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ABSTRACT 

Characterization of Putative ExbB and ExbD Leads to the Identification of a Potential Tol-Pal 

System in Rhizobium leguminosarum ATCC 14479 

by 

Valeria Barisic 

Rhizobium leguminosarum is a Gram negative nitrogen-fixing soil bacterium. Due to the limited 

bioavailability of iron, bacteria utilize siderophores that scavenge and bind available iron. The 

transport of iron-siderophore complexes is achieved by the TonB-ExbB-ExbD complex. We 

have previously shown that a functional TonB protein is necessary for iron transport by creating 

ΔtonB mutants and assessing their growth and 55Fe-siderophore transport ability. We attempted 

to identify and characterize the roles of putative exbB and exbD genes using a similar approach. 

Growth curves and sequence analyses suggest putative exbB and exbD may be the tolpal-

associated genes tolQ and tolR. Phenotypic and sensitivity assays showed mutants do not exhibit 

the characteristic tol phenotype and are not sensitive to detergents or changes in ionic strength of 

the growth medium. We also expressed and purified the 120 amino acid fragment of the TonB C-

terminus for further physical and chemical characterization.  
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CHAPTER 1 

INTRODUCTION 

Iron and Its Importance 

Iron is an essential nutrient for not only bacteria, but virtually all living organisms. All 

metal ions, including iron, serve important biological functions and are often cofactors for 

various proteins and transcription factors (Porcheron et al., 2013). In microorganisms, the role of 

iron ranges from nitrogen fixation to metabolism. Deficiencies may cause decreased DNA or 

RNA biosynthesis and affect pathways such as the electron transport chain and citric acid cycle 

(Messenger et al., 2010). Although a plethora of iron can be found in nature, the amount of 

biologically usable iron is rather low (Miethke et al., 2007). Iron exists as either the reduced 

ferrous iron (Fe2+) or the oxidized ferric iron (Fe3+).  At neutral pH ferrous iron is soluble and 

can readily be taken up by cells. However, in the presence of oxygen it spontaneously oxidizes to 

form ferric iron. Although microorganisms have receptors for ferrous and ferric iron, neither is 

freely available in required concentrations since ferric iron forms insoluble ferric hydroxide 

polymers in the presence of oxygen (Miethke et al., 2007). Inside the host, ferric iron is 

sequestered into proteins such as lactoferrin, transferrin, and ferritin (Krewulak et al., 2007). For 

pathogenic bacteria, this poses a dilemma since the concentration of free iron is greatly reduced. 

Ferrous iron, albeit soluble, does not assuage bacteria’s burden of acquiring iron due to its 

potential toxicity when confronted with oxygen. By undergoing the Fenton and Haber-Weiss 

reactions, ferrous iron and oxygen react to form pernicious reactive oxygen species (ROS) which 

may harm DNA, proteins, and membrane lipids (Caza et al., 2013).  
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Iron Availability 

Due to insoluble ferric hydroxides that form from ferric iron, the amount of available 

usable iron in the environment is approximately 10-9 to 10-18 M (Miethke et al., 2007). Inside a 

mammalian host, the iron is stored in proteins such as hemoglobin or ferritin resulting in an even 

lower free iron concentration of 10-24 M (Miethke et al., 2007). This certainly limits pathogenic 

microorganisms to a very restricted supply of iron. However, non-pathogenic bacteria are also 

devoid of free iron since the iron threshold for most bacteria is about 10-6 M (Miethke et al., 

2007). In order for microorganisms to grow, the iron concentration must be maintained. As a 

result, bacteria have evolved intricate iron acquisition systems to capture this vital metal.  

Iron Acquisition Systems 

Through the course of evolution, some microbes developed alternative mechanisms of 

acquiring iron including direct and indirect iron acquisition systems. Those that evolved such 

mechanisms were able to gain a foothold over the deluge of competing microorganisms in the 

environment. Many bacteria possess both direct and indirect iron acquisition systems (Krewulak 

et al., 2007). Iron acquisition by direct mechanism involves the direct contact of a bacterium to 

iron or iron-containing source. Pathogenic bacteria are able to target iron-containing sources, 

such as hemoglobin, by secretion of hemolysins that lyse red blood cells, thus releasing 

hemoglobin. The heme from hemoglobin can further be extracted by proteases that specifically 

target and degrade hemoglobin (Caza et al., 2013). The heme released from hemoglobin can then 

be taken up through direct contact of bacterial cell surface receptors with the heme. In Gram 

negative bacteria, outer membrane receptors recognize and bind heme or hemoglobin, or both, 

depending on the organism (Wandersman et al., 2004). For the bacterium Yersinia enterocolitica, 
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the receptor HemR is able to bind both heme and hemoglobin, whereas Hmbr of Neisseria 

meningitidis, for example, only binds hemoglobin (Wandersman et al., 2004). Heme acquired 

intact or released from hemoglobin is transported across the periplasm and through the inner 

membrane by periplasmic permeases. The fate of heme once inside the cytoplasm has not been 

resolved. It may be that heme oxygenase-like enzymes, such as those in Neisseriae species, are 

present in the cytoplasm that further extract the iron from heme (Wandersman et al., 2000). 

Gram positive bacteria utilize iron from heme and other iron sources in a similar matter, i.e. 

receptors on the peptidoglycan surface that recognize and bind iron or iron-containing sources. In 

Staphylococcus aureus, iron-regulated surface determinant B (IsdB), a protein encoded by the 

Isd locus that also encodes for nine other proteins including surface proteins, a transporter, a 

transpeptidase, and heme-degrading monooxygenases, is capable of binding hemoglobin. isdB 

mutants show reduced hemoglobin binding and pathogenicity (Skaar, 2006). The disadvantage of 

direct iron uptake, however, is that a specific receptor is required for each iron source (Miethke 

et al., 2007).  

Contrary to direct iron acquisition systems in which the iron binding occurs at the cell 

surface, indirect iron acquisition involves the release of compounds into the extracellular 

medium to capture iron. Iron acquisition through indirect methods is achieved by either 

hemophores or siderophores – chelators of heme and ferric iron, respectively. Indirect iron 

acquisition is present in Gram positive and Gram negative bacteria and offers certain advantages 

not provided by direct mechanisms. For microorganisms inhabiting environments devoid of 

heme iron, a direct mechanism of iron uptake would be futile. Therefore, an indirect mechanism 

of iron acquisition through the secretion of siderophores is more beneficial.  
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Siderophores 

Siderophores are low molecular weight compounds (<1 kDa) produced by many Gram 

positive and Gram negative bacteria in response to iron-starvation conditions. Activation of 

genes for the synthesis of siderophores is initiated when intracellular iron concentrations drop 

below bacterium’s threshold, usually 10-6 M (Miethke et al., 2007). Ferric uptake regulator (Fur), 

the global iron regulator in many Gram negative bacteria, controls the transcription of genes 

responsible for siderophore synthesis (Miethke et al., 2007). Using Fe2+ or Mn2+ as a corepressor, 

Fur recognizes and binds specific DNA-binding sequences, called the Fur box, and blocks 

transcription of iron uptake genes. When intracellular Fe2+ concentrations fall below a certain 

limit, the siderophore transcription is initiated (Troxell et al., 2013). In addition to regulation of 

siderophore synthesis, Fur regulates the transcription of more than 90 other genes, including 

those required for the transcription of proteins involved in the tricarboxylic acid (TCA) cycle and 

Fe-dependent superoxide dismutase (SodB) (Hantke, 1987; Dubrac and Touati, 2000). In certain 

Gram positive bacteria, iron regulation is controlled by the DtxR family of proteins first 

identified in Corynebacterium diphtheria. However, not all Gram negative organisms use Fur for 

the maintenance of iron homeostasis. In the nitrogen-fixing Rhizobium leguminosarum, Fur is 

replaced by the rhizobial iron regulator RirA. There is no sequence similarity between RirA and 

the Fur family of proteins, and RirA belongs to the Rrf2 family of transcription regulators 

(Rudolph et al., 2006). Homologs of RirA are only found in other alphaproteobacteria, a class to 

which R. leguminosarum belongs (Ngam et al., 2009). The regulator acts as a repressor of iron-

responsive genes (Ngam et al., 2009) and its transcription is down-regulated by iron-rich 

conditions. The synthesis, uptake, and regulation of R. leguminosarum’s vicibactin siderophore 

is under the control of RirA (Rudolph et al., 2006).  
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Types of Siderophores 

After secretion into the environment, siderophores are then brought inside the cell. Due to 

their size and polarity, siderophores must be transported across the cytoplasmic membrane by 

transport proteins (Furrer et al., 2002). With a high affinity for ferric iron, siderophores can bind 

and strip iron from the source with a lower affinity. Siderophores can be divided into one of three 

groups: hydroxamates, catecholates, or carboxylates, depending on the moiety donating the 

oxygen ligand for Fe3+ coordination (Miethke et al., 2007). A fourth group classified as mixed-

type has been established for the increasing number of identified siderophores that contain more 

than one functional group used as the Fe3+ ligand (Miethke et al., 2007). In acidic conditions, 

carboxylates are more efficient in iron mobilization, and thus often preferred by microbes 

inhabiting such environments whereas catecholates are the more predominant and stronger 

siderophores of microbes found at physiological pH. This is due to protonation of donor atoms 

which plays a role in determining the effectiveness of a siderophore’s affinity (Miethke et al., 

2007).  

Vicibactin  

Belonging to the hydroxamate group of siderophores and produced by the nitrogen-fixing 

Rhizobium leguminosarum, vicibactin is a cyclic siderophore containing three hydroxamate 

functional groups that bind Fe3+. Its synthesis is controlled by the gene clusters vbsGSO, 

vbsADL, vbsC, and vbsP arranged in four operons. Except for vbsP, the transcription of the 

operons is initiated in low-iron conditions (Carter et al., 2002). RpoI, a putative RNA polymerase 

σ factor of extracytoplasmic function (ECF) family, is required for the transcription of vbsGSO 

and vbsADL operons (Yeoman et al., 2003). Mutants defective in rpoI do not produce vicibactin, 
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and strains with cloned rpoI are shown to overexpress the siderophore. The regulator, however, 

does not control expression of vbsC and vbsP (Carter et al., 2002). RpoI most likely controls the 

transcription of vbsGSO and vbsADL operons by interacting with the promoter. The closely 

resembled PvdS σ factor of Pseudomonas is known to bind to the promoters of genes responsible 

for the biosynthesis of the pyoverdine siderophore (Carter et al., 2002). Through a mechanism 

proposed by Carter et al (2002), the vicibactin siderophore is synthesized as a monomer by the 

vbs genes and, in its final step, converted to a cyclic trimer, yielding the completed form of 

vicibactin. The siderophore then exits through the inner and outer membranes and into the 

environment where it binds Fe3+, forming a siderophore-Fe complex. The complex is brought 

inside the cell with the aid of outer and inner membrane transporters, periplasmic binding 

proteins, and the TonB-ExbB-ExbD complex which presumably supplies the energy for the outer 

membrane transporters.  

Outer Membrane Transporters 

Porins located on the outer membrane of Gram negative bacteria serve as channels that 

allow the passage of charged molecules smaller than approximately 600 Daltons into and out of 

the cell via passive transport (Schirmer et al., 1998). Many siderophores are small enough that 

they may pass through porins. However, once bound to iron, the Fe-siderophore complex 

becomes too large for such passage. As a result, the complexes must be actively transported by 

siderophore-specific outer membrane transporters. These transporters are often referred to as 

TonB-dependent transporters (TBDTs) since their function is dependent upon the energy 

transducing TonB complex and, in addition to siderophores, are also responsible for the transport 

of vitamin B12 (Udho et al., 2012), nickel chelates, and carbohydrates (Noinaj et al., 2010).  
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Even though the sequence similarity among the receptors may be low, all outer 

membrane receptors share a similar structure. They are composed of a 22 β-stranded 

transmembrane barrel and an amino-terminal globular domain located inside the barrel often 

referred to as the “plug” (Krewulak et al., 2007). The “plug” prevents molecules from freely 

entering or exiting the cell.  At the N-terminus of the “plug” is the TonB box – a stretch of amino 

acids with conserved motifs that interact with TonB to presumably signal and transduce energy 

to the transporter (Noinaj et al., 2010).  

The β-barrel is made up of 10 periplasmic loops, 11 extracellular loops, and 22 β strands 

of the β-barrel (Krewulak et al., 2007). The β-barrels of outer membrane transporters such as 

BtuB, FecA, FepA, FptA, and FpvA are similar in structure when the Cα backbones of the barrel 

are overlayed. Though the lengths and/or widths of the barrel may differ among the transporters, 

in all cases the β-barrel extends above the lipid bilayer and contains a conserved phenylalanine 

residue necessary for proper folding and insertion of the transporter (Krewulak et al., 2007).  

Occluding the β-barrel is an amino-terminal globular domain. Much speculation still 

exists as to how the siderophore-iron complexes or other ligands pass through the transporter. 

One suggested mechanism is that complete dissociation of the “plug” from the β-barrel occurs, 

as observed by Ma et al. (2007). Li Ma and colleagues engineered and fluorescein maleimide-

modified 25 cysteine substitution mutations in the outer membrane transporter FepA of 

Escherichia coli. A cysteine residue buried within the N-terminal and labeled with fluorescein 

maleimide was observed in the periplasm during transport which suggested the plug exited from 

the β-barrel (Ma et al., 2007). A second proposed mechanism is that the plug does not leave the 

β-barrel, but instead undergoes a conformational change that creates a pore within the β-barrel 

(Noinaj et al., 2010). Using FepA and colicin B, Smallwood et al. detected no structural changes 
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in the plug domain during its interaction with colicin B, contradicting the idea that dissociation 

of the plug from the β-barrel occurs (Smallwood et al., 2009). Similar results were obtained by 

Chakraborty et al. in FhuA and FepA mutants using 55Ferrichrome (Chakraborty, 2007).  Further 

research is necessary to elucidate the exact mechanisms of TBDTs.  

At the N-terminus of the plug domain is a conserved region of about seven amino acids 

called the TonB box (Schalk et al., 2012). Its interaction with the TonB protein is essential for 

the transport of substrates across the outer membrane transporter. Albeit conserved among other 

TBDTs, single amino acid substitutions in the TonB box show little to no reduced transport 

ability (Gudmundsdottir et al., 1989). The TonB box is thought to exist in a folded conformation 

within the β-barrel when not interacting with the TonB protein. Upon binding of the substrate, a 

conformational change occurs at the periplasmic side of the N-terminal domain and a reversible 

association of the TonB protein with the TonB box results in transduction of energy to the 

transporter (Kim et al., 2007).  

TonB-ExbB-ExbD 

 In order for any transport via outer membrane transporters to occur, there must be an 

energy source to drive the transporters. In Gram negative bacteria, energy is produced at the 

inner membrane and is supplied to the energy-devoid outer membrane. To transport the Fe-

siderophore complexes inside the cell, the outer membrane transporter must carry the complex 

across a concentration gradient since the concentration of iron is higher inside the cell (10-6 M) 

than outside the cell (10-18 M). Therefore, for active transport to occur, the proton motive force 

generated at the cytoplasmic membrane must be supplied to these transporters. A complex of 

three proteins – TonB, ExbB, and ExbD – located at the cytoplasmic membrane provide the pmf 
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to the Fe-siderophore transporters, hence the name TonB-dependent transporters (TBDTs) 

(Noinaj, 2010).  

 Much of the research on the TonB complex has been focused in Escherichia coli, though 

little is still known about its mechanism of transduction. In E. coli, TonB is a 26 kDa single 

transmembrane protein with three functional domains: a cytoplasmic N-terminal domain 

(residues 2-65), a periplasmic C-terminal domain (residues 103-239) and a proline-rich spacer 

(resides 66-102) separating the N- and C-terminal domains (Postle et al., 2007). 

  The N-terminal region contains the signal sequence for Sec-dependent export into the 

cytoplasmic membrane (Postle et al., 2007) and consists of a 32-residue transmembrane helix 

(Krewulak et al., 2007). The transmembrane helix not only anchors the protein into the CM, but 

also serves as a site of interaction with the other two proteins in the complex, ExbB and ExbD, 

whose function is vital for energy transduction (Krewulak et al., 2007).  

The C-terminal domain of TonB resides in the periplasm and interacts with the N-

terminal TonB box of the outer membrane transporter. Solution structures of the E. coli TonB C-

terminal domain solved by Peacock et al (2005) reveal a monomeric protein with unstructured 

and structured residues 103-151 and 152-239, respectively. The structured region is made up of 

two α helices packed against a four-stranded antiparallel β sheet (Peacock et al., 2005).  

