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ABSTRACT 

 

Role of Ataxia Telangiectasia Mutated Kinase in the Healing Process of the Heart  

Following Myocardial Infarction  

by 

Laura Lynn Daniel 

Ataxia telangiectasia (AT), caused by mutations in the gene encoding ataxia telangiectasia 

mutated kinase (ATM), is a rare autosomal recessive disorder.  AT individuals exhibit neuronal 

degeneration and are predisposed to cancer. Carriers of this disorder are predisposed to cancer 

and ischemic heart disease. Heart disease, mostly due to myocardial infarction (MI), is a leading 

cause of death in the US.  Following MI, release of catecholamines in the heart stimulates β-

adrenergic receptors (β-AR). Our lab has shown that β-AR stimulation increases ATM 

expression in the heart and myocytes, and ATM plays an important role in β-AR-stimulated 

myocardial remodeling with effects on function, fibrosis and apoptosis. Using wild-type (WT) 

and ATM heterozygous knockout (hKO) mice, this study investigated the role of ATM in the 

inflammatory, proliferative and maturation phases of infarct healing post-MI.  During the 

inflammatory phase, 1 and 3 days post-MI, a deficiency of ATM resulted in decreased left 

ventricular dilation as measured by echocardiography.  It decreased the number of neutrophils 

and macrophages in the heart 1 day post-MI.  Myocardial fibrosis, expression of alpha-smooth 

muscle actin (α-sma) and apoptosis were higher in the infarct region of ATM deficient hearts. 

Akt activation (anti-apoptotic) was lower, while Bax expression (pro-apoptotic) was higher in 

the infarct region of ATM deficient hearts. During the proliferative phase, 7 days post-MI, ATM 
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deficiency attenuated cardiac dysfunction as measured by echocardiography.  ATM deficient 

hearts exhibited increased fibrosis and expression of α-sma in the infarct region with increased 

myocyte apoptosis in the border area. During the maturation phase, 14 and 28 days post-MI, 

ATM deficiency resulted in exaggerated cardiac function. It associated with increased fibrosis, 

expression of α-sma and decreased cardiac cell apoptosis in the infarct region 28 days post-MI. 

Myocyte hypertrophy was greater in the non-infarct region during ATM deficiency. ATM 

deficiency decreased expression of p16 (marker of cell senescence) and activation of pro-

apoptotic protein, GSK-3β.  Thus, ATM modulates the remodeling processes of the heart 

including function, fibrosis, apoptosis and hypertrophy post-MI. ATM (1) delays the 

inflammatory response post-MI, (2) decreases dilative remodeling during inflammatory and 

proliferative phases and (3) exaggerates dysfunction during the maturation phase.  
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CHAPTER 1 

INTRODUCTION 

Heart Disease and Myocardial Infarction 

According to the Global Burden of Disease Study 2010, heart disease is one of the 

leading causes of death worldwide (Lozano et al. 2012).  It is currently considered the leading 

cause of death in the US.  An estimated 83.6 million American adults have had at least one type 

of cardiovascular disease; this includes high blood pressure, myocardial infarction, stroke and 

heart failure. It is estimated that the direct and indirect (loss of productivity) cost of 

cardiovascular diseases is in upwards of $300 billion per year. It is projected that by 2030 the 

costs will rise to over $900 billion (Go et al. 2014).  Myocardial infarction (MI) is a large 

contributor to this burden. In 2006, it was estimated that MI occurs in approximately 865,000 

people annually, and is responsible for nearly half of all deaths due to cardiovascular diseases 

(Turpie 2006). 

MI and Cardiac Myocyte Death 

Cardiac myocytes are responsible for the contractile function of the heart.  MI is an 

ischemic event that leads to death of cardiac myocytes resulting in a decline in cardiac function 

(Alpert et al. 2000).  Cardiac myocyte death occurs via apoptosis and necrosis (Fliss and 

Gattinger 1996; James 1998). Myocytes are terminally differentiated and have limited 

regenerative capacity (Frangogiannis 2008). Following extensive myocyte loss, such as is the 

case during MI, the remaining myocytes usually aren’t adequate enough to maintain cardiac 

function which leads to cardiac dysfunction and, then, heart failure. Therefore, the extent of 
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myocyte death can be used as a predictor of heart failure (Olivetti et al. 1997; Nakayama et al. 

2007).  

Apoptosis is a controlled cell death that can occur in response to irreparable DNA 

damage. During apoptosis there is chromatin condensation, cellular shrinkage and cellular 

fragmentation into apoptotic bodies (Ouyang et al. 2012). These apoptotic bodies are surrounded 

by a plasma membrane in order to prevent the release of the intracellular contents (Krysko et al. 

2006). This process minimizes the inflammatory response and damage to the surrounding tissue 

(Ouyang et al. 2012).  Following MI, there is an increase in sympathetic nerve activity caused by 

an increase in catecholamines (Schömig 1990). Accumulation of catecholamines is suggested as 

a contributing factor leading to heart failure (Downing and Chen 1985).  This is in part due to the 

fact that catecholamines are shown to induce cardiac myocyte apoptosis, both in vitro and in vivo 

(Shizukuda et al. 1998; Colucci et al. 2000; Singh et al. 2001). Specific β1-adgernergic receptor 

(β1-AR) blockers such as metoprolol and non-specific β-AR-blockers such as carvedilol have 

been shown to decrease myocyte apoptosis (Kawai et al. 2004; Ahmet et al. 2008).   

Necrosis was originally thought to be “accidental" cell death that was uncontrolled. Since 

then, mediators of necrotic death such as receptor-interacting protein kinases (RIP) and poly 

(ADP ribose) polymerase (PARP) have been discovered and the idea that necrosis is another 

form of programmed cell death, like apoptosis, has been gaining acceptance. Increased oxidative 

stress due to MI can induce myocyte necrosis. Necrosis associates with loss of membrane 

integrity resulting in the intracellular material being released into the extracellular space (Ouyang 

et al. 2012). Loss of membrane integrity is a result of cellular swelling.  On the other hand, 

apoptosis results in cell shrinkage followed by complete engulfment of the apoptotic cell by 

phagocytes. The necrotic cellular contents are internalized by a macropinocytotic mechanism. 
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During this process only parts of the cell are taken up by phagocytes (Krysko et al. 2006). The 

cellular contents that remain in the extracellular environment are thought to act as “danger 

signals” and elicit an inflammatory response (Proskuryakov et al. 2003). However, this idea is 

controversial since studies have shown that exposure of necrotic cells, like apoptotic cells, to 

macrophages is not sufficient to alter macrophage expression of pro-inflammatory cytokines 

(Cocco and Ucker 2001; Brouckaert et al. 2004).  Necrotic cells, but not apoptotic cells, trigger 

an increase in the secretion of pro-inflammatory cytokines from independently-activated 

macrophages (Cocco and Ucker 2001).  It is possible that release of cytokines or other factors 

from necrotic cells also may be critical for the induction of an inflammatory response. Cells that 

die as a result of necrosis, but not apoptosis, upregulate and secrete the pro-inflammatory 

cytokine interleukin-6 (IL-6) (Vanden Berghe et al. 2006).  

Infarct Healing Post-MI 

Since the heart has limited regenerative capacity, the damaged heart is repaired and replaced by a 

collagen-based scar.  The repair process induces structural and functional changes in the infarct 

as well as non-infarct regions of the heart.  This cardiac remodeling process associates with left 

ventricle (LV) chamber dilation, myocyte hypertrophy and formation of an infarct scar. The 

infarct healing or reparative process can be divided into these overlapping phases: (a) 

Inflammatory; (b) Proliferative and (c) Maturation (Frangogiannis 2008). 

Inflammatory Phase. Inflammation following MI is activated by a number of pathways. 

As a result of necrosis, the complement cascade can be activated (Pinckard et al. 1975). This 

leads to leukocyte recruitment (Hill and Ward 1971). There is also an increase in “damage 

associated molecular patterns” (DAMPs). DAMPs act as signaling molecules further activating 

the innate inflammatory response.  These signaling molecules can be released by necrotic cells. 



18 
 

Damaged extracellular matrix proteins are also considered to be DAMPs.  Other examples of 

DAMPs include heat shock protein (HSPs), high-mobility group box-1 (HMGB1), low 

molecular weight hyaluronic acid and fibronectin fragments (Timmers et al. 2012). Activation of 

the innate immune response via DAMPs is in part due to the activation of toll like receptors 

(TLR-2 and -4) (Termeer et al. 2002; Jiang et al. 2005).  

Following MI, the generation of oxygen-related free radicals exceeds the heart’s capacity 

for removal, resulting in increases in reactive oxygen species (ROS).  This increase in ROS can 

cause impairments in mitochondrial function by increasing lipid peroxidation, enhancing 

mitochondrial DNA damage as well as inducing inactivation of the electron transport chain 

(ETC) proteins and antioxidant enzymes (Chen and Zweier 2014). An increase in ROS also can 

trigger an inflammatory response which is in part due to the fact that oxidative stress activates 

NF-κB (Kabe et al. 2005). NF-κB is a transcription factor that regulates gene expression 

involved in the inflammatory response, cell adhesion, growth control and cell death. NF-κB can 

be activated by a variety of other stimuli including cytokines such as tumor necrosis factor-α  

(TNF-α) and interleukin-1β (IL-1β) (Stancovski and Baltimore 1997). 

During the inflammatory phase, chemokines, cytokines and adhesion molecules are 

upregulated leading to the recruitment of leukocytes into the wound with neutrophils being 

among the first (Frangogiannis 2008). The inflammatory phase in humans usually begins 6 hours 

after infarction and can last up to 4 days (Cleutjens, Blankesteijn, Daemen, & Smits, 1999), 

whereas, in rodents the inflammatory response last approximately 1-48 hours post-MI 

(Dobaczewski et al. 2010). The increase in pro-inflammatory cytokines and chemokines results 

in the activation of endothelial cells thus priming them to “capture” neutrophils. The adherence 

of neutrophils to the endothelium of post capillary venules is mediated by members of the 
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selectin family. The L-selectins of neutrophils bind to P and/or E selectin in the endothelials. 

This attachment triggers activation of integrins via a G protein-coupled receptor (GPCR). The 

integrin responsible for this attachment is β2-integrin which is expressed exclusively on cells of 

leukocyte origin. β2-integrins can attach to intercellular adhesion molecules (ICAM-1) expressed 

in the endothelium. This results in a transition from leukocyte rolling (via selectins) to firm 

adhesion. Following this, leukocytes transmigrate into the infarct region through interactions that 

involve a wide variety of adherent molecules including platelet endothelial cell adhesion 

molecule (PECAM)-1, ICAM-1, vascular-endothelial (VE)-cadherin and members of the 

junctional adhesion molecule (JAM) family. This occurs both at endothelial cell junctions and at 

non-junctional locations (Williams et al. 2011).  

Following neutrophil recruitment, there is an infiltration of monocytes and lymphocytes 

into the wound.  Monocytes eventually differentiate into macrophages in part due to the 

upregulation of macrophage-colony stimulating factor (MCSF). MCSF appears to be important 

for the survival of macrophages since its upregulation associates with macrophage proliferation 

(Frangogiannis et al. 2003). Macrophages appear in the infarcted heart two days post-MI to aid 

in clearing the wound of dead cells, including neutrophils, and matrix debris (Matsui et al. 2010). 

They release anti-inflammatory cytokines and growth factors which aid in formation of highly-

vascularized granulation tissue. In addition, the release of cytokines and growth factors results in 

the suppression of pro-inflammatory mediators and the proliferation of fibroblasts and 

endothelial cells. Macrophages also aid in wound repair by secreting matrix metalloproteinases 

(MMPs) as well as their inhibitors (Frangogiannis 2008).  

 The extracellular matrix (ECM) is an important structural component of the myocardium 

with the majority of structural integrity coming from type I and III fibrillar collagen. The ECM 
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provides support for myocytes and blood vessels, helps maintain cardiac shape, and aids in 

coordinating the delivery of force that is generated by myocytes to the ventricular chamber. The 

ECM is an important determinate of diastolic and systolic myocardial stiffness.  Alterations in 

ECM organization can result in changes to cardiac function (Weber 1989). MMPs are proteins 

that can degrade the ECM. Following MI, there is an initial increase in ECM degradation. Type I 

collagen fragments can be found in the serum of pigs 15-30 minutes after coronary artery 

occlusion (Villarreal et al. 2004). The initial increase in cardiac ECM degradation comes from 

activation of latent MMPs as opposed to production of new MMPs (Etoh et al. 2001). Increased 

degradation of the ECM post-MI is thought to be responsible for myocyte slippage, sarcomere 

overdistension, wall thinning and cardiac rupture following MI (Cleutjens, Kandala, et al. 1995). 

Following degradation of the original matrix, there is a formation of fibrin-based provisional 

matrix. This provisional matrix can serve as a scaffold for the migration and proliferation of 

inflammatory cells, endothelial cells and fibroblasts. However, this provisional matrix is lysed by 

proteolytic enzymes that are produced by granulation tissue cells as the wound heals. A cell-

derived matrix containing cellular fibronectin and hyaluronan replaces the provisional matrix. 

Cellular fibronectin is secreted by fibroblasts and macrophages (Dobaczewski et al. 2010).  

Proliferative Phase. Following the inflammatory phase of wound healing is the 

proliferative phase. During this phase, there is a suppression of the inflammatory response by 

“stop signals” such as IL-10 and transforming growth factor (TGF)-β1 as well as an increase in 

proliferation of myofibroblasts and endothelial cells.  In rodents, the proliferative phase begins 

approximately 48 hours post-MI and lasts up to 5 days post-MI (Dobaczewski et al. 2010).  In 

higher mammals, the proliferative phase begins 7 days post-MI and can last up to 14 days post-

MI (Cleutjens et al. 1999; Virag and Murry 2003). 
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Myofibroblasts are not generally found in the healthy heart.  However, they are present in 

the infarct region following MI and play an important role in wound healing.  Myofibroblasts aid 

in wound closure and are the main source of collagen production during infarct healing 

(Cleutjens, Verluyten, et al. 1995). Myofibroblasts isolated from infarct regions exhibit a higher 

rate of proliferation and collagen synthesis when compared to fibroblasts isolated from non-

infarct regions or sham operated hearts. Interestingly, the myofibroblasts exhibited a decrease in 

migration that was attributed to increased adhesion to some the ECM proteins (Squires et al. 

2005). Myofibroblasts can come from a variety of sources such as epithelial cells, endothelial 

cells, mesenchymal stem cells, bone marrow-derived circulating progenitor cells, smooth muscle 

cells and pericytes (Turner and Porter 2013). Resident fibroblasts are transformed into 

myofibroblasts in a two-step process. During the first step, fibroblasts respond to increased 

mechanical tension and transform into proto-myofibroblasts which are characterized by the 

formation of stress fibers containing β- and γ-cytoplasmic actins. During the second step, the 

proto-myofibroblasts are exposed to additional signals such as active TGF-β and ED-A (a splice 

variant of cellular fibronectin) resulting in their conversion into myofibroblasts (Serini et al. 

1998; Hinz et al. 2001; Tomasek et al. 2002). Normally TGF-β requires proteolytic cleavage to 

become active, but it has been shown that mechanical strain can result in TGF-β activation in the 

absence of protease activity (Buscemi et al. 2011).  Once the proto-myofibroblast express α-sma 

they are referred to as myofibroblasts.  The acquisition of α-sma is thought to aid in the 

contraction of the heart following injury (Dobaczewski et al. 2010).  

Following MI, there is an increase in collagen production with type I and type III 

procollagen increasing several fold in the infarct region. Type III procollagen mRNA levels have 

been shown to increase in the infarct region as early as 2 days post-MI and can remain elevated 
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for up to 21 days post-MI, while type I procollagen increased in the infarct region 4 days post-MI 

and remained elevated up to 90 days post-MI. While most of the increases in collagen production 

occur in the infarct region, there can also be an increase in collagen production in the non-infarct 

region of the right ventricle as well as the non-infarcted septum.  However, the increase in 

collagen production in the non-infarct region is less than that seen in the infarcted LV region. 

When examining the phenotype of the cells responsible for collagen production, it appears that 

the collagen being produced in the infarcted  region comes from myofibroblasts, while the 

collagen produced in the non-infarcted region originates from non-transformed fibroblasts 

(Cleutjens, Verluyten, et al. 1995).  

Part of the wound healing process is the formation of a new vasculature. Fibroblasts 

move into the wound in order to create a matrix necessary for structural support.  There is also 

growth of new blood vessels, in the infarct region, which provides the area with oxygen and 

nutrients (Tonnesen et al. 2000). Angiogenesis is a process in which new microvessels are 

formed from pre-existing capillaries. Endothelial cells become activated in response to a variety 

of signals such as hypoxia, growth factors and nitric oxide. Once activated, the endothelial cells 

begin to proliferate forming a new vessel lumen which is later covered by mural cells to ensure 

neovessel stability (Cochain et al. 2013).    

Maturation Phase. In humans, the maturation phase usually begins 2-3 weeks post-MI 

and can last for several months (Cleutjens et al. 1999).  While, in rodents the maturation phase 

occurs from approximately day 14 until 2 months post-MI (Dobaczewski et al. 2010).  During 

the maturation phase of healing, fibroblasts and vascular cells undergo apoptosis (Frangogiannis 

2008). Cross-linking of the collagen matrix is carried out by enzymes such as lysyl-oxidase 

which imparts tensile strength to the matrix (Eyre 1980). However, cross-linking also leads to 
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increases in passive stiffness resulting in diastolic dysfunction (Kato et al. 1995; Badenhorst et 

al. 2003).  

During the maturation phase, there is a decrease in myofibroblast density in the newly-

formed scar. In humans, myofibroblasts can persist for years.  The reduction in myofibroblasts is 

thought to occur as a combination of myofibroblast senescence and apoptosis. (Turner and Porter 

2013). While short-term inhibition of myofibroblast apoptosis may be beneficial early post-MI, 

the persistence presence of myofibroblasts usually results in excessive scaring leading to 

ventricular wall stiffening and cardiac dysfunction (Brown et al. 2005).  

Ataxia Telangiectasia.  

