phosphoric acid used was of ACS grade with the following 

specifications: vapor pressure: 2.2 mmHg (200), concentration: 85 wt. % in H2O, bp: 1580C (lit.), 

density: 1.685 g/mL at 25 °C (lit.). The ethanol used was of ACS reagent grade with an assay ≥ 

99.5 % and a boiling point of 78.3 oC. Deuterated dimethyl sulfoxide (d6-DMSO) with the 
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following specifications was used; isotopic purity: 99.96 atom % D, density: 1.190 g/mL at 

25 °C (lit.), with a boiling point of 189 oC (lit.). The trifluoroacetic acid was of ReagentPlus 

grade, 99 % assay, and a boiling point and density of 72.4 oC and 1.489 g/mL at 20 °C (lit.), 

respectively. The extraction was performed in a 500 mL and a 250 mL Erlenmeyer flask. A 250 

mL and a 50 mL polypropylene centrifuge bottles were used for centrifuging the solutions.  All 

water used during this project was an (18 MΩ) deionized water. 

          A 400 MHz NMR was used for this project; it was set at the following parameters; 

Number of Scans: 16, Acquisition Time: 3.2768 seconds, Interpulse Delay: 15 seconds, 

Relaxation Time: 15 seconds, Data Points: 32,768, Sweep Width (X_Sweep): 25 ppm, X_Offset: 

5.0 ppm, Pulses Angle: 90o, Probe Temperature: 80 oC. The chemical shift reference was set to 

2.50 ppm, using the residual proton resonance of d6-DMSO. 

         A  Sorvall Legend RT+ centrifuge was used for this project. It had a capacity of 8 x 50 mL 

or 4 x 250 mL rotor, with a 230 V capacity. It had a speed limit of up to 9000 rpm.  A four plate 

Super-Nuova Multi-place Stirrer and Stirring Hot plates with integral controls was used for all 

extractions. All weighings were completed with a METTLER TOLEDO's™ Basic Weighing 

balance. A Thermo Scientific Orion Star A111 pH Benchtop Meter was used for all pH steps. 

 

 

 

 

 



30 
 

Glucan Extraction 

Classical Extraction Procedure 

               The classical extraction procedure was repeated during this research for direct 

comparison to the optimized method. Approximately 4 g of dry S. Cerevisiae was extracted with 

a 200 mL of 1 N NaOH for the base extraction procedure. The NaOH and all other solutions 

were prepared with deionized water (DI H2O).  The solution was then centrifuged at 5000 rpm 

and the supernatant was removed. The precipitate was then resuspended in another 200 mL of 

1N NaOH. The yeast was extracted three times with boiling base solution. The residue after the 

base extraction was adjusted to a pH~7. After the pH, the residue was extracted three times with 

a boiling HCl solution. After the acid extraction step, the yeast was then extracted with boiling 

ethanol for three times. Between the first and third ethanol extractions the residue was left 

overnight in the presence of the ethanol. After the ethanol extraction, the resulting residue was 

resuspended in DI water and was then adjusted to a pH of ~7. After the residue was adjusted to a 

pH~7, it then boiled and washed three times in DI water. The residue was then dissolved in 

approximately 15 mL of DI water in a conical tube in the freezer. The solution was lyophilized 

and analyzed with the NMR. The number of extractions for each solution was reduced to one in 

the optimized extraction procedure. 

 

Optimized Extraction Procedure 

          Sodium hydroxide solution was prepared for the base extraction. The concentration and 

volume was adjusted for the desired experiment. 1-4 g of dry yeast was extracted with boiling 

NaOH solution for 15 minutes at 100 ᴼC with stirring in a 150 mL/500 mL Erlenmeyer flask 

with a loose fitting glass stopper. The solution was allowed to cool down for ~1 hour, it was then 
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centrifuged for 5 minutes @ 5000 rpm on the Sorvall Legend RT+ Centrifuge in 50 mL/250 mL 

Nalgene PPCO bottles. The residue was kept and the supernatant was discarded after all 

centrifugation steps. The residue was resuspended in 50 mL/200 mL DI water. It was then 

centrifuged for 5 minutes at 5000 rpm. The residue was kept. The residue was re-suspended in 

DI water and pH between 6.9 and 7.1 with 0.1 M HCl and 0.1 M NaOH.  

Acid was prepared for the acid extraction step. The concentration was adjusted for the 

desired experiment. The yeast residue was extracted with boiling acid solution in a clean 125 

mL/500 mL Erlenmeyer flask. A clean flask was used to avoid contamination from any 

remaining base in the first flask that could affect the pH of the acid extraction. The solution was 

allowed to cool down for ~1 hour, it was then centrifuged for 5 minutes @ 5000 rpm in 50 

mL/250 mL Nalgene PPCO bottles.  