The proline-rich spacer is located in the periplasm and contains a series of proline and 

glutamine residues and several proline-lysine repeats. More than one in every three residues is a 

proline (Kohler et al., 2010) which presumably provides rigidity and allows for the extension of 

the protein across the periplasm (Krewulak et al., 2007). Although energy transduction cannot be 

achieved without the interaction of the TonB C-terminal with the outer membrane transporter, 
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much of the residues of the proline-rich region can be deleted with no effect on transport (Larsen 

et al., 1993). Larsen and colleagues constructed an E. coli tonBΔ66-100 mutant devoid of the 

proline-rich region and observed no effect on transport of ϕ80 except when the bacterial cell was 

subjected to osmotic swelling, suggesting it plays no role in energy transduction but rather in 

extension across the periplasmic space (Larsen et al., 1993). 

In complex with TonB are ExbB and ExbD, cytoplasmic membrane proteins of 

approximately 26 and 17 kDa, respectively. Inside the cell, the ratio of ExbB:ExbD:TonB is 

2:7:1 (Ollis et al., 2012), though it is unclear if this ratio is retained while the complex is in an 

energy transducing state (Bulathsinghala et al., 2013). In E. coli, exbB and exbD genes are part of 

the exb operon whose transcription is initiated at the exbB promoter, and separating the open 

reading frames of exbB and exbD are only 9 base pairs (Ahmer et al., 1995). Furthermore, 

because both genes are co-transcribed as a single mRNA, ExbB and ExbD do not function 

independently in energy transduction (Held et al., 2002). However, distance between the open 

reading frames varies from organism to organism, and the genes may not be in an operon in other 

Gram negative organisms.  

Traversing the cytoplasmic membrane three times, the majority of ExbB is located in the 

cytoplasm where, in conjunction with the neighboring ExbD, it harnesses and transduces the pmf 

to TonB (Ahmer et al., 1995). Though the mechanism of transduction has not been elucidated 

thus far, ExbB seems to play a role in stabilizing TonB and ExbD and may serve as a scaffold on 

which the aforementioned proteins assemble. It is the only protein in the complex that is stable 

when expressed independently (Bulathsinghala et al., 2013), and its absence results in a 

proteolytically unstable TonB and ExbD (Baker et al., 2013). As mentioned earlier, ExbB 

consists of three transmembrane domains (TMDs), and a significant portion of the protein lies in 
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the cytoplasm. It also has the reverse topology of TonB and ExbD – a periplasmic amino 

terminal and a cytoplasmic carboxy terminal. With much of the protein in the cytoplasm, it has 

been postulated that the cytoplasmic loops of ExbB function in communication between the 

periplasm and cytoplasm (Jana et al., 2011; Bulathsinghala et al., 2013). Earlier studies identified 

four cytoplasmic residues (N196, D211, A228, and G244) important for pmf-dependent 

formaldehyde crosslinking between ExbD and TonB, suggesting signal transduction occurs from 

the cytoplasmic residues to the periplasmic domains of ExbD and TonB (Jana et al. 2011). A 

more recent study using 10-residue-deletion scanning mutagenesis showed that the loop residues 

were necessary for all TonB-dependent interactions. Furthermore, expression of eight out of nine 

deletion mutants resulted in immediate, yet reversible, growth arrest independent of pmf 

(Bulathsinghala et al., 2013). The cytoplasmic loop of ExbB occurs between the first two of three 

TMDs. Due to ExbB and ExbD’s homology to the flagellar motor proteins MotA and MotB, 

which also harness cytoplasmic pmf, several proton pathways through the ExbB TMDs have 

been proposed (Baker et al., 2013). Baker and Postle (2013) showed that when half of each 

TMDs is substituted as a block with alanines, ExbB is inactivated, suggesting all TMDs are 

necessary for ExbB function (Baker et al., 2013). Moreover, there were no individual TMD 

residues identified that were essential for signal transduction or that participated in proton 

translocation (Baker et al., 2013).  

The third and smallest protein in the complex, ExbD, shares identical topology to TonB. 

It is a single transmembrane protein with a periplasmic C-terminus and a cytoplasmic N-

terminus. Like TonB, majority of ExbD occupies the periplasm (Ollis et al., 2009). The 

periplasmic domains of both ExbD and TonB have been shown to interact with each other in the 

presence of proton motive force. Using formaldehyde crosslinking, Ollis et al. (2009) treated E. 
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coli cells with protonophores DNP and CCCP before and during the crosslinking. The presence 

of protonophores prevented crosslinking of TonB and ExbD, indicating the need for pmf for in 

vivo interaction of the periplasmic domains (Ollis et al., 2009). This interaction is disrupted when 

residue D25 in the transmembrane domain is substituted with asparagine or alanine (Ollis et al., 

2009) or by the substitution of leucine 132 with glutamine in the periplasmic domain (Ollis et al., 

2012). Likewise in the TonB transmembrane domain, an H20A substitution disrupts this TonB-

ExbD periplasmic interaction (Ollis et al., 2009). A model for the early stages of energization of 

TonB proposed by Ollis and Postle (2012) corroborates the importance of residues H20 and 

L132. Based on ExbD mutants and using spheroplasts as an in vivo model, a three stage 

energization model shows TonB stymied in the first stage when its periplasmic domain fails to 

interact with the periplasmic domain of ExbD, due to either an H20A or L132Q mutation 

preventing their proper assembly (Ollis et al., 2012). Stage II results when the periplasmic 

domains of both proteins interact with each other with the aid of ExbB serving as a scaffold. 

Stage II is converted to Stage III in the presence of pmf. The conversion is reversible by the 

addition of CCCP to halt the pmf. Once the pmf is restored, the energization proceeds to Stage 

III again (Ollis et al., 2012).   

Rhizobium leguminosarum 

Rhizobium leguminosarum is a Gram negative bacterium commonly found in the soil. It 

is aerobic, motile and plays an important agricultural role in nitrogen fixation. Known to infect 

leguminous plants, rhizobia, as they are collectively called, form a symbiotic relationship with 

their host by reducing atmospheric nitrogen to the more usable NH3 and, in turn, receiving 

carbohydrates from the plant (Long, 2001). For symbiosis to occur, rhizobia must first infect the 

root nodules of the plant – the site of nitrogen fixation. Infection occurs when rhizobia become 
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trapped between two root hair cell walls. Once inside the cell, rhizobia grow and secrete Nod 

factors necessary for nodulation (Gage et al., 2000). The expression of nodulation genes nod, 

nol, and noe is initiated when plant flavonoids activate the transcriptional regulator NodD, which 

subsequently activates the nodulation genes that are involved in the synthesis of Nod factors 

(Peters et al., 1986). NodD proteins bind to conserved motifs called nod boxes located at 

promoter regions of nod genes (Wang et al., 2012).  After the activation and secretion of Nod 

factors, nodules form at the root of the legume. It is here that rhizobia convert atmospheric 

nitrogen into ammonia for the legume (Geurts et al., 2002).  

Present Work 

Previous work on Rhizobium leguminosarum ATCC 14479 has shown that the bacterium 

produces the trihydroxamate siderophore vicibactin (Wright et al., 2013). The import of Fe-

vicibactin complexes through outer membrane transporters occurs via active transport. We 

hypothesize that the TonB-ExbB-ExbD complex is involved in providing energy to the 

transporters. Earlier work has shown that ΔtonB mutant fails to grow in iron-depleted media 

compared to wild type. Using radioactively-labeled 55Fe bound to vicibactin, the mutant also 

failed to import the 55Fe-vicibactin complex. Complementation with the wild type allele restored 

growth and 55Fe import to near wild type levels (Hill, 2014). This substantiates TonB’s indirect 

involvement in the import of the vital element. To assess the roles of ExbB and ExbD, we first 

identified putative exbB and exbD genes and created single and double knockouts of the genes. 

The mutants were then compared with wild type in the ability to grow in complex media, low 

iron and high iron minimal media.  Due to results that differed greatly from those of ΔtonB 

assays, we postulated that the putative exbB and exbD genes we identified are rather the highly 

similar homologs tolQ and tolR of the Tol-Pal system. Additional sequencing downstream of 
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exbD/tolR revealed a putative tolA gene – one of seven genes belonging to the Tol-Pal system. 

To further characterize the putative tolQ and tolR genes, single and double knockout mutants 

were assayed for their susceptibility to detergents and high ionic strength media, and for their 

tendency to exhibit a chaining phenotype when grown in low osmolarity or high ionic strength 

media. We also constructed in-frame fragments of the 120 and 200 amino acid TonB C-terminus 

protein for further physical and chemical analyses.  
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CHAPTER 2 

MATERIALS AND METHODS 

Bacterial Strains 

The strain of Rhizobia used in this study was Rhizobium leguminosarum ATCC 14479 

and was obtained from the American Type Culture Collection. The Escherichia coli strains were 

DH5α, SM10, and BL21 (DE3) (Novagen).  

Growth Conditions 

Rhizobium leguminosarum ATCC 14479 was grown in Yeast Extract Mannitol (YEM) 

broth, Modified Manhart and Wong (MMW) broth, and Congo Red (CR) solid media. YEM is 

efficient in the cultivation of Rhizobia species and consists of (w/v): 1% mannitol, 0.05% 

K2HPO4, 0.1% yeast extract, 0.01% NaCl, and 0.02% MgSO4*7H2O. The pH of the broth was 

adjusted to 6.8 using 12M NaOH prior to autoclaving. When required, MMW was used as 

minimal media and contained the following (w/v): 0.0764% K2HPO4, 0.1% KH2PO4, 0.15% 

Glutamate, 0.018% MgSO4, 0.013% CaSO4*2H2O, and 0.6% dextrose. The pH was adjusted to 

6.8 using 12M NaOH and the media was autoclaved. Prior to inoculation, filter-sterilized 1X 

vitamin solution was added to the media. The composition of the vitamin solution is listed in 

Table 1 below.  
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Table 1. List of Ingredients for 1000X Vitamin Solution 

 

1000X Vitamin Solution 

Ingredient Name Amount (in mg/100 mL) 

H3BO3 145 

CuSO4*5H2O 4.37 

MnCl2*4H2O 4.3 

ZnSO4*7H2O 108 

Na2MoO4*2H2O 250 

CoCl2*6H2O 10 

Na2EDTA*2H2O 550 

Riboflavin 10 

ρ-aminobenzoic acid 10 

Nicotinic acid 10 

Biotin 12 

Thiamine HCl 40 

Pyridoxine HCl 10 

Calcium panthenate 50 

Inositol 50 

Vitamin B12 10 

 

Congo Red solid media is also used for the cultivation of Rhizobium species as well as 

their detection. The congo red dye in the media is not absorbed by rhizobia very efficiently, 

resulting in pink to white colonies on the agar. However, other microorganisms absorb congo red 
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much more readily and thus colonies appear dark pink to red (Kneen et al., 1983). This facilitates 

in distinguishing contaminants from Rhizobium species. The ingredients of CR media were as 

follows (in w/v): 1% mannitol, 0.05% K2HPO4, 0.02% MgSO4*7H2O, 0.01% NaCl, 0.1% yeast 

extract, 3% Bacto-agar, and 0.025% congo red dye. Prior to autoclaving, 0.025% (v/v) of congo 

red dye was added to the media and the pH was adjusted to 6.8 using 12M NaOH.  

Rhizobium leguminosarum ATCC 14479 grown on CR plates were incubated at 28° C for 

48-72 hours, or until colonies formed. When grown in liquid media, MMW or YEM broths were 

inoculated with Rhizobium leguminosarum and grown in a 28° C shaking incubator at 200 rpm 

for 48-72 hours.  

Escherichia coli DH5α, SM10, and BL21 (DE3) strains were grown on Luria-Bertani 

(LB) agar plates or in broth. The contents of LB are (in w/v): 1% tryptone, 0.5% yeast extract, 

0.5% NaCl, and, when applicable, 1.5% Bacto agar.  

When required, antibiotics were added into broth prior to inoculation with R. 

leguminosarum or E. coli, or into autoclaved agar media prior to pouring into plates. The 

concentration of each antibiotic used is listed in Table 2 below.  
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Table 2. List of Antibiotics Used and Their Concentrations 

 

Antibiotic Working Concentration (µg/mL) 

Ampicillin 100 

Carbenicillin 100 

Tetracycline 10 

Gentamycin 10 

Kanamycin 50 

Penicillin G 50 

Nalidixic Acid 10 

 

Genomic Extraction of Rhizobium leguminosarum 

Rhizobium leguminosarum ATCC 14479 was first plated onto CR plate from a -80° C 

freezer stock and grown at 28° C for 2-3 days. A single colony was used to inoculate 3mL YEM 

broth supplemented with penicillin G to inhibit growth of possible contaminants. The inoculated 

broth was grown in a 28° C shaker until growth was visible, usually 48-72 hours. The culture 

was then transferred to a microcentrifuge tube and centrifuged for 10 minutes at 16,000 x g. With 

the supernatant poured off, the pellet was washed twice with 0.85% NaCl to remove the 

exopolysaccharide produced by rhizobia. One milliliter of TNE buffer (Appendix) was added, 

sample vortexed and centrifuged for 5 minutes at 16,000 x g. Then, 1.5 mL of 70% ethanol was 

added, sample vortexed and placed on ice for 15 minutes. The sample was then centrifuged and 

supernatant poured off. The cells were dried for about 5 minutes. Subsequently, cells were 

resuspended in 480 µL of TEST-LR buffer (Appendix) and placed on ice for one hour, followed 

by placement in -20°C freezer for 15 minutes. From the freezer the sample was placed in a 68 °C 
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water bath for 10 minutes. After 10 minutes, 53 µL of 10% sodium dodecyl sulfate (SDS) was 

added, contents mixed by inversion, and sample placed back in 68°C water bath for 15 minutes. 

Eighty-seven µL of 5M NaCl and 69 µL of CTAB/NaCl solution was added, the sample inverted 

to mix contents, and incubated for 15 minutes at 68°C. Afterward, the sample was placed in -

20°C freezer for 30 minutes. Then, 650 µL of chloroform:isoamyl alcohol (24:1) was added, the 

sample inverted several times, and centrifuged for 10 minutes at 16,000 x g. The top layer was 

transferred to a new microcentrifuge tube to which 700 µL of CPI (chloroform: phenol: isoamyl 

alcohol) (25:24:1) was added. The contents were mixed by inversion, centrifuged, and the top 

layer removed to a new tube. The top layer was then precipitated with 1 mL 95% ethanol and the 

pellet containing genomic DNA resuspended in ddH2O.  

PCR Amplification of exbB and exbD 

Because the genome of Rhizobium leguminosarum ATCC 14479 has not been sequenced, 

primers were designed to amplify both exbB and exbD based on Rhizobium leguminosarum 

WSM 2304, a strain with presumably high sequence similarity to R. leguminosarum ATCC 

14479. HindIII and BamHI restriction sites were added to the 5’ end of the forward and reverse 

primer, respectively. The primers were named pUC19F (forward primer) and pUC19R (reverse 

primer) (Appendix B).  

Cloning and Sequencing 

The PCR amplicon of exbB and exbD genes and the cloning plasmid pUC19 were 

digested using BamHI and HindIII restriction enzymes and ligated via T4 DNA polymerase. The 

recombinant plasmid was then transformed into E. coli DH5α and recovered via 
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NaOH/SDS/KAc plasmid prep method. The isolated recombinant plasmid was then sent for 

sequencing to the Molecular Biology Resource Facility at University of Tennessee.  

Splicing by Overlap Extension (SOE) 

A knockout construct of exbB, exbD, and exbBD was created using splicing by overlap 

extension (SOE) (Fig. 1), a method in which approximately 1000 base pairs of flanking regions 

of a gene are generated through PCR that eliminates a significant fragment or the entire gene of 

interest. One fragment contains the 5’ end of a gene and a portion of its upstream sequences and 

the other fragment contains the 3’ end of a gene and its downstream sequences while the central 

sequences are removed. The two fragments are joined together through a second round of PCR 

resulting in a knockout construct of the gene of interest, and in this work is designated with a Δ 

symbol preceding the name of the gene.  

To create the 5’ region of exbB, primers SOEFo and sglSOEbB Ri were used, and 

primers sglSOEbB Ri and SOERo for the creation of the 3’ region of exbB. Likewise, for the 

creation of the 5’ region of exbD, primers SOEFo and sglSOEbD Ri were used, and for the 

amplification of the 3’ region of exbD, primers sglSOEbD Fi and SOERo were used. For the 

double mutant, primers SOEFo and dblSOE Ri were used for amplifying the 5’ region, and 

dblSOE Fi and SOERo were used for amplifying the 3’ region. The sequences of the primers 

used in creating ΔexbB, ΔexbD, and ΔexbBD knockout constructs and the regions where they 

bind to their corresponding genes are illustrated on a nucleotide map in Appendix B. 
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Figure 1. Illustration of Splicing by Overlap Extension 

 

pEX18 Suicide Vector 

The knockout constructs created via SOEing were ligated into the pEX18Gm suicide 

vector containing the gene for gentamycin resistance. Along with antibiotic resistance, pEX18Gm 

vectors contain a lacZα gene that allows for quick IPTG/X-Gal screening of recombinant 

vectors, a multiple cloning site with several common restriction sites (Hoang et al. 1998), and the 

counterselectable sacB gene that, when expressed in Gram negative bacteria in the presence of 

sucrose, is lethal to the cell. Once ligated, the recombinant pEX vectors were then transformed 

via electroporation into E. coli SM10λpir cells and plated onto LBGm agar plates. The plates were 

allowed to incubate overnight at 37°C. The following day, colonies that contained the 

recombinant plasmid were identified by colony PCR.  