Ataxia telangiectasia (AT) is a rare autosomal recessive disorder caused by mutations in 

the gene encoding for ataxia telangiectasia mutated kinase (ATM).  It affects approximately 

1:40,000 – 1:300,000 children (Sandoval et al. 1999).  Although, mutations in the ATM gene that 

result in AT are varied and do not occur at a particular location within the gene, the mutations 

generally lead to protein instability and lack of a functional protein (McKinnon 2004). On the 

other hand, some mutations result in decreased amounts of the functional protein or cause a 

decrease in its kinase activity. These mutations result in a less severe phenotype than do the 

mutations that cause the complete absence of a functional protein (Stewart et al. 2001). The most 

notable sign of AT is loss of cerebella function, progressive dysarthria and choreoathetosis 

(McKinnon 2004). MRI scans show that there is cerebellar atrophy with involvement of the 

vermis (Farina et al. 1994; Tavani et al. 2003). Affected individuals usually have ataxia of the 

limbs at a very early age resulting from neuronal degeneration causing them to be wheelchair 

bound prior to adolescence. As AT individuals age, there is an increased risk of aspiration 

(Lefton-Greif et al. 2000). These individuals also suffer from thymic degeneration, immune 
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deficiency, retarded somatic growth, premature aging, telangiectasia of the eyes and skin, 

gonadal dysgenesis and sensitivity to ionizing radiation (Rotman 1998).  The 

immunodeficiencies usually present in the form of decreased Ig subtypes and lymphopenia. 

Upper and lower respiratory tract infections are frequent, although it should be pointed out that 

systemic bacterial, severe viral and opportunistic infections are rare (Nowak-Wegrzyn et al. 

2004). There is also a cancer predisposition that usually presents in the form of leukemia or 

lymphoma (Gumy-Pause et al. 2004). 

 Carriers of a mutated Atm allele make up approximately 1.4-2.0% of the general 

population. One functional copy of the gene coding for ATM is able to compensate to a large 

extent for the missing gene; however, individuals with only one copy do exhibit some 

abnormalities. Carriers of a mutated allele have a significantly increased risk of death when 

compared to non-carriers. On average, these individuals die 7 to 8 years earlier than non-carriers 

with cancer being the predominant cause followed by ischemic heart disease as the second major 

cause of death resulting in premature death approximately 11 years earlier than the non-carriers 

(Su and Swift 2000).  Carriers also exhibit increased susceptibility to metabolic diseases such as 

hypertension, diabetes and impaired glucose metabolism (Stracker et al. 2013).  

ATM, DNA repair and oxidative stress 

ATM is a large serine-threonine protein kinase with a molecular weight of approximately 

350 kDa. It contains 66 exons and its mRNA length is approximately 12 kb. The most widely 

known cellular function of ATM is to aid the in repair of DNA double-stranded breaks (DSB). 

These breaks can occur as a result of meiosis, immune system maturation, and telomere 

maintenance (McKinnon 2004). Following DSB, ATM initiates the repair process beginning 

with autophosphorylation, which results in ATM activation (Bakkenist and Kastan 2003). 
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Inactive ATM exists as a dimer. ATM autophosphorylates several residues following DNA 

damage, including S367, S1893, S1981 and S2996, which results in its activation.  This 

activation of ATM is MRN complex (MRE11–RAD50–NBS1) dependent, and results in ATM 

becoming a monomer and beginning its kinase activity (Bakkenist and Kastan 2003; Kozlov et 

al. 2006; Kozlov et al. 2011).  In response to DNA damage, activation of ATM can induce cell 

cycle arrest during G1/S, G2/M, and S phases in order to prevent replication of the damaged 

DNA.  (Rotman 1998).  ATM can activate and stabilize p53, a regulator of the G1/S checkpoint 

and in some cases is an initiator of apoptosis. ATM accomplishes this not only by directly 

phosphorylating p53, but also by phosphorylating Chk2 kinase and Mdm2. Chk2 phosphorylates 

p53 at a site different from ATM also resulting in its activation. Phosphorylation of Mdm2, on 

the other hand, inhibits Mdm2 from signaling for the degradation of p53 (Barzilai et al. 2002).  

ATM can also phosphorylate BRCA1, resulting in cell cycle arrest at intra-S-phase and G2-M 

check points. Besides phosphorylating cell cycle arrest proteins, ATM also phosphorylates a 

variety of proteins that result in DNA repair. Among them are proteins in the MRN complex. 

Following DNA damage the MRN complex rapidly forms foci at the site of DNA damage in 

order to repair the damaged DNA (Rotman 1998). The MRN complex is the primary sensor of 

DSB and ATM’s recruitment to this complex appears necessary for full activation of ATM 

(Berkovich et al. 2007). 

While ATM does take part in DNA repair, there is a built-in redundancy within the cell. 

DNA-dependent protein kinases (DNA-PKs) also respond to DSB. In fact, ATM responds to 

only approximately 10% of DSB, most of which are in regions of heterochromatin. ATM and 

DNA-PK  redundancy may explain the fact the global DSB repair capability of ATM deficient 

cells is only partially attenuated (Goodarzi et al. 2008). However, AT patients still have a 
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hypersensitivity to radiation and are predisposed to cancer. While there are no gross 

abnormalities in either recombination or V(D)J rearrangements, AT individuals are often 

immunocompromised (Lavin et al. 2007).  

ATM is predominantly located in the nucleus and is activated in response to DNA 

damage. However, ATM also has a presence and function in the cytoplasm that is unrelated to 

DNA damage (Shiloh and Ziv 2013).  ATM that is activated in response to oxidative stress can 

exist as a dimer and is MRN independent (Guo et al. 2010). ATM may play a part in redox 

balance by regulation of an important antioxidant cofactor, NADH. ATM is shown to enhance 

the pentose phosphate pathway (PPP), a major source of NADH, in response to genotoxic stress.  

This is accomplished by inducing glucose-6-phosphate dehydrogenase (G6PD) activity, the rate 

limiting enzyme in the PPP (Cosentino et al. 2011).  Increasing autophagy also provides a 

protective mechanism against ROS. ATM can enhance autophagy by phosphorylating tuberous 

sclerosis complex 2 (TSC2), a negative regulator of mammalian target of rapamycin (mTORC1), 

which removes the repression of autophagy by mTORC1 (Shiloh and Ziv 2013).  

Lack of ATM is suggested to result in increased levels of ROS and signs of oxidative 

stress. ATM knockout (KO) mice have differing levels of activity of thioredoxin, catalase and 

manganese superoxide dismutase (SOD).  Alterations in these compounds are thought to keep 

neurons at an increased state of oxidative stress causing the neuronal degeneration seen in AT 

patients (Kamsler et al. 2001). The increased levels of ROS in the brain appear to be located in 

the cerebellum and striatum, but not in the cortex (Quick and Dugan 2001). In addition to AT 

cells having increased levels of ROS, fibroblast isolated from AT patients have increased 

susceptibility to oxidative stress when compared with fibroblasts from non-affected individuals 

(Yi et al. 1990; Ward et al. 1994).  Mitochondria are major sites of ROS production (Cadenas 
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and Davies 2000).  ATM KO mice exhibit mitochondrial dysfunction in thymocytes; there is an 

increase in mitochondrial size as well as mitochondrial ROS production. The increase in 

mitochondria size is thought to be due to a decrease in mitochondrial mitophagy as opposed to an 

increase in mitochondrial biogenesis (Valentin-Vega et al. 2012). 

ATM and the heart 

As discussed previously, increases in sympathetic nerve activity are a major factor post-

MI.  Increases in sympathetic activity result in an accumulation of catecholamines, such as 

norepinephrine, in the interstitial space.  Stimulation of β-AR in response to norepinephrine 

induces cardiac myocyte apoptosis in vivo and in vitro (Shizukuda et al. 1998; Colucci et al. 

2000; Singh et al. 2001). A major project in our lab investigates the molecular signals involved 

in cardiac myocyte apoptosis in response to β-AR stimulation. To identify differential expression 

of apoptosis-related genes in response to β-AR stimulation our lab used a Gene-Array technique.  

For this, mice were infused with isoproterenol (a β-AR agonist) for 7 days.  Total RNA, isolated 

from the LV, was reverse-transcribed and radio-labeled.  The resultant cDNAs, from vehicle-

infused and isoproterenol-infused heart, were simultaneously hybridized with two Gene-Array 

membranes containing 96 apoptosis-related genes. This analysis revealed increased expression of 

ATM in the hearts in response to β-AR stimulation.  RT-PCR confirmed increased expression of 

ATM in the heart and in adult cardiac myocytes (Foster et al. 2011).  To investigate the role of 

ATM in myocyte apoptosis and myocardial remodeling, our lab used ATM heterozygous 

knockout (hKO) mice.  Homozygous knockout (KO) mice are infertile and they die around the 

age of 2 months due to thymic lymphomas.  Therefore, we breed hKO mice which provides us 

with KO mice.  We found that at basal levels body weights (BW) and heart weights (HW) are 

lower in KO mice when compared to the age-matched wild-type (WT) mice.  However, there 
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was no difference in HW/BW ratio, an indicating no cardiac hypertrophy.  KO mice also 

exhibited increased myocardial fibrosis and myocyte hypertrophy.  Measurement of structural 

and functional parameters of the heart using echocardiography showed that while the KO hearts 

did not display differences in percent fractional shortening (%FS) or ejection fraction (EF) they 

did have reduced septal wall thickness and LV cavity diameter.  Expression of fibrosis-related 

genes (connective tissue growth factor, CTGF; plasminogen activator inhibitor, PAI-1; and 

MMP-2) and hypertrophy-related genes (atrial natriuretic peptide, ANP) were higher in KO 

hearts.  Using WT and ATM KO mice, we examined the role of ATM in cardiac remodeling 

following 24 hours of β-AR stimulation using isoproterenol.  β-AR stimulation resulted in an 

increase in myocyte size in both genotypes with no significant differences between the two 

genotypes.  Apoptosis was increased in both genotypes following β-AR stimulation, with no 

differences in apoptosis between the two genotypes. Interestingly, β-AR stimulation resulted in 

distinct differences in the activation of apoptosis-related proteins, when comparing the two 

genotypes.  Phosphorylation of p53 and activation of JNKs were absent in KO hearts, but present 

in WT hearts.  In addition, Akt activation was also lower in KO hearts when compared to WT 

hearts.  These results led us to suggest that β-AR-stimulated apoptosis in the WT hearts was a 

result of p53- and JNKs-dependent mechanisms, while decreased Akt activity appears to play a 

role in increased myocyte apoptosis in the absence of ATM (Foster et al. 2012). 

Using WT and hKO mice our lab also examined the effects of ATM deficiency in cardiac 

myocyte apoptosis and cardiac remodeling following 28 days of β-AR stimulation. In this study, 

β-AR stimulation increased the functional parameters of the heart as analyzed by increased %FS 

and EF; however, the increase in %FS and EF was blunted in ATM deficient hearts. β-AR 

stimulation resulted in a significant increase in fibrosis as well as apoptosis in both groups 
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although the increase in fibrosis and myocyte apoptosis was higher in ATM deficient hearts. β-

AR stimulation increased phosphorylation of p53 and expression of p53 and Bax to a similar 

extent in both groups; however, there was a differential expression of fibrosis-related proteins; 

e.g. MMPs, TIMP-2, and β1- integrins.  These studies suggested a protective role for ATM in 

myocardial remodeling following β-AR stimulation (Foster et al. 2011). 

Specific Aims  

 The overall goal of this project was to understand the role of ATM in cardiac myocyte 

apoptosis and myocardial remodeling following MI. Based on the observations in our β-AR 

stimulation model, we hypothesized that ATM deficiency would affect cardiac remodeling 

following MI, specifically with regard to apoptosis, fibrosis and function, early and late post-MI.  

As discussed previously, the myocardial remodeling (infarct healing) process can be divided into 

three overlapping phases: inflammatory, proliferative and maturation. The overall goal of this 

project was to examine how ATM deficiency affects each stage of the infarct healing process. 

The specific aims of this study were: (1) investigate how ATM deficiency affects cardiac 

remodeling during the inflammatory phase using 1 and 3 days post-MI time points; (2) examine 

how ATM deficiency alters cardiac remodeling during the proliferative phase of infarct healing 

using a 7 day post-MI time point and (3) determine how ATM deficiency alters the maturation 

phase of the infarct healing using a 28 days post-MI time point. 

.  
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Abstract 

Background: Ataxia-telangiectasia results from mutations in Ataxia Telangiectasia Mutated 

Kinase (ATM) gene. We recently reported that ATM deficiency attenuates left ventricular (LV) 

dysfunction and dilatation 7 days after myocardial infarction (MI) with increased apoptosis and 

fibrosis. Here we investigated the role of ATM in the induction of inflammatory response, and 

activation of survival signaling molecules in the heart acute post-MI.  Methods and Results: LV 

structure, function, inflammatory response and biochemical parameters were measured in wild-

type (WT) and ATM heterozygous knockout (hKO) mice 1 and 3 days post-MI. ATM deficiency 

had no effect on infarct size. MI-induced decline in heart function, as measured by changes in % 

fractional shortening, ejection fraction and LV end systolic and diastolic volumes, was lower in 

hKO-MI versus WT-MI (n=10-12). The number of neutrophils and macrophages was 

significantly lower in the infarct LV region of hKO versus WT 1 day post-MI.  Fibrosis and 

expression of α-smooth muscle actin (myofibroblast marker) were higher in hKO-MI, while 

active TGF-β1 levels were higher in the WT-MI 3 days post-MI. Myocyte cross-sectional area 

was higher in hKO-sham with no difference between the two MI groups. MMP-9 protein levels 

were similarly increased in the infarct LV region of both MI groups. Apoptosis was significantly 

higher in the infarct LV region of hKO at both time points. Akt activation was lower, while Bax 

expression was higher in hKO-MI infarct. Conclusion: ATM deficiency results in decreased 

dilative remodeling and delays inflammatory response acute post-MI. However, it associates 

with increased fibrosis and apoptosis.   

 

Keywords: ATM, apoptosis, cardiac remodeling, fibrosis, myocardial infarction, inflammation 
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Introduction 

Ataxia–telangiectasia (A-T) is a rare autosomal recessive genetic disorder that causes 

neurological degeneration. It is caused by mutations in the gene encoding for ataxia 

telangiectasia mutated kinase (ATM) 1. This disease affects approximately 1 in 40,000 births in 

the US 2. A-T individuals are predisposed to the development of cancer, usually lymphoid 

cancer. In addition, these individuals suffer from immunological problems resulting in frequent 

sino-pulmonary infections 2. Both humoral and cell-mediated immunity are affected, the later 

showing itself in the form of lymphopenia 3.  Individuals that are recessive for this mutation 

usually die 7 to 8 years earlier than non-carrier as a result of either cancer or ischemic heart 

disease 4.  

ATM, a ~370 kDa protein kinase, is a member of the phosphatidylinositol 3-kinase-like protein 

kinase (PIKK) family. Genotoxic stress, oxidative stress and growth factors affect ATM gene 

expression in various cell types 5;6. ATM is activated in response to DNA double-strand breaks 

caused by ionizing radiation and V(D)J recombination in B and T lymphocyte development 3. It 

is also shown to be activated in cells exposed to hypoxia, insulin, and reactive oxygen species 

independent of DNA damage. ATM activation affects cell cycle check points, apoptotic 

signaling, senescence, and DNA repair 7.  

Myocardial infarction (MI) induces cardiac cell death due to apoptosis and necrosis, thereby 

initiating the inflammatory process. Neutrophils are the first inflammatory cells recruited to the 

infarct area 8. Infiltration of neutrophils occurs within hours and peaks 1-3 days post-MI 9. 

Neutrophils facilitate the post-MI repair process by phagocytosing dead cells and tissue debris 8. 

During the inflammatory process cytokines such as TNF-α, IL-1β, and IL-6 are induced 10;11. 

Neutrophils then undergo apoptosis generating annexin A1 and lactoferrin which inhibits 
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neutrophil recruitment and attracts phagocytic macrophages to remove neutrophils. Once the 

macrophages have engulfed the neutrophils, they activate the anti-inflammatory pathway by 

producing molecules such as IL-10 and TGF-β marking the end of the inflammatory phase of 

infarct healing and the beginning of the proliferative phase of healing 12. During the proliferative 

phase, activated fibroblast (myofibroblast) produce extracellular matrix proteins aiding in the 

scar formation 8. Our previous work examined the role of ATM in myocardial remodeling post-

MI during the proliferative phase of infarct healing. We reported that ATM deficiency attenuates 

LV dysfunction and dilatation 7 days post-MI. In addition, we provided evidence that ATM 

deficiency results in increased cardiac fibrosis and expression of α-smooth muscle actin (α-SMA, 

a marker for myofibroblasts) in the infarct region 7 days post-MI 13.  The objective of this study 

was to investigate the role of ATM deficiency in cardiac remodeling during the inflammatory 

phase of infarct healing. A major finding of this study is that deficiency of ATM associates with 

decreased inflammatory response and dilative remodeling early post-MI without affecting infarct 

size. ATM deficiency also affects apoptosis, fibrosis, expression of proteins involved in fibrosis 

and inflammation, and activation of apoptosis-related kinases. 
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Methods 

Vertebrate Animals 

This investigation conforms to the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All of the 

experiments were performed in accordance with the protocols approved by the East Tennessee 

State University Animal Care and Use Committee. ATM transgenic mice (129xblack Swiss 

hybrid background) were purchased from Jackson Laboratory. Aged-matched (~4 month old) 

male and female mice were used for the study. The study used heterozygous knockout (hKO) 

mice since homozygous knockout (KO) mice die at ~2 months of age mainly due to thymic 

lymphomas 14. Genotyping was performed by PCR using primers suggested by the Jackson 

Laboratory. 

Myocardial infarction 

Myocardial infarction (MI) was performed as previously described 13. Briefly, mice were 

anesthetized using a mixture of isoflurane (2%) and oxygen (0.5 l/min), and maintained under 

anesthesia using isoflurane (1%) and oxygen (0.5 l/min). The mice were ventilated using a rodent 

ventilator. Body temperature was maintained at ~37⁰C using a heating pad. Heart was exposed 

by a left thoracotomy followed by the ligation of left anterior descending artery (LAD) using 7-0 

polypropylene suture. Mice in the sham group underwent the same procedure without the 

ligation of LAD. At the end of the study period, 1 or 3 days post-MI, isolated hearts were used 

for either histology or for molecular analyses.  