The yeast residue after the acid extraction was then extracted with boiling ethanol 

solution (50 mL/200 mL) at 80 oC in same flask. The pellet after the ethanol boiling was difficult 

to centrifuge, so the speed of the centrifuge was increased to 7000 rpm. The residue after the 

ethanol extraction was resuspended in DI water 50 mL/200 mL in centrifuge bottle, it was then 

centrifuged and the residue was kept. The residue was washed with water by resuspended in DI 

water and boiled for 15 minutes. It was allowed to cool and then centrifuged. The residue was 

again suspended in DI water and the pH was adjusted between 6.9-7.1 with 0.1 M HCl and 0.1 M 

NaOH. The solution was centrifuged and the residue was kept. The residue was again washed 

with water by suspending it in DI water, and centrifuged. This step was repeated three times. The 

residue was resuspended in less than 15 mL DI water in a pre-weighed 50 mL conical tube. It 

was then frozen overnight at about -80 oC. The samples were lyophilized after it has been frozen. 

The samples were weighed after the lyophilization to determine the percent yield. 
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For the optimized extraction method, series of different set of extractions were made. 

Several experiments were conducted where the number of acid extractions, the acid 

concentration, base concentration, number of base extractions and number of ethanol extractions 

were varied as tabulated in Table 2.  In method 1, the NaOH concentration was 1 N, the yeast 

was extracted three-times with boiling base solution and then adjusted to a pH~7. It was then 

followed by extraction three-times with boiling 1 N phosphoric acid solution. This was followed 

by three extractions with ethanol. In method 2, the concentration of the NaOH and H3PO4 was 

kept constant at 1 N, however the number of extractions was reduced. The yeast was extracted 

one-time with boiling base solution and the adjusted to a pH~7, it was then followed by a one-

time acid extraction with boiling acid solution. This was followed by three-time extraction with 

ethanol. Method 3 varies with method 2 only in terms of the number of ethanol extractions. In 

method 3, the yeast was extracted one-time with the boiling base solution; it was adjusted to a 

pH~7 and then followed by a one-time acid extraction. This was followed by a one-time ethanol 

extraction. The concentration of both the acid and base was reduced to 0.1 N in methods 4 and 5. 

In method 4, the yeast was extracted one-time with 0.1 N base boiling solution, it was then 

adjusted to a pH~7. This was followed by a one-time extraction with 0.1 N acid boiling solution. 

After the acid extraction step, the yeast was finally extracted with a one-time ethanol boiling 

solution. Method 5 was very similar to method 4 with the exception of the number of ethanol 

extractions. In method 5, the yeast was extracted one-time with boiling base solution; it was then 

adjusted to pH~7 and then followed by a one-time extraction with boiling acid solution. This was 

then followed by a one-time extraction with boiling ethanol solution. Figure 5 shows a flow chart 

of the optimized acid/base extraction procedure. 
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Table 2. Tabulated set of conditions used for the isolation of glucan from S. Cerevisiae. 

  

  

Method 

 

NaOH Conc. 

      (N) 

 

NaOH 

boilings 

 

H3PO4 Conc. 

      (N) 

 

H3PO4 

Boilings 

 

Ethanol 

Boilings 

  

       1 

 

         1 

 

       3 

 

        1 

 

       3 

 

         3 

  

       2 

 

         1 

 

       1 

 

        1 

 

       1 

 

         3 

  

       3 

 

         1 

 

       1 

 

        1 

 

       1 

 

         1 

 

      4 

 

       0.1 

 

       1 

 

      0.1 

 

       1  

 

         3 

 

      5 

 

       0.1 

 

       1 

 

      0.1 

 

       1 

 

         1 

  

 

Methods 1 through 5 were repeated with smaller amounts of the sample. Approximately 1 g of 

the yeast was used instead of the typical 4 g used in the original analysis. All volumes were 

reduced from 200 mL to 50 mL. 
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1 H NMR Analysis 

         Approximately 18-22 mg of the dry sample was dissolved in 1 mL of d6-DMSO in a 5 mL 

test tube. It was shaken several times to dissolve the sample. To ensure that the samples 

completely dissolved in the d6-DMSO, the test tubes containing the solution was placed on a hot 

bath and the temperature was set to 80 ᴼC for about half an hour. The glucan solution was shaken 

occasionally to ensure complete dissolution. About 2-4 drops of TFA was added to the solution 

in the test tube to shift the water peak further down field, this is done to improve the resolution of 

the spectra. The solution was then transferred into an NMR tube, and analyzed with a 400 MHz 

NMR.  

During the analysis of the NMR spectra, whole base area integration was performed for 

the anomeric hydrogen which is around 4.5 ppm. Base area integrations were also performed for 

the side chain hydrogen 1, that is, H1 SC (1-6) and H6 SC (1-6) respectively. The branching 

frequency (BF) and side chain length (SC) were calculated from the values of the integrated area. 
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Figure 5. Schematic diagram of beta glucan isolation from yeast cell walls. 
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Titration Extraction Method 

A titration method of extraction was performed. In the first sets of extraction, the 

concentration of the base was held constant at 0.1 N NaOH, and the concentration of the acid 

was reduced in each extraction. In the second sets of extraction, the concentration of the acid was 

held constant at 1 N H3PO4 and the concentration of the base was reduced in each extraction step. 