 



30 

 

Conjugation 

 A single colony of SM10 that contained the recombinant vector was grown in 3 mL 

LBGm broth overnight on a 37° C shaker set at 200 rpm. A colony of wild type R. leguminosarum 

ATCC 14479 was grown for 48 hours in 3 mL YEM broth in 28°C on a 200 rpm rotary shaker. 

Both donor (SM10) and recipient (R. leguminosarum) cells were harvested by centrifugation and 

washed once with sterile 0.85% saline.  With the saline supernatant decanted, the pellets were 

resuspended in 200 µL YEM broth. Two hundred µL of the donor was mixed with 100 µL of 

recipient cells and vortexed at low speed. The total volume (300µL) was then plated onto CR 

plates and incubated for 48 hours in a 28°C incubator. Afterward, a loopful of transconjugants 

was transferred to 3 mL 0.85% saline, vortexed to remove clumps and serially diluted. The 

dilutions were plated onto CR plates containing gentamycin and nalidixic acid (CRGm/NA) and 

incubated at 28°C until colonies appeared (approx. 5 days). Gentamycin is used to inhibit the 

growth of R. leguminosarum that has not acquired the pEX18Gm vector whereas nalidixic acid is 

used for the inhibition of E. coli. Once colonies were visible, colony PCR was performed to 

identify merodiploids. Once identified, the merodiploids were grown in 1 mL YEM broth for 6 

hours on a 28°C rotary shaker to allow for a second cross-over to occur in which the mutant 

allele is either incorporated into the chromosome or eliminated. The cells were serially diluted 

and plated onto CR plates containing 5% sucrose (CR5% suc) until colonies formed (approximately 

3 days). Cells that have undergone a second cross-over event will contain only one copy of the 

gene of interest, either the wild type or the mutant allele, and will have eliminated the pEX18Gm 

vector from the chromosome. As a result, those cells will not be susceptible to the sucrose 

present in the media due to the absence of the sacB gene and will thus survive. Surviving 

colonies are screened by colony PCR to identify potential mutants. Potential mutants are then 
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grown in YEM for approximately 48 hours, their genomic DNA isolated and used as template for 

PCR using primers specific for the flanking areas up- and downstream of gene of interest, and 

sequenced to confirm the gene knockout.  

Media and Glassware Preparation for Growth Curves 

All glassware used in the generation of the growth curves was treated with nitric acid to 

dissolve any residual iron due to hard water. To control for the amount of iron available to the 

mutants and wild type, 0.25mM 2,2-dipyridyl was added to all minimal media to chelate any 

residual Fe2+ remaining after nitric acid treatment. Mutants and wild type R. leguminosarum 

were grown in: Yeast Extract Mannitol, which served as complex media; Modified Manhart and 

Wong (MMW) minimal media supplemented with 1X vitamin solution devoid of FeCl3, 0.25mM 

2,2-dipyridyl and 10µM FeCl3. Previous work by Wright (2010) determined 10µM FeCl3 to be a 

sufficient concentration to serve as high iron media. For low iron media, MMW was 

supplemented with 1X vitamin solution, 0.25mM 2,2-dipyridyl and 0.25µM FeCl3. Complex 

media required no nitric acid treatment or supplementation of additional iron since the 

concentration of iron cannot be controlled due to varying quantities of iron and other nutrients in 

the yeast extract. 

Susceptibility to High Ionic Strength Medium 

Single colonies of wild type, ΔexbD and ΔexbBD Rhizobium leguminosarum from CR 

plates were inoculated into 5 mL YEM seed broths each and incubated at 28°C at 250 rpm for 

24-48 hours. The seed was then used to inoculate test tubes containing YEM broth of varying 

NaCl concentration, from 0% NaCl to 15% NaCl in 2.5% increments, or from 0% NaCl to 

0.0175% NaCl in 0.0025% increments. An inoculum of each mutant and wild type in regular 
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YEM served as a positive control for growth. The inoculums were incubated at 28°C for 12 or 48 

hours at 250 rpm. After 12 or 48 hours, OD600 was measured for each sample. Inoculums were 

then serially diluted and plated on CR until colonies formed. Once colonies were present, colony 

forming units (CFUs) were calculated for each inoculum.  

Susceptibility to Detergent 

Susceptibility of mutants and wild type to detergents was tested in the same manner as 

susceptibility to high ionic strength medium above. Modifications include the use of regular 

YEM with varying concentrations of Triton X-100 instead of NaCl. The concentrations ranged 

from 0% to 15% Triton X-100 in 2.5% increments. An inoculum of each mutant and wild type in 

regular YEM served as a positive control for growth. The inoculums were grown in YEM at 

28°C for 12 or 48 hours at 250 rpm. The optical density was subsequently measured at 600 nm 

(OD600) and CFUs calculated by serially diluting and plating inoculums onto CR plates.   

Gram Stain to Detect Chaining Phenotype 

Wild type, ΔexbD and ΔexbBD were grown in YEM broth containing 0.0175% NaCl for 

24 hours at 28°C and 250 rpm. A loopful of each mutant and wild type from the broth was 

placed on a slide, allowed to dry, and heat fixed by briefly passing the slide through a flame. 

Crystal violet was added to the slide for one minute to cover the smear and rinsed off with dH2O. 

Gram’s iodine was subsequently placed on the slide for one minute and rinsed off. Then, the 

slide was rinsed with 95% ethanol until the runoff from the slide was clear. Finally, the smear 

was covered in safranin for one minute and rinsed. The slide was blot dried and visualized on the 

100X oil immersion lens on the Nikon Eclipse E-200 microscope. 
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TonB C-terminal Expression 

The 120 and 200 amino acid C-terminal fragments of TonB (Hill, 2014) were amplified 

via PCR using primers TonBCT and TonBR17B (Appendix B), cloned into pET17b expression 

vector, and transformed into BL21 (DE3) cells through electroporation. Once the fragments were 

confirmed to be in-frame through sequencing, colonies were grown in 3 mL LBamp100 broth as 

seed cultures at 37°C overnight. The following morning, 1 mL of each seed culture was used to 

inoculate 100 mL of LBamp100 broth until OD600 = 0.4-0.6. Then, IPTG was added to a final 

concentration of 1mM and allowed to incubate on a 37°C rotary shaker for approximately 4 

hours. After induction, the cultures were then transferred to 50 mL corning tubes and centrifuged 

at 10,000 rpm for 5 minutes. The supernatant was discarded and the pellets were stored at -20°C 

until further use.  

Cell Lysis and Protein Concentration Estimation 

Prior to polyacrylamide gel electrophoresis, the induced BL21 (DE3) cells were lysed 

using B-PER Bacterial Protein Extraction Reagent (Thermo Scientific) following manufacturer’s 

instructions or by sonication for 20 seconds followed by at least 20 seconds of cooling on ice. 

The procedure was repeated until the lysate was clear and no longer viscous. The lysate was 

centrifuged at 10,000 rpm for 15 minutes to pellet cell debris. The supernatant was transferred to 

new tubes and pellet discarded. The protein concentration of lysates was estimated by a Bradford 

assay using Bradford Reagent (Sigma-Aldrich) following manufacturer’s protocol.  

SDS-PAGE 

TonB C-terminal fragments were visualized by sodium dodecyl sulfate–polyacrylamide 

gel electrophoresis (SDS-PAGE) (Laemmli 1970). The samples were mixed with 2X Laemmli 
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buffer (Appendix), boiled for 5 min, and briefly centrifuged. Ten micrograms of protein was 

loaded onto a 12% SDS-PAGE gel (Appendix A) and run at 60V until proteins reached the 

bottom of stacking gel. The voltage was increased to 100V when proteins entered the resolving 

gel. The gel was allowed to run until loading dye reached the bottom of the gel. The gel was then 

stained with Coomassie Brilliant Blue overnight and destained with destaining solution 

containing 50:40:10 (v/v)  ddH2O:methanol:acetic acid.  

Western Blot 

Proteins from the SDS-PAGE were electroblotted onto a PVDF membrane and probed 

using anti-T7 monoclonal antibodies (Novagen). After SDS-PAGE, the gel was soaked in 1X 

Transfer Buffer (Appendix) along with two fiber pads and Whatman No. 1 filter paper for 20 

mins. Immobilon-P PVDF membrane was cut to desired size and soaked in methanol for 1 min 

to activate the membrane then rinsed with ddH2O prior to soaking in Transfer Buffer for 10 

mins. A sandwich was then assembled in the following order: fiber pad, Whatman No. 1 filter 

paper, SDS-PAGE gel, Immobilon-P membrane, Whatman No.1 filter paper, fiber pad. The 

sandwich was clamped in a cassette, placed in the electrophoresis apparatus filled with cold 1X 

Transfer Buffer and an ice pack to keep the unit cool. The transfer was run at 150mA for 2 hours. 

Afterward, the membrane was blocked in 1X TBST with 3% BSA overnight at 4°C or at room 

temperature for 1 hour. The membrane was then subjected to Novagen T7 Tag® monoclonal 

antibody and HRP conjugate following manufacturer’s protocol.  

Purification of TonB C-terminal Fragment 

The 120 amino acid C-terminal fragment of the TonB protein was purified using EMD 

Millipore’s T7 Tag Affinity Purification kit. Once cells were overexpressed and pelleted, they 



35 

 

were resuspended in 1X Wash/Bind buffer and lysed by sonication as described above. After 

sonication, BL21 (DE3) Escherichia coli cells containing the expressed 120 amino acid fragment 

were pelleted by ultra-centrifugation at 30,500 rpm for 30 minutes. The supernatant was 

collected and filtered through a 0.45 micron filter to minimize blocking of the chromatography 

column. The column was equilibrated with 10 bed volumes (10 mL) of 1X Wash/Bind buffer 

prior to loading of the crude lysate. The lysate was loaded onto the column and the flow-through 

collected in a corning tube. The column was then washed with 10 bed volumes (10 mL) of 1X 

Wash/Bind buffer to remove unbound proteins. The bound proteins were then eluted with 5 mL 

1X Elution buffer. The eluted protein was collected in 1 mL fractions in 2 mL eppendorf tubes 

containing 150 µL of Neutralization buffer. All flow-through and eluate was collected and 

analyzed on SDS-PAGE.  
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CHAPTER 3 

RESULTS AND DISCUSSION 

Sequence Analysis of exbB and exbD 

Because the genome of Rhizboium leguminosarum ATCC 14479 has not been sequenced, 

the first goal of characterizing exbB and exbD was to identify and confirm that the PCR 

amplicons are in fact exbB and exbD. Both genes were sequenced and the sequences of putative 

exbB and exbD were compared with similar Rhizobium leguminosarum strains in the National 

Center for Biotechnology Information (NCBI) database using NCBI’s nucleotide BLAST tool. 

Based on the gene sequences of R. leguminosarum WSM2304 strain, the expected size for the 

exbB and exbD amplicons was 720 and 456 base pairs, respectively. Once cloned and sequenced, 

the size of R. leguminosarum ATCC 14479 strain’s exbB and exbD was 720 and 453 base pairs, 

respectively. When the nucleotide sequences were aligned, putative exbB of ATCC 14479 shared 

94% identity with putative exbB of strain WSM2304 (Fig. 2).  
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Figure 2. Nucleotide sequence alignment of putative exbB of R. leguminosarum ATCC 

14479 (top) and exbB of R. leguminosarum WSM2304 

 

Likewise, when the nucleotide sequence of putative exbD of R. leguminosarum ATCC 

14479 was aligned with the putative exbD of strain WSM2304, the genes shared a 95% identity 

(Fig. 3). The expected amplicon of exbD was 456 base pairs, whereas the amplicon of exbD of R. 

leguminosarum ATCC 14479 was three base pairs shorter. The three consecutive nucleotides 

absent from ATCC 14479 but not strain WSM2304 in Fig. 3 accounts for this difference. 
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Figure 3. Nucleotide sequence alignment of putative exbD of R. leguminosarum ATCC 

14479 (top) and exbD of R. leguminosarum WSM2304 

 

 The ExbB protein sequence of ATCC 14479 and strain 2304 was then aligned using 

ExPASy SIM alignment tool (Fig. 4). The open reading frame of exbB in both strains is 239 

amino acids. However, the first 181 amino acids are aligned with three amino acid differences 

between the two strains, resulting in 98.7% identity. The remaining 58 amino acids did not share 

significant identity and, therefore, did not align.  
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98.7% identity in 239 residues overlap; Score: 1160.0; Gap frequency: 0.0% 

 

14479          1 MEQVGLAAATTDVSLWSLFMQAGIVVKLVMLGLIAASVWTWAIVIDKYLAYGRARRQFDK 

2304           1 MEQVGLAAATTDVSLWSLFMQAGIVVKLVMLGLIAASVWTWAIVIDKYLAYGRARRQFDK 

                 ************************************************************ 

 

14479         61 FEQVFWSGQSLEELYRSLSERNNTGLAAIFVAAMREWKKSFERGARSPIGLQMRIDRAMD 

2304          61 FEQVFWSGQSLEELYRSLSERNNTGLAAIFVAAMREWKKSFERGARSPIGLQMRIDRAMD 

                 ************************************************************ 

 

14479        121 VTLARETEFLGARLGSLATIGSAGPFIGLFGTVVGIMTSFQAIAGSKSTNLAVVAPGIAE 

2304         121 VTLSRESEFLGARLGSLATIGSAGPFIGLFGTVVGIMTSFQAIAGSKSTNLAVVAPGIAE 

                 *** ** ***************************************************** 

 

14479        181 ALLATAIGLVAAIPAVIACNKFSADAGKLSGRMEGFADEFSAILSRQIDEKLQPRAAAQ 

2304         181 ALLATAIGLVAAIPAVIAYNKFSADAGKLSGRMEGFADEFSAILSRQIDEKLQPRAAAQ 

                 ****************** **************************************** 

 

Figure 4. Protein sequence alignment of ExbB of R. leguminosarum ATCC 14479 (top row) and 

ExbB of R. leguminosarum strain WSM2304 (bottom row) using ExPASy SIM alignment tool 

 

Similarly with ExbD, when the protein sequences were aligned, 120 amino acids of ExbD 

of ATCC 14479 aligned with 121 amino acids of the ExbD of strain WSM2304. A single amino 

acid deletion in ATCC 14479 or an amino acid insertion in strain WSM2304 resulted in 99.3% 

identity between the ExbD of the two strains. Thirty residues of ExbD of ATCC 14479 and 31 

residues of WSM2304 had little identity, however, and did not align. 

99.3% identity in 151 residues overlap; Score: 731.0; Gap frequency: 0.7% 

 

14479          1 MGMAVGGNGGGGG-RRRRGGRNRAVISEINVTPLVDVMLVLLIIFMVAAPMMTVGVPIDL 

2304           1 MGMAVGGNGGGGGGRRRRGGRNRAVISEINVTPLVDVMLVLLIIFMVAAPMMTVGVPIDL 

                 ************* ********************************************** 

 

14479         60 PETQAKALNSETQPITISVKNDGEVFLQETPIPAAEIAAKLEAIATTGYNERIFVRGDAT 

2304          61 PETQAKALNSETQPITISVKNDGEVFLQETPIPAAEIAAKLEAIATTGYNERIFVRGDAT 

                 ************************************************************ 

 

14479        120 APYGVIADVMARIQGAGFKNIGLVTQQKKDQ 

2304         121 APYGVIADVMARIQGAGFKNIGLVTQQKKDQ 

                 ******************************* 

 

Figure 5. Protein sequence alignment of ExbD of R. leguminosarum ATCC 14479 (top row) and 

ExbD of R. leguminosarum WSM2304 (bottom row) using ExPASy SIM alignment tool 
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Because little is known about the TonB complex in rhizobia, ExbB and ExbD were 

compared with the well-studied Escherichia coli to determine if any structural similarities can be 

observed using DomPred – a bioinformatics tool by University College London Department of 

Computer Science (UCL-CS) that predicts secondary structure of proteins. DomPred’s predicted 

secondary structure of R. leguminosarum’s ExbB (Fig. 6) shows a protein consisting of α helices 

and coils but no β strands. Similarly in E. coli, ExbB is predicted to consist of mainly helices 

(Fig. 7). However, the singular difference between the two predicted protein structures is the 

possibility of a β strand at residue 134 in E. coli. It should be noted, however, that the blue bar 

indicating confidence of prediction at this residue is small. Likewise, when comparing the 

predicted secondary structure of ExbD in R. leguminosarum and E. coli, there are no structural 

differences observed between the two organisms (Fig. 8 and 9). The location of the helices and 

strands varies slightly due to the difference in the length of the protein. ExbD of E. coli is 9 

amino acids shorter than that of R. leguminosarum ATCC 14479.  
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Figure 6. DomPred predicted secondary structure of 

ExbB in R. leguminosarum 

 

 
 

 
Figure 7. DomPred predicted secondary structure of 

ExbB in E. coli 
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 Figure 8. DomPred predicted secondary structure of ExbD in 

R. leguminosarum     

 

 

 

 

 

 

 

 

 
Figure 9. DomPred predicted secondary structure of ExbD in 

E. coli  
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Confirmation of ΔexbD and ΔexbBD Mutants 

Once potential ΔexbD and ΔexbBD mutants (Fig. 10 and Fig. 11, respectively) were 

identified by colony PCR, they were confirmed by sequencing their genomic DNA using primers 

SOEFo and SOERo (Appendix B). Genomic extraction was performed as described above. 