 

 



35 
 

Echocardiography 

Transthoracic two-dimensional m-mode echocardiography was performed using a Toshiba Aplio 

80 Imaging System (Tochigi, Japan) equipped with a 12 MHz linear transducer as previously 

described 15. An individual blinded to the experimental groups recorded the cardiac structural 

parameters.  A second individual read the recordings and calculated the functional parameters of 

the heart.   

Morphometric analyses 

Following MI, hearts were removed and arrested in diastole using KCl (30 mmol/L). After fixing 

with 10% buffered formalin, hearts were cut into 3 transverse sections (base, mid-LV and apex) 

and embedded in paraffin. Cross-sections (4µm think) were stained using Masson’s Trichrome 

stain in order to determine infarct size 3 days post-MI. Infarct size was calculated as the 

percentage of LV circumference occupied by infarct scar 13. Infarct size 1 day post-MI was 

calculated using TTC stained hearts as previously described 16. Masson’s Trichrome stained 

sections were also used to quantify percent fibrosis. 

Myocyte cross-sectional area 

To measure myocyte cross-sectional area, cross-sections (4µm thick) of the heart were stained 

with FITC-labeled wheat germ agglutinin (WGA). The sections were visualized using 

fluorescent microscopy (20X; Nikon) and images were recorded using Retiga 1300 color-cooled 

camera. Suitable area of the section was defined as the one with nearly circular capillary profiles 

and nuclei. Myocyte cross-sectional areas were measured using Bioquant Image analysis 

software (Nashville, TN) as described 15. 
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Terminal deoxynucleotidyl transferase nick end labeling (TUNEL staining) assay  

TUNEL staining was carried out according to manufacturer’s instruction (Cell death detection 

assay; Roche) 13. Sections were counterstained with Hoechst 33258 (Sigma) to identify nuclei. 

The index of apoptosis was calculated as the percentage of apoptotic nuclei/total number of 

nuclei.  

Immunohistochemistry 

Cross-sections of the heart (4µm thick) were deparaffinized and immunostained for neutrophils 

and macrophages using anti-neutrophil (1:100, Santa Cruz) and anti-F4/80 (macrophage; 1:200; 

Santa Cruz) antibodies, respectively. Detection was performed using ABC staining system 

(Santa Cruz). Sections were counterstained with 1% eosin. Expression of α-SMA serves as a 

marker for the differentiation of fibroblasts into myofibroblasts 17. To examine expression of α-

SMA, heart sections were immunostained using anti-α-SMA antibodies (Sigma) as described 13. 

Images were acquired using Nikon TE-2000 microscope equipped with a Regita-1300 color-

cooled camera. Quantitative analysis was carried using Bioquant Image analysis software 

(Nashville, TN). At least five different images within the infarct area from each heart were used 

for quantitative purposes. Images acquired from the septal wall represented non-infarct LV 

region. Images from the sham group were acquired from various regions around the LV.  

Western blot analyses 

LV lysates were prepared in RIPA buffer, separated by SDS-PAGE and transferred to PVDF 

membranes.  The membranes were blocked using either 5% non-fat dry milk or 5% BSA in 

TBST. The membranes were then incubated overnight with antibodies against ATM, TGF-β, 

Bax (Santa Cruz), MMP-9 (Millipore), Bcl-2, p-Akt (ser-473) or p-GSK-3β (ser-9) (Cell 
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Signaling). GAPDH (Santa Cruz) immunostaining or Ponceau-S staining was used as protein 

loading control. Band intensities were quantified using Kodak photo documentation system 

(Eastman Kodak Co.).   

MMP activity 

Gelatin in-gel zymography was used to determine activity of MMP-9 as previously described 
18. 

Clear digested bands were quantified using Kodak photo documentation system (Eastman Kodak 

Co.).    

Statistical analyses 

Data are presented as mean ± SEM: Shapiro-Wilk test was used to assess the normality of the 

data. One-way analysis of variance (ANOVA) or Kruskal-Wallis was used for multiple 

comparisons. Pairwise comparisons were carried out using either student’s t-test or Mann-

Whitney U test (two-sample). When comparing BW before and after surgery, a two-tailed paired 

t-test was used. Survival between the two genotypes was analyzed using Kaplan-Meier survival 

analysis. Probability (p) values of <0.05 were considered to be significant.  
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Results 

ATM expression in the heart post-MI  

To investigate expression of ATM in the heart post-MI, left ventricular (LV) lysates were 

prepared from the infarct and non-infarct LV regions of WT and hKO 1 and 3 days post-MI. LV 

lysate prepared from ATM KO heart served as a negative control. Western blot analysis using 

anti-ATM antibodies showed complete absence of ATM protein (~370 kDa) in the LV lysate 

prepared from the KO heart (Fig 2.1A; lane 1). A faint signal for ATM was observed in WT-

sham sample (data not shown). However, clear signal for ATM protein was observed in the non-

infarct and infarct LV regions of WT and hKO hearts 1 and 3 days post-MI (Fig 2.1A & B). 

ATM protein levels were higher in the infarct LV regions when compared to the non-infarct LV 

regions. Overall, ATM protein levels were lower (~50%) in non-infarct and infarct LV regions of 

hKO when compared to the WT counterparts.  
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Figure 2.1. MI increases ATM expression in the heart.  LV lysates prepared from WT-sham, 
ATM KO, and non-infarct (Non) and infarct (Inf) LV regions of WT and hKO 1 and 3 days post-
MI were analyzed by western blot using anti-ATM antibodies. A. 1 day post-MI; B. 3 days post-
MI. Protein loading is indicated by Ponceau-S staining. 

 

Morphological analyses 

No significant difference in morphometric parameters was observed between 1 and 3 day sham 

groups; therefore, 1 and 3 day sham groups were pooled.  Surgery (sham or MI) significantly 

decreased body weights (BW) when compared to the pre-surgery BW with no significant 

differences between the two genotypes. MI increased heart weights (HW) 3 days post-MI in both 

genotypes with no significant difference between the two genotypes. HW/BW ratios were 

significantly higher 1 and 3 days post-MI when compared to their respective sham with no 

significant differences between the two genotypes (Table 2.1).  Infarct sizes between the two 

genotypes were not different at either 1 day or 3 days post-MI (Table 2.2). The survival rate for 

both genotypes 1 day post-MI was 100%, while it was 98.4% for WT and 86.2% for hKO 3 days 

post-MI with no significant difference between the two groups. 
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Table 2.1. Morphometric Measurements 1 and 3 Days Post-MI 
  Pre-BW BW HW HW/BW 

Sham WT (n=11) 26.87 ± 0.82 23.96 ± 1.11@ 124.46 ± 4.02 4.73 ± 0.11 

hKO (n=11) 26.49 ± 0.68 22.78 ± 0.77@ 121.03 ± 4.78 4.96 ± 0.21 

1 Day post-MI 

 
WT-MI (n=17) 28.38 ± 1.04 24.21 ± 1.06@ 135.53 ± 6.98 5.17 ± 0.23# 

hKO-MI (n=11) 26.5 ± 1.07 24.69 ± 2.43 @ 134.01 ± 5.12 5.61 ± 0.14# 

3 Days post-MI  

 
WT-MI (n=15) 24.93 ± 0.89 22.28 ± 0.80@ 143.90 ± 4.91# 6.43 ± 0.24# 

hKO-MI (n=20) 25.39 ± 0.68 23.07 ± 0.61@ 140.17 ± 7.51# 6.07 ± 0.27# 
Values are mean ± SEM.  @p<0.001 vs pre-BW; #p<0.05 vs Sham; BW, body weight; HW, heart 
weight 

 
 
Table 2.2. Infarct size and Myocyte Cross-sectional Area 
  Percent infarct Cross sectional area (mm

2
) 

Sham WT (n=8) NA 185.06 ± 5.08 

 
hKO (n=7-8) NA 203.72 ± 6.64* 

1 Day Post-MI WT-MI (n=4-7) 32.64 ± 4.07 213.23 ± 9.0# 

 hKO-MI (n=4-6) 35.13 ± 6.08 203.92 ± 6.19 

3 Days Post-MI WT-MI (n=5-6) 50.41± 2.41 211.36 ± 7.29# 

 hKO-MI (n=5-7) 51.09 ± 5.78 204.50 ± 8.19 

Values are mean ± SEM.  #p<0.05 vs Sham, *p<0.05 vs WT-Sham 

Echocardiographic studies  

Figure 2.2A exhibits M-mode echocardiography images obtained from sham and MI (1 day post-

MI) groups. No significant difference in echocardiographic parameters was observed between 1 

and 3 day sham groups. Therefore, 1 and 3 day sham groups were pooled. A significant decrease 

(p<0.05) in heart function, as evidenced by a decrease in percent fractional shortening (%FS) and 

ejection fraction (EF), was observed at 1 and 3 day post-MI in both genotypes when compared to 
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their respective sham groups. However, the decrease in %FS and EF was significantly lower in 

hKO-MI versus WT-MI 1 day post-MI. No significant differences in %FS and EF were observed 

between the two genotypes 3 days post-MI (Fig 2.2B and 2.2C). Increased LV end-systolic 

volume (LVESV) is considered as a predictor of mortality post-MI 19.  WT-MI group exhibited a 

significant increase in LVESV and LV end-diastolic volume (LVEDV) 1 and 3 days post-MI 

when compared to WT-sham. In hKO-MI, a significant increase in LVESV and LVEDV was 

observed 1 day, not 3 days, post-MI when compared to hKO-sham. Interestingly, LVESV and 

LVEDV were significantly higher in WT-MI versus hKO-MI at both time points (Fig 2.2D and 

2.2E).  

 

Figure 2.2. ATM deficiency improves LV function. MI was performed in WT and hKO mice. 
Panel A shows M-mode echocardiographic images obtained from sham and 1 day post-MI 
groups. Indices of cardiac function (percent fractional shortening, %FS; ejection fraction, EF) 
and volume (LV end systolic volume, LVESV; LV end diastolic volume, LVEDV) were 
calculated using echocardiographic images 1 and 3 days post-MI. #p<0.005 vs Sham, *p<0.05 vs 
WT-MI; n= 10-12. 
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Inflammatory cell infiltration 

Sham groups exhibited the presence of only a few neutrophils in the heart with no significant 

difference between the two genotypes. MI increased the number of neutrophils in the infarct LV 

regions of both genotypes at both time points when compared to their respective sham groups 

(Fig 2.3A and B). A significant increase in neutrophil number was also observed in the non-

infarct LV region of WT group 1 day post-MI versus WT-sham (Fig 2.3A). Interestingly, the 

number of neutrophils was significantly lower in the infarct and non-infarct LV regions of hKO-

MI when compared to WT-MI 1 day post-MI (Fig 2.3A).  The number of neutrophils in the 

infarct LV region decreased significantly in both MI groups 3 days post-MI. However, the 

number stayed higher in the infarct LV regions when compared to the sham groups and non-

infarct LV regions in both genotypes. There was no significant difference in the number of 

neutrophils between the two genotypes 3 days post-MI, although the number of neutrophils in 

the non-infarct LV region of hKO-MI was significantly higher when compared to hKO-sham 

(Fig 2.3B).  

Sham groups exhibited the presence of a few macrophages in the heart with no significant 

difference between the two genotypes. MI increased the number of macrophages in the infarct 

and non-infarct LV regions of both genotypes when compared to their respective sham groups. 

However, the number of macrophages was significantly lower (p<0.05) in the infarct LV region 

of hKO-MI versus WT-MI 1 day post-MI (Fig 2.3C).  Three days post-MI, the number of 

macrophages was still higher in the infarct LV regions of both genotypes when compared to their 

respective sham groups, however, there was no significant difference between the two 

genotypes. In addition, the number of macrophages in the non-infarct LV region of hKO-MI was 

significantly higher when compared to hKO-sham (Fig 2.3D).  
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Figure 2.3. ATM deficiency results in decreased inflammatory cells in the infarct LV region 1 
day post-MI. Cross-sections of the heart post-MI were immunostained using anti-neutrophil 
(A&B) and anti-F4/80 (macrophage; C&D) antibodies. The number of immune-positive cells 
was quantified using Bioquant Image analysis software. Quantitative analyses of neutrophils 1 
(A) and 3 (B) days post-MI. Quantitative analyses of macrophages 1 (C) and 3 (D) days post-MI.  
#p<0.05 vs Sham, $p<0.05 vs Non, *p<0.05 vs WT; n=4-6.  

 

Fibrosis, apoptosis, and myocyte cross-sectional area  

Quantitative analysis of fibrosis using Masson’s Trichrome-stained sections revealed no change 

in fibrosis between 1 and 3 day sham groups, therefore the sham groups were pooled.  The 

amount of fibrosis was significantly higher in hKO-sham versus WT-sham. MI increased fibrosis 

in the infarct LV region of both groups 3 days post-MI. However, the amount of fibrosis was 

significantly higher in hKO-MI versus WT-MI (Fig 2.4). 
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Figure 2.4. ATM deficiency results in increased fibrosis. Masson’s trichrome stained sections of 
the heart were used for quantitative measurement of fibrosis. Upper panel depicts Masson’s 
trichrome-stained sections exhibiting fibrosis in WT and hKO hearts 3 days post-MI. Lower 
panel exhibits quantitative analysis of fibrosis. #p<0.05 vs Sham, *p<0.05 vs WT-MI;  n=5-6. 
 

Only a few apoptotic cells were detected in the sham and non-infarct LV regions of WT-

MI and hKO-MI 1 day post-MI. MI significantly increased the number of apoptotic cells in the 

infarct LV region of both genotypes 1 day post-MI (Fig 2.5A). However, the number of 

apoptotic cells was significantly greater in the hKO-MI (p<0.05) versus WT-MI. Three days 

post-MI, the level of apoptosis in the infarct LV regions decreased in both genotypes versus 1 

day post-MI. However, it remained higher when compared to their respective sham groups and 

non-infarct LV regions (Fig 2.5B). Interestingly, hKO-MI continued to have significantly higher 

number of apoptotic cells (p<0.05) in the infarct LV region versus WT-MI. hKO-MI also 
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exhibited a significant increase (p<0.05) in apoptosis in the non-infarct LV region when 

compared to hKO-sham and non-infarct WT-MI.  

 

 

Figure 2.5. ATM deficiency results in enhanced apoptosis post-MI. Quantitative analysis of 
cardiac cell apoptosis in the non-infarct (Non) and infarct (Inf) LV regions 1 (A) and 3 (B) days 
post-MI. Upper panels depict TUNEL-stained and Hoechst-stained images obtained from WT 
and hKO hearts 1 and 3 days post-MI.  Red fluorescent staining indicates TUNEL-positive 
(apoptotic) nuclei, while blue fluorescent staining indicates total number of nuclei. The lower 
panels exhibit quantitative analysis. #p<0.05 vs Sham *p<0.05 vs WT, $p<0.05 vs Non; n=4-6. 
 

Myocyte cross-sectional area was significantly higher in hKO-sham group versus WT-

sham. Myocyte cross-sectional area in the non-infarct LV region remained unchanged in the 

hKO-MI group 1 and 3 days post-MI. However, a significant increase in myocyte cross-sectional 

area was observed in WT-MI group when compared to WT-sham 1 and 3 days post-MI (Table 

2.2). 
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Expression of TGF-β1 

The anti-inflammatory cytokine TGF-β1 plays an important role in myocardial remodeling post-

MI via its involvement in the differentiation of fibroblasts into myofibroblasts and ECM 

deposition 8. One source of TGF-β1 is macrophages as they phagocytose apoptotic neutrophils 12. 

Western blot analysis showed no presence of active TGF-β1 protein (23 kDa band) in the sham 

groups, non-infarct or infarct LV regions 1 day post-MI (data not shown). Presence of active 

TGF-β1 band was only observed in the infarct LV regions of both genotypes 3 days post-MI. 

However, the levels of active TGF-β1 were significantly higher in the WT-MI versus hKO-MI 

(Fig 2.6). 

 

Figure 2.6. Expression of TGF-β1.  Total LV lysates, prepared from sham and non-infarct (Non) 
and infarct (Inf) LV regions 3 days post-MI, were analyzed by western blot using anti-TGF-β1 
antibodies. The upper panel depicts autoradiogram indicating immunostaining for active TGF- 
β1 (~26 kDa band) and GAPDH. The lower panel exhibits quantitative analysis of TGF- β1 in 
the Inf LV regions of WT and hKO groups normalized to GAPDH. *p<0.05 vs WT-Inf; n=8-9. 
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Expression of α-smooth muscle actin (α-SMA) 

Increased α-SMA expression is considered as a marker for the differentiation of fibroblasts into 

myofibroblast 20. One day post-MI, little to no expression of α-SMA expression was observed in 

the infarct LV regions of either group (data not shown). Three days post-MI, a significant 

increase in α-SMA expression was observed in the infarct LV region of both genotypes when 

compared to their respective sham groups. However, the increase in α-SMA expression was 

significantly higher (p<0.05) in hKO-MI versus WT-MI (Fig 2.7).    

 

Figure 2.7. Quantitative analysis of α-smooth muscle actin (α-SMA) expression. Cross-sections 
of the heart were immunostained using anti-α-SMA antibodies. Upper panel depicts α-SMA-
stained images from the infarct (Inf) LV regions of WT and hKO hearts 3 days post-MI. Lower 
panel exhibits quantitative immunocytochemical analysis of α-SMA in sham and Inf LV regions 
3 days post-MI. #p<0.05 vs Sham, *p<0.05 vs WT-Inf; n=4-5. 
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Expression and activity of MMP-9 

MMP-9 regulates the remodeling processes of the heart that involves inflammation and fibrosis 

21. MMP-9 levels in the ischemic region of the heart increase within minutes after MI and stay 

higher during the first few days in animal models 21;22. Western blot analysis revealed increased 

MMP-9 protein levels in the infarct LV regions of both genotypes 1 day post-MI when compared 

to their respective sham groups. However, no significant differences were observed between the 

two genotypes (Fig 2.8A). MMP-9 expression remained higher in the infarct LV regions of both 

genotypes 3 days post-MI with no significant difference between the two genotypes (Fig 2.8B). 

In-gel zymography revealed increased MMP-9 activity in the infarct LV regions of both 

genotypes (data not shown).  