In all these extractions, the yeast was extracted one-time with a boiling base solution and then 

adjusted to a pH~7. This was followed by a one-time extraction with the boiling acid solution. It 

was finally extracted one-time with a boiling ethanol solution. Approximately 1 g of the dry 

sample was used with 50 mL of solution in each step. Below is the titration combination that was 

performed. 

a. 0.1 N NaOH vs 1 N H3PO4 

b. 0.1 N NaOH vs 0.1 N H3PO4 

c. 0.1 N NaOH vs 0.01 N H3PO4 

d. 0.1 N NaOH vs 0.001 N H3PO4 

e. 1 N NaOH vs 1 N H3PO4 

f. 0.1 N NaOH vs 1 N H3PO4 

g. 0.01 N NaOH vs 1 N H3PO4 

h. 0.001 N NaOH vs 1 N H3PO4 
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Base Extraction with no Acid 

Approximately 1 g of dry S. Cerevisiae was extracted one-time with a 50 mL 0.1 N 

NaOH boiling solution. It was then adjusted to a pH~7. The residue after the base extraction was 

extracted one-time with boiling ethanol solution. It was boiled and washed in the DI water three 

times. It was then dissolved in approximately 15 mL of DI water and kept in a plastic bottle in 

the freezer. The solution was lyophilized and analyzed with the NMR spectroscopy. 

 

Extraction with the Base and Acidified Ethanol 

Approximately 1 g of dry S. Cerevisiae was extracted with a 50 mL 0.1 N NaOH boiling 

solution. After the residue had been adjusted to a pH of ~7, it was then extracted with boiling 

acidified ethanol (50 mL of ethanol with, few drops of 1 N H3PO4) and centrifuged. It was then 

re-suspended in DI water. The residue was boiled and washed in DI water after it had been 

adjusted to a pH of ~7. It was then dissolved in approximately 15 mL of DI water and kept in a 

plastic bottle in the freezer. The solution was lyophilized and analyzed with the NMR. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

                   β-glucan isolated from Saccharomyces cerevisiae is a polysaccharide of D-glucose 

that has wide applications in the food and pharmaceutical industries. The classical method of 

glucan isolation from S. cerevisiae involves a repeated extraction of the yeast sample with 

boiling NaOH and HCl solutions. While this method is efficient in isolating the glucan from all 

other components of the cell wall, it is also known to degrade the glucan by evidence of higher 

BF and lower SC.  

Over the years, many researchers have developed several methods to isolate glucan in 

order to try to retain more of the proposed native structure, and therefore potentially provide a 

more effective glucan therapeutic. One method that has been developed is the use of Savinase 

enzymes for the isolation. This method has been demonstrated to successively isolate glucans 

with higher yields; however, the Savinase enzymes employed are very expensive making the 

isolation process cost prohibitive.43  

The goal of this research was to develop a milder and cost-effective extraction procedure 

for β-glucan. The requirements for this method is that it must successfully isolate the glucan 

from all other components of the cell wall, as well as limit the extent of the degradation by 

evidence of a lower BF and a higher SC. Another aim of this research was to determine if the 

number of ethanol extractions could be decreased to allow for a more efficient extraction. 

Reduction of the ethanol extractions could result in a reduced cost in the extraction of the glucan 

as well as an overall retention of more of the glucan’s proposed native structure. The reported 

function of the ethanol is to remove all residual lipids that may remain after the acid and base 
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extractions.43-45 It was also determined whether all extraction volumes could be reduced. 

Reduction of the extraction volumes would allow quick extractions of smaller volumes which 

will limit the costs associated with the repeated extractions required for the optimization of the 

extraction procedure.  

During our studies, a milder, simpler, and cost-effective method for isolating glucan from 

S. cerevisiae has been developed. This method was successful in isolating the glucan from all 

other components of the cell by evidence of the NMR spectra, and also limited the extent of 

degradation by evidence of a lower BF and a higher SC. The breaching frequency (BF), was 

calculated to determine the average number of glucose units between each 1,6- -glucan side 

chain. The side chain length (SC) was also calculated to determine the average length of each 

1,6-β-glucan side chain.  