Conjugations of SM10 cells harboring the pEX18Gm vector containing ΔexbB with wild type R. 

leguminosarum resulted in merodiploid cells. However, no ΔexbB mutants were identified. All 

merodiploids reverted to wild type.  

  

Figure 10. 1% TBE agarose gel showing the identification of a potential ΔexbD mutant (blue 

arrow) 

 

 

Figure 11. 1% TBE agarose gel showing the identification of potential ΔexbBD mutants (blue 

arrows) 

 

 Primers SOE2DshortF and SOERo (Appendix B) were used in screening for ΔexbD 

mutants via colony PCR. Using these primers, the expected size of the wild type amplicon was 

1    2    3   4   5    6    7   8    9   10  11  12  13 14 

 1     2     3    4     5     6    7    8     9   10   11   12 
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924 base pairs and 498 base pairs for the mutant. For the screening of ΔexbBD mutant, primers 

SOE2BshortF and SOERo (Appendix B) were used. The expected amplicons were 1665 base 

pairs for the wild type and 890 base pairs for the mutant. Bands in Figures 10 and 11 for mutant 

and wild type alleles appear to be the expected size.  

ΔexbD Complex Media Growth Curve 

To assess the ability of the mutant to grow in media containing a variety of nutrients, 

including iron, ΔexbD mutant and wild type were grown in complex media for 72 hours.  Figure 

12 shows the growth curve of the mutant and wild type in complex media during the 72 hour 

incubation period. No significant difference can be observed between the growth of the mutant 

and the wild type. A likely explanation for the same pattern of growth for both strains is the 

composition of the complex media. Yeast extract is a common ingredient in rich media and 

contains a variety of nutrients for bacterial cultivation, including iron. Therefore, iron 

concentrations in complex media cannot be controlled. Enough iron may be present in complex 

media that microorganisms need not utilize siderophore-mediated iron transport.  

 

Figure 12. Growth curve of wild type and ΔexbD in complex media 
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ΔexbD High Iron Minimal Media Growth Curve 

To further test the mutant’s ability to grow in media with a limited supply of iron, mutant 

and wild type were each grown in minimal media containing a high concentration of iron (10 

µM). Cultures were measured at OD600 every 6 hours for 72 hours total. The growth curve of 

wild type and mutant is shown in Figure 13.  

 

Figure 13. Growth curve of wild type and ΔexbD in high iron minimal media 

 

As opposed to complex media growth curve where both mutant and wild type grew at the 

same rate, in high iron minimal media the mutant grew slightly slower than wild type. Because 

the supplemented iron in the media is in excess concentration and thus greater than intracellular 

concentrations, passive diffusion may be occurring in which iron does not need to be transported 

intracellularly through outer membrane transporters. Therefore, mutants defective in any gene(s) 

involved in TonB-dependent transport may still able to survive and grow when iron 

concentrations in the media are high enough for diffusion to occur.  
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ΔexbD Low Iron Minimal Media Growth Curve 

To test the growth of the mutant when subjected to low iron conditions, mutant and wild 

type were grown in minimal media containing a low concentration of iron (0.25 µM). The 

absorbance was measured every six hours for 72 hours total and plotted, as shown in Figure 14 

below.  

 

Figure 14. Growth curve of wild type and ΔexbD in low iron minimal media 

 

Interestingly, the growth of the mutant was not severely affected as anticipated. The 

growth pattern is very similar to that of the growth in high iron media. The mutant grew only 

slightly slower than wild type. Because the concentration of iron in the media is too low for 

passive diffusion to occur, one explanation of the result may be that since only a portion of the 

gene has been deleted, enough of the gene remains to retain partial function. In E. coli studies it 

is known that the C-terminal of ExbD interacts with the C-terminal of TonB. Perhaps part of the 

C-terminal of the mutant is still able to form an interaction with TonB. Of course, other plausible 

explanations may be that ExbD is not as vital in R. leguminosarum ATCC 14479 or that another 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 6 12 18 24 30 36 42 48 54 60 66 72

O
D

6
0

0

Time (hours)

ΔexbD in Low Iron Minimal Media

WT

Δexbd



47 

 

copy of the gene is present. In fact, the presence of two copies of the same gene has been 

observed in various organisms, including Xanthomonas campestris, Vibrio alginolyticus, and 

Pseudomonas aeruginosa (Wang et al., 2008; Wiggerich et al., 2000; Zhao, 2000). Many species 

of Vibrio, including V. fischerii, V. cholerae, and V. anguillarum, have an additional copy of one 

or more of the genes of the TonB complex. In V. alginolyticus, two sets of tonB-exbB-exbD 

genes have been identified. Both sets of genes are involved in iron acquisition and virulence 

(Wang et al., 2008). Therefore, it is possible that R. leguminosarum may have more than one 

copy of the exbB and/or exbD gene. The presence of another copy of the tonB gene is unlikely, 

however. Growth and 55Fe transport assays show that ΔtonB mutants fail to grow in low iron 

media (Hill, 2014). If a second tonB gene was present, it would be expected that the second gene 

would be able to at least partially compensate for the knocked-out gene. If R. leguminosarum 

does not have two copies of exbB, exbD, or tonB genes, perhaps it may have paralogs of such 

genes. In other organisms, ExbB and ExbD share homologies with flagellar proteins MotA and 

MotB, as well as with proteins TolQ and TolR – two proteins that are part of the Tol-Pal system 

and function to provide energy to outer membrane processes (Teleha et al., 2013). Therefore, 

genes may have been duplicated throughout the course of evolution and the new copies evolved 

functions unrelated to outer membrane energy transduction. It is also likely that the gene 

annotations in the NCBI database which were used to design primers were incorrect, and thus the 

genes have other functions unrelated to iron transport.  

ΔexbBD Complex Media Growth Curve 

After the completion of ΔexbD growth assay, an ΔexbBD double mutant growth assay 

was performed following same procedures used for the previous mutant, including preparation of 

glassware and the use of same media and concentrations of vitamin solution, iron, and 2,2-
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dipyridyl. The wild type and double mutant were grown for 72 hours and their absorbance at 

OD600 measured every six hours. The plot of the complex media growth curve is shown in Fig. 

15 below.  

 

Figure 15. Growth curve of wild type and ΔexbBD in complex media 

 

Much like the ΔexbD mutant grown in complex media, the double mutant has an almost 

identical growth pattern as the wild type. This is not surprising since the same conjecture can be 

applied to the double mutant as to the single mutant. That is, the concentrations of nutrients, 

including iron, cannot be controlled in a complex medium such as Yeast Extract Mannitol 

(YEM) broth due to the presence of yeast extract. Since the iron content of complex media is 

high, passive diffusion of iron occurs and may thus eliminate the need for siderophore-mediated 

iron acquisition.  
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ΔexbBD High Iron Minimal Media Growth Curve 

 When grown in minimal media containing a high concentration (10µM) of FeCl3, the 

wild type outgrew the ΔexbBD mutant only slightly (Fig. 16). This pattern of growth was also 

observed in the ΔexbD growth curve (Fig. 13).  

 

Figure 16. Growth curve of wild type and ΔexbBD in high iron minimal media 

 

The double mutant grew to a slightly lower OD600 than the wild type. Both reached log 

and stationary phase at about the same time whereas cell death occurred a few hours sooner in 

wild type than in the mutant. In the ΔexbD growth curve, both wild type and mutant had not 

reached cell death or stationary phase after 72 hours. The results can be explained based on the 

same arguments given in the case of the ΔexbD growth curve. That is, the high concentration of 

iron in the media results in passive diffusion of the iron across the cell membrane. As a result, 

the tonB-exbB-exbD genes are repressed and not utilized for siderophore-mediated iron transport.   
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ΔexbBD Low Iron Minimal Media Growth Curve 

Contrary to the results obtained from the growth curve of the ΔtonB mutant grown in low 

iron minimal media (Hill, 2014), the ΔexbBD double mutant did not fail to grow when grown in 

minimal media containing a low concentration (0.25µM) of FeCl3 (Fig. 17). Much like the high 

iron minimal media growth curve (Fig. 16), the mutant in low iron media grew only slightly less 

than the wild type. One observable difference between high and low iron growth curves is rate of 

growth. Both wild type and ΔexbBD in high iron media entered stationary phase and 

subsequently cell death sooner than the wild type and ΔexbBD in low iron media. In fact, at the 

72 hour time point, neither wild type nor ΔexbBD had entered stationary phase yet. Since exbB 

and exbD genes in other Gram negative organisms are vital to the function of the TonB complex, 

the growth curve in Fig. 17 is rather surprising. The low concentration of iron in the minimal 

media eliminates the possibility of passive diffusion occurring, as was the assumption in 

previous growth curves. Therefore, another alternative explanation must exist to justify the 

growth curve observed.  

 

Figure 17. Growth curve of wild type and ΔexbBD in low iron minimal media 
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When constructed, the ΔexbBD PCR construct retained part of the 5’ end of exbB and 

part of the 3’ end of exbD. This resulted in the construct containing the start codon of exbB and 

the stop codon of exbD while a significant portion of the remaining sequences between the start 

and stop codons was eliminated. Instead of a complete elimination of both exbB and exbD, the 

knock-out construct retained less than a third of exbB and slightly less than a half of exbD. 

Therefore, it could be that the truncated protein retained partial function to interact with and 

transduce energy to TonB, although unlikely. The reason for the unlikelihood of such an 

occurrence is that neither exbB nor exbD can function independently in E. coli (Held et al., 

2002). Both genes are part of the exb operon in E. coli, and sequence analysis of R. 

leguminosarum’s exbB and exbD genes reveals only 18 base pairs between the stop codon of 

exbB and the start codon of exbD. This suggests that exbB and exbD of R. leguminosarum may 

be part of an operon as well. Therefore, even if one gene remains intact while the other gene is 

knocked out, energy transduction still fails to occur.  

Since growth is not severely affected in the ΔexbD or ΔexbBD mutant when grown under 

low iron conditions, as was initially expected, this raises many questions and concerns as to why 

growth of mutants is not hindered. The least likely possibility has been mentioned above – that 

part of the knocked out gene(s) retains enough nucleotide sequences to yield a partially or 

completely functional protein. A second, more likely possibility is that there is more than one 

exbB and/or exbD gene present, as was mentioned earlier. Several Gram negative organisms 

have been reported to contain more than one copy of the exbB-exbD-tonB genes. If such is the 

case in R. leguminosarum, then the intact copy of the gene is partially compensating for the 

mutated gene. Since the growth of both mutants in minimal media was only slightly hindered, 

both copies of the gene(s), if present, are most likely required for optimal growth. Or, each copy 
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of the gene is indirectly responsible for the transport of iron from different sources. If iron 

transport occurs via different transporters, it is possible that one copy or set of exbB-exbD-tonB 

genes interacts with one type of transporter and another set with a different type of transporter. In 

addition to iron-siderophore transport, the TonB complex is also involved in cyanocobalamin 

transport in E. coli via the BtuB outer membrane transporter (Cadieux et al. 2000). Therefore, 

different nutrients in addition to iron may be transported by TonB-dependent transporters 

(TBDTs) in Rhizobium leguminosarum. Currently no TBDTs have been characterized in R. 

leguminosarum. Consequently, it remains unclear whether exbB and/or exbD genes are involved 

in the transport of other nutrients.  

Since low concentrations of iron in minimal media do not affect ΔexbD and ΔexbBD 

mutants’ growth, iron transport across the outer and inner membrane must still be occurring to 

some extent, as evident by Fig. 17. Therefore, since a significant mutation in the two genes 

which may play a key role in siderophore-mediated iron transport bears no significant 

consequence to the organism’s survival and growth, other factors must be taken into 

consideration to explain the results obtained. A few possibilities have been mentioned above, 

such as presence of more than one copy of each or both genes, or the possibility that the genes 

are energizing transporters involved in the transport of some nutrient other than iron. However, 

further inspection of the sequences obtained for exbB and exbD reveal a new insight which may 

explain the oddities in the data. When aligned with most similar sequences in the NCBI database 

using BLAST, nucleotide sequence of exbB in R. leguminosarum ATCC 14479 most closely 

aligns with a “putative TolQ protein uptake system component” of R. leguminosarum biovar 

viciae, strain 3841. However, the second most similar sequence alignment is with the 

“biopolymer transporter ExbB” of R. leguminosarum biovar trifolii, strain WSM1689. 
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Alignments of R. leguminosarum ATCC 14479 with strain 3841 and strain WSM1689 both share 

96% identity and zero gaps, yet the genes are functionally very different. Likewise, amino acid 

sequence alignment of ExbB shows most similarity to TolQ and ExbB proteins with 99% 

identity (Fig. 18).  

 

Figure 18. NCBI protein BLAST of ExbB from R. leguminosarum ATCC 14479 (top) with other 

most similar sequences 

 

Additionally, when the nucleotide and amino acid sequence of exbD of R. leguminosarum 

ATCC 14479 is aligned with other most similar sequences, it aligns most closely with both exbD 

and tolR genes (or proteins) of various R. leguminosarum strains with a 99% identity (Fig. 19). It 

has been reported that TolQ and TolR share structural homologies to ExbB and ExbD and to the 

flagellar proteins MotA and MotB. Therefore, it is likely that exbB shares significant sequence 

similarity with tolQ and exbD with tolR genes. If the sequences between exbB/exbD and 



54 

 

tolQ/tolR are similar enough that the primers used to amplify exbB and exbD were able to instead 

bind to tolQ and tolR, then the PCR product of exbB and/or exbD would not be discernible from 

tolQ and/or tolR. Neither ExbB/ExbD nor TolQ/TolR has been extensively studied in rhizobia. 

Therefore, the gene assignments for R. leguminosarum in the NCBI database are currently 

putative. If the homologs are highly similar to each other, it is possible that the gene assignments 

are incorrect, or were incorrect at the time when primers were designed. Genes labeled as exbB 

and exbD may, in fact, be tolQ and tolR.  

 

Figure 19. NCBI protein BLAST of ExbD from R. leguminosarum ATCC 14479 (top) with other 

most similar sequences 
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When the potential exbB and exbD genes were first identified in Rhizobium 

leguminosarum ATCC 14479 via PCR, the forward primer was located a significant portion 

upstream of the potential exbB transcriptional start codon. This was done so that the genes in 

their entirety are amplified without the risk of mistaking a nearby start codon with the correct 

one, and thus reducing the actual size of the gene(s). As a result of the primer binding 

significantly upstream of what was believed to be exbB, the gene upstream was sequenced as 

well. When compared against the NCBI database, the gene shows significant identity to an acyl-

coenzyme A (CoA) thioesterase gene and a 4-hydroxybenzoyl-CoA thioesterase gene in various 

Rhizobium strains, including R. leguminosarum and R. etli. The gene codes for a 225 amino acid 

protein found in many Gram negative organisms. Acyl-CoA thioesterases catalyze the hydrolysis 

of acyl-CoA into a free fatty acid and CoA (Hunt et al., 2002), whereas 4-hydroxybenzoyl CoA 

thioesterases hydrolyze 4-hydroxybenzoyl CoA into 4-hydroxybenzoate and CoA (Song et al., 

2012). A review of recent literature pertaining to bacterial acyl coenzyme A thioesterases 

indicates that they may be part of the conserved tol-pal system found in Gram-negative bacteria. 

ybgC is one of seven genes belonging to the tol-pal gene cluster that has been identified as 

having thioesterase activity toward acyl-CoA (Zhuang et al., 2002). This gene is found directly 

upstream of tolQ in various Gram negative organisms, including Haemophilus infuenzae, 

Pseudomonas aeruginosa, Helicobacter pylori, and Agrobacterium vitis. Therefore, it is very 

likely that the putative exbB and exbD genes initially identified in Rhizobium leguminosarum 

ATCC 14479 are instead tolQ and tolR. As mentioned above, this may be due to incorrect gene 

assignments in the NCBI database which resulted in incorrect primers binding to the highly 

similar tolQ and tolR.   
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Sequencing of TolA 

Since the growth of ΔexbD  and ΔexbBD mutants is not affected under low-iron 

conditions, and due to the presence of a Tol-Pal-associated acyl-CoA thioesterase gene upstream 

of exbB, additional sequencing of genes downstream of exbD was necessary to confirm the 

identity of the putative exbB and exbD genes. A primer binding to the 3’ region of the putative 

exbD was designed and used to sequence the gene downstream. About 540 reliable base pairs 

were sequenced and analyzed using NCBI’s nucleotide BLAST tool. Out of nine highly similar 

alignments, eight show similarity to an unknown “hypothetical protein” or “signal peptide 

protein” in various Rhizobium species. However, one alignment shows 93% identity to a 

“putative TolA outer membrane protein” in Rhizobium leguminosarum bv. viciae 3841 (Fig. 20). 