 
Figure 2.8. Expression of MMP-9. Total LV lysates, prepared from sham, non-infarct (Non) and 
infarct (Inf) LV regions 1 and 3 day post-MI, were analyzed by western blot using anti-MMP-9 
antibodies. The upper panels depict autoradiograms indicating immunostaining for MMP-9 and 
GAPDH. The lower panels exhibit quantitative analyses of MMP-9 normalized to GAPDH. A. 
MMP-9 protein levels 1 day post-MI (n=6). B. MMP-9 protein levels 3 days post-MI (n=5) 
#p<0.05 vs sham. 
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Activation and expression of apoptosis-related proteins  

Increased phosphorylation (activation) of Akt is generally considered as an anti-apoptotic signal 

23. Phosphorylation of Akt remained unchanged in the WT-MI 1 day post-MI. However, Akt 

phosphorylation was significantly lower in the non-infarct and infarct LV regions of hKO-MI 

versus hKO-sham. In addition, Akt phosphorylation was significantly lower in the hKO-MI 

infarct LV region versus WT-MI infarct LV region (Fig 2.9A). No significant change in Akt 

phosphorylation was observed among the groups 3 days post-MI (data not shown).  

 

 

Figure 2.9. Phosphorylation of Akt and GSK-3β. Total LV lysates, prepared from sham, non-
infarct (Non) and infarct (Inf) LV regions 1 day post-MI, were analyzed by western blot using 
phospho-specific antibodies for Akt (ser-473) and GSK-3β (ser-9). The upper panels depict 
autoradiograms indicating immunostaining for p-Akt, p-GSK-3β and GAPDH. The lower panels 
exhibit quantitative analyses of p-Akt (A) and p-GSK-3β (B) normalized to GAPDH. #p<0.05 vs 
Sham; *p<0.05 vs WT-Inf; n=6. 
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Activation of GSK-3β plays a pro-apoptotic role in β-adrenergic receptor-stimulated 

apoptosis 24. Phosphorylation of N-terminal serine-9 inactivates GSK-3β 25. GSK-3β 

phosphorylation (serine-9) was lower in the non-infarct LV region of WT-MI versus WT-sham 1 

day post-MI.  In the infarct LV region, hKO-MI exhibited a significant decrease in GSK-3β 

phosphorylation when compared to hKO-sham and WT-MI infarct LV region (Fig 2.9B). Three 

days post-MI, GSK-3β phosphorylation was significantly lower (p<0.05) in infarct and non-

infarct region of both WT and hKO mice when compared to their respective sham groups with 

no significant difference between the two MI groups (data not shown). 

Bax, a pro-apoptotic protein, is a transmembrane protein located in the outer 

mitochondrial membrane. Homodimerization of Bax increases cytochrome c release resulting in 

the induction of apoptosis. Bcl-2 can inhibit Bax induced apoptosis by forming a heterodimer 

with Bax 26. Western blot analyses showed no difference in Bax or Bcl-2 protein levels between 

the two genotypes in the infarct LV regions 1 day post-MI (data not shown). Bax expression was 

significantly higher in the infarct LV region of hKO when compared to WT group 3 days post-

MI. However, there was no significant difference in Bcl2 expression between the two genotypes 

3 days post-MI (Fig 2.10).  
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Figure 2.10. Expression of Bax and Bcl-2. Total LV lysates, prepared from infarct LV regions 3 
days post-MI, were analyzed by western blot using anti-Bax and anti-Bcl-2 antibodies. The 
upper panels depict autoradiograms indicating immunostaining for Bax (A), Bcl-2 (B) and 
GAPDH. The lower panels exhibit quantitative analyses of Bax (A) and Bcl-2 (B) normalized to 
GAPDH. *p<0.05 vs WT-MI; n=6-8. 
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Discussion 

Previously we provided evidence that ATM deficiency results in improved heart function 

and decreased LV dilatation 7 days post-MI. A major finding of this study is that ATM 

deficiency associates with delayed inflammatory response post-MI.  This is evidenced by the 

decreased number of neutrophils and macrophages 1 day post-MI, and decreased expression of 

TGF-β1 in the infarct area 3 days post-MI.  ATM deficiency also associated with increased 

apoptosis, fibrosis and expression of α-SMA in the heart post-MI. Activation of pro-survival 

kinase, Akt, was lower, while activation of pro-apoptotic kinase, GSK-3β, was higher in ATM 

deficient hearts 1 day post-MI. The data presented here support our previous findings 13, and 

suggest multifaceted role of ATM in myocardial remodeling post-MI.  

ATM normally becomes activated in response to DNA damage, particularly due to the 

formation of DNA double-strand breaks. This activation occurs due to its autophosphorylation 

on Ser1981 27. Genotoxic agents, oxidative stress and growth factors also increase ATM 

expression in certain cell types 5;6. In peripheral blood mononuclear cells, maximum increase in 

ATM expression in response to  mitogenic stimuli was observed 3-4 days after exposure 6. 

Previously, we have shown that β-AR stimulation increases ATM expression in adult rat 

ventricular myocytes and heart 28. This study provides evidence that MI increases ATM 

expression in the heart. The increase in ATM could be a result of either increased sympathetic 

nerve activity and/or increased oxidative stress, both of which increase in the heart following MI 

29;30.  

MI usually leads to increased chamber diameter which results in increased loading 

capacity of the heart represented by increased LVESV and LVEDV. Increased LVESV is 

suggested as one of the major determinants of survival post-MI 19. Previously, we provided 
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evidence that deficiency of ATM attenuates LV dysfunction and dilatation 7 days post-MI 13. 

The data presented here suggest that the attenuation of LV dysfunction and dilation during ATM 

deficiency can be observed as early as 1 day post-MI. ATM deficient mice exhibit a lesser 

degree of impairment in systolic parameters as evidenced by higher %FS and EF 1 day post-MI. 

It was interesting to note that %FS and EF were not different between the two genotypes 3 days 

post-MI, although LVESV and LVEDV were significantly lower in ATM deficient hearts at both 

time points. The better LV function 1 day post-MI during ATM deficiency did not correlate with 

infarct size since infarct sizes remained unchanged between the two genotypes 1 and 3 days post-

MI. Other factors such as infarct thickness, myocardial fibrosis, and myocyte hypertrophy also 

influence heart function post-MI 31. ATM deficient hearts exhibited increased infarct thickness, 

increased fibrosis and increased α-SMA expression 7 days post-MI 13. While increased levels of 

fibrosis late post-MI is a predictor of heart failure, early fibrosis may play a protective role in the 

healing process by preventing infarct expansion  32. Infarct thickness remained unchanged 

between the two genotypes 1 and 3 days post-MI. Expression of α-SMA was higher in ATM 

deficient hearts 3 days post-MI. Therefore, slightly better function exhibited by ATM deficient 

hearts 1 day post-MI cannot be explained by infarct thickness or expression of α-SMA. ATM 

deficiency associates with increased myocyte cross-sectional area and fibrosis at basal levels, 

and results in delayed inflammatory response post-MI. Therefore, myocyte hypertrophy, 

myocardial fibrosis and delayed inflammatory response may help explain better function during 

ATM deficiency 1 day post-MI. 

Neutrophils begin to infiltrate into the infarcted myocardium within hours of the ischemic 

event peaking 24 hours post-MI 9. Neutrophil infiltration activates resident monocytes to 

differentiate into macrophage in the infarct LV region shortly after MI. Macrophage number 
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stays relatively stable from 1 - 7 days post-MI 12. Macrophages play a number of roles in post-MI 

healing process. They phagocytose dead cells, tissue debris and apoptotic neutrophils. In 

addition, they secret MMPs and their inhibitors to aid in extracellular matrix reorganization 12.  

Consistent with these data, we observed increased number of neutrophils and macrophages in the 

myocardium of both genotypes at both time points. Interestingly, the number of inflammatory 

cells was significantly lower in ATM deficient hearts 1 day post-MI. Three days post-MI, the 

number of neutrophils decreased, while the number of macrophages increased in the infarct LV 

regions of both genotypes. However, the number of neutrophils and macrophages was not 

significantly different between the two genotypes. These data suggest a delayed inflammatory 

response during ATM deficiency early post-MI. Neutrophils are recruited to the site of 

inflammation via chemokines and cytokines 8. However, signals such as lactoferrin and annexin 

1 released by apoptotic cells can inhibit recruitment of neutrophils to the site of the injury 33;34. 

ATM deficient hearts exhibit increased apoptotic response when compared with their WT 

counterparts. This increase in apoptosis during ATM deficiency can have an inhibitory effect on 

neutrophil migration.  A decrease in inflammatory receptors (selectins, integrins and adhesion 

receptors) may also influence neutrophil recruitment 35. Further investigations are required to 

investigate the involvement of these molecular signals in the inflammatory response in the heart 

post-MI during ATM deficiency. 

Phagocytosis of neutrophils by macrophages initiates the release of anti-inflammatory 

signal involved in resolution of inflammation 12. Suppression of inflammatory response may 

involve a variety of signals, including a secreted protein TGF-β. TGF-β1, an anti-inflammatory 

signal, can affect infarct healing by modulating the release of cytokines and chemokines, 

synthesis of ECM proteins and transdifferentiation of fibroblasts into myofibroblasts 36. In rat MI 
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model, increased expression of TGF-β1 mRNA was observed 3 days post-MI 37. Here we 

observed increased levels of active TGF-β1 in the heart 3 days post-MI. ATM deficiency 

associated with decreased macrophage count 1 day post-MI and decreased active TGF-β1 levels 

3 days post-MI. This is consistent with the fact that macrophages are a major producer of TGF-β 

post-MI 8. It is interesting to note that ATM deficiency also associates with increased expression 

of α-SMA and fibrosis 3 days post-MI. While TGF-β is a known activator of fibroblast 

differentiation, TGF-β alone does not trigger fibroblast differentiation. Myofibroblast 

transformation also requires specialized ECM proteins like the ED-A splice variant of fibronectin 

as well as increased mechanical stress. Under normal conditions, fibroblasts are protected against 

mechanical stress via cross-linkage of the ECM. During injury, the ECM begins remodeling 

itself leading to the activation of myofibroblast 38. Therefore, it is possible that the enhanced 

apoptosis in the heart during ATM deficiency increases mechanical stress leading to enhanced 

myofibroblast activation.  

Extracellular matrix (ECM) plays a critical role in the restructuring of the heart post-MI. 

Changes in MMP abundance and activity is shown to be associated with changes in ECM 

deposition and myocardial remodeling post-MI 21. MMP-9 levels increase in the heart within 

minutes and remain elevated during the first few days post-MI 22;39. Previously, we have shown 

that ATM deficiency associates with higher MMP-9 protein levels and activity in the infarct LV 

region 7 days post-MI when compared to WT 13. Neutrophils are identified as a source of MMP-

9 during acute ischemia/reperfusion myocardial injury 40. This expression of MMP-9 was 

suggested to aid in the migration of neutrophils. Here, we observed increased MMP-9 protein 

levels in both genotypes at both time points. However, MMP-9 protein levels were not different 

between the two MI groups. Furthermore, reduced neutrophil numbers did not result in reduced 
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MMP-9 expression during ATM deficiency, suggesting other cell types of the heart post-MI may 

participate in MMP-9 expression 21. Of note, neutrophils isolated  from MMP-9 null mice show 

no defect in transendothelial migration under flow in vitro 41.  

The extent of cardiac myocyte death is a major determinant of myocardial remodeling 

post-MI. Myocyte death can occur due to necrosis and apoptosis in the ischemic zone. During 

the inflammatory phase, infiltrated neutrophils also die due to apoptosis as part of the healing 

process 36. Cardiac cell apoptosis was significantly higher in ATM deficient hearts 1 and 3 days 

post-MI. Although not investigated, this number most likely includes apoptotic neutrophils and 

macrophages. Mitochondria play a crucial role in determination of cell fate with respect to cell 

survival and apoptosis 42. Bcl2 family proteins, Bcl2 and Bax, modulate mitochondrial 

membrane potential and activation of caspases 26. ATM deficiency resulted in enhanced 

expression of Bax in the infarct LV region. Although there was no change in Bcl2 expression, 

the increase in Bax may induce loss of mitochondrial membrane potential and apoptosis. The 

increase in apoptotic cells during ATM deficiency also associated with decreased activation of 

anti-apoptotic kinase, Akt and enhanced activation of pro-apoptotic kinase, GSK-3β 1 day post-

MI. In fact, Akt exerts its anti-apoptotic effect, in part, through inactivation of GSK-3β 43. 

Previously, we have shown decreased activation of Akt in the myocardium of mice lacking ATM 

in response to β-AR stimulation 15. However, β-AR stimulation had no effect on GSK-3β 

activation during ATM deficiency. Collectively, these data suggest activation of Akt, via ATM, 

as a common signaling event during myocardial stress. Activation of GSK-3β appears to be 

modulated differentially in response to different myocardial stress during ATM deficiency.  
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In summary, ATM deficiency results in improved heart function as determined by a 

decrease in dilative remodeling and inflammatory response acute post-MI. However, it also 

associates with negative remodeling as determined by increased apoptosis and decreased 

activation of anti-apoptotic kinase, Akt. In addition, ATM deficiency results in an increase in 

fibrosis and expression of α-SMA. These studies, together with our previous findings 13, suggest 

that ATM has the potential to modulate the remodeling processes of the heart post-MI. Further 

investigations are needed to define the long-term impact of ATM deficiency in the healing 

processes of the heart post-MI. 
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Abstract 

Ataxia telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in 

response to DNA damage. We recently reported that ATM plays a protective role in myocardial 

remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM 

in cardiac remodeling using myocardial infarction (MI) as a model. Methods and Results: Left 

ventricular (LV) structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and 

fibrosis-related proteins were examined in wild-type (WT) and ATM heterozygous knockout 

(hKO) mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct 

thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed 

decreased percent fractional shortening (%FS) and ejection fraction (EF) in both MI groups 

when compared to their respective sham groups. However, the decrease in %FS and EF was 

significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater 

in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly 

higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar 

extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-

infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly 

lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI 

groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO 

group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide 

dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of 

ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes. 

Conclusion: Deficiency of ATM improves heart function 7 days post-MI. However, it has 

adverse effect on myocardial remodeling with increased apoptosis and fibrosis. 
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Introduction 

Myocardial infarction (MI) induces a series of molecular and structural changes in the 

left ventricle leading to a progressive decline in LV performance [1–3].  The limited capacity for 

regeneration of myocytes in the adult heart suggests that cardiac myocyte loss due to apoptosis 

may contribute to the progression of heart failure. Dynamic synthesis and breakdown of 

extracellular matrix also plays a significant role in myocardial remodeling post-MI [4,5]. 

Therefore elucidation of events involved in the repair of the heart is an important clinical 

determinant of survival post-MI [6].  

Ataxia telangiectasia mutated kinase (ATM) is a multifunctional kinase that affects 

multiple downstream targets in response to cellular stress or damage.  Mutation or deficiency of 

ATM causes a hereditary multi-systemic disease called Ataxia telangiectasia (A-T). Individuals 

with mutations in both copies of the ATM gene suffer from increased susceptibility to ionizing 

radiation, predisposition to cancer, insulin resistance, immune deficiency, and premature aging. 

Carriers of one mutated allele at the A-T locus make up ~1.4 to 2% of the general population. 

These individuals with an ATM mutation in one allele are spared from most of the symptoms of 

A-T, but are more susceptible to cancer and ischemic heart disease [7–9].  

Previously, a search to identify novel apoptosis-related genes using Super-Array 

technique followed by RT-PCR analyses revealed that β-adrenergic receptor (β-AR) stimulation 

increases expression of ATM in the heart and in adult cardiac myocytes [10]. Using ATM 

heterozygous knockout (hKO) mice and chronic β-AR stimulation as a model of myocardial 

remodeling, we provided evidence that ATM plays an important role in β-AR-stimulated 

myocardial remodeling with effects on ventricular function, apoptosis and fibrosis [10]. Recently, 

using ATM-/- mice, we have shown that lack of ATM induces structural and functional changes 
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in the heart with enhanced myocardial fibrosis and myocyte hypertrophy. β-AR-stimulated 

apoptosis in WT hearts associated with p53- and JNKs-dependent mechanism, while decreased 

Akt activity may play a role in increased myocyte apoptosis in the absence of ATM [11]. The 

objective of this study was to investigate the role of ATM in myocardial remodeling 7 days post-

MI. The data presented here show that deficiency of ATM affects heart function, infarct 

thickness, fibrosis, apoptosis and expression of fibrosis- and apoptosis-related proteins.  
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Methods 

Vertebrate animals 

Age-matched (~ 4 months old) male and female ATM deficient mice were used as previously 

described [10]. Heterozygous knockout (hKO) and wild type (WT) ATM mice, purchased from 

the Jackson Laboratory, were of 129xblack Swiss hybrid background.  Genotyping was 

performed by polymerase chain reaction (PCR) using primers suggested by the Jackson 

Laboratory. The absence of both ATM alleles produces a lethal phenotype at ~2 months of age 

mainly due to thymic lymphomas [12,13].  

Ethics statement 

The investigation conforms to the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All of the 

experiments were performed in accordance with the protocols approved by the East Tennessee 

State University Animal Care and Use Committee.  

Myocardial infarction 

MI and measurements were performed as previously described [14–16]. The left anterior 

descending coronary artery was occluded using a 7-0 mm silk suture. Sham animals underwent 

the same surgery without ligation of the coronary artery.  

Echocardiography  

Transthoracic two-dimensional M-mode echocardiography was performed as previously 

described [10,11]. All echocardiographic assessments and measurements were performed by the 

same investigator.  A second person also performed measurements on a separate occasion using 

the same recordings with no significant differences in interobserver variability.  
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Morphometric analyses 

Following MI, hearts were removed and arrested in diastole using KCl (30 mmol/L) followed by 

perfusion fixation with 10% buffered formalin. Infarct size was measured using Masson’s 

trichrome stained sections as previously described  [14,16]. Infarct size was calculated as the 

percentage of LV circumference occupied by infarct scar. Infarct thickness was calculated using 

mid-myocardial slides, averaging three equally spaced measurements along the infarct wall.  

Cross sections (4µm thick) were stained with Masson’s trichrome for the measurement of 

fibrosis using Bioquant image analysis software (Nashville,TN). 