 

Classical Extraction Method  

Three-times 1 N NaOH/HCl and Ethanol Extractions 

                It was previously reported by Mueller and coworkers that the branching frequency and 

side length depend on the strength of the acid used.23,39 Lowman and coworkers reported a 

branching frequency and side chain length of 198.8 and 0.37 respectively when using the 

classical extraction method, that is, three times extraction of the yeast with 1N NaOH, HCl, and 

ethanol.45 Figure 6 represents the spectrum of glucan isolated from S. cerevisiae using the 

classical extraction method. This spectrum agrees with the results reported by Lowman and co-

workers. The calculated BF and SC can be observed in Table 3 to be 196.5 ± 9.8 and 2.5 ± 0.4 

respectively, with a yield of 2.9 %. Our observation confirmed the results reported by Lowman 
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and co-workers that using the classical method for isolating glucan from S. cerevisiae degrades 

the glucan extract to a large extent; hence, the glucan extracted does not reflect its true structure. 

 

 

 

Figure 6. 1 D proton NMR spectrum of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

with three times extraction of the yeast with 1N NaOH, HCl and ethanol boiling solutions. 

 

 

 

Table 3. Tabulation of structural statistical features and compositions observed using 1H NMR 

spectroscopy for extracted glucans using classical method.   

 

NaOH conc. 

(N) 

 

HCl conc. 

(N) 

 

NaOH / 

HCl 
boilings 

 

Ethanol 

boilings 

 

Branching 

Frequency 

(BF) 

 

Side chain 

(SC) 

 

 

Percent 

Yield 

 

1 

 

1 

 

3 

 

3 

 

196.5 ± 9.8 

 

 

2.5 ± 0.4 

 

2.9 % 

 

1 

 

1 

 

1 

 

1 

 

139.7 ± 6.8 

 

2. 6± 0.2 

 

3.2 % 

 

 

One-time 1 N NaOH/HCl and Ethanol Extractions 

                After the confirmation of our initial experimental results that the classical extraction 

method degrades the glucan extract, we modified the classical method by reducing the number of 
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acid and base extractions. All boilings in this extraction procedure was reduced to one from the 

initial three. Figure 7 shows the H1 NMR spectrum of glucan isolated with the modified classical 

method. This spectrum is very similar to the one obtained with the classical extraction method. 

They both have very small H1 SC and H6 SC peaks. The calculated BF and SC was determined 

to be 139.7 ± 6.8 and 2.6 ± 0.2, respectively, with a yield of 3.2 %. It was determined that by 

reducing the number of extractions, thus the exposure of the glucan to harsh acid and base, that 

the BF and SC was improved to a limited respect. This led us to a question of whether the type of 

reagents involved affected the BF and SC of the extracted glucan. Phosphoric acid was then 

investigated to determine if the use of a gentler acid (that is, a higher pKa 2.16 as compared to 

HCl which is -7) would yield any additional structural information. 

 

 

 

 

Figure 7. 1 D proton NMR spectrum of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

using one-time 1 N NaOH, HCl, and ethanol extraction. 
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Optimized Extraction Method 

Three-times 1 N Acid/Base and Ethanol Extractions 

               After confirming from our experimental results that the classical method degrades the 

isolated glucan, it was imperative to develop a new method that will effectively isolate the 

glucan from S. cerevisiae as well as maintain its native structure. A milder acid (H3PO4) was 

employed in order to optimize the extraction method. Figure 8 shows the spectra of glucan 

isolated form S. cerevisiae using three-time acid/base, and ethanol extraction. Extraction of 

glucan using the optimized method of extraction, that is, three times extraction in 1 N NaOH, 

H3PO4 and ethanol degraded the glucan extract to a lesser extent. A meaningful increase in the 

branching frequency and the side chain length with the new method of extraction was observed. 

The glucan extracted with the optimized method gave a branching frequency and side chain 

length of 57.9 ± 1.6 and 2.7 ± 0.1, respectively. This observation confirmed the reported theory 

of Mueller and coworkers that, the degree of polymerization depends on the acid used and that 

using a milder acid potentially could result in increased branching frequency and side chain 

legth.41,42 This is summarized in Table 4 below. 
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Figure 8. 1 D proton NMR spectrum of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

with three-times extraction of the yeast with  1 N NaOH/H3PO4 and ethanol boiling solutions. 

 

 

One-time 1 N Acid/Base, three-times vs one-time Ethanol Extractions  

                During the optimization of the extraction method, it was investigated whether the 

number of base and acid extractions could be decreased from three to one. When milder 

conditions were employed, that is, the number of extractions was reduced from three times to 

one time, the glucan extracted had an improved degree of polymerization and a higher side chain 

length. As reported by Mueller and coworkers, milder acids gave improved branching frequency 

and side chain length.38,39 Interestingly, we observed from our work that reducing the number of 

extractions produced improved spectra. Use of a single extraction of 1 N acid and base improved 

the branching frequency and the length of the side chains were 28.7 ± 1.2 and 4.1 ± 0.2, 

respectively, with a yield of 7.9 %.  
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               Another aim of this research was to determine if the number of ethanol extractions 

could be decreased to allow for a more efficient extraction while retaining a high-quality glucan 

product. Reduction of the ethanol extractions would result in a reduced cost in the extraction 

procedure as well as an overall retention of more of the glucan’s native structure. Figure 9 A is a 

one-time ethanol extract and Figure 9 B is a three-time ethanol extract. Comparing the one-time 

to the three-time ethanol extract, it was observed that both conditions produced similar results.  