57 

 

 

 

 A protein BLAST revealed similar results, with majority of alignments identifying a 

similarity to a hypothetical protein. As with the nucleotide BLAST, one alignment shows a 96% 

protein similarity with a “putative TolA outer membrane protein” in R. leguminosarum bv. viciae 

3841. Several other alignments listing a putative TolA protein ranging from 51% to 92% identity 

are found in R. etli, R. rubi, Ensifer adhaerens, and Agrobacterium tumefaciens. All four species 

belong to the Rhizobiaceae family. Literature review and NCBI’s protein database show TolA as 

a membrane-anchored protein of the TolQ-TolR-TolA complex belonging to the conserved Tol-

Figure 20. Nucleotide BLAST of putative tolA of R. leguminosarum ATCC 14479 

with putative tolA of R. leguminosarum WSM2304 



58 

 

Pal system. Taken together, growth curves and sequence analyses of the two tolpal-associated 

genes ybgC and tolA suggest that the identified putative exbB and exbD genes may instead be 

tolQ and tolR. Additional experiments are required to confirm the identity of the genes. 

However, throughout this work, wild type and mutant exbB and exbD genes will now be referred 

to as tolQ and tolR, respectively.  

Tol-Pal System 

 The Tol-Pal system is a conserved protein complex in Gram negative bacteria consisting 

of TolQ, TolR, TolA, TolB, Pal (peptidoglycan associated lipoprotein), YbgC, and YbgF 

proteins. The Tol-Pal system plays a role in outer membrane integrity and group A colicin and 

bacteriophage transport (Derouiche, 1995). In E. coli, tolB, pal, and ybgF are arranged in one 

gene cluster and the remaining four genes in a second cluster (Gerding et al., 2007). TolA is a 

single transmembrane domain protein with a cytoplasm-anchored N-terminus, a periplasmic 

central region and a C-terminus involved in colicin transport. TolQ contains three 

transmembrane domains, a periplasmic N-terminus and a cytoplasmic C-terminus. TolR is a 

single transmembrane domain protein with a short cytoplasmic N-terminus and a periplasmic C-

terminus (Derouiche, 1995). The topology of TolA, TolQ and TolR is identical to that of TonB, 

ExbB and ExbD, respectively, in the number of transmembrane domains and the arrangement of 

the N- and C-terminal domains. TolAQR interact with each other via their transmembrane 

domains, forming a complex, while the outer membrane-anchored Pal interacts with the 

periplasmic TolB as well as the C-terminal of TolA, forming a second complex (Lahiri et al., 

2011, Santos et al., 2014). When assembled, the two complexes bridge together the outer 

membrane, periplasm, and inner membrane through the interaction of TolA with Pal (Santos et 

al., 2014, Cascales et al., 2000). YbgC and YbgF are cytoplasmic and periplasmic proteins, 
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respectively, of the Tol-Pal complex. However, deletions of either ybgC or ybgF do not result in 

a tol phenotype (Cascales et al., 2004).  

 The Tol-Pal complex has been implicated in a variety of functions, including 

maintenance of outer membrane integrity, transport of bacteriophages and group A colicins, 

motility, and proper invagination of the outer membrane prior to cell division (Gerding et al., 

2007). A recent study demonstrated the importance of an intact Tol-Pal complex for polar 

localization of chemoreceptors in E. coli, as well as its role in cell motility and chemotaxis 

(Santos et al., 2014). Mutants defective in all Tol and Pal proteins were found to have disturbed 

localization of chemoreceptors and an increase in the tumbling frequency of cells. Swimming 

and swarming assays also revealed a decrease in motility of each single-gene tol and pal mutant 

(Santos et al., 2014). Furthermore, the Tol-Pal complex is required for the proper outer 

membrane invagination during binary fission, and single-gene mutants defective in tolA and pal, 

as well as mutants lacking all Tol and Pal proteins, exhibit a chaining phenotype indicative of the 

inability of the outer membrane to fully invaginate and the cell to separate. The tendency for tol 

and/or pal mutants to form chains is observed when mutants are grown in low osmolarity or high 

ionic strength rich medium. The phenotype is reversed when osmolarity in the medium is 

increased (Gerding et al., 2007). In addition to perturbations in chemotaxis, motility, cell 

division, and chemoreceptor localization, mutations in any tol or pal genes result in a 

compromise of outer membrane integrity, and thus leakage of periplasmic proteins and 

susceptibility to detergents and other toxic compounds (Lahiri et al., 2011).  

 To further characterize the roles of the putative tolQ and tolR genes of Rhizobium 

leguminosarum, the phenotypic characteristics of ΔtolR and ΔtolQR mutants were assessed and 

their susceptibility to detergents and changes in osmolarity tested.  
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Gram Stain of ΔtolR and ΔtolQR 

 To determine whether a chaining phenotype can be observed in ΔtolR and ΔtolQR 

mutants, each mutant and wild type was grown in YEM broth with 0.0175% NaCl until mid-log 

phase. The aforementioned concentration of NaCl was chosen based on the first susceptibility to 

high ionic strength medium assay. Because growth of mutants and wild type was severely 

affected at 2.5% NaCl and above, the NaCl concentration was reduced to 0.0175%. The cultures 

of each mutant and wild type were subsequently used to perform a Gram stain. The slides were 

visualized on Nikon Eclipse E-200 100X oil immersion lens.  

When Gram stained, wild type R. leguminosarum was observed as mostly a single rod 

shaped cell (bacillus), and each cell was approximately the same length and width (Fig. 21A). 

Each ΔtolR mutant cell also appeared as a bacillus of uniform size and length, much like the wild 

type (Fig. 21B). No chaining phenotype was observed which suggests the mutant’s ability for 

each cell to separate during binary fission is unaffected. This could be due to an inadequate 

concentration of NaCl to induce the chaining phenotype, or the mutation of the gene has no 

effect on the outer membrane invagination and cell separation. The Gram stain of the double 

mutant also showed no discernible difference from the single mutant or wild type (Fig. 21C).  
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Figure 21. Gram stain of A) wild type, B) ΔtolR, and C) ΔtolQR R. leguminosarum grown in 

YEM with 0.0175% NaCl added 

 

Because the Tol-Pal proteins bridge the outer and inner membrane through the interaction 

of Pal with TolA, mutations in tolA and/or pal may affect septation. E. coli ΔtolA mutants form 

long chains of cells when grown in low osmolarity or high ionic strength rich medium (Meury, 

1999). Likewise, Δpal and Δtolpal (mutant defective in all tolpal genes, excluding ybgC and 

ybgF) mutants form long multi-septate chains of cells when grown in Luria-Bertani (LB) broth 

containing no added NaCl (Gerding et al., 2007). This chaining phenotype has been observed in 

Vibrio cholerae, Pseudomonas putida, and Erwinia chrysanthemi (Heilpern et al., 2000; Llamas 

et al., 2000). However, no research on the Tol-Pal system in Rhizobium has been published. The 

A 

B 
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formation of multi-septate chains may not be a characteristic of Δtolpal mutants in R. 

leguminosarum. Or, TolQ and/or TolR mutations might not affect the septation process since the 

interaction of TolA with Pal may be independent of TolQ and TolR in rhizobia. In other 

organisms, such as E. coli, the conformational change in TolA that allows for its interaction with 

Pal is dependent upon TolQ, TolR, and pmf (Germon et al., 2001). The three proteins interact 

with each other through their transmembrane domains, and this interaction is required to couple 

and transduce the pmf of the cytoplasmic membrane to TolA. Since crosstalk between TolQ-

TolR-TolA and ExbB-ExbD-TonB has been observed (Braun et al., 1993), it is possible that 

ExbB and ExbD are complementing the ΔtolR and ΔtolQR mutants.  In E. coli, group A and 

group B colicins are imported by the TolQ-TolR-TolA and ExbB-ExbD-TonB complexes, 

respectively. However, when ΔtolQR mutants are transformed with a plasmid containing exbB 

and exbD, the mutants become sensitive to group A colicins, suggesting an interaction of ExbB 

and ExbD with TolA. Likewise, in ΔexbBD mutants carrying a plasmid containing tolQ and tolR, 

sensitivity to group B colicins is increased, indicating that TolQ and TolR are interacting with 

TonB (Braun et al., 1993). Since this complementation occurs in E. coli, it is likely that it may 

also occur in R. leguminosarum, especially since the sequence similarities between the two 

transport systems is substantial (Fig. 18 and Fig. 19). As a result, the phentotype characteristic of 

Tol-Pal mutants, such as the formation of long multi-septate chains, would not be observed if the 

interaction of TolA with Pal is assisted by ExbB and ExbD.  

To assess whether low osmolarity medium would trigger a chaining phenotype, mutant 

and parental strains were grown in YEM devoid of all salts (NaCl, MgSO4, and K2HPO4). The 

cultures were grown under the same conditions as those in high ionic strength medium above. A 

Gram stain was performed on all three strains. No differences were observed between the strains 
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grown in YEM media containing no salts and those grown in YEM with 0.0175% added NaCl 

(data not shown).  This further suggests that mutations in the TolQR proteins do not prevent the 

separation of cells during binary fission.  

Susceptibility to Detergents 

Because the Tol-Pal system has been shown to be involved in outer membrane integrity, 

mutations in tolpal genes lead to sensitivities to detergents and to environments with low 

osmolarity or high ionic strength. To assess the susceptibility of ΔtolR and ΔtolQR mutants to 

detergents, mutants and wild type were inoculated into YEM broth containing 0% to 15% Triton 

X-100 detergent in 2.5% increments. All inoculums were adjusted to have approximately the 

same initial OD600. The inoculums were incubated for 48 hours at 250 rpm and 28°C. 

Subsequently their OD600 was measured and dilutions of inoculums plated onto CR agar plates. 

Once colonies appeared, the CFUs were calculated.  

The OD600 measurements were approximately the same for wild type and mutant strains 

(Fig. 22A). The growth of each strain decreased with increasing concentration of Triton X-100; 

however, there was no significant difference between wild type and mutant strains. Since 

absorbance measurements do not distinguish between live and dead cells, the inoculums were 

serially diluted and plated onto CR plates to determine the number of viable cells. Figure 22B 

shows no significant difference between the viability of wild type and mutant strains when 

grown in the presence of 5% to 15% detergent. The number of viable cells in media containing 

12.5% and 15% Triton X-100 is too small to be visible in Fig. 22B. However, the viability was 

approximately the same for parental and mutant strains.  
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Figure 22. Graph of the A) the OD600 measurements and B) colony forming units (CFUs) of wild 

type (blue), ΔtolR (red), and ΔtolQR (green) grown in media containing varying concentrations 

of Triton X-100. Error bars represent standard error 

Because there was no considerable difference between wild type and mutant strains, it 

was thought that the vast amount of exopolysaccharide (EPS) typically produced by R. 

leguminosarum may be protecting the cell from the damaging effects of detergents. To determine 

if exopolysaccharide production plays a role in the mutants’ resistance to Triton X-100, cells 

were washed twice with 0.85% saline to remove the EPS. The washed cells were resuspended in 

ddH2O and inoculated into tubes containing the appropriate concentration of Triton X-100. The 

cultures were grown for 48 hours with measurements taken at 12 and 48 hour time points. 
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Twelve hour aborbance measurements and CFU calculations were performed since the amount 

of EPS production would be significantly less than at 48 hours (Fig. 23A and B).  

 

 

Figure 23. Graph of the A) OD600 and B) colony forming units (CFUs) of washed wild type 

(blue), ΔtolR (red), and ΔtolQR (green) cells grown in media containing varying concentrations 

of Triton X-100. Error bars represent standard error 

 

Absorbance was measured for 48 hour cultures as well, but no difference was observed 

between wild type and mutants (data not shown). There was no difference in growth or the 
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number of surviving cells between parental and mutant strains when the EPS has been removed. 

These results indicate that EPS is most likely not a factor contributing to the survival of mutants 

in media containing detergent. It was expected that mutants would be more susceptible to higher 

levels of detergent than wild type since all E. coli Tol and Pal mutants exhibit characteristics 

similar to Lpp (Braun’s lipoprotein) mutants, such as formation of outer membrane vesicles and 

shedding of periplasmic proteins (Bernadac et al., 1998). This characteristic, however, is not 

common to all Gram negative bacteria. Salmonella enterica subspecies enterica serovar 

Typhimurium ΔtolA mutants confer resistance to Triton X-100 to the level of the wild type, 

growing at even 12% Triton X-100 concentrations. The ΔtolA mutant of serovar Typhi is much 

more sensitive to the detergent, however. Its growth is inhibited at 2% Triton X-100 (Lahiri et 

al., 2011). Therefore, sensitivity to detergents of ΔtolR and ΔtolQR mutants in R. leguminosarum 

may be more comparable to those observed in S. enterica subsp. enterica serovar Typhimurium 

than E. coli. Without the Pal-TolA interaction that links the outer and inner membranes, 

expansion of the periplasmic space occurs at sites of constriction in E. coli (Gerding et al., 2007). 

This expansion is the result of the constriction of the outer membrane lagging behind the inner 

membrane since the bridge that links the two membranes together is interrupted due to mutations 

in TolA, Pal, or both. Since TolQ and TolR are not directly involved in the linkage of inner and 

outer membranes, mutations in either gene may not yield the same result as a ΔtolA mutant, for 

example. This may especially be true if ExbB and ExbD are complementing TolQ and TolR, 

respectively.  

Susceptibility to High Ionic Strength Medium 

As mentioned above, tolpal mutants are susceptible to conditions of high ionic strength, 

such as an increase in NaCl concentrations in growth media. To determine whether incremental 
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increases of NaCl in YEM broth have any effect on the growth or survivability of mutants, each 

mutant and wild type was inoculated into YEM broth containing 0% to 15% NaCl in 2.5% 

increments and incubated at 250 rpm and 28°C for 48 hours. The OD600 was measured at the end 

of 48 hour incubation period, and cultures were serially diluted and plated onto CR agar plates. 

The results of OD600 measurements are shown in Figure 24. 

 

Figure 24. Graph of the susceptibility of wild type (blue), ΔtolR (red), and ΔtolQR (green) 

mutants to different concentrations of NaCl. Wild type and mutants failed to grow at 10% and 

higher concentrations of NaCl, and are therefore not shown. Error bars represent standard error 

 

As a positive control for growth, mutants and parental strains were grown in regular 

YEM broth. In broth containing 0% NaCl, there was no difference between mutants and wild 

type and all three strains grew to the same optical density as the positive control (Reg. YEM). At 

2.5% NaCl, the growth of mutants and parental strains is significantly inhibited and no growth 

occurs at concentrations of 10% NaCl and above.  As a result, those values are not included in 

Fig. 24. Because 2.5% NaCl concentration significantly impacts growth, the assay was repeated 

using NaCl concentrations ranging from 0% to 0.0175% in 0.0025% increments. This range was 
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chosen based on the standard concentration of 0.01% NaCl in regular YEM broth. The assay was 

performed using washed cells to eliminate the possibility of EPS protecting the membrane 

integrity of mutants and wild type. Strains were incubated for 48 hours with measurements taken 

at the 12 hour time point to minimize production of EPS. Absorbance at 600 nm was measured 

and CFUs were calculated, as shown in Figure 25A and B, respectively. Measurements of 

cultures at 48 hours are not shown. However, there was no observable difference between wild 

type and mutants.  

 

  

Figure 25. Graph of the A) OD600 measurements and B) colony forming units (CFUs) of washed 

wild type (blue), ΔtolR (red), and ΔtolQR (green) cells grown in media containing varying 

concentrations of NaCl. Error bars represent standard error 
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Much like the “Susceptibility to Detergent” assay (Fig. 22), there was no difference in 

growth between mutant and parental strains. Absorbance values (Fig. 25A) were relatively 

similar for wild type and ΔtolR/ΔtolQR mutants, as were the number of viable cells (Fig. 25B). 