Apoptosis 

To detect apoptosis, TUNEL-staining was carried out as previously described [10,11]. Hoechst 

33258 (10 µM; Sigma) staining was used to count the total number of nuclei. Apoptosis was 

calculated as the percentage of apoptotic cardiac cell nuclei / total number of nuclei. To identify 

apoptosis associated with cardiac myocytes, the sections were immunostained using α-

sarcomeric actin antibodies (1:50, 5C5 clone; Sigma, St. Louis, MO). TUNEL-positive nuclei 

that were clearly seen within cardiac myocytes were counted. The number of apoptotic myocyte 

nuclei was counted, and index of apoptosis was calculated as the percentage of apoptotic 

myocyte nuclei/total number of nuclei. In isolated cells, the percentage of TUNEL-positive cells 

(relative to total myocytes) was determined by counting ~200 cells in 10 randomly chosen fields 

per coverslip for each experiment. 

Immunohistochemistry 

Sections (4µm thick) were deparrafinized and stained with anti-α-smooth muscle actin (α-SMA) 

as described [11]. The sections were visualized using fluorescent microscopy (Nikon) and images 
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were acquired using Retiga 1300 color-cooled camera. Images were quantitatively analyzed 

using Bioquant Image analysis software (Nashville, TN).  

 

Western blot analysis  

LV lysates were prepared in RIPA buffer as previously described [17]. Protein lysates (50 µg) 

were separated by SDS-PAGE (10%) and transferred to a PVDF membrane (240 mA, 2.5 h). The 

membranes were incubated with antibodies against p-p53 (serine-15; Cell Signaling), MMP-9 

and MMP-2 (Millipore), TIMP-2 and TIMP-4 (Chemicon), and SOD-2 (Santa Cruz).  

Membranes were stripped and probed with GAPDH (Santa Cruz) as a protein loading control. 

Band intensities were quantified using Kodak photodocumentation system (Eastman Kodak Co.). 

The data are presented as fold change vs WT-sham.  

In-gel zymography  

In gel zymography was performed on 50 µg of LV lysates from WT-MI and hKO-MI hearts as 

previously described [18]. Clear and digested regions representing MMP-2 and MMP-9 activity 

were quantified using a Kodak documentation system.  

Cell isolation, culture and treatment 

Adult rat ventricular myocytes (ARVMs) were isolated as previously described [19]. ARVMs 

were plated in Dulbecco’s modified Eagle’s medium (DMEM; Mediatech) supplemented with 

HEPES (25 mM), BSA (0.2%), creatine (5 mM), L-carnitine (2 mM), taurine (5 mM) and 0.1% 

penicillin-streptomycin at a density of 30–50 cells/mm2 on coverslips precoated with laminin 

(1µg/cm2). ARVMs cultured for 24 h were treated with KU-55933 (KU), a specific inhibitor of 

ATM [20], for 24 h. Apoptosis was measured using TUNEL-assay as described above.  
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Detection of oxidative stress 

To detect oxidative stress, ARVMs were treated with KU (0.1 µM and 1 µM) for 3h.  Cells were 

then stained using total reactive oxygen species (ROS)/superoxide detection kit (Enzo Life 

Sciences) and visualized using fluorescent microscopy. The number of ROS-positive cells 

(relative to total myocytes) was determined by counting ~100 cells in 10 randomly chosen fields 

per coverslip for each experiment. 

Statistical analyses  

Data are represented as mean ± SEM.  Data were analyzed using student’s t test or one-way 

analysis of variance (ANOVA) and a post hoc Tukey’s test. Probability (p) values of <0.05 were 

considered to be significant. 
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Results 

 

Morphometric studies and mortality 

Body weights remained unchanged among the sham and MI groups. Heart weight (HW) and HW 

to body weight ratios were increased in both MI groups (p<0.001 vs sham; n=6-12; Table 3.1) 

with no significant difference between the two MI groups. The mortality rates 7 days post-MI 

were 35% and 18% in WT and hKO mice, respectively. Masson’s trichrome staining of the mid-

LV sections is shown in figure 1A. Infarct size measured as a percentage of the LV 

circumference occupied by scar tissue was not different between the WT-MI and hKO-MI 

groups (p=NS, Fig 3.1B). However, infarct thickness measured from mid-myocardial sections 

was significantly greater in hKO-MI group versus WT-MI (Fig 3.1C).  

 
Table 3.1. Morphometric Measurements 7 Days Post-MI 

 WT-Sham (n=6) hKO-Sham (n=7) WT-MI (n=10) hKO-MI (n=12) p 

BW 24.41 ± 0.96 26.49 ± 1.71 23.89 ± 0.76 23.43 ± 0.61  

HW 125.22 ± 7.74 139.08 ± 12.40 153.93 ± 5.27* 158.50 ± 5.93* <0.001 

HW/BW 5.11 ± 0.12 5.25 ± 0.04 6.48 ± 0.33* 6.86 ± 0.43* <0.001 

 
Values are mean ± SEM; *comparison between sham and MI group. 
 



 

Figure 3.1. Infarct size and thickness
hearts were analyzed for the measurement of infarct size and thickness. A. Transverse sections of 
the mid-myocardium from WT and hKO
and thickness (C) as measured from trichrome stained hearts; *p<0.05 vs WT; n=5
 

Echocardiographic studies  

No significant differences in the echocardiographic parameters were observed between the two 

sham groups. M-mode echocardiography revealed a significant decrease in percent fractional 

shortening (%FS) and ejection fraction (EF) in both MI groups when compared

respective sham groups. However, the decrease in %FS and EF was significantly greater in the 

WT-MI group when compared to hKO

LV end systolic (LVESD) and diastolic (LVEDD) diameters in both MI gro
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1. Infarct size and thickness. Masson’s trichrome stained sections from WT and hKO 
hearts were analyzed for the measurement of infarct size and thickness. A. Transverse sections of 

myocardium from WT and hKO hearts post-MI. Quantitative analysis of infarct size (B) 
and thickness (C) as measured from trichrome stained hearts; *p<0.05 vs WT; n=5

significant differences in the echocardiographic parameters were observed between the two 

echocardiography revealed a significant decrease in percent fractional 

shortening (%FS) and ejection fraction (EF) in both MI groups when compared

respective sham groups. However, the decrease in %FS and EF was significantly greater in the 

MI group when compared to hKO-MI (#p<0.05 vs WT-MI; Fig 3.2A & B). MI increased 

LV end systolic (LVESD) and diastolic (LVEDD) diameters in both MI groups. However, the 

 

Masson’s trichrome stained sections from WT and hKO 
hearts were analyzed for the measurement of infarct size and thickness. A. Transverse sections of 

MI. Quantitative analysis of infarct size (B) 
and thickness (C) as measured from trichrome stained hearts; *p<0.05 vs WT; n=5-7. 

significant differences in the echocardiographic parameters were observed between the two 

echocardiography revealed a significant decrease in percent fractional 

shortening (%FS) and ejection fraction (EF) in both MI groups when compared to their 

respective sham groups. However, the decrease in %FS and EF was significantly greater in the 

2A & B). MI increased 

ups. However, the 



 

increase in LVEDD and LVESD was significantly lower in hKO

MI group (#p<0.05 vs WT-MI; Fig 

 

Figure 3.2. ATM deficiency improves LV function 7 days post
(n=10) and ATM hKO (n=12) mice. Indices of cardiac function (percent fractional shortening, 
%FS; ejection fraction, EF) and structure (LV end diastolic diameter, LVEDD; LV end systolic 
diameter, LVESD) were measured using echocardiography 7 days after MI. A. %FS; B. EF; C, 
LVEDD; D. LVESD; *p<0.05 vs sham; 
 

Fibrosis and Apoptosis 

Quantitative analysis of fibrosis using trichrome stained sections revealed increased fibrosis in 

hKO-sham group vs WT-Sham. MI increased fibrosis in the border and infarc

both groups when compared to their respective non
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increase in LVEDD and LVESD was significantly lower in hKO-MI when compared to the WT

MI; Fig 3.2C & D).  

2. ATM deficiency improves LV function 7 days post-MI. MI was performed in WT 
(n=12) mice. Indices of cardiac function (percent fractional shortening, 

%FS; ejection fraction, EF) and structure (LV end diastolic diameter, LVEDD; LV end systolic 
diameter, LVESD) were measured using echocardiography 7 days after MI. A. %FS; B. EF; C, 

*p<0.05 vs sham; #p<0.05 vs WT-MI; n=10-12. 

Quantitative analysis of fibrosis using trichrome stained sections revealed increased fibrosis in 

Sham. MI increased fibrosis in the border and infarc

both groups when compared to their respective non-infarct LV regions.  Interestingly, the level 

MI when compared to the WT-

 

MI. MI was performed in WT 
(n=12) mice. Indices of cardiac function (percent fractional shortening, 

%FS; ejection fraction, EF) and structure (LV end diastolic diameter, LVEDD; LV end systolic 
diameter, LVESD) were measured using echocardiography 7 days after MI. A. %FS; B. EF; C, 

Quantitative analysis of fibrosis using trichrome stained sections revealed increased fibrosis in 

Sham. MI increased fibrosis in the border and infarct LV regions of 

infarct LV regions.  Interestingly, the level 



 

of fibrosis was greater in the border and infarct regions of hKO

WT-MI (Fig 3.3 A&B).  

 

Figure 3.3. Analysis of fibrosis. Masson’s trichrome stained sections of the heart were used for 
quantitative measurement of fibrosis. A. 
fibrosis in WT and hKO mice 7 days post
infarct LV region; INF, infarct; *p<0.05 vs sham; #p<0.05 comparisons between WT and hKO 
groups; $p<0.05 vs border; n=6-7. 
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of fibrosis was greater in the border and infarct regions of hKO-MI group when compared to the 

fibrosis. Masson’s trichrome stained sections of the heart were used for 
quantitative measurement of fibrosis. A. Masson’s trichrome-stained sections demonstrating 
fibrosis in WT and hKO mice 7 days post-MI. B. Quantitative analysis of fibrosis.
infarct LV region; INF, infarct; *p<0.05 vs sham; #p<0.05 comparisons between WT and hKO 

7.  

MI group when compared to the 

 

fibrosis. Masson’s trichrome stained sections of the heart were used for 
stained sections demonstrating 

Quantitative analysis of fibrosis. NINF, non-
infarct LV region; INF, infarct; *p<0.05 vs sham; #p<0.05 comparisons between WT and hKO 
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Analysis of apoptosis using TUNEL-staining assay revealed increased apoptosis in the 

hKO-sham vs the WT-sham group. The number of apoptotic cells and myocytes remained 

unchanged in the non-infarct LV regions when compared to the sham groups (Fig 3.4 B&C). MI 

increased the number of apoptotic cells in the border and infarct LV regions of both groups when 

compared to the sham and non-infarct LV regions (Fig 3.4 A&B). In the border area, the number 

of apoptotic cells as well as myocytes was significantly higher in hKO vs WT group. In the 

infarct LV region, the number of apoptotic cells was significantly lower in hKO vs WT group 

(Fig 3.4B), while the number apoptotic myocytes remained unchanged between WT and hKO 

(Fig 3.4C).   
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Figure 3.4. Analysis of apoptosis. A. TUNEL-stained images from the border regions of WT and 
hKO hearts post-MI. B. Quantitative analysis of cardiac cell apoptosis in the non-infarcted 
(NINF), border and infarct (INF) regions of WT and hKO mice 7 days post-MI. C. Quantitative 
analysis of myocyte apoptosis in the NINF, border and INF regions of WT and hKO mice 7 days 
post-MI. *p<0.05 vs sham; #p<0.05 comparisons between WT and hKO groups; $p<0.05 vs 
border; n=4.   
 

Expression of α-smooth muscle actin (α-SMA) 

Expression of α-SMA serves as a marker for the differentiation of fibroblasts into myofibroblasts 

[21–23]. MI increased α-SMA expression in the infarct LV regions of both groups (Fig 3.5A). 

Quantitative immunohistochemical analysis of heart sections revealed increased α-SMA 

expression in the infarct LV region of hKO when compared to the WT group (Fig 3.5B).   



 

Figure 3.5. Expression of α-smooth muscle actin (
infarct LV regions of WT and hKO hearts post
of α-SMA expression in the infarct (INF) region of WT and hKO mice 7 days post
vs WT-INF; n=4. 
 

Expression of matrix metalloproteinases (MMPs

 Western blot analyses of LV lysates revealed no significant increase in MMP

the non-infarct LV regions of both MI groups when compared to sham. MMP

were significantly higher in the infarct region of both MI groups when compared to sham. In the 

hKO group, the increase in MMP

when compared to the non-infarct region (Fig 
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smooth muscle actin (α-SMA). A. α-SMA-stained images
infarct LV regions of WT and hKO hearts post-MI. B. Quantitative immunohistological analysis 

SMA expression in the infarct (INF) region of WT and hKO mice 7 days post

Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs)

Western blot analyses of LV lysates revealed no significant increase in MMP-2 protein levels in 

infarct LV regions of both MI groups when compared to sham. MMP

he infarct region of both MI groups when compared to sham. In the 

hKO group, the increase in MMP-2 protein levels was significantly greater in the infarct region 

infarct region (Fig 3.6A). MMP-9 protein levels were increased in the

 

stained images from the 
MI. B. Quantitative immunohistological analysis 

SMA expression in the infarct (INF) region of WT and hKO mice 7 days post-MI. #p<0.05 

) and tissue inhibitors of MMPs (TIMPs) 

2 protein levels in 

infarct LV regions of both MI groups when compared to sham. MMP-2 protein levels 

he infarct region of both MI groups when compared to sham. In the 

2 protein levels was significantly greater in the infarct region 

9 protein levels were increased in the 
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non-infarct region and decreased in the infarct region of the WT group when compared to sham. 

No such changes in MMP-9 protein levels were observed in the hKO group. In the infarct region, 

MMP-9 protein levels were significantly greater in the hKO group when compared to the WT 

(Fig 3.6B). Analysis of MMPs activity using in-gel zymography showed no difference in MMP-

2 activity the infarct LV regions between the two MI groups (Fig 3.6C). However, MMP-9 

activity in the hKO was significantly higher in the hKO group when compared to WT (Fig 3.6D). 
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Figure 3.6. Expression and activity of MMPs. A & B. Total LV lysates (50 µg), prepared from 
sham and non-infarct (NINF) and infarct (INF) LV regions, were analyzed by western blot using 
anti-MMP-2 (A) and anti-MMP-9 (B) antibodies. The upper panels show autoradiograms 
indicating immunostaining for MMP-2, MMP-9, and GAPDH. The lower panels exhibit 
quantitative analyses of MMP-2, MMP-9 normalized to GAPDH. *p<0.05 vs sham; #p<0.05 vs 
NINF; $p<0.05 vs WT-INF; n=7. C&D.  Total LV lysates (50 µg), prepared from the infarct LV 
regions were analyzed by in-gel zymography. C. MMP-2 activity. D. MMP-9 activity. *p<0.05 
vs WT-MI; n=3.  

 

TIMP-2 is suggested to inhibit MMP-2 activity [4], while TIMP-4 is predominantly 

expressed in the heart [24] . Western blot analyses showed no immunostaining for TIMP-2 in the 

sham groups. MI increased TIMP-2 protein levels in the non-infarct and infarct regions of the 

heart in both groups. However, TIMP-2 protein levels were significantly greater in the infarct 

region when compared to the non-infarct LV region with no significant difference between the 



 

WT and hKO groups (Fig 3.7A). On the contrary, TIMP

both the sham groups. MI decreased TIMP

groups. TIMP-4 protein levels were significantly lower in hKO group when compared to WT 

(Fig 3.7B).   

 

Figure 3.7. Expression of TIMPs. Total LV lysates (50 µg), prepared from sham and non
(NINF) and infarct (INF) LV regions, were analyzed by western blot using 
anti-TIMP-4 (B) antibodies. The upper panels show autoradiograms indicating immunostaining 
for TIMP-2, TIMP-4, and GAPDH. The lower panels exhibit quantitative analyses of TIMP
TIMP-4 normalized to GAPDH. *p<0.05 vs sham; 
 

Expression and phosphorylation of apoptosis

ATM phosphorylates p53 (serine

lysates using anti-p53 antibodies showed no immunostaining for p53 in the sham or non

LV regions of WT or hKO groups. Phosphorylation of p53 (seri

infarct regions with a greater increase in the hKO
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7A). On the contrary, TIMP-4 protein levels were clearly present in 

both the sham groups. MI decreased TIMP-4 protein levels in the infarct LV region of both 

tein levels were significantly lower in hKO group when compared to WT 

Figure 3.7. Expression of TIMPs. Total LV lysates (50 µg), prepared from sham and non
(NINF) and infarct (INF) LV regions, were analyzed by western blot using anti-

4 (B) antibodies. The upper panels show autoradiograms indicating immunostaining 
4, and GAPDH. The lower panels exhibit quantitative analyses of TIMP

4 normalized to GAPDH. *p<0.05 vs sham; #p<0.05 vs NINF; $p<0.05 vs WT

Expression and phosphorylation of apoptosis-related proteins 

p53 (serine-15) following DNA damage [25]. Western blot analyses of LV 

p53 antibodies showed no immunostaining for p53 in the sham or non

LV regions of WT or hKO groups. Phosphorylation of p53 (serine-15) was only observed in the 

infarct regions with a greater increase in the hKO-MI group (Fig 3.8A).   

4 protein levels were clearly present in 

4 protein levels in the infarct LV region of both 

tein levels were significantly lower in hKO group when compared to WT 

 

Figure 3.7. Expression of TIMPs. Total LV lysates (50 µg), prepared from sham and non-infarct 
-TIMP-2 (A) and 

4 (B) antibodies. The upper panels show autoradiograms indicating immunostaining 
4, and GAPDH. The lower panels exhibit quantitative analyses of TIMP-2, 

p<0.05 vs WT-INF; n=7. 

. Western blot analyses of LV 

p53 antibodies showed no immunostaining for p53 in the sham or non-infarct 

15) was only observed in the 



 

Deficiency of ATM is suggested to associate with increased oxidative stress 

mitochondrial abnormalities are also reported in

analysis of mitochondrial antioxidant protein manganese superoxide dismutase (SOD

demonstrated no change in SOD

heart in both groups. MI significantly decreased SOD

groups. However, the decrease in SOD

WT (Fig 3.8B).  