The extract with one-time ethanol produced branching frequency and side chain of 28.7 ± 1.2 

and 4.1 ± 0.2, respectively with a yield of 7.9 %. Similarly, the extract with three times ethanol 

produced a branching frequency and side chain length of 30.2 ± 2.0 and 4.3 ± 0.2, respectively 

with a yield of 7.8 %. This means that the number of ethanol extractions could be reduced from 

three to one, with both conditions producing comparable results. This is summarized in Table 4 

below. 
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Figure 9. 1 D proton NMR spectrum of the (1→3, 1→6)-β-glucan isolated from Saccharomyces 

cerevisiae with one-time extraction of the yeast with 1 N NaOH, H3PO4 boiling solutions. A 

represents an extraction of the yeast with one-time ethanol boiling solution, and B represents an 

extraction of the yeast with three times ethanol boiling solutions. 
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One-time 0.1 N Acid/Base, three-times vs one-time Ethanol Extractions 

In order to verify if one extraction with ethanol was sufficient, it was important to repeat 

the process with additional extraction conditions. The concentration of the base and acid was 

reduced to 0.1 N and the use of one and three ethanol extractions were compared as shown in 

Figure 10. There was an improvement in the values of the branching frequency and side chain 

length when the concentration of the acid/base was reduced. The branching frequency and side 

chain length was determined to be 18.6 ± 0.7 and 5.1 ± 0.1, respectively, when one ethanol 

extraction was conducted. This was comparable to the extraction procedure when ethanol was 

employed three times which gave a branching frequency and side chain of 25.1 ± 0.3 and 6.2 ± 

0.1 respectively. This work supported the theory that the number of ethanol extractions could be 

reduced while still resulting in a pure glucan product. When it was observed that the reduction in 

base and acid concentration resulted in an improved BF and SC, the project changed focus to 

determine how low in terms of the concentration of the acid and base can we go before the 

glucan product began to exhibit impurities. This is summarized in Table 4 below. 
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Figure 10. 1 D proton NMR spectrum of the (1→3, 1→6)-β-glucan isolated from 

Saccharomyces cerevisiae with one-time extraction of the yeast with 0.1 N NaOH, H3PO4 boiling 

solutions. A represents an extraction of the yeast with one-time ethanol boiling solution, and B 

represents an extraction of the yeast with three times ethanol boiling solutions. 
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Constant Base with Reduced Acid Concentration 

                  A titration of extraction conditions was performed to determine the optimum of 

conditions that produced the glucan with the most native structure. In the first set of extractions, 

the base was kept constant at 0.1 N while the acid was reduced from 1 N to 0.001 N. It was 

observed that, reducing the acid did not have a major impact on the structure of the glucan 

extracted. In fact, all the acid conditions (1-0.001 N) resulted in very similar values for BF and 

SC. It was concluded from analyzing Figure 11 that the acid concentration did not have a major 

impact on the glucan product and: therefore, led us to speculate that the acid extraction was not 

required to yield glucan product that is free of other components of the cell wall. Additionally it 

became very important to determine how essential the base step was to the extraction procedure. 

This is summarized in Table 4 below. 
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Figure 11. 1 D proton NMR spectra of the (1→3,1→6)-β-glucan isolated from S. cerevisiae with 

a one-time extraction of the yeast with 0.1 N NaOH and ethanol boiling solution. A, B, C, and D 

represent an extraction of the yeast with 1 N, 0.1 N, 0.01 N, and 0.001 N H3PO4 boiling 

solutions, respectively. 
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Constant Acid with Reduced Base Concentration 

                   In order to determine the impact the base had on the whole extraction procedure, a 

titration method of extraction where the concentration of the acid was held constant and the 

concentration of the base was reduced was required. The acid concentration was held at 1 N 

while the NaOH concentration was reduced from 0.1 to 0.001 N. This set of experiments 

presented an interesting result. The extraction of a clean, free from impurities, glucan product 

was not successful when the concentration of the base was reduced below 0.1 N. From Figure 12 

it can be observed that the shape of the peaks within the NMR spectra changed dramatically 

when the concentration of the base was reduced to 0.01 N and 0.001 N respectively. The 

isolation of the glucan from other components of the cell wall was only successful with the 0.1 N 

base. From Figure 12 B and C, it can be determined that the glucan extracted contain other 

components of the cell wall. The H1 and H6 peaks cannot be seen, and therefore the spectra could 

not be interpreted for branching frequency and side chain length. This was most likely a result of 

remaining impurities such as mannan, chitin, proteins, and lipids. This is because other 

components like chitin and mannan are not soluble in the solvent used for the analysis, that is, 

d6-DMSO. This chitin and mannan will act as particulate matter and change the shape of the 

NMR spectra. We convinced that the shape of the peak in Figure 12 B and C were not coursed 

by external particulate matter because a new NMR tube was used for each analysis. After 

observing that the acid had little or no effect on the extraction procedure while the base appeared 

to be essential, we became interested in determining the real purpose of the acid during the 

extraction procedure. To do this, further extractions were performed in the absence of acid. 