Based on these results, we can conclude that mutations in putative tolQ and tolR do not confer a 

tol phenotype in R. leguminosarum, such as the formation of long multi-septate chains and 

sensitivity to detergent or high ionic strength medium.  

 

Expression of TonB C-Terminal Protein Fragment 

The 120 and 200 amino acid C-terminal fragments of TonB were constructed and 

heterologously expressed in Escherichia coli BL21 (DE3) cells. To visualize protein expression, 

induced and uninduced samples were run on an SDS-PAGE and stained with Coomassie Blue 

dye. The expression of the 200 amino acid fragment of TonB was not detected, however. 

Reasons for this are unknown, but factors may include inadequate optimization of conditions, 

such as length of time of induction or the concentration of IPTG, or degradation of protein by 

host proteases. The presence of a proline-rich region in the 200 amino acid fragment may also 

play a role in its stability and expression. This region is not present in the 120 amino acid 

fragment. The 120 amino acid fragment was successfully expressed, however (Fig. 26), and 

confirmed via Western Blot (Fig. 27).  
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Lane 1 – MW marker 

Lane 2 – pET17b induced 

Lane 3 – TonB 120 aa C-terminal uninduced (5µg) 

Lane 4 – TonB 120 aa C-terminal induced (5µg) 

Lane 5 – TonB 120 aa C-terminal uninduced (10µg) 

Lane 6 – TonB 120 aa C-terminal induced (10µg) 

 

Figure 26. SDS-PAGE of unexpressed and expressed 120 amino acid fragment of TonB C-

terminal 

 

Figure 27. Western Blot of expressed 120 amino acid fragment of TonB C-terminal 

 

The TonB C-terminal protein fragment was expected to be approximately 16.6 kDa. 

However, since the T7 tag of the pET17b vector that is transcribed along with the protein is 11 

amino acids long, the molecular weight of the protein with the tag was expected to be 

approximately 17.8 kDa. The expected molecular weight corresponded to the size of the band in 

Figure 26, lanes 4 and 6.  

Purification of TonB C-terminal Protein Fragment 

 After confirmation of expression of the TonB C-terminal protein fragment by SDS-

PAGE and Western Blot, the protein of interest was purified via EMD Millipore’s T7•Tag 

Affinity Purification Kit following manufacturer’s protocol. The protein of interest was eluted 

with 5 mL of 1X Elution Buffer in 1 mL increments. The eluted protein and all flow-through 

collected were run on an SDS-PAGE to determine the presence of a pure protein (Fig. 28). 

     1       2      3     4     5      6 
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Unfortunately, much of the protein remained in the crude extract flow-through suggesting over-

saturation of the column. As a result, the concentration of purified protein was very low. To 

determine if the cause for poor binding was perhaps due to the protein being trapped in inclusion 

bodies, another purification was performed using urea to solubilize the inclusion bodies. Urea 

treatment and subsequent purification steps were performed as suggested by the manufacturer. 

However, the amount of protein binding was the same as the purification without urea treatment. 

Since the proteins in the crude extract are in their native state, it may be that the T7 tag at the N-

terminus of the fusion protein is obstructed by the native folding of the protein, thus not exposed 

enough to bind to the agarose resin antibodies. Or, the amount of resin in the column was not 

sufficient to bind all of the protein in the crude extract. Loading less protein onto the column to 

avoid over-saturation may alleviate this issue. Since the purification yielded a low concentration 

of purified protein, the protein was concentrated using Amicon Ultra Centrifugal Filters 

(Millipore) (Fig. 28, lane 10).  

 

Figure 29. SDS-PAGE of TonB C-terminal pre- and post-purification. Five µg of protein loaded 

in lanes 2-9, except lane 4 (10 µL of sample) and lane 10 (10 µg) 
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CHAPTER 4 

CONCLUSION 

 When we set out to identify exbB and exbD genes in the unsequenced Rhizobium 

leguminosarum ATCC 14479, we relied on previously sequenced strains to design primers. 

Because our strain is known to infect the red clover, Trifolium pretense, we chose exbB and exbD 

genes of the highly similar R. leguminosarum bv. trifolii WSM2304 strain as the genomic 

template for primer design. Once the genes were amplified, cloned into a plasmid and sequenced, 

the sequence was analyzed using BLAST. Nucleotide and protein BLAST results showed a 

significant identity to ExbB and ExbD of other R. leguminosarum strains. The sequence for 

exbB, however, also showed identity to TolQ. The predicted secondary structure generated by 

DomPred was compared to the predicted structure of E. coli’s ExbB and ExbD. Proteins of both 

strains were almost identical in terms of the predicted arrangement and number of α helices and 

β sheets.  

To determine whether putative ExbB and ExbD proteins are involved in iron transport, 

single and double gene knockout mutants were created. Unfortunately, an exbB single mutant 

could not be identified. Using the ΔexbD and ΔexbBD mutant and wild type strains, growth 

assays in complex, low-iron, and high-iron media were performed and data plotted to generate a 

growth curve. Growth curves for both mutants were very similar to each other and both were 

able to grow in low-iron media.  

Since neither an exbB nor exbD mutant in E. coli is able to survive under low-iron 

conditions, we hypothesized that another copy of the set of genes was present and compensating 

for the knocked out genes. After all, it is not uncommon for microorganisms to have two sets of 

exbb/exbd or tonb/exbb/exbd genes (Wiggerich and Puhler, 2000; Zhao and Poole, 2000). 
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However, when primers to amplify exbB were designed, they were constructed so that they 

bound significantly upstream of the 5’ end of exbB. As a result, the neighboring gene was also 

cloned and sequenced. Sequence analysis predicted the gene codes for an acyl coenzyme A 

thioesterase – a protein belonging to the Tol-Pal complex. Additional bioinformatics research 

revealed substantial sequence similarities between putative ExbB/ExbD and putative TolQ/TolR 

in R. leguminosarum. It is likely that when primers were designed based on exbB and exbD of R. 

leguminosarum WSM2304, the gene assignment in the NCBI database was incorrect since 

exbB/exbD and tolQ/tolR of many R. leguminosarum strains are listed as putative genes in the 

database. As a result, the primers instead may have bound to the highly similar tolQ and tolR.To 

determine whether the putative exbB and exbD genes were instead tolQ and tolR, additional 

sequencing of neighboring genes was performed to identify a tolA gene that is found downstream 

of tolR in other Gram negative organisms. Sequence results of the gene located downstream of 

the 3’ end of exbD identified the gene as a putative tolA gene coding for the TolA protein– one 

of seven proteins belonging to the Tol-Pal system. With TolA and acyl CoA thioesterase (coded 

by the ybgC gene) proteins identified and the genes arranged in the same order as the tolpal gene 

clusters of various other Gram negative organisms, it became apparent that the exbB and exbD 

genes could be the Tol-Pal associated tolQ and tolR. Suddenly, the unusual growth curves of the 

mutants were no longer peculiar. Because our results did not indicate that putative ExbB and 

ExbD function in iron transport, the possibility that the the gene annotations in the NCBI 

database were incorrect and may potentially be those of the Tol-Pal system required further 

testing.  

The Tol-Pal system, unlike the TonB-ExbB-ExbD complex, has not been reported to be 

involved in iron transport. Instead, its roles are vaster, ranging from outer membrane integrity to 
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cell division. Since previous work on the Tol-Pal system in E. coli and S. enterica showed tolpal 

mutants are sensitive to detergents, high salt concentrations, and form multi-septate chains under 

low osmolarity or high ionic strength conditions, we performed sensitivity assays and Gram 

stains to determine if the same is true for R. leguminosarum. Gram stains of parental and mutants 

strains in low osmolarity and high ionic strength medium showed no differences between the 

mutants and wild type and no formation of multi-septate chains indicative of the cell’s inability 

to fully separate. Detergent and high salt sensitivity assays also showed no differences between 

mutants and wild type. Exopolysaccharide production characteristic of R. leguminosarum was 

determined to have no effect on the survivability of mutants or wild type. Our current results do 

not suggest that the putative genes are tolQ and tolR since their gene assignment in the NCBI 

database has not been verified. If the genes are tolQ and tolR, perhaps they are not directly 

involved in outer membrane integrity or in separation of cells during binary fission, or other 

proteins, such as the highly similar ExbB and ExbD, are complementing TolQ and TolR. 

Additonal testing is required to determine if the initially identified putative genes exbB and exbD 

are instead tolQ and tolR and to characterize their roles in R. leguminosarum.  

 We were also able to successfully express and purify the 120 amino acid fragment of the 

TonB C-terminus. Expression of the 200 amino acid fragment was unsuccessful, however. 

Difficulties in its expression may be attributed to the proline-rich region not present in the 120 

amino acid fragment. This region is believed to provide rigidity to TonB and assist in its 

extension across the cytoplasmic space (Krewulak et al., 2007). It may be that the proline-rich 

region is affecting the stability of the protein. The larger protein fragment may be less stable and 

prone to degradation by proteases.  
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 Further work is necessary to elucidate the exact roles of putative TolQ and TolR in R. 

leguminosarum. Four genes, ybgC, tolQ, tolR, and tolA, have been identified and sequenced. 

Additional sequencing is needed to determine the identity and location of the remaining tolpal 

genes. To determine if TolQ and/or TolR play a role in motility, swimming, swarming, and 

twitching motility assays need to be performed. The absence of zones of growth from the site of 

inoculation would suggest a defect in motility. Also, once a ΔtolQ mutant is created, the 

functions of each TolQ and TolR protein could be assessed. The creation of additional tolpal 

mutants would assist in characterizing the role of each Tol-Pal protein in R. leguminosarum. 

Because no research on the Tol-Pal system in any strain of Rhizobium has been published to 

date, this characterization would be the first to shed light on its role in the nitrogen-fixing 

bacterium. Because no phenotypic or growth-rate differences can be observed between mutants 

and wild type, expression studies would need to be performed to determine if any of the tolpal 

genes are being transcribed.  

The identification and sequencing of exbB and exbD would assist in determining their 

similarity to tolQ and tolR. Because the lack of difference in growth and sensitivity to detergent 

and high salt concentrations between parental and mutant strains may be due to complementation 

by ExbB and ExbD, single and double exbB/exbD mutants would need to be created and 

susceptibility assays repeated to determine if they are complementing TolQ and TolR.  

 The purification of the 120 amino acid fragment of the TonB C-terminal yielded low 

levels of protein. Therefore, additional expression and purification is necessary to attain a 

sufficient protein concentration for downstream applications. The putative TonB protein 

identified by Hill (2014) is significantly larger than TonB of E. coli and has not been confirmed 

to be TonB via protein sequencing. Therefore, N-terminal sequencing of the purified C-terminus 
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fragment would confirm the identity of the putative TonB protein. Nuclear magnetic resonance 

(NMR) spectroscopy would provide additional information on its physical and chemical 

properties.  
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APPENDICES 

Appendix A 

 

Media and Buffers 

 

Luria Broth (LB) 

Tryptone  10.0g 

Yeast Extract  5.0g 

NaCl   10.0g 

ddH2O   to 1L 

Dissolve ingredients and autoclave. 

 

For LB agar plates: 

Agar   15.0g 

Dissolve ingredients and autoclave.  

 

 

Modified Manhart and Wong (MMW)  

Dextrose  6.0g 

Glutamate  1.5g 

KH2PO4  1.0g 

Yeast Extract Mannitol Broth 

(YEM)/Congo Red Agar (CR) 

Mannitol  4.0g 

K2HPO4  0.2g 

MgSO4  0.08g 

NaCl   0.04g 

Yeast Extract  0.4g 

ddH2O   to 400mL 

Dissolve ingredients, adjust pH to 6.8 and 

autoclave. 

 

For Congo Red agar plates, add: 

Agar    12.0g 

1% Congo Red dye 1mL 

Dissolve ingredients, adjust pH to 6.8 and 

autoclave.

K2HPO4  0.764g 

MgSO4  0.18g 

CaSo4*2H2O  0.13g 

ddH2O   to 1L 

Dissolve ingredients, adjust pH to 6.8, and autoclave. 

 

TNE Buffer 

0.1 M Tris-HCl (pH 8.0) 

0.15 M NaCl 

20 mM EDTA 

 

TEST-LR Buffer 

0.1 M Tris (pH 8.0) 

20 mM EDTA 

0.6 M Sucrose 

1% Triton X-100 

24 µg/mL lysozyme 

0.8 µg/mL RNase A
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     Vitamin Solution  (mg) 

Na2EDTA*2H2O   550 

Na2MoO4*2H2O   250 

H3BO3    145 

ZnSO4*7H2O  108 

Calcium Panthenate  50 

Inositol    50 

Thiamine HCl   40 

Biotin   12 

CoCl2*6H2O   10 

Riboflavin    10 

p-aminobenzoic Acid  10 

Nicotinic Acid   10 

Pyridoxine HCl   10 

Vitamin B12   10 

CuSO4*5H2O   4.37 

MnCl2*4H2O  4.3 

     ddH2O   to 1L 

Dissolve ingredients and filter sterilize.  
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SDS-PAGE Solutions 

 

Stacking Gel Buffer (pH 6.8) Resolving Gel Buffer (pH 8.8)

0.5M Tris     

ddH2O   

       

1.5M Tris 

ddH2O 

Tris-Glycine-SDS Buffer (10X) 

Ingredient    Final Concentration 

Tris     0.25 M 

Glycine    1.92 M 

Sodium Dodecyl Sulfate (SDS) 1.0% (w/v) 

ddH2O     to 1 L 

 

SDS-PAGE gel  

Ingredient    Stacking    Resolving (12%) 

30% bis-acrylamide  0.66 mL  3 mL 

Stacking Gel Buffer  1.26 mL   - 

Running Gel Buffer  -   1.88 mL 

ddH2O    3 mL   2.52 mL 

10% SDS   50 µL   75 µL 

10% APS   25 µL   37.5 µL 

TEMED   5 µL   3.75 µL 

 

Coomassie Blue Staining Solution 

Ingredient   Final concentration 

Coomassie R-250  0.1% (w/v)  

Methanol    50% (v/v) 

Glacial acetic acid   10% (v/v) 

ddH2O    40% (v/v) 

 

 

 

 

 

 

SDS-PAGE Destaining Solution 

Ingredient   Final concentration 

Methanol    50% (v/v) 

Glacial acetic acid   10% (v/v) 

ddH2O    40% (v/v) 

 

2X Laemmli Buffer 

Ingredient   Final concentration 

Sodium dodecyl sulfate 4% (w/v) 

Glycerol   20% (v/v) 

1M Tris pH 6.8  120 mM 

Bromophenol blue  0.02% (w/v) 

ddH2O     
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Western Blot Solutions 

Transfer Buffer (10X) 

Ingredient  Final concentration  

Tris   0.25 M 

Glycine  1.92 M 

ddH2O    

For 1X working stock, dilute with ddH2O and add methanol to 20% final concentration 

 

1X TBST Wash Buffer 

Ingredient  Final concentration  

Tris   50 mM 

NaCl   150 mM 

Tween   0.1% 

ddH2O 

 

Blocking Buffer 

Ingredient   Final concentration  

Bovine serum albumin   3% (w/v) 

TBST    1X 

Dissolve BSA and filter sterilize.  
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Appendix B 

Primers 

Primer Name Primer Sequence 5’ – 3’  

pUC19 F GCGCGGATCCCTTCATCACATCGTCTCCTG 

pUC19 R GCGCAAGCTTCGGCTTGGCCTGTTCTTCCG 

ExbB pET F GCGCAAGCTTGATGGAACAAGTAGGATTGGCAG 

ExbB pET R GCGCGGATCCGGCCATACCCATGTGAGAATAC 

ExbD pET F GCGCAAGCTTGATGGGTATGGCAGTTGGAGG 

ExbD pET R GCGCGGATCCGCAGCAGATGTGATGACACTGG 

DCT F GCGCAAGCTTGATGGTCGGCGTGCCGATCGAC 

SOE Fo GCGCGGATCCGCTGATTGGTCGCTCATTATCG 

SOE Ro GCGCAAGCTTGCTTCGACAGGCTTCGGCG 

sglSOEbB Ri GATGGTCGCGAGCGATCCGATCCAAAATCCCCGAATCC 

sglSOEbB Fi GGATTCGGGGATTTTGGATCGGATCGCTCGCGACCATC 

sglSOEbD Ri CCTTCATTTTGCGCGCTATTGCATGTGAGAATACTCCGTTGG 

sglSOEbD Fi CCAACGGAGTATTCTCACATGCAATAGCGCGCAAAATGAAGG 

dblSOE Ri CTGCAGGAACACCTCGCCCTGGCCCGACCAGAACAC 

dblSOE Fi GTGTTCTGGTCGGGCCAGGGCGAGGTGTTCCTGCAG 

SOE2Bshort F GGATTCGGGGATTTTGGATCA 

SOE2Dshort F CCAACGGAGTATTCTCACATG 

TonBCT GCGCAAGCTTGATGGTGAACGGCCAGGACG 

TonBR17B GCGCGAATTCGATGCCTGATATCGCGCAGG 
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Primer Map 

Nucleotide sequence map showing the location of each primer used in generation of wild type and mutant exbB and exbD genes of R. 

leguminosarum ATCC 14479.  