 

Figure 3.8. Expression and phosphorylation of apoptosis
were analyzed by western blot using phospho
Protein loading in each lane is indicated by GAPDH immunostaining. $p<0.05 vs WT
B. Total LV lysates were analyzed by western blot 
in each lane is indicated by GAPDH. *p<0.05 vs sham; 
n=7. 
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Deficiency of ATM is suggested to associate with increased oxidative stress 

mitochondrial abnormalities are also reported in thymocytes lacking ATM [27

hondrial antioxidant protein manganese superoxide dismutase (SOD

SOD-2 protein levels in the sham and non-infarct LV regions of the 

MI significantly decreased SOD-2 protein levels in the infarct LV of both

groups. However, the decrease in SOD-2 protein levels was significantly higher in hKO group vs 

nd phosphorylation of apoptosis-related proteins. A. Total LV lysates 
were analyzed by western blot using phospho-specific (serine-15) p53 or total p53 antibodies. 
Protein loading in each lane is indicated by GAPDH immunostaining. $p<0.05 vs WT
B. Total LV lysates were analyzed by western blot using anti-SOD-2 antibodies. Protein loading 
in each lane is indicated by GAPDH. *p<0.05 vs sham; $p<0.05 vs NINF; #p<0.05 vs WT

Deficiency of ATM is suggested to associate with increased oxidative stress [26]. Intrinsic 

27]. Western blot 

hondrial antioxidant protein manganese superoxide dismutase (SOD-2) 

infarct LV regions of the 

2 protein levels in the infarct LV of both 

2 protein levels was significantly higher in hKO group vs 

 

A. Total LV lysates 
15) p53 or total p53 antibodies. 

Protein loading in each lane is indicated by GAPDH immunostaining. $p<0.05 vs WT-INF; n=7. 
2 antibodies. Protein loading 

p<0.05 vs WT-INF; 



 

Figure 3.9. Inhibition of ATM increases the number of ROS
apoptosis. ARVMs were treated 
stained using ROS-detection kit and ROS
microscopy. *p<0.05 vs control (CTL); n=3. B. TUNEL
apoptotic ARVMs. *p<0.05 vs CTL; n=3.  

 

Oxidative stress and apoptosis in ARVMs 

Inhibition of ATM using KU-55933 (KU) is shown to increase reactive oxygen species (ROS) in 

cancer cells [28]. To investigate if inhibition of ATM also increases ROS in myocytes, ARVMs 

were treated with KU (0.1 µM and 1 µM) for 3 h. Analysis of ROS

fluorescent microscopy showed increased number of ROS

concentrations of KU (Fig 9A). To investigate if inhibition of ATM induces apoptosis,  ARVMs 

were treated with KU (0.1 µM and 1 µM) for 24 h. Measurement of apoptosis using TUNEL

assay showed that KU at 0.1 µM and 1 µM concentrations significantly increases the number of 

apoptotic ARVMs (Fig 3.9B).  
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Discussion 

Previous studies from our lab have shown that lack of ATM induces structural and functional 

changes in the heart [10,11]. A major finding of this study is that deficiency of ATM attenuates 

LV dysfunction and dilatation 7 days post-MI. Although infarct size were comparable between 

the WT and hKO mice, infarct thickness was greater in the hKO mice. Deficiency of ATM 

associated with increased expression of α-SMA and fibrosis. Cardiac cell apoptosis was lower in 

the infarct LV region of ATM deficient mice. However, apoptosis was significantly higher in the 

border area of the infarct in ATM deficient mice. ATM deficiency also associated with changes 

in the expression of fibrosis- and apoptosis-related proteins. In vitro, inhibition of ATM 

increased the number of ROS-positive ARVMs and induced apoptosis. The results presented 

here suggest that ATM plays a multifaceted role in remodeling pathways following myocardial 

infarction.  

Systolic dysfunction is characterized by decreased cardiac contractility and pumping 

capacity of the heart. In general, MI results in severe LV dilation and systolic dysfunction [29].  

The data presented here demonstrate that ATM deficient mice suffer to a lesser degree from 

impaired systolic function following MI. The study also provides evidence that deficiency of 

ATM affects the infarct scar. We observed that the infarct size remained unchanged between WT 

and ATM deficient mice. However, infarct thickness was greater in the ATM deficient mice. 

Fibrosis and expression of α-SMA, a marker of myofibroblasts, was significantly higher in the 

ATM deficient heart after MI. Our findings suggest that myofibroblasts, a major cell type 

involved in the deposition of fibrosis, may escape the apoptotic death during the granulation 

phase and contribute to the increase in infarct wall thickness in the ATM deficient mice. This 

may in turn decrease LV dilation and dysfunction. Of note, cardiac cell apoptosis in the infarct 
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LV region of ATM deficient mice was lower when compared to that in the WT. Increased infarct 

thickness with reduced apoptosis in granulation tissue cells is previously described in 

Angiotensin II type 1A receptor KO (AT1AKO) 7 days post-MI [30]. Expression of soluble 

transforming growth factor-β (TGF-β) type II receptor, a competitive inhibitor of TGF-β, led to a 

greater infarct thickness and smaller LV circumference [31]. Therefore, it is conceivable that 

ATM signaling may involve Angiotensin II and/or TGF-β axis for its effect on infarct thickness, 

LV circumference and apoptosis. Further investigations are warranted to clarify the role of these 

molecules in ATM signaling. 

Cardiac structure consists of various cell types whose function is to promote contractility 

of the heart. Following injury, macrophages and other immune cells initiate a healing process. 

Once the damaged cells have been removed, activation of myofibroblasts helps promote scar 

tissue formation. This response is suggested to be associated with increases in α-SMA [21,32]. 

We observed greater increase in α-SMA expression in the infarct region of ATM deficient mice. 

Increased α-SMA may help explain the presence of increased fibrosis in the infarct region of 

ATM deficient mice.  

Cardiac cell apoptosis increases in the infarct and border  areas  and  to  a  smaller  extent  

in  the  non-infarcted areas of the heart after MI [6,33]. Early activation of apoptosis is a 

necessary step in remodeling as it allows room for entry of immune repair cells following injury 

[1,34,35].  The infarct region is a predictor of post-MI prognosis as it can relate to infarct 

expansion. ATM deficient mice exhibited a greater increase in apoptosis in the border region. 

This may lead to a greater infarct expansion and worse prognosis late post-MI [1,3,36]. 

Likewise, increased granulation tissue cell apoptosis in WT-MI hearts may reflect timely 

removal of unhealthy cells, thereby enhancing the repair process.  
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The matrix metalloproteinases (MMPs) are endopeptidases that are present within the 

myocardium. Changes in MMP abundance is shown to be associated with changes in 

extracellular matrix deposition (ECM) and LV remodeling post-MI, including increased LV 

dilation and cardiac rupture [37–41]. The ECM is a critical component in the restructuring of the 

heart after MI. Using promoter reporter constructs, Mukherjee et. al. showed that MMP-2 

promoter activation peaks in the MI region 7 days post-MI, while MMP-9 promoter activation 

was highest in the border region at 7 and 14 days post-MI [42]. Consistent with these findings, 

we observed increased MMP-2 protein levels in the MI regions of both groups when compared 

to their respective sham groups. No difference in MMP-2 protein levels and activity in the infarct 

LV region suggest that increased fibrosis in hKO mice occurs via MMP-2-independent 

mechanism. MMP-9 protein levels were significantly higher in the non-infarct LV region of WT 

group when compared to sham. However, we observed decreased MMP-9 protein levels in the 

infarct LV region of WT group. No such changes in MMP-9 protein levels were observed in the 

hKO group. MMP-9 activity was higher in the infarct LV region of hKO when compared to WT. 

Higher MMP-9 protein levels and activity suggest involvement of MMP-9 in ECM deposition 

and LV remodeling during ATM deficiency.  The decreased MMP-9 protein levels observed in 

this study in the WT infarct region may reflect localization and/or timing of the remodeling 

events.  [43]. Tao et al. has shown that MMP-9 activity increases as early as 1 day post-MI and 

reaches a maximum by 2 days, then gradually decreases. MMP-2 activity starts to increase 4 

days post-MI, reaching a maximum by 7 days [41].  

TIMP’s are traditionally believed to function solely as inhibitors of active MMPs [4]. 

TIMP-2 is suggested to have maximum affinity for MMP-2 [44]. In the heart, MMP-9 and 

TIMP-4 are suggested to play a key in the myocardial remodeling. In cardiac myocytes, the 
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effects of MMP-9 on voltage-induced contraction can be reversed by TIMP-4 [45]. We observed 

increased TIMP-2 expression in the infarct region of both groups to a similar extent. However, 

TIMP-4 protein levels were significantly lower in the ATM deficient mice. ATM deficient mice 

also exhibited increased MMP-9 protein levels and activity in the infarct region when compared 

to their WT counterparts. Increased MMP-9 activity is expected to correlate with decreased 

fibrosis in ATM deficient mice. However, we observed increased fibrosis in the infarct and 

remote regions of ATM deficient mice. Recent evidence suggests additional roles for TIMPs 

independent of their function as MMP inhibitors [36].  Therefore, it is plausible that changes in 

TIMP protein levels observed in the infarct region of WT and ATM deficient mice could 

function in the remodeling processes of the heart independent of MMP-2 and -9.   

ATM deficiency results in impaired repair of double-stranded DNA breaks and increased 

oxidative stress [26,46]. Deceased SOD levels impair the cell’s response to handle reactive 

oxygen species following myocardial injury [47,48]. ATM is also known to phosphorylate p53 

on serine-15 resulting in its stabilization. Stabilization of p53 increases its transcriptional 

activity, leading to increased apoptosis [49]. Here we observed greater increase in 

phosphorylation of p53 in the infarct region of ATM deficient hearts. On the other hand, SOD-2 

protein levels were lower in ATM deficient hearts, suggesting enhanced oxidative stress during 

ATM deficiency. Enhanced oxidative stress and apoptosis was also observed in ARVMs during 

inhibition of ATM using KU-55933. It can be argued that increased p53 phosphorylation and 

oxidative stress should increase apoptosis in the infarct region of ATM deficient mice. We did 

observe increased apoptosis in the border area of ATM deficient mice. However, apoptosis was 

lower in the infarct region of ATM deficient mice. Inhibition of ATM and ATR failed to prevent 

H2O2-induced phosphorylation of p53 in neonatal cardiac myocytes [50]. In addition, graded 
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increases in the level of oxidative stress induce a graded phenotype shift in cardiac myocytes, 

from hypertrophy at low levels of oxidative stress, to apoptosis at high levels of oxidative stress 

[51]. Therefore, it is conceivable that p53 phosphorylation during ATM deficiency involves 

signaling pathways independent of ATM, and increased oxidative stress during ATM deficiency 

promotes cell growth in the infarct LV region at this time point.   

Conclusion and study limitations  

The data presented here provide evidence that ATM has the potential to modulate infarct 

tissue dynamics. It alters the infarct structure by affecting apoptosis, fibrosis, and expression of 

α-SMA. It should be emphasized that our data on investigating the role of ATM in myocardial 

remodeling post-MI are obtained 7 days post-MI. Changes in the size and thickness of infarct 

scar can eventually affect infarct expansion and contribute to the diastolic dysfunction. 

Therefore, it is possible that increased fibrosis (stiffness) and apoptosis (in the border area) in 

ATM deficient mice may associate with earlier diastolic dysfunction if the study time points are 

extended beyond 7 days post-MI.  
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Abstract 

BACKGROUND: Ataxia telangiectasia mutated kinase (ATM) is a serine/threonine kinase that 

phosphorylates several proteins in response to cellular stressors such as DNA damage and 

oxidative stress.  We have previously shown that deficiency of ATM associates with increased 

apoptosis, increased fibrosis and attenuation of cardiac dysfunction 1, 3 and 7 days following 

myocardial infarction (MI). Here we investigated the role of ATM in cardiac remodeling 14 and 

28 days post-MI.  METHODS AND RESULTS: Left ventricle (LV) structure and function 

were measured in wild-type (WT) and ATM heterozygous knock (hKO) mice 14 and 28 days 

post-MI.  Biochemical parameters were measured 28 days post-MI.  MI resulted in cardiac 

dysfunction in both genotypes, as measured by a decrease in percent fractional shortening (%FS) 

and ejection fraction (EF). However, the decrease in %FS and EF was greater in the hKO-MI 

group versus the WT-MI group.  ATM deficiency had no effect on infarct size or infarct 

thickness.  However, the hKO group exhibited a tendency towards decreased survival post-MI.  

Fibrosis and expression of α-smooth muscle actin was greater in the hKO-MI infarct region, 

while apoptosis was greater in the WT-MI infarct region.  MI-induced increases in myocyte 

cross-sectional area were greater in the hKO-MI group versus the WT-MI.  Activation of 

glycogen synthase kinase-3β (GSK-3β) was significantly lower in the infarct region of the hKO-

MI group versus the WT-MI group.  Activation of extracellular signal-regulated kinases 

(ERK1/2) were significantly lower in the non-infarct region of the hKO-MI group versus WT-MI 

group. Expression of Beclin-1, a marker for autophagy, was greater in the hKO-sham as well as 

the non-infarct region of the hKO-MI.  Matrix metalloprotesase-2 (MMP-2) expression was not 

different between the two genotypes.  However, MMP-9 expression was significantly lower in 

the non-infarct region of the hKO-MI group versus the WT-MI group. The hKO-MI sham group 
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exhibited increased levels of cell senescence marker p16 when compared to the WT-sham group.  

However, the hKO-MI group exhibited decreased expression of p16 in the infarct region versus 

the WT-MI group.  CONCLUSION:  ATM deficiency worsened cardiac remodeling late post-

MI with increased cardiac dysfunction, fibrosis and myocyte hypertrophy.  It also associated 

with decreased cardiac cell apoptosis and senescence, which may have resulted in enhanced 

survival of myofibroblasts leading to increased fibrosis and cardiac dysfunction.  
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Introduction 

Following myocardial infarction (MI), the heart undergoes a remodeling process whereby the 

architecture and composition of the left ventricle (LV) changes. Factors affecting these changes 

include myocyte hypertrophy, myocyte apoptosis, myofibroblast proliferation and interstitial 

fibrosis (Konstam et al., 2011). During the early stages of LV repair, there is differentiation of 

fibroblasts into myofibroblasts.  The myofibroblast is a very proliferative cell type that secretes 

the majority of the collagen that ultimately forms the post-MI scar (Turner & Porter, 2013).  

Increases in autophagy can act as a source of ATP during the ischemia-induced energy shortage 

(Nishida et al., 2009).  The early changes in LV architecture include formation of a scar and 

thinning of the infarct region (Konstam et al., 2011).  During the later stages of cardiac 

remodeling, cross-linking of the newly formed scar occurs resulting in a reduction of 

myofibroblasts from the infarct region.  This reduction of myofibroblasts from the wound can 

occur as a result of apoptosis (Y Sun & Weber, 1996; Willems et al., 1994) and/or senescence.  

Senescence of myofibroblasts inhibits their ability to proliferate and also signals for their 

removal by natural killer (NK) cells.  However, mice deficient in p16, a regulator of senescence, 

exhibit increased fibrosis in the heart (Jun & Lau, 2010). The resulting scar is composed of the 

remaining myofibroblasts which continue to turn over type I and type III fibrillar collagen long 

after the scar has restored structural integrity to the infarcted myocardium (Yao Sun et al., 2002).  

MI-induced increases in autophagy during the later stages of remodeling often results in the 

accumulation of autophagosomes and is considered to be a contributing factor leading to 

myocyte death, hypertrophy and heart failure (Nishida et al., 2009). The later stages of structural 

remodeling are predominated by myocyte elongation in the non-infarcted zone, increased septal 

wall mass, chamber enlargement and a shift from an elliptical to a more spherical configuration 
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of the LV chamber. The changes in myocyte size as well as increases in interstitial fibrosis 

ultimately result in a progressive decline in ventricular performance eventually leading to heart 

failure (Konstam et al., 2011).  

 Ataxia telangiectasia mutated kinase (ATM) is activated in response to DNA damage.  

Following DNA damage, ATM phosphorylates several proteins involved in cell cycle arrest, 

DNA repair and apoptosis (Nowak-Wegrzyn, et al., 2004).  Mutations in the ATM gene cause 

the autosomal recessive disorder known as ataxia-telangiectasia (AT). AT individuals exhibit 

neuronal degeneration and are at increased risk for developing cancer (Taylor & Byrd, 2005). 

Carriers of only one mutated allele do not exhibit neuronal degeneration but are predisposed to 

cancer and ischemic heart disease, and die earlier than non-carriers as a result (Su & Swift, 

2000).  Previously, we examined the role of ATM in cardiac remodeling during the inflammatory 

and proliferative phases of the post-MI healing process.  ATM deficiency was shown to attenuate 

cardiac dysfunction.  In addition, ATM deficiency was associated with increased cardiac cell 

apoptosis and fibrosis post-MI (Daniel et al., 2014; Foster et al., 2013).  Although, early increase 

in fibrosis post-MI is suggested to help maintain heart function, it can ultimately result in cardiac 

dysfunction (See et al., 2013).  Apoptosis also associates with a negative post-MI outcome while 

inhibition of cardiac cell apoptosis is shown to reduce infarct size and preserve ventricular 

function (Holly et al., 1999; Rivard et al., 2007; Zhao et al., 2003). Here, we tested the 

hypothesis that enhanced fibrosis and apoptosis, as observed early post-MI during ATM 

deficiency, would result in greater cardiac dysfunction late post-MI in the ATM deficient group. 

These data presented here demonstrate that ATM deficiency exacerbates cardiac remodeling 28 

days post-MI with effects on LV function, fibrosis, apoptosis and myocyte hypertrophy.  ATM 
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deficiency also affected the expression and/or activation of proteins involved in apoptosis, 

fibrosis, hypertrophy, senescence and autophagy.   

Methods 

Vertebrate Animals:  

This investigation conforms to The Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). The East 

Tennessee State University Animal Care and Use Committee approved all animal protocols. 