 



51 
 

 

 

Figure 12. 1 D proton NMR spectra of the (1→3,1→6)-β-glucan isolated from S. cerevisiae with 

a one-time extraction of the yeast with 0.1 N H3PO4 and ethanol boiling solutions. A, B, and C 

represent an extraction of the yeast with 0.1 N, 0.01 N and 0.001 N NaOH boiling solutions, 

respectively. 
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No Acid/Acidified Ethanol Extraction 

                   It was determined from this work that the acid concentration had very little impact on 

the purity of the extracted glucan, and therefore could be omitted from the extraction process. In 

order to accurately determine the function of the acid on the extraction procedure, an extraction 

was performed with two distinct conditions. First, an extraction with only the base, with no acid, 

was performed. Second, an extraction with the base and acidified ethanol was also performed. 

The NMR spectra of the glucan resulting from these conditions had H1 and H6 peaks clearly 

observed as shown in Figure 13; the branching frequency and side chain length were determined. 

For the extraction without acid, the BF and SC was determined to be 17.3 ± 0.6 and 5.3 ± 0.3 

respectively, it had a relatively higher yield of 11.5 % as compared to the extraction that was 

made with the acidified ethanol. The extraction with the acidified ethanol had a BF and SC of 

17.6 ± 0.1 and 5.5 ± 0.1, respectively with a yield of 10.1 %. Both spectra had clearly defined 

peaks and were interpretable; however, a new peak was observed at 5.1 ppm. After a careful 

analysis of this new peak it was determined to represent glycogen. This was confirmed by 

comparing the glucan spectra to that of pure glycogen from Bovine liver that was obtained from 

literature. This observation explains why there was an increase in the percent yield for the 

extraction with no acid. The base extraction alone was not enough to remove all traces of 

glycogen, so when the extraction was made with no acid, significant amount of glycogen 

remained in the glucan extract and this contributed to the total percent yield. Glycogen is 

essentially a polysaccharide found in animal and human cells; it serves as the primary storage 

form of energy in the cell. It presents in the glucan extract makes it impure. This set of 

extractions demonstrated that the real impact of acid on the extraction was to remove the 
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glycogen. Even though it may seem not to have any effect on the extraction procedure, it is 

required to remove all traces of residual glycogen to produce a very pure glucan extract.   

 

 

 

Figure 13. 1 D proton NMR spectra of (1→3,1→6)-β-glucan isolated from Saccharomyces 

cerevisiae with a one-time extraction of the yeast with 0.1 N NaOH boiling solutions.  A 

represents extraction of the yeast with only the base and ethanol with no acid. B represents 

extraction of the yeast with the base and acidified ethanol. C represents NMR spectrum of 

glycogen isolated from bovine liver.  
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Table 4. Tabulation of structural statistical features and compositions observed using 1H NMR 

spectroscopy for extracted glucans using optimized method. 

 

 

NaOH 

conc. 

(N) 

 

H3PO4 

conc. 

(N) 

 

NaOH / 

H3PO4 

times 

 

Ethanol 

Times 

 

Branching 

Frequency 

(BF) 

 

Side chain 

(SC) 

 

 

Percent 
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        1 

 

        1 

 

          3 

 

       3 

 

 57.9 ± 1.6 

 

   2.7 ± 0.1 

 

    4.9 % 

  

        1 

 

        1 

  

          1 

 

       3 

 

 30.2 ± 2.0 

 

   4.3 ± 0.2 

 

   7.8 % 

 

        1 

 

        1 

  

          1 

 

       1 

 

 28.7 ± 1.2 

 

 

   4.1 ± 0.2 

 

   7.9 % 

 

     0.1 

 

       0.1 
 

           1 

 

       3 

 

  25.1 ± 0.3 

 

  6.2 ± 0.1 

 

   9.2 % 

  

     0.1 

    

       0.1 

     

           1 

 

        1 

 

  18.6 ± 0.7 

 

 

  5.1 ± 0.1 

 

 

   9.9 % 

 

 

     0.1 

 

         1 

 

           1 

 

        1 

 

  21.9 ± 0.6 

 

   3.5 ± 0.1 

 

  7.9 % 

 

     0.1 

 

       0.1 

    

           1 

  

        1 

 

  18.4 ± 0.2 

   

   5.1 ± 0.1 

 

  10.3 % 

   

     0.1 

 

       0.01 

 

           1 

 

        1 

 