 

gactggaacggggatccttcatcacatcgtctcctgattggtcgctcattatcgggaatagttaggaattgtgac base pairs 

ctgaccttgcccctaggaagtagtgtagcagaggactaaccagcgagtaatagcccttatcaatccttaacactg 1 to 75 

  

                                                                            

aatcattcaatgcttgcctgtcgggaagcgttgcgccaaacagggcacctgagtttggagaaaattatgacggaa base pairs 

ttagtaagttacgaacggacagcccttcgcaacgcggtttgtcccgtggactcaaacctcttttaatactgcctt 76 to 150 

                                                                            

  

cgccctttttccatttcgggagagctgacggaagccggacaccgcctcgttcagcgggtctattatgaagatact base pairs 

gcgggaaaaaggtaaagccctctcgactgccttcggcctgtggcggagcaagtcgcccagataatacttctatga 151 to 225 

                                                                            

  

gacttttccggcctggtctatcacgcccgctacctgcatttcctggagcgcggccgtaccgattatctgcgctgc base pairs 

ctgaaaaggccggaccagatagtgcgggcgatggacgtaaaggacctcgcgccggcatggctaatagacgcgacg 226 to 300 

  

 

ctcggcgtcgagcagcgcgaactcgtcagcgccgatgaggagggcctcgttttcgttgtccaccgcatggagatc base pairs 

gagccgcagctcgtcgcgcttgagcagtcgcggctactcctcccggagcaaaagcaacaggtggcgtacctctag 301 to 375 

  

 

gacttcaagagcccggcgcgcatggacgatgtgctgacgatcctgacacacacggagaaagccggcggcgccaag base pairs 

ctgaagttctcgggccgcgcgtacctgctacacgactgctaggactgtgtgtgcctctttcggccgccgcggttc 376 to 450 

  

 

atggtgctcaatcagcagatccgctcgggcgagacgctgctgatcgccgccaaggtgatcatcgccgtcatcaac base pairs 

taccacgagttagtcgtctaggcgagcccgctctgcgacgactagcggcggttccactagtagcggcagtagttg 451 to 525 

 

  

gcccgggggcggccaaggcggttgccggaaacactggcagcgaaattcctggaaggcagcatgccgctacaggcc base pairs 

cgggcccccgccggttccgccaacggcctttgtgaccgtcgctttaaggaccttccgtcgtacggcgatgtccgg 526 to 600 

 

 

SOE Fo pUC19F 
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gaattgccgaaaaatcggaccttgtcaaaacttgaactttatgtgaaggaattcccgcgccgcaggatgagcgct base pairs 

cttaacggctttttagcctggaacagttttgaacttgaaatacacttccttaagggcgcggcgtcctactcgcga 601 to 675 

 

  

ctttcggcagccggaccttgctccggtcaagtaatccatggaacgaaatcttctaaatacaggcttactgtcaca base pairs 

gaaagccgtcggcctggaacgaggccagttcattaggtaccttgctttagaagatttatgtccgaatgacagtgt 676 to 750 

  

 

gtccggcactaacgatctattaaccataatggtgtcttactgggaaagtcggagtttgtgcggtgcacgccttcc base pairs 

caggccgtgattgctagataattggtattaccacagaatgaccctttcagcctcaaacacgccacgtgcggaagg 751 to 825 

  

 

tttgaccaaatttgacggcaagaaaggcggaagatgagcttggaagtttgaccagggctttgggcggcggccgcc base pairs 

aaactggtttaaactgccgttctttccgccttctactcgaaccttcaaactggtcccgaaacccgccgccggcgg 826 to 900 

  

 

                                                                            

ggacacttcttgcgagatcagtttgtgccgcccggtccagcaccggggcgtttggattcggggattttggatcaa base pairs 

cctgtgaagaacgctctagtcaaacacggcgggccaggtcgtggccccgcaaacctaagcccctaaaacctagtt 901 to 975 

                                                                           

                                                                            

tggaacaagtaggattggcagcagcaacgacggacgtcagcctctggtcgcttttcatgcaggccggcatcgtcg base pairs 

accttgttcatcctaaccgtcgtcgttgctgcctgcagtcggagaccagcgaaaagtacgtccggccgtagcagc 976 to 1050 

  

 

tcaagctcgtcatgctcgggcttatcgcggcctcggtgtggacgtgggctatcgtcatcgacaaatacctggcct base pairs 

agttcgagcagtacgagcccgaatagcgccggagccacacctgcacccgatagcagtagctgtttatggaccgga 1051 to 1125 

  

                                                                            

  

atggccgcgcacggcgccagttcgacaagttcgagcaggtgttctggtcgggccagtcgctggaagagctctacc base pairs 

taccggcgcgtgccgcggtcaagctgttcaagctcgtccacaagaccagcccggtcagcgaccttctcgagatgg 1126 to 1200 

  

 

gctcgctgtcggaacgcaacaataccggtctggcggcgatcttcgtggctgccatgcgcgagtggaagaaatcct base pairs 

cgagcgacagccttgcgttgttatggccagaccgccgctagaagcaccgacggtacgcgctcaccttctttagga 1201 to 1275 

  

 

tcgaacgcggcgcccgctcgccgatcggcctgcagatgcgtatcgaccgcgcgatggacgtgacgctcgcccgtg base pairs 

agcttgcgccgcgggcgagcggctagccggacgtctacgcatagctggcgcgctacctgcactgcgagcgggcac 1276 to 1350 

sglSOEbB Ri 

dblSOE Ri 
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agaccgaatttctcggtgctcgcctcggatcgctcgcgaccatcggctcggccggtccgttcatcggtctgttcg base pairs 

tctggcttaaagagccacgagcggagcctagcgagcgctggtagccgagccggccaggcaagtagccagacaagc 1351 to 1425 

 

 

gcacggtcgtcggcatcatgacctcgttccaggcaatcgccggttcgaagtcgaccaaccttgcggtcgtcgcgc base pairs 

cgtgccagcagccgtagtactggagcaaggtccgttagcggccaagcttcagctggttggaacgccagcagcgcg 1426 to 1500 

  

 

ccggtatcgccgaagcgctgcttgccactgcgatcggcctcgtcgccgctatcccggcagttatcgcctgcaaca base pairs 

ggccatagcggcttcgcgacgaacggtgacgctagccggagcagcggcgatagggccgtcaatagcggacgttgt 1501 to 1575 

  

 

agttctctgccgatgccggcaagctctcgggccgaatggaaggtttcgcggatgaattctccgccatactttcgc base pairs 

tcaagagacggctacggccgttcgagagcccggcttaccttccaaagcgcctacttaagaggcggtatgaaagcg 1576 to 1650 

  

 

                                                                            

gccagatcgacgagaaactgcagccgcgcgctgccgctcagtaaccaacggagtattctcacatgggtatggcag base pairs 

cggtctagctgctctttgacgtcggcgcgcgacggcgagtcattggttgcctcataagagtgtacccataccgtc 1651 to 1725 

                                                                            

  

ttggaggcaatggcggaggcggcggacgccgccgtcgcggcggtcggaacagggccgtgatttccgaaatcaacg base pairs 

aacctccgttaccgcctccgccgcctgcggcggcagcgccgccagccttgtcccggcactaaaggctttagttgc 1726 to 1800 

  

 

tgacgccgctcgtcgacgtcatgctggtgcttttgatcatcttcatggtcgcggcaccgatgatgaccgtcggcg base pairs 

actgcggcgagcagctgcagtacgaccacgaaaactagtagaagtaccagcgccgtggctactactggcagccgc 1801 to 1875 

  

 

tgccgatcgacctgccggaaacgcaggccaaggcgctgaattcggagacgcagccgatcaccatctccgtcaaga base pairs 

acggctagctggacggcctttgcgtccggttccgcgacttaagcctctgcgtcggctagtggtagaggcagttct 1876 to 1950 

 

  

 

atgacggcgaggtgttcctgcaggaaacaccgatcccggcggcggagatcgccgccaagctcgaggcgatcgcca base pairs 

tactgccgctccacaaggacgtcctttgtggctagggccgccgcctctagcggcggttcgagctccgctagcggt 1951 to 2025 

 

 

sglSOEbB Fi 

 sglSOEbD Ri 

dblSOE Fi 
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ccaccggttataacgaacgtatcttcgtgcgcggcgacgcgaccgcgccctacggcgtcatcgccgacgtcatgg base pairs 

ggtggccaatattgcttgcatagaagcacgcgccgctgcgctggcgcgggatgccgcagtagcggctgcagtacc 2026 to 2100 

 

  

                                                                            

cccgtattcagggtgcaggcttcaagaatatcggcctggtgacgcagcagaagaaggaccaatagcgcgcaaaat base pairs 

gggcataagtcccacgtccgaagttcttatagccggaccactgcgtcgtcttcttcctggttatcgcgcgtttta 2101 to 2175 

 

 

gaaggccagtgtcatcacatctgctgttttgcacggcctggtgctcacctgggcgatggtgccgcttggcgctcc base pairs 

cttccggtcacagtagtgtagacgacaaaacgtgccggaccacgagtggacccgctaccacggcgaaccgcgagg 2176 to 2250 

 

 

ggaatccttcaaggtagaggatttcgaggcgatgccggtcgatctcgtgccggtggagtccattacccagatgca base pairs 

ccttaggaagttccatctcctaaagctccgctacggccagctagagcacggccacctcaggtaatgggtctacgt 2251 to 2325 

  

 

gcaaggcgacaagaaggctccgaagaaggagacttccgcgcccgtgccgacgacacggccgccgattgcacagcc base pairs 

cgttccgctgttcttccgaggcttcttcctctgaaggcgcgggcacggctgctgtgccggcggctaacgtgtcgg 2326 to 2400 

  

 

ggccgagaatgccggcgacagcaatgtcgacctgaaaacgccgccggtcccgaacgccaagcccagcaatactga base pairs 

ccggctcttacggccgctgtcgttacagctggacttttgcggcggccagggcttgcggttcgggtcgttatgact 2401 to 2475 

  

 

agcggctgccgccaattcgagcgacaagccgatgccgaagatcgatcctaagccgaatgacgtcaaggagatcgt base pairs 

tcgccgacggcggttaagctcgctgttcggctacggcttctagctaggattcggcttactgcagttcctctagca 2476 to 2550 

 

  

 

caaggaggaaacggaagtcgagcagccgaaggaggttgcttcaattccgccgccgaagcctgtcgaagtgacgcc base pairs 

gttcctcctttgccttcagctcgtcggcttcctccaacgaagttaaggcggcggcttcggacagcttcactgcgg 2551 to 2625 

  

 

 

gccgaagcccgaggaaaatccgccggaagaacaggccaagccggagaaccgccgaagcctgagattgct  base pairs 

cggcttcgggctccttttaggcggccttcttgtccggttcggcctcttggcggcttcggactctaacga  2626 to 2694 

 

sglSOEbD Fi 

SOE Ro 

pUC19R 
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Sequence Results 

BLAST sequence alignment of exbb and exbd in R. leguminosarum ATCC 14479 with most 

similar sequence in other R. leguminosarum strains. Top strand is ATCC 14479 and bottom 

strand is strain 3841. 
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CLUSTAL 2.1 multiple sequence alignment of wild type exbd (top) and Δexbd (bottom) in R. 

leguminosarum ATCC 14479 
 

 

ExbD_WT          CTTCATCACATCGTCTCCTGATTGGTCGCTCATTATCGGGAATAGTTAGGAATTGTGACA  

ExbD_mutant      CTTCATCACATCGTCTCCTGATTGGTCGCTCATTATCGGGAATAGTTAGGAATTGTGACA  

                 ************************************************************ 

 

ExbD_WT          ATCATTCAATGCTTGCCTGTCGGGAAGCGTTGCGCCAAACAGGGCACCTGAGTTTGGAGA  

ExbD_mutant      ATCATTCAATGCTTGCCTGTCGGGAAGCGTTGCGCCAAACAGGGCACCTGAGTTTGGAGA  

                 ************************************************************ 

 

ExbD_WT          AAATTATGACGGAACGCCCTTTTTCCATTTCGGGAGAGCTGACGGAAGCCGGACACCGCC  

ExbD_mutant      AAATTATGACGGAACGCCCTTTTTCCATTTCGGGAGAGCTGACGGAAGCCGGACACCGCC  

                 ************************************************************ 

 

ExbD_WT          TCGTTCAGCGGGTCTATTATGAAGATACTGACTTTTCCGGCCTGGTCTATCACGCCCGCT  

ExbD_mutant      TCGTTCAGCGGGTCTATTATGAAGATACTGACTTTTCCGGCCTGGTCTATCACGCCCGCT  

                 ************************************************************ 

 

ExbD_WT          ACCTGCATTTCCTGGAGCGCGGCCGTACCGATTATCTGCGCTGCCTCGGCGTCGAGCAGC  

ExbD_mutant      ACCTGCATTTCCTGGAGCGCGGCCGTACCGATTATCTGCGCTGCCTCGGCGTCGAGCAGC  

                 ************************************************************ 

 

ExbD_WT          GCGAACTCGTCAGCGCCGATGAGGAGGGCCTCGTTTTCGTTGTCCACCGCATGGAGATCG  

ExbD_mutant      GCGAACTCGTCAGCGCCGATGAGGAGGGCCTCGTTTTCGTTGTCCACCGCATGGAGATCG  

                 ************************************************************ 

 

ExbD_WT          ACTTCAAGAGCCCGGCGCGCATGGACGATGTGCTGACGATCCTGACACACACGGAGAAAG  

ExbD_mutant      ACTTCAAGAGCCCGGCGCGCATGGACGATGTGCTGACGATCCTGACACACACGGAGAAAG  

                 ************************************************************ 

 

ExbD_WT          CCGGCGGCGCCAAGATGGTGCTCAATCAGCAGATCCGCTCGGGCGAGACGCTGCTGATCG  

ExbD_mutant      CCGGCGGCGCCAAGATGGTGCTCAATCAGCAGATCCGCTCGGGCGAGACGCTGCTGATCG  

                 ************************************************************ 

 

ExbD_WT          CCGCCAAGGTGATCATCGCCGTCATCAACGCCCGGGGGCGGCCAAGGCGGTTGCCGGAAA  

ExbD_mutant      CCGCCAAGGTGATCATCGCCGTCATCAACGCCCGGGGGCGGCCAAGGCGGTTGCCGGAAA  

                 ************************************************************ 

 

ExbD_WT          CACTGGCAGCGAAATTCCTGGAAGGCAGCATGCCGCTACAGGCCGAATTGCCGAAAAATC  

ExbD_mutant      CACTGGCAGCGAAATTCCTGGAAGGCAGCATGCCGCTACAGGCCGAATTGCCGAAAAATC  

                 ************************************************************ 

 

ExbD_WT          GGACCTTGTCAAAACTTGAACTTTATGTGAAGGAATTCCCGCGCCGCAGGATGAGCGCTC  

ExbD_mutant      GGACCTTGTCAAAACTTGAACTTTATGTGAAGGAATTCCCGCGCCGCAGGATGAGCGCTC  

                 ************************************************************ 

 

ExbD_WT          TTTCGGCAGCCGGACCTTGCTCCGGTCAAGTAATCCATGGAACGAAATCTTCTAAATACA  

ExbD_mutant      TTTCGGCAGCCGGACCTTGCTCCGGTCAAGTAATCCATGGAACGAAATCTTCTAAATACA  

                 ************************************************************ 

 

ExbD_WT          GGCTTACTGTCACAGTCCGGCACTAACGATCTATTAACCATAATGGTGTCTTACTGGGAA  

ExbD_mutant      GGCTTACTGTCACAGTCCGGCACTAACGATCTATTAACCATAATGGTGTCTTACTGGGAA  

                 ************************************************************ 
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ExbD_WT          AGTCGGAGTTTGTGCGGTGCACGCCTTCCTTTGACCAAATTTGACGGCAAGAAAGGCGGA  

ExbD_mutant      AGTCGGAGTTTGTGCGGTGCACGCCTTCCTTTGACCAAATTTGACGGCAAGAAAGGCGGA  

                 ************************************************************ 

 