ATM transgenic mice (129xblack Swiss hybrid background) were originally purchased from 

Jackson Laboratory and created as previously described (Barlow et al., 1996). Aged-matched    

(~ 4-month-old) male and female mice were used for this study. ATM heterozygous knockout 

(hKO) mice were used in this study because homozygous (KO) mice die at approximately 2 

months of age, mainly due to thymic lymphomas (Barlow et al., 1996). Genotyping was 

performed by PCR using primers suggested by Jackson Laboratory. 

Myocardial infarction MI:  

MI was performed as previously described (Daniel et al., 2014). In brief, mice were anesthetized 

using 2% isoflurane inhalation and oxygen (0.5 L/min) and ventilated using a rodent ventilator. 

Body temperature was maintained at ~ 37ºC using a warmed platform. Hearts were exposed by a 

left thoracotomy followed by ligation of the left anterior descending artery (LAD) with a 7-0 

polypropylene suture. Mice in the sham group underwent the same procedure without ligation of 

the LAD. At the end of the study period (28 days) hearts were used for either histology or 

molecular analysis. 
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Echocardiography:  

Echocardiographic measurements were recorded 14 days and 28 days post-MI using a Toshiba 

Aplio 80 Imaging System (Tochigi, Japan) equipped with a 12 MHz linear transducer as 

previously described (Daniel et al., 2014). An individual blinded to the experimental groups 

recorded the images, while a second individual assessed the images and calculated the functional 

parameters of the heart. 

Morphometric analyses:  

Following MI, hearts were perfused with Krebs buffer and stopped in diastole using KCL (30 

mmol/L). Hearts were then fixed using 10% buffered formalin. Each heart was divided into 3 

transverse sections (base, mid and apex) and embedded in paraffin. Tissue sections were stained 

using Masson’s Trichrome stain in order to determine infarct size. Percent infarct size was 

determined by summing the midline infarct lengths of 3 histological sections and dividing them 

by the sum of the midline LV circumference and multiplying by 100 (Nascimento et al., 2011). 

Masson’s Trichrome-stained sections were also used to determine percent fibrosis. For this, 

images were obtained from at least five frames of the infarcted LV. Percent fibrosis was 

calculated by dividing total fibrosis by total tissue area and multiplying by 100. 

Terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay: 

TUNEL staining was carried out according to manufacturer’s instruction (Cell death detection 

assay; Roche). Sections (4 µm thick) were stained with Hoechst 33258 (Sigma) to identify nuclei 

and with rhodamine-conjugated wheat germ agglutinin (WGA) to identify myocytes. Apoptosis 
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was calculated as the total number of apoptotic cells divided by the total number of nuclei and 

multiplied by 100.   

Immunohistochemistry:  

Cross-sections of the heart (4 µm thick) were deparaffinized with xylene then rehydrated with 

graded ethanol rinses. Immunohistochemical staining for myofibroblasts was performed using 

anti-α-smooth muscle actin (α-sma) antibodies (Sigma). All images were acquired using a Nikon 

TE-2000 microscope with an Andor Zyla sCMOS camera. Quantitative analysis was carried out 

using Nikon’s NIS-Elements software.  

Myocyte Cross‐Sectional Area 

Cross‐sections of the heart (4 µm thick) were stained with rhodamine‐conjugated WGA to 

measure myocyte cross‐sectional area. Images were acquired using fluorescent microscopy and 

recorded using an Andor Zyla sCMOS camera. Suitable area of the section was defined as 

myocytes with nearly circular profiles. Myocyte cross‐sectional areas were measured using 

Nikon’s NIS-Elements software as described (Daniel et al., 2014).  

Western Blot Analysis:  

LV lysates were prepared in RIPA buffer, separated by SDS-PAGE and transferred to a PVDF 

membrane.  Following an initial blocking using either 5% non-fat milk or 2% BSA in TBST, the 

membranes were then incubated overnight with antibodies against p16, Beclin-1, MMP-2, MMP-

9 (Santa Cruz), p-GSK-3β (Ser9) and p-ERK1/2 (Thr202, Tyr204) (Cell Signaling). GAPDH 
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(Santa Cruz) immunostaining was used as a protein loading control. Band intensities were 

quantified using Kodak photo documentation system.  

Statistical Analyses:  

Data are represented as mean ± SEM. Data were tested for normality using a Shapiro-Wilk test. 

Multiple comparisons were analyzed using either one-way ANOVA or a Kruskal-Wallis test.  

All pairwise comparisons were carried out using either a one-tailed student’s t-test or a Mann-

Whitney U-test. Survival analysis was performed using log rank test. Probability (P) values of 

<0.05 were considered to be significant. 
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Results 

Survival and Morphological Analyses 

There was no significant difference in infarct size (% infarct-size; WT 38.8 ± 3.5; hKO 38.0 ± 

3.8; p = ns; n = 7- 9) or infarct width (WT 48.9 ± 11.1 µm; hKO 43.2 ± 4.1 µm; p = ns; n = 7- 9) 

between the two groups 28 days post-MI.  The survival rate between the two genotypes was not 

different 1-7 days post-MI.  At 7 days post-MI survival in WT and hKO group was 55.2% (WT, 

37/67) and 52.9% (hKO, 37/70), respectively.  Interestingly, Kaplan-Meier analysis showed 

survival rates of 52.2% in the WT-MI and 40.0% in hKO 28 days post-MI (Fig 4.1; p=0.228).  

 

Figure 4.1. Kaplan Meyer survival curve. WT, wild-type mice; hKO heterozygous knockout 
mice 
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There was no significant difference in the body weight (BW) between the two genotypes. 

Both MI groups had a significant increase in heart weight (HW) and HW/BW ratio when 

compared to their respective sham groups, with no significant difference between the two 

genotypes (Table 4.1).  

Table 4.1.  Morphometric Measurements 28 Days Post-MI 

Values are mean ±SEM; #P<0.05 vs sham. WT, wild-type; hKO, heterozygous; MI, myocardial 
infarction 

 

Echocardiographic studies 

There was no significant difference in ejection fraction (EF) between the two sham 

groups.  However, the WT-sham group exhibited slightly higher percent fractional shortening 

(%FS) when compared with the hKO-sham group. Percent FS and EF decreased in both MI 

groups when compared to their respective sham group 14 and 28 days post-MI.  Interestingly, the 

decrease in %FS and EF was significantly greater in the hKO-MI group when compared to the 

WT-MI group at both time points (Fig 4.2).  

 Body Weight Heart Weight HW/BW 
WT-Sham (N=8) 25.89 ± 0.60 107.66 ± 3.21 4.16 ± 0.05 
hKO-Sham (N=9) 28.90 ± 1.57 119.29 ± 13.68 4.57 ± 0.21 
WT-MI (N=21) 25.36 ± 0.73 158.27 ± 9.90 # 6.67 ± 0.46 # 
hKO-MI (N=22) 26.03 ± 0.67 158.92 ± 6.00 # 6.13 ± 0.20 # 
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Figure 4.2. ATM deficiency worsens LV function post-MI. A. M‐mode echocardiographic 
images. B. Indices of cardiac function percent fractional shortening (%FS) and ejection fraction 
(EF) were calculated using echocardiographic images 14 and 28 days post‐MI. #P<0.001 vs 
Sham, *P<0.05 vs WT; n=7-11.  

 

 Quantitative measurement of fibrosis using Mason’s Trichrome-stained sections showed 

that the hKO-sham group exhibited increased fibrosis in the infarct region when compared to the 

WT-sham group.  At 28 days post-MI, there was a significant increase in fibrosis in the non-

infarct and infarct region of both genotypes when compared to their respective sham groups. 

However, the increased infarct fibrosis was significantly greater in the hKO-MI group when 

compared to the WT-MI group.  There was no significant difference in fibrosis in the non-infarct 

region between the two genotypes (Fig 4.3). 
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Figure 4.3. ATM deficiency results in increased fibrosis. The upper panels depict Masson's 
trichrome‐stained heart sections of WT and hKO (sham and infarct region 28 days post-MI). 
Lower panel exhibits quantitative analysis of fibrosis. #P<0.05 vs Sham, $P<0.05 vs non-infarct; 
*P<0.05 vs WT‐MI; n=6-8. Non, non-infarct; Inf, infarct. 
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There was no significant difference in the total cardiac cell apoptosis between the two 

sham groups. Apoptosis was significantly higher in the non-infarct and infarct regions of both 

genotypes at 28 days post-MI when compared to their respective sham groups. There was no 

significant difference in apoptosis between the two genotypes in the non-infarct region.  

However, apoptosis was significantly higher in the infarct region of the WT-MI group when 

compared to the hKO-MI group (Fig 4.4).  Myocyte apoptosis was not significantly different 

between the two genotypes in the sham groups or in the non-infarct regions (data not shown).  
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Figure 4.4. ATM deficiency decreases apoptosis in the infarct region 28 days post-MI. Upper 
panels depict TUNEL‐stained (left) and Hoechst‐stained (right) images obtained from WT (top) 
and hKO (bottom) hearts post‐MI. Green fluorescent staining indicates TUNEL‐positive 
(apoptotic) nuclei, while blue fluorescent staining indicates total number of nuclei. The lower 
panel exhibits quantitative analysis. #P<0.05 vs Sham, *P<0.05 vs WT, $P<0.05 vs Non; n=5-8.  



114 
 

Myocyte cross-sectional area was greater in the hKO-sham group when compared to the 

WT-sham group.  Following MI, there was a significant increase in myocyte cross-sectional area 

in both genotypes when compared to their respective sham groups. However, myocyte cross-

sectional area in the non-infarct region was significantly larger in the hKO-MI group when 

compared to the WT-MI group (Fig 4.5).  

 

Figure 4.5. ATM deficiency increases myocyte cross-sectional area. Cross‐sections of the heart 
were stained using rhodamine-conjugated anti‐WGA. Upper panels depicts WGA‐stained images 
from the sham (top) and the non-infarct regions (bottom) of WT (left) and hKO (right) hearts 
post‐MI. Lower panel exhibits quantitative analysis of myocyte cross-sectional areas in the sham 
and the non-infarct regions 28 days post‐MI. #P<0.001 vs Sham, *P<0.05 vs WT; n=7-8.  
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Expression of α-Smooth Muscle Actin (α-sma) 

Myofibroblasts are the main producers of collagen post-MI.  Expression of α-sma is 

commonly used to identify myofibroblasts (Eddy, Petro, & Tomasek, 1988).  There was no 

significant difference in α-sma expression between the two sham groups. Twenty-eight days 

post-MI, α-sma expression was significantly greater in the infarct region of both genotypes when 

compared to their respective sham groups or their non-infarct regions. However, α-sma 

expression was significantly higher in the infarct region of the hKO-MI group versus the WT-MI 

group (Fig 4.6).  
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Figure 4.6. ATM deficiency increases α‐sma expression 28 days post-MI. Cross‐sections of the 
hearts were immunostained using anti‐α‐sma antibodies. Upper panel depicts α‐sma‐stained 
images from the infarct regions of WT and hKO hearts 28 days post‐MI. Lower panel exhibits 
quantitative Immunohistochemical analysis of α‐sma expression. #P<0.01 vs Sham, $P<0.01 vs 
Non-infarct, *P<0.05 vs WT; n=6-7. 
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Phosphorylation of GSK-3β and ERK1/2. 

Glycogen synthase kinase-3β (GSK-3β) is a pro-apoptotic kinase that is inactivated by 

phosphorylation at serine-9 (Sutherland et al., 1993).  This inactivation of GSK-3β by 

phosphorylation remained unchanged between the sham groups and non-infarct regions of the 

two groups 28 days post-MI.  However, GSK-3β phosphorylation was significantly lower in the 

infarct region of the WT-MI group when compared to the infarct region of the hKO-MI, 

suggesting enhanced activation of GSK-3β in the WT-MI groups (Fig 4.7A).  

 

 

Figure 4.7. ATM deficiency decreases GSK‐3β and ERK1/2 activities 28 days post-MI. Total LV 
lysates, prepared from sham and non-infarct and infarct LV regions post‐MI, were analyzed by 
western blot using phospho‐specific antibodies for GSK‐3β (Ser9) and ERK1/2 (Thr202, 
Tyr204). The upper panels depict autoradiograms immunostained for p‐GSK‐3β, p-ERK1/2 and 
GAPDH. The lower panels exhibit quantitative analyses of p‐GSK‐3β (n=8) and p-ERK1/2 (n=8) 
normalized to GAPDH.*P<0.05 vs WT‐Inf.  
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Activation of ERK1/2 plays a role in cell proliferation, differentiation, apoptosis and 

cardiac hypertrophy (Bueno et al., 2000; Lin et al., 2013). ERK1/2 phosphorylation (activation) 

remained unchanged between the sham groups. At twenty-eight days post-MI, there was a 

significant increase in ERK1/2 activation in the infarct region of both genotypes with no 

difference between the two genotypes.  However, phosphorylation of ERK1/2 was significantly 

lower in the non-infarct region of the hKO-MI group when compared to the WT-MI group 

(Figure 4.7B).  

Expression of Beclin-1 and p16  

Increased Beclin-1 expression associates with increased autophagy.  Mice deficient in Beclin-1 

exhibit decreased autophagy and attenuated pathological remodeling following myocardial 

ischemia/reperfusion injury and aortic banding (Matsui et al., 2007; Zhu et al., 2007).  Beclin-1 

protein levels were significantly higher in the hKO-sham group when compared to the WT-sham 

group.  Following MI, Beclin-1 protein levels stayed higher in the non-infarct region of the hKO-

MI group when compared to the WT-MI group (Figure 4.8). However, no significant difference 

in Beclin-1 expression was observed in the infarct region between the two genotypes. 
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Figure 4.8. ATM deficiency increases expression of Beclin-1. Total LV lysates, prepared from 
the sham and non‐infarct and infarct LV regions 28 days post‐MI, were analyzed by western blot 
using anti‐Beclin-1 antibodies. The upper panels depict autoradiograms immunostained for 
Beclin-1 and GAPDH. The lower panels exhibit quantitative analyses of Beclin-1 normalized to 
GAPDH. *P<0.05 vs WT; n=6-8. 

 

The protein p16 is expressed by most senescent cells (Rodier & Campisi, 2011).  

Expression of p16 was higher in the hKO-sham group when compared to the WT-sham group.  

Following MI, no significant difference in p16 protein levels was observed between the two 

genotypes in the non-infarct regions.  However, the infarct region of the hKO-MI group 

exhibited decreased protein levels of p16 when compared to the WT-MI group (Fig 4.9). 
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Figure 4.9. ATM deficiency alters p16 expression. Total LV lysates, prepared from sham and 
non‐infarct and infarct LV regions 28 days post‐MI, were analyzed by western blot using 
anti‐p16 antibodies. The upper panels depict autoradiograms immunostained for p16 and 
GAPDH. The lower panels exhibit quantitative analyses of p16 normalized to GAPDH. *P<0.05 
vs WT; n=6-7. 
 

Expression of MMP-2 and MMP-9.  

Matrix metalloproteinases (MMP-2 and -9) play an important role in the fibrotic response 

following MI (Lindsey & Zamilpa, 2012).  MMP-2 expression and activity increase in the infarct 

region following MI peaking 7 days post-MI and decreasing thereafter.  MMP-9 is activated 

following MI and its activity remains elevated until 14 days post-MI (Cleutjens et al., 1995). 

MMP-2 expression was significantly lower in the infarct region of both MI groups when 

compared to their respective sham group with no significant differences in MMP-2 expression 

between the two genotypes (data not shown). There was a significant decrease in MMP-9 

expression in the infarct region of both genotypes when compared to their respective sham 
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groups.  However, no significant differences were observed between the two genotypes in either 

the sham group or the infarct region.  Interestingly, MMP-9 protein levels were significantly 

lower in the non-infarct region of the hKO-MI group when compared to that of the WT-MI 

group (Figure 10). 

 

Figure 4.10. ATM deficiency decreases expression of MMP-9 in the non-infarct region 28 days 
post-MI. Total LV lysates, prepared from sham and non‐infarct and infarct LV regions 28 days 
post‐MI, were analyzed by western blot using anti‐MMP-9 antibodies. The upper panels depict 
autoradiograms immunostained for MMP-9 and GAPDH. The lower panels exhibit quantitative 
analyses of MMP-9 normalized to GAPDH. *P<0.05 vs WT; n=8. 
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Discussion 

The data presented here demonstrate that ATM deficiency associates with LV dysfunction, 

increased expression of p16 and Beclin-1, increased myocyte cross-sectional area and increased 

fibrosis in the sham group. Twenty-eight days post-MI, ATM deficiency associated with a 

greater decline in LV function.  Post-MI survival tended to be lower in the ATM deficient group. 

Myocardial fibrosis and expression of α-sma was higher in the ATM deficient group, while 

apoptosis was higher in the WT group 28 days post-MI.    Myocyte cross-sectional area was 

greater in the ATM deficient group.  Beclin-1 expression remained higher in the hKO-MI group 

when compared to the WT-group, but only in the non-infarcted region.    ATM deficiency 

associated with lower activity of ERK1/2 in the non-infarct region and lower GSK-3β activity in 

the infarct region.   It was also associated with lower p16 expression in the infarct region.  ATM 

deficiency associated with lower MMP-9 expression in the non-infarct region.  Thus, ATM 

deficiency affects heart function and molecular parameters of the heart associated with apoptosis, 

fibrosis, autophagy and senescence 28 days post-MI. 

In the sham group, ATM deficiency associated with reduced cardiac function, increased 

fibrosis and myocyte hypertrophy.  ATM deficiency also associated with increased expression of 

p16 and Beclin-1.  p16 is a marker for cellular senescence and has been shown to be elevated in 

the myocytes of aged diseased hearts.  The presence of p16 is also associated with myocyte 

hypertrophy and myocyte apoptosis (Chimenti et al., 2003; Nadal-Ginard, 2003; Urbanek et al., 

2003).    The aged heart is shown to exhibit increased expression of the autophagy-related 

protein, Beclin-1 (Wohlgemuth et al., 2007) as well as increased cardiac fibrosis (Shinmura et 

al., 2011).  Therefore, the observation of increased fibrosis, myocyte hypertrophy and increased 
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expression of p16 and Beclin-1 suggest that ATM deficiency may result in the premature aging 

of the heart. 