  18.7 ± 0.2 

 

   5.2 ± 0.1 

 

  10.9 % 

 

     0.1 

 

      0.001 

 

           1 

 

        1 

 

  18.8 ± 0.4 

 

   5.2 ± 0.1 

 

  11.1 % 

 

     0.1 

 

         1 

 

           1 

 

        1 

 

  23.2 ± 2.0 

 

   3.6 ± 0.3 

 

  7.1 % 

 

    0.01 

 

         1 

 

           1 

 

        1 

 

      — 

 

    — 

 

  21.1% 

 

     0.1 

 

    No acid 

 

           1 

 

        1  

 

  17.3 ± 0.6 

 

   5.3 ± 0.3 

 

  11.5 % 

 

     0.1  

Acidified 
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           1 

Acidified 

Ethanol 

 

  17.6 ± 0.1 

 

   5.5 ± 0.1 

 

  10.1 % 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

Classical Extraction Method  

         The classical extraction method degraded the glucan extract to a large extent. The 

conditions used for the classical extraction method was three times extraction of the yeast with a 

1 N NaOH  boiling solution, followed by three times extraction with 1 N HCl boiling solution, 

and then finally extracted three times with boiling ethanol. This yielded a BF of 196.5 ± 9.8 and 

a SC of 2.5 ± 0.4 with a poor yield of 2.9 %. The NMR spectra for the product of this method 

looked distorted and were difficult to interpret. No further studies like the linkage analysis could 

be done with this extract because it was too degraded.   

 

Reduction of the Number of Acid/Base Extractions for the Classical Method  

         Reducing the number of extractions for the classical extraction procedure had no 

significant effect on the glucan extract. Classically, the yeast was extracted three times with 1 N 

NaOH boiling solution, followed by three times extraction with 1 N HCl boiling solution, and 

then finally extracted three times with boiling ethanol. When the number of extraction was 

reduced, that is, the yeast extracted one time with 1 N NaOH boiling solution, followed by one 

time extraction with 1N HCl boiling solution, and then followed by a 1 time extraction with 

boiling ethanol, it resulted in a BF of 139.7 ± 6.8 and SC of 2.6 ± 0.2. This method also produced 

a very low yield of 3.2 %. The NMR spectrum for the product of this method looked distorted 

and was difficult to interpret. No further studies could be completed with this extract because it 

had been too degraded. 
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Optimized Extraction Method 

             When the acid was varied for the classical extraction method, improved values of BF and 

SC was obtained. Using H3PO4 for the yeast extraction produced an NMR spectrum that was 

easily interpretation. The BF and SC were observed to be 57.9 ± 1.6 and 2.7 ± 0.1, respectively. 

The method also resulted in an increase in the glucan yield, that is, 4.9 %. 

 

Reduction of the Number of Base/Acid Extractions  

            Reducing the number of extractions from three to one with our optimized extraction 

conditions produced clearly distinctive and interpretable NMR spectra. When the yeast was 

extracted one-time with 1 N NaOH boiling solution, followed by one-time extraction with 1 N 

H3PO4 and followed by one time extraction with boiling ethanol, an improved BF and SC of 28.7 

± 1.2 and 4.1 ± 0.2, respectively was obtained. The yield also increased for this method to 7.9 %. 

 

Reduction of the Number of Ethanol Extractions 

              One question was whether the number of ethanol extractions could be reduced and still 

result in a glucan product that is free from other components of the cell wall.  When the yeast 

was extracted one-time with 1 N boiling base followed by a one-time extraction with 1 N boiling 

acid, and then extracted three times with boiling ethanol, a BF and SC of 30.2 ± 2.0 and 4.3 ± 0.2 

was obtained. The yield for this extract was 7.8 %. When the acid and base conditions were held 

constant, but the yeast was only extracted one time in ethanol, a BF and SC of 28.7 ± 1.2 and 4.1 

± 0.2 with a yield of 7.9 % was obtained. Sticking with one time ethanol extraction was 
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confirmed when 0.1 N acid/base was employed. When extracted three times in ethanol a BF and 

SC of 21.5 ± 0.3 and 6.2 ± 0.1 with a yield of 9.2 % was observed while when extracted one time 

in ethanol a BF and SC which was 18.6 ± 0.7 and 5.1 ± 0.1, with a yield of 9.9 % was obtained. 

Based on these results, we confidently conclude that one-time ethanol extraction was sufficient 

to remove all lipids from the glucan extract. 

 

Varying the Amount of Materials and Volume of Solutions 

         By repeating the above extraction procedure with one quarter of all materials, we were able 

to achieve comparable results as with the larger volumes. When 4 g of sample and 200 mL of all 

solutions was used with the yeast being extracted one time with boiling base solution, followed 

by one time extraction with boiling acid solution and then completed with one time extraction 

with boiling ethanol solution, a BF and SC of 28.7 ± 1.2 and 4.1 ± 0.2 with a yield of 7.9 % was 

obtained. When the extraction conditions was maintained but reducing the sample and all 

solutions to 1 g and 50 mL respectively, a BF and SC of 28.3 ± 1.1 and 4.6 ± 0.1 with a yield of 

7.1 % was obtained. Therefore, we were able to successfully cut the cost and time of the 

extraction procedure by one quarter. 