ExbD_WT          AGATGAGCTTGGAAGTTTGACCAGGGCTTTGGGCGGCGGCCGCCGGACACTTCTTGCGAG  

ExbD_mutant      AGATGAGCTTGGAAGTTTGACCAGGGCTTTGGGCGGCGGCCGCCGGACACTTCTTGCGAG  

                 ************************************************************ 

 

ExbD_WT          ATCAGTTTGTGCCGCCCGGTCCAGCACCGGGGCGTTTGGATTCGGGGATTTTGGATCATG  

ExbD_mutant      ATCAGTTTGTGCCGCCCGGTCCAGCACCGGGGCGTTTGGATTCGGGGATTTTGGATCATG  

                 ************************************************************ 

 

ExbD_WT          GAACAAGTAGGATTGGCAGCAGCAACGACGGACGTCAGCCTCTGGTCGCTTTTCATGCAG  

ExbD_mutant      GAACAAGTAGGATTGGCAGCAGCAACGACGGACGTCAGCCTCTGGTCGCTTTTCATGCAG  

                 ************************************************************ 

 

ExbD_WT          GCCGGCATCGTCGTCAAGCTCGTCATGCTCGGGCTTATCGCGGCCTCGGTGTGGACGTGG  

ExbD_mutant      GCCGGCATCGTCGTCAAGCTCGTCATGCTCGGGCTTATCGCGGCCTCGGTGTGGACGTGG  

                 ************************************************************ 

 

ExbD_WT          GCTATCGTCATCGACAAATACCTGGCCTATGGCCGCGCACGGCGCCAGTTCGACAAGTTC  

ExbD_mutant      GCTATCGTCATCGACAAATACCTGGCCTATGGCCGCGCACGGCGCCAGTTCGACAAGTTC  

                 ************************************************************ 

 

ExbD_WT          GAGCAGGTGTTCTGGTCGGGCCAGTCGCTGGAAGAGCTCTACCGCTCGCTGTCGGAACGC  

ExbD_mutant      GAGCAGGTGTTCTGGTCGGGCCAGTCGCTGGAAGAGCTCTACCGCTCGCTGTCGGAACGC  

                 ************************************************************ 

 

ExbD_WT          AACAATACCGGTCTGGCGGCGATCTTCGTGGCTGCCATGCGCGAGTGGAAGAAATCCTTC  

ExbD_mutant      AACAATACCGGTCTGGCGGCGATCTTCGTGGCTGCCATGCGCGAGTGGAAGAAATCCTTC  

                 ************************************************************ 

 

ExbD_WT          GAACGCGGCGCCCGCTCGCCGATCGGCCTGCAGATGCGTATCGACCGCGCGATGGACGTG  

ExbD_mutant      GAACGCGGCGCCCGCTCGCCGATCGGCCTGCAGATGCGTATCGACCGCGCGATGGACGTG  

                 ************************************************************ 

 

ExbD_WT          ACGCTCGCCCGTGAGACCGAATTTCTCGGTGCTCGCCTCGGATCGCTCGCGACCATCGGC  

ExbD_mutant      ACGCTCGCCCGTGAGACCGAATTTCTCGGTGCTCGCCTCGGATCGCTCGCGACCATCGGC  

                 ************************************************************ 

 

ExbD_WT          TCGGCCGGTCCGTTCATCGGTCTGTTCGGCACGGTCGTCGGCATCATGACCTCGTTCCAG  

ExbD_mutant      TCGGCCGGTCCGTTCATCGGTCTGTTCGGCACGGTCGTCGGCATCATGACCTCGTTCCAG  

                 ************************************************************ 

 

ExbD_WT          GCAATCGCCGGTTCGAAGTCGACCAACCTTGCGGTCGTCGCGCCCGGTATCGCCGAAGCG  

ExbD_mutant      GCAATCGCCGGTTCGAAGTCGACCAACCTTGCGGTCGTCGCGCCCGGTATCGCCGAAGCG  

                 ************************************************************ 

 

ExbD_WT          CTGCTTGCCACTGCGATCGGCCTCGTCGCCGCTATCCCGGCAGTTATCGCCTGCAACAAG  

ExbD_mutant      CTGCTTGCCACTGCGATCGGCCTCGTCGCCGCTATCCCGGCAGTTATCGCCTGCAACAAG  

                 ************************************************************ 

 

ExbD_WT          TTCTCTGCCGATGCCGGCAAGCTCTCGGGCCGAATGGAAGGTTTCGCGGATGAATTCTCC  

ExbD_mutant      TTCTCTGCCGATGCCGGCAAGCTCTCGGGCCGAATGGAAGGTTTCGCGGATGAATTCTCC  

                 ************************************************************ 
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ExbD_WT          GCCATACTTTCGCGCCAGATCGACGAGAAACTGCAGCCGCGCGCTGCCGCTCAGTAACCA  

ExbD_mutant      GCCATACTTTCGCGCCAGATCGACGAGAAACTGCAGCCGCGCGCTGCCGCTCAGTAACCA  

                 ************************************************************ 

 

ExbD_WT          ACGGAGTATTCTCACATGGGTATGGCAGTTGGAGGCAATGGCGGAGGCGGCGGACGCCGC  

ExbD_mutant      ACGGAGTATTCTCACATG------------------------------------------  

                 ******************                                           

 

ExbD_WT          CGTCGCGGCGGTCGGAACAGGGCCGTGATTTCCGAAATCAACGTGACGCCGCTCGTCGAC  

ExbD_mutant      ------------------------------------------------------------ 

                                                                              

 

ExbD_WT          GTCATGCTGGTGCTTTTGATCATCTTCATGGTCGCGGCACCGATGATGACCGTCGGCGTG  

ExbD_mutant      ------------------------------------------------------------ 

                                                                              

 

ExbD_WT          CCGATCGACCTGCCGGAAACGCAGGCCAAGGCGCTGAATTCGGAGACGCAGCCGATCACC  

ExbD_mutant      ------------------------------------------------------------ 

                                                                              

 

ExbD_WT          ATCTCCGTCAAGAATGACGGCGAGGTGTTCCTGCAGGAAACACCGATCCCGGCGGCGGAG  

ExbD_mutant      ------------------------------------------------------------ 

                                                                              

 

ExbD_WT          ATCGCCGCCAAGCTCGAGGCGATCGCCACCACCGGTTATAACGAACGTATCTTCGTGCGC  

ExbD_mutant      ------------------------------------------------------------ 

                                                                              

 

ExbD_WT          GGCGACGCGACCGCGCCCTACGGCGTCATCGCCGACGTCATGGCCCGTATTCAGGGTGCA  

ExbD_mutant      ------------------------------------------------------------ 

                                                                              

 

ExbD_WT          GGCTTCAAGAATATCGGCCTGGTGACGCAGCAGAAGAAGGACCAATAGCGCGCAAAATGA  

ExbD_mutant      ------------------------------------------CAATAGCGCGCAAAATGA  

                                                           ****************** 

 

ExbD_WT          AGGCCAGTGTCATCACATCTGCTGTTTTGCACGGCCTGGTGCTCACCTGGGCGATGGTGC  

ExbD_mutant      AGGCCAGTGTCATCACATCTGCTGTTTTGCACGGCCTGGTGCTCACCTGGGCGATGGTGC  

                 ************************************************************ 

 

ExbD_WT          CGCTTGGCGCTCCGGAATCCTTCAAGGTAGAGGATTTCGAGGCGATGCCGGTCGATCTCG  

ExbD_mutant      CGCTTGGCGCTCCGGAATCCTTCAAGGTAGAGGATTTCGAGGCGATGCCGGTCGATCTCG  

                 ************************************************************ 

 

ExbD_WT          TGCCGGTGGAGTCCATTACCCAGATGCAGCAAGGCGACAAGAAGGCTCCGAAGAAGGAGA  

ExbD_mutant      TGCCGGTGGAGTCCATTACCCAGATGCAGCAAGGCGACAAGAAGGCTCCGAAGAAGGAGA  

                 ************************************************************ 

 

ExbD_WT          CTTCCGCGCCCGTGCCGACGACACGGCCGCCGATTGCACAGCCGGCCGAGAATGCCGGCG  

ExbD_mutant      CTTCCGCGCCCGTGCCGACGACACGGCCGCCGATTGCACAGCCGGCCGAGAATGCCGGCG  

                 ************************************************************ 

 

ExbD_WT          ACAGCAATGTCGACCTGAAAACGCCGCCGGTCCCGAACGCCAAGCCCAGCAATACTGAAG  

ExbD_mutant      ACAGCAATGTCGACCTGAAAACGCCGCCGGTCCCGAACGCCAAGCCCAGCAATACTGAAG  

                 ************************************************************ 
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ExbD_WT          CGGCTGCCGCCAATTCGAGCGACAAGCCGATGCCGAAGATCGATCCTAAGCCGAATGACG  

ExbD_mutant      CGGCTGCCGCCAATTCGAGCGACAAGCCGATGCCGAAGATCGATCCTAAGCCGAATGACG  

                 ************************************************************ 

 

ExbD_WT          TCAAGGAGATCGTCAAGGAGGAAACGGAAGTCGAGCAGCCGAAGGAGGTTGCTTCAATTC  

ExbD_mutant      TCAAGGAGATCGTCAAGGAGGAAACGGAAGTCGAGCAGCCGAAGGAGGTTGCTTCAATTC  

                 ************************************************************ 

 

ExbD_WT          CGCCGCCGAAGCCTGTCGAAG  

ExbD_mutant      CGCCGCCGAAGCCTGTCGAAG  

                 ********************* 

 

 

CLUSTAL 2.1 multiple sequence alignment of wild type exbbd (top) and Δexbbd (bottom)  in R. 

leguminosarum ATCC14479 
 

 

ExbBD_WT         ATGGAACAAGTAGGATTGGCAGCAGCAACGACGGACGTCAGCCTCTGGTCGCTTTTCATG  

ExbBD_mutant     ATGGAACAAGTAGGATTGGCAGCAGCAACGACGGACGTCAGCCTCTGGTCGCTTTTCATG  

                 ************************************************************ 

 

ExbBD_WT         CAGGCCGGCATCGTCGTCAAGCTCGTCATGCTCGGGCTTATCGCGGCCTCGGTGTGGACG  

ExbBD_mutant     CAGGCCGGCATCGTCGTCAAGCTCGTCATGCTCGGGCTTATCGCGGCCTCGGTGTGGACG  

                 ************************************************************ 

 

ExbBD_WT         TGGGCTATCGTCATCGACAAATACCTGGCCTATGGCCGCGCACGGCGCCAGTTCGACAAG  

ExbBD_mutant     TGGGCTATCGTCATCGACAAATACCTGGCCTATGGCCGCGCACGGCGCCAGTTCGACAAG  

                 ************************************************************ 

 

ExbBD_WT         TTCGAGCAGGTGTTCTGGTCGGGCCAGTCGCTGGAAGAGCTCTACCGCTCGCTGTCGGAA  

ExbBD_mutant     TTCGAGCAGGTGTTCTGGTCGGGCCAG---------------------------------  

                 ***************************                                  

 

ExbBD_WT         CGCAACAATACCGGTCTGGCGGCGATCTTCGTGGCTGCCATGCGCGAGTGGAAGAAATCC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         TTCGAACGCGGCGCCCGCTCGCCGATCGGCCTGCAGATGCGTATCGACCGCGCGATGGAC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         GTGACGCTCGCCCGTGAGACCGAATTTCTCGGTGCTCGCCTCGGATCGCTCGCGACCATC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         GGCTCGGCCGGTCCGTTCATCGGTCTGTTCGGCACGGTCGTCGGCATCATGACCTCGTTC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         CAGGCAATCGCCGGTTCGAAGTCGACCAACCTTGCGGTCGTCGCGCCCGGTATCGCCGAA  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         GCGCTGCTTGCCACTGCGATCGGCCTCGTCGCCGCTATCCCGGCAGTTATCGCCTGCAAC  

ExbBD_mutant     ------------------------------------------------------------ 
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ExbBD_WT         AAGTTCTCTGCCGATGCCGGCAAGCTCTCGGGCCGAATGGAAGGTTTCGCGGATGAATTC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         TCCGCCATACTTTCGCGCCAGATCGACGAGAAACTGCAGCCGCGCGCTGCCGCTCAGTAA  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         CCAACGGAGTATTCTCACATGGGTATGGCAGTTGGAGGCAATGGCGGAGGCGGCGGACGC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         CGCCGTCGCGGCGGTCGGAACAGGGCCGTGATTTCCGAAATCAACGTGACGCCGCTCGTC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         GACGTCATGCTGGTGCTTTTGATCATCTTCATGGTCGCGGCACCGATGATGACCGTCGGC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         GTGCCGATCGACCTGCCGGAAACGCAGGCCAAGGCGCTGAATTCGGAGACGCAGCCGATC  

ExbBD_mutant     ------------------------------------------------------------ 

                                                                               

 

ExbBD_WT         ACCATCTCCGTCAAGAATGACGGCGAGGTGTTCCTGCAGGAAACACCGATCCCGGCGGCG  

ExbBD_mutant     ---------------------GGCGAGGTGTTCCTGCAGGAAACACCGATCCCGGCGGCG  

                                      *************************************** 

 

ExbBD_WT         GAGATCGCCGCCAAGCTCGAGGCGATCGCCACCACCGGTTATAACGAACGTATCTTCGTG  

ExbBD_mutant     GAGATCGCCGCCAAGCTCGAGGCGATCGCCACCACCGGTTATAACGAACGTATCTTCGTG  

                 ************************************************************ 

 

ExbBD_WT         CGCGGCGACGCGACCGCGCCCTACGGCGTCATCGCCGACGTCATGGCCCGTATTCAGGGT  

ExbBD_mutant     CGCGGCGACGCGACCGCGCCCTACGGCGTCATCGCCGACGTCATGGCCCGTATTCAGGGT  

                 ************************************************************ 

 

ExbBD_WT         GCAGGCTTCAAGAATATCGGCCTGGTGACGCAGCAGAAGAAGGACCAATAGCGCGCAAAA  

ExbBD_mutant     GCAGGCTTCAAGAATATCGGCCTGGTGACGCAGCAGAAGAAGGACCAATAGCGCGCAAAA  

                 ************************************************************ 

 

ExbBD_WT         TGAAGGCCAGTGTCATCACATCTGCTGTTTTGCACGGCCTGGTGCTCACCTGGGCGATGG  

ExbBD_mutant     TGAAGGCCAGTGTCATCACATCTGCTGTTTTGCACGGCCTGGTGCTCACCTGGGCGATGG  

                 ************************************************************ 

 

ExbBD_WT         TGCCGCTTGGCGCTCCGGAATCCTTCAAGGTAGAGGATTTCGAGGCGATGCCGGTCGATC  

ExbBD_mutant     TGCCGCTTGGCGCTCCGGAATCCTTCAAGGTAGAGGATTTCGAGGCGATGCCGGTCGATC  

                 ************************************************************ 

 

ExbBD_WT         TCGTGCCGGTGGAGTCCATTACCCAGATGCAGCAAGGCGACAAGAAGGCTCCGAAGAAGG  

ExbBD_mutant     TCGTGCCGGTGGAGTCCATTACCCAGATGCAGCAAGGCGACAAGAAGGCTCCGAAGAAGG  

                 ************************************************************ 

 

ExbBD_WT         GACTTCCGCGCCCGTGCCGACGACACGGCCGCCGATTGCACAGCCGGCCGAGAATGCCG  

ExbBD_mutant     AGACTTCCGCGCCCGTGCCGACGACACGGCCGCCGATTGCACAGCCGGCCGAGAATGCCG  

                 ************************************************************ 
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ExbBD_WT         GCGACAGCAATGTCGACCTGAAAACGCCGCCGGTCCCGAACGCCAAGCCCAGCAATACTG  

ExbBD_mutant     GCGACAGCAATGTCGACCTGAAAACGCCGCCGGTCCCGAACGCCAAGCCCAGCAATACTG  

                 ************************************************************ 

 

ExbBD_WT         AAGCGGCTGCCGCCAATTCGAGCGACAAGCCGATGCCGAAGATCGATCCTAAGCCGAATG  

ExbBD_mutant     AAGCGGCTGCCGCCAATTCGAGCGACAAGCCGATGCCGAAGATCGATCCTAAGCCGAATG  

                 ************************************************************ 

 

ExbBD_WT         CGTCAAGGAGATCGTCAAGGAGGAAACGGAAGTCGAGCAGCCGAAGGAGGTTGCTTCAA  

ExbBD_mutant     ACGTCAAGGAGATCGTCAAGGAGGAAACGGAAGTCGAGCAGCCGAAGGAGGTTGCTTCAA  

                 ************************************************************ 

 

ExbBD_WT          TTCCGCCGCCGAAGCCTGTCGAAG  

ExbBD_mutant      TTCCGCCGCCGAAGCCTGTCGAAG  

                  ************************ 
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