Fourteen and 28 days post-MI, ATM deficiency associated with exacerbated cardiac 

dysfunction as determined by decreased %FS and EF.  Cardiac fibrosis following MI occurs 

primarily as a result of collagen secretion by myofibroblasts (Turner & Porter, 2013).  Inhibition 

of myofibroblast apoptosis has been linked to the progression of cardiac fibrosis (Li et al., 2004).  

An increase in cardiac fibrosis following MI has been suggested to cause cardiac dysfunction 

(See et al., 2013).    Here, we observed decreased apoptosis, increased fibrosis and increased 

expression of α-sma in the infarct region of ATM deficient hearts.  Although not indentified 

here, we speculate that the observed decrease in apoptosis in the infarct region during ATM 

deficiency is due to the decrease in myofibroblast apoptosis.  It is interesting to note that 

myofibroblasts are identified as the major cell type undergoing apoptosis in the infarct region at 

this time point (W. Zhao, Lu, Chen, & Sun, 2004).  This increase in fibrosis may be a 

contributing factor towards the observed LV dysfunction during ATM deficiency 28 days post-

MI.   

ATM deficiency also associated with increased expression of Beclin-1, an autophagy-

related protein, in the non-infarct region following MI. During energy deprivation, such as an 

ischemic event, a cell uses autophagy to generate ATP.  This is done by degrading cytosolic 

proteins and organelles (Levine & Kroemer, 2008).  In this regard, increased autophagy can be 

beneficial following MI (Kanamori et al., 2011).  However, when autophagy levels are too high, 

the volume occupied by the autophagic vacuoles can become too large leading to apoptosis 

(Maiuri, Zalckvar, Kimchi, & Kroemer, 2007).  Of note, Beclin-1+/- mice exhibit a reduction in 
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autophagosome formation and a reduction in infarct size following myocardial 

ischemia/reperfusion injury (Matsui et al., 2007).  Lack of ATM results in mitochondrial 

dysfunction in thymocytes in vivo.   However, allelic loss of Beclin-1 in these mice attenuated 

these abnormalities (Valentin-Vega et al., 2012).  Thus, increased expression of Beclin-1 is 

likely deleterious during ATM deficiency.  This may provide another explanation as to why 

ATM deficiency presents itself with exaggerated cardiac dysfunction 14 and 28 days post-MI. 

ATM deficiency also associated with increased myocyte cross-sectional area.  Cardiac 

hypertrophy is induced following myocardial infarction in order to maintain cardiac output 

during myocyte loss (Gould et al., 2002).  However, increases in myocyte size can often result in 

cardiac dysfunction late post-MI (Konstam et al., 2011).  This increased myocyte size could be a 

contributing factor to the increased cardiac dysfunction in ATM deficient mice.  Induction of 

hypertrophic signaling often converges on MAPK signaling pathway, which includes ERK1/2, 

Jun N-terminal kinase (JNK) and p38 (Wakatsuki, Schlessinger, & Elson, 2004).  Activation of 

ERK1/2 is shown to induce cardiac hypertrophy.  However, this induction is thought to be 

compensatory, not pathological, as is the case during the later stages of post-MI infarct healing.  

Similar pathways that are involved in ERK1/2 activation also activate JNK. Recent work using 

JNK transgenic mice suggest an anti-hypertrophic role for JNK (reviewed in (Liang, 2003)).  

Activation of ERK1/2 is reduced in the non-infarct region of the hKO-MI group, which suggests 

that ERK1/2 is not likely involved in the modulation of myocyte size at this time point.  

Previously, our lab has shown that β-AR stimulation activates JNK in WT mice but not in ATM 

KO mice (Foster, Singh, Subramanian, & Singh, 2011).  Therefore, the increased hypertrophic 

response observed during ATM deficiency may in part be due to alterations in the activity of 
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JNK.  Alternatively, the increased expression of Beclin-1 may result in increased hypertrophy 

via the accumulation of autophagic vesicles. 

Activation of ERK1/2 is also shown to result in an increased fibroblast proliferation 

(Bueno et al., 2000; Lin et al., 2013).  However, there was no difference in ERK1/2 activation 

between the two genotypes in the infarct region. This suggests that the increase in expression of 

α-sma during ATM deficiency occurs independently of ERK1/2 pathway.  However, the increase 

in fibrosis during ATM deficiency could be a result of decreased GSK-3β activity and/or 

increased expression of p16, both of which can lead to increased cell proliferation.  

Changes in MMP expression can result in changes in fibrosis (Matsui, Morimoto, & 

Uede, 2010).  There was no difference in MMP-2 expression between the two genotypes. ATM 

deficiency associated with a reduction in MMP-9 expression in the non-infarct region. However, 

there were no differences in fibrosis between the two genotypes in the non-infarct region.  

Differences in fibrosis were only observed in the infarct region.  These data suggest that changes 

in MMP-9 expression may not be a major contributing factor toward fibrosis late post-MI.  

This study is a continuation of a project in which we examined how ATM deficiency 

affected cardiac remodeling during the inflammatory phase of infarct healing (1 and 3 days post-

MI) and during the proliferative phase of healing (7 days post-MI) (Daniel et al., 2014; Foster et 

al., 2013). An important finding of those studies was that early post-MI infarct healing appeared 

to benefit from ATM deficiency in terms of cardiac function.  However, this deficiency 

ultimately had negative consequences on cardiac function, which might be attributed to increased 

cardiac fibrosis as well as increased myocyte apoptosis.  At this time, future investigations are 
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needed to clarify the role of ATM in cell survival and growth in different cell types of the heart 

post-MI. 
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CHAPTER 5 

CONCLUSION  

Carriers of ATM exhibit enhanced susceptibility towards ischemic heart disease. Here, 

we observed that MI increased expression of ATM in the infarct and non-infarct LV regions of 

the heart. Using ATM deficient mice, this study investigated the role of ATM in different phases 

of infarct healing post-MI.  A major finding of this study was that ATM modulated cardiac 

structure and function post-MI by affecting myocardial fibrosis, apoptosis and myocyte 

hypertrophy.  Early post-MI (1, 3 and 7 days), ATM deficiency associated with increased 

fibrosis which correlated with attenuated dilative remodeling and cardiac dysfunction.  However, 

late post-MI (14 and 28 days post-MI), ATM deficiency associated with greater cardiac 

dysfunction which we attributed to increased myocardial fibrosis and myocyte hypertrophy. At 

each stage of infarct healing, there is a different cell type predominately undergoing apoptosis. 

Early post-MI, the predominant cell type undergoing apoptosis is myocytes. After the majority of 

myocytes have been lost from the infarct region, inflammatory cells become the predominant cell 

type undergoing apoptosis. During the last stages of infarct healing, myofibroblasts become the 

primary cell type undergoing apoptosis in the infarct region.  On the other hand, the primary cell 

type undergoing apoptosis, during the later stages of remodeling, in the non-infarct region is 

myocytes (Zhao et al. 2004).  The data presented here suggest that ATM deficiency increased the 

susceptibility of myocytes towards apoptosis, while decreasing the susceptibility of fibroblasts 

towards apoptosis.   

ATM and Inflammatory Phase 

During the inflammatory phase of post-MI healing (1 and 3 days post-MI) ATM 

deficiency delayed the inflammatory response post-MI and resulted in decreased dilative 
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remodeling. In the infarct region, ATM deficiency resulted in enhanced fibrosis and expression 

of α‐sma (myofibroblast marker). However, cardiac cell apoptosis was higher during ATM 

deficiency. Activation of the anti-apoptotic kinase Akt and inactivation of pro-apoptotic kinase 

GSK-3β were lower, while the expression of the pro-apoptotic protein Bax was higher in the 

infarct region during ATM deficiency.   

MI causes cardiac cell death via necrosis and apoptosis. Necrosis leads to inflammatory 

response via the release of chemokines which attract neutrophils. Leukocytes extravasation 

primarily occurs in post-capillary venules (Ma et al. 2013). The retina of mice lacking ATM is 

shown to have decreased vasculature when compared to the retina of WT mice (Raz-Prag et al. 

2011).  Although not investigated here, the reduced inflammatory response observed during 

ATM deficiency could be, at least in part, due to decreased vasculature in the heart. Increased 

apoptosis can also affect the inflammatory response post-MI.  Apoptotic cells release signals 

such as lactoferrin and annexin 1 which can inhibit neutrophil recruitment (Hayhoe et al. 2006; 

Bournazou et al. 2009). Therefore, increased apoptosis during ATM deficiency post-MI can 

cause inhibitory effects on neutrophil migration.  

Cardiac cell death following MI leads to an increase in wall stress resulting in dilative 

remodeling and decreased survival post-MI.  However, an early increase in collagen fibers can 

prevent dilative remodeling (White et al. 1987; Sutton and Sharpe 2000).  Here, we observed 

decreased dilative remodeling and increased fibrosis during ATM deficiency post-MI. Therefore, 

increased fibrosis may contribute to the decreased dilative remodeling during ATM deficiency 

post-MI.  Myofibroblasts are the main producers of collagen in the infarct region.  The collagen 

being produced in the non-infarcted region originates from undifferentiated fibroblasts 

(Cleutjens, Verluyten, et al. 1995).  In the uninjured heart fibroblasts are inactive. Following MI, 
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fibroblasts experience mechanical stress due to myocyte death, resulting in their activation and 

differentiation into myofibroblasts (Li et al. 1997; Turner and Porter 2013).  The differentiation 

of fibroblast is also aided by biochemical stimuli, such as TGF-β1 and fibronectin splice form 

ED-A (Turner and Porter 2013).  TGF-β1 is secreted as a latent protein and associates with the 

latency-associated peptide (LAP).  It remains inactive until it is activated by either proteolytic 

cleavage or mechanical force (Buscemi et al. 2011).  Three days post-MI, ATM deficiency 

resulted in higher expression of α-sma and fibrosis.  However, levels of active TGF-β1 were 

lower in the infarct region during ATM deficiency. These data suggest that activation of TGF-β1 

may not be solely responsible for differentiation of fibroblasts into myofibroblasts during ATM 

deficiency. Increased mechanical stress and/or ED-A splice variant of fibronectin may play a role 

in fibroblast differentiation during ATM deficiency.   

ATM deficiency associated with increased apoptosis 1 and 3 days post-MI when 

compared to WT.  During this time point, myocytes and inflammatory cells are the predominant 

cell types undergoing apoptosis (Zhao et al. 2004).  Therefore, the increased apoptosis could be 

attributed to either one of these two cell types. Activation of Akt plays an anti-apoptotic role in 

cardiac myocytes, in part by acting upstream in the phosphorylation and inactivation GSK-3β 

(Sutherland et al. 1993).  Akt has also been shown to inhibit Bax (a pro-apoptotic protein) by 

phosphorylating it on Ser-184 (Gardai et al. 2004).  One day post-MI, ATM deficiency 

associated with decreased activation of Akt and an enhanced activation of GSK-3β.  Also, 

expression of Bax was higher in the infarct region 3 days post-MI during ATM deficiency. 

Therefore, enhanced apoptosis, early post-MI, in the infarct region appears to be due to 

decreased survival signaling during ATM deficiency.    



136 
 

ATM and the Proliferative Phase 

Seven days post-MI, ATM deficiency associated with attenuation of cardiac dysfunction 

and dilative remodeling as well as increased infarct thickness, fibrosis and expression of α-sma. 

ATM deficient mice exhibited lower total cardiac cell apoptosis in the infarct region.  The two 

main cell types undergoing apoptosis at this time point, in the infarct region, are macrophages 

and myofibroblasts.  ATM deficiency associated with enhanced expression of α-sma and fibrosis 

in the infarct region post-MI. Therefore, it can be argued that the decreased apoptosis in the 

infarct region during ATM deficiency may be due to decreased myofibroblast apoptosis. The 

increased fibrosis may have contributed to the increased infarct wall thickness leading to 

decreased LV dilation and dysfunction.  

Another interesting finding of this study was that ATM deficient mice exhibited 

increased myocyte apoptosis in the border region, when compared to WT. Increased myocyte 

apoptosis in the border region is predicative of infarct expansion, resulting in a worse outcome 

late post-MI (Frantz et al. 2009; Kempf et al. 2012).  Therefore, it is possible that increased 

fibrosis and apoptosis in the border region during ATM deficiency may associate with cardiac 

dysfunction if the study time points are extended beyond 7 days post-MI. Although there was 

higher myocyte apoptosis in the border area during ATM deficiency, the attenuated cardiac 

dysfunction as well as the increased infarct thickness might be attributed to increased infarct 

fibrosis.  

ATM and the Maturation Phase 

Fourteen and 28 days post-MI, ATM deficient mice exhibited greater cardiac 

dysfunction.  We also saw a trend towards enhanced mortality in ATM deficient mice 28 days 

post-MI.  Fibrosis and expression of α-sma in the infarct region remained higher in ATM 
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deficient mice 28 days post-MI.  Therefore, it appears that the increased fibrosis during ATM 

deficiency only delays dilative remodeling resulting in an initial attenuation of cardiac 

dysfunction.  Cross-linking of the collagen matrix, which occurs during the maturation phase of 

cardiac remodeling, leads to increases in passive stiffness resulting in cardiac dysfunction (Kato 

et al. 1995; Badenhorst et al. 2003).  The increased fibrosis during ATM deficiency could be 

contributing to exacerbated cardiac dysfunction 14 and 28 days post-MI.  

ATM deficiency associated with decreased apoptosis in the infarct region.  At this time 

point, the majority of cells undergoing apoptosis are most likely myofibroblasts. In addition, 

expression of α-sma was higher in ATM deficient hearts, supporting our hypothesis that ATM 

deficiency may be anti-apoptotic for myofibroblasts.  Levels of active GSK-3β were lower in the 

infarct region of ATM deficient hearts. Active GSK-3β can inhibit cell cycle and lead to 

apoptosis (Alt et al. 2000; Hall et al. 2001; Antos et al. 2002). Therefore, decreased GSK-3β 

activity during ATM deficiency could have contributed to not only decreased myofibroblast 

apoptosis, but also to increased myofibroblast proliferation. Induction of senescence in 

myofibroblasts is an important step to inhibit fibrosis (Jun and Lau 2010). In streptozotocin-

induced model of diabetes, ATM deficiency is shown to inhibit endothelial senescence (Zhan et 

al. 2010).  Here, we observed decreased expression of p16 in the infarct region of ATM deficient 

hearts.  Therefore, decreased myofibroblast senescence may also explain increased expression of 

α-sma in the infarct region during ATM deficiency.  Of note, expression of p16 was higher in 

ATM deficient sham hearts.  Expression of Beclin-1, an autophagy-related protein, was also 

higher in ATM deficient sham hearts. Expression of autophagy-related proteins is shown to be 

impaired in the aged heart (Wohlgemuth et al. 2007). The increased expression of p16 and 
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Beclin-1 during ATM deficiency points toward premature aging of the myocytes and possible 

predisposition to myocyte apoptosis post-MI.   

Future Directions  

Future directions of the study are numerous. We showed that MI increases the expression 

of the ATM gene in the heart in both the infarct and non-infarct LV regions. Therefore, it would 

be interesting to identify the cell-type involved in the increased expression of ATM post-MI.   

Mitogenic signals have also been shown to increase expression of ATM in peripheral blood 

mononuclear cells (Fukao et al. 1999). In addition ,we have previously shown, that β-AR 

stimulation increased ATM expression in the heart and in cardiac myocytes (Foster et al. 2011).  

In certain neuronal cell types, expression of ATM is shown to decrease when the cell 

differentiates into a non-dividing phenotype, at which point ATM moves from the nucleus into 

the cytoplasm.  Here it can play an anti-apoptotic role, protecting the cell from serum starvation 

(Allen et al. 2001; Boehrs et al. 2007). Therefore, it is possible that a differential expression of 

ATM and/or differential cellular localization of ATM may influence the apoptotic response 

differently in myocytes versus fibroblasts. However, further investigations are needed to identify 

factors and cell types involved in the increased ATM expression in the heart post-MI. 

The data presented here suggest that ATM deficiency decreased heart function and 

worsened survival late post-MI. As discussed, different phases of the infarct healing process 

involve different cell types of the heart undergoing apoptosis. Previous work from our lab 

showed cardiac myocyte apoptosis and myocardial fibrosis was greater in the myocardium of 

ATM deficient mice 28 days following β-AR stimulation (Foster et al. 2011).  The previous 

study in combination with the work presented here leads us to hypothesize that ATM deficiency 

predisposes cardiac myocytes to apoptosis while either protecting myofibroblasts against 
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apoptosis and/or resulting in increased proliferation of the myofibroblasts. A major limitation of 

this study is that we did not identify the cell types undergoing apoptosis. Identification of the cell 

types undergoing apoptosis may help explain the healing process of the heart during ATM 

deficiency. Post-MI healing is a complex process involving various cytokines, chemokines and 

growth factors. Signals such as lactoferrin and annexin 1 can inhibit recruitment of neutrophils to 

the injury site. Chemokines and cytokines present at different phases of infarct healing can 

influence the fibrotic and apoptotic response. Future investigations are needed to determine if 

ATM deficiency influences the production of cytokines, chemokines and growth factors in the 

heart post-MI.    

Another interesting observation is that the increased fibrosis during ATM deficiency only 

delayed dilative remodeling resulting in an initial attenuation of cardiac dysfunction. However, 

increased fibrosis may have ultimately led to exacerbated heart dysfunction late post-MI. 

Deposition of fibrotic tissue is a complex process involving synthesis and degradation of ECM 

that relies on various MMPs and TIMPs. The current study mainly investigated the protein levels 

of MMP-2 and -9. A thorough analysis of different components leading to fibrosis may provide 

insight into the modulation of heart function during ATM deficiency post-MI.  

Likewise, apoptosis is complex process involving a variety of signaling molecules. Using 

mice lacking ATM and acute β-AR stimulation as a model, we have previously provided 

evidence that the signaling pathway involved in myocyte apoptosis was different in the presence 

or absence of ATM.  In WT hearts, β-AR-stimulated apoptosis occurred via the involvement of 

p53 and JNKs pathway. However, decreased Akt activity may have played a role in β-AR-

stimulated myocyte apoptosis in the absence of ATM (Foster et al. 2012).  The study done here 

points towards the involvement of ATM in cell senescence and autophagy. Future investigations 
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are required to understand the signaling mechanism and organelles involved in this process and 

whether the changes in these mechanisms are beneficial or detrimental.   
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