 

Constant Base with Reduced Acid Concentration 

            The titration method of extraction led us to an interesting observation.  When the 

concentration of the base was held constant and the concentration of the acid was reduced, we 

found that the base extraction is the most important step in isolating glucan as it removes most of 

the proteins, as well as mannan, chitins etc. The acid actually had a minimal effect on the 
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procedure. Keeping the base constant at 0.1 N and reducing the acid from 1 N to 0.001 N had 

very little effect on the resulting glucan characteristics. 

 

Constant Acid with Reduced Base Concentration 

            When the acid concentration was held constant while the base concentration was reduced 

an interesting result was observed. Reduction of the base to 0.001 N with 1 N acid gave us an 

NMR spectrum without enough data for analysis. This led us to the confirmation of our earlier 

conclusion that the base is the most important step in the glucan extraction procedure. 

 

No Acid Extraction 

          It was believed that the acid had very little to no effect on the glucan extraction based on 

our previous observation. However, when the acid extraction step was omitted either with 

regular ethanol or acidified ethanol it was found that traces of glycogen remained in the extracted 

glucan.  Therefore, while the acid has minimal effect on the extract, it is essential to remove the 

glycogen from the product. 

 

Final Conclusion 

           It can be concluded that the optimum condition for glucan extraction from S. cerevisiae, 

was one-time extraction of the yeast with 0.1 N NaOH boiling solution, followed by one-time 

extraction with 0.1 N H3PO4 boiling solution, then followed by one-time extraction with boiling 

ethanol. This gave us the optimum BF and SC of 18.4 ± 0.2 and 5.1 ± 0.7, with a yield of 10.3 %. 
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Thus this research has led to a dramatic improvement in the yield of glucan from S. cerevisiae. 

Prior to this research, the BF and SC was 196.5 ± 9.8 and 2.5 ± 0.4 respectively for the classical 

method. The highest yield from the classical method was 2.9 %, and now the yield is 10.3 %. 

 

Future Work 

In the future, the structure of β-glucan isolated from S. cerevisiae using the recently 

optimized developed extraction method should be studied. These studies should be done on yeast 

from different fungal sources.  
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        APPENDICES 

 

Appendix A: 1 D proton NMR spectrum of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

with three times extraction of the yeast with 1 N NaOH, HCl and ethanol boiling solutions.  
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Appendix B: 1 D proton NMR spectrum of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

with one time extraction of the yeast with 1 N NaOH, HCl and ethanol boiling solutions. 
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Appendix C: 1 D proton NMR spectrum of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

with three times extraction of the yeast with  1 N NaOH/H3PO4 and ethanol boiling solutions. 
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Appendix D: 1 D proton NMR spectrum of the (1→3, 1→6)-β-glucan isolated from 

Saccharomyces cerevisiae with one time extraction of the yeast with 1 N NaOH, H3PO4 boiling 

solutions. A represents an extraction of the yeast with one time ethanol boiling solution, and B 

represents an extraction of the yeast with three times ethanol boiling solutions. 
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Appendix E: 1 D proton NMR spectrum of the (1→3, 1→6)-β-glucan isolated from 

Saccharomyces cerevisiae with one time extraction of the yeast with 0.1 N NaOH, H3PO4 boiling 

solutions. A represents an extraction of the yeast with one time ethanol boiling solution, and B 

represents an extraction of the yeast with three times ethanol boiling solutions. 
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Appendix F: 1 D proton NMR spectra of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

with a one-time extraction of the yeast with 0.1 N NaOH and ethanol boiling solution. A, B, C, 

and D represent an extraction of the yeast with 1 N, 0.1 N, 0.01 N and 0.001 N H3PO4 boiling 

solutions respectively.  
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Appendix G: 1 D proton NMR spectra of the (1→3,1→6)-β-glucan isolated from S. cerevisiae 

with a one time extraction of the yeast with 0.1 N H3PO4 and boiling ethanol solutions. A, B, and 

C represent an extraction of the yeast with 0.1 N, 0.01 N and 0.001 N NaOH boiling solutions 

respectively.  
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Appendix H: 1 D proton NMR spectrum of the (1→3,1→6)-β-glucan isolated from 

Saccharomyces cerevisiae with a one-time extraction of the yeast with 0.1 N NaOH boiling 

solutions.  A represent an extraction of the yeast with only the base and ethanol with no acid. B 

represents an extraction of the yeast with the base and acidified ethanol. C represents an NMR 

spectrum of glycogen isolated from bovine liver.  
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