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ABSTRACT 

Using Geometric Morphometrics to Differentiate Lower First Molars of Microtus Species: A 

Review of the Clark’s Cave Bone Deposit, VA 

by 

Mark Shelleman 

 

Clark’s Cave contains a large collection of late Pleistocene mammal material.  In particular, it 

contains a sizable amount of Microtus spp. which can be valuable paleoclimate indicators.  

Identification techniques traditionally used to classify these species have been shown to be 

unreliable.  Recent studies have shown that using geometric morphometric techniques on lower 

first molars can be more successful.  By placing landmarks and running a discriminate analysis 

on new and previously collected material from the cave, significant differences in Microtus 

species proportions were found.  Specifically, showing the deposit has a larger proportion of M. 

xanthognathus than previously reported; resulting in a subsequent drop in the number of M. 

pennsylvanicus and M. chrotorrhinus present.  Moreover, previously unreported M. ochrogaster 

was determined to be an important component of the fauna.  The results presented here show the 

importance of applying new techniques to previous studies.             
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CHAPTER 1 

INTRODUCTION 

Overview 

To insure the proper interpretation of Quaternary paleoenvironments, it is vital that 

correct identifications are made on mammalian fossils from that time.  Improper identifications 

can lead to inappropriate inferences on species’ ranges and misrepresent climatic and 

environmental conditions in a particular region.  Small mammals (micromammals), especially 

insectivores and rodents, are very useful for climate studies, due to their restrictive ecologic 

tolerances and inability to migrate large distances over short periods of time (e.g. Graham 1986).  

Many studies (e.g. Guilday & Parmalee 1972; Grady & Garton 1981; Bell & Bever 2006; 

Wallace 2009; McGuire 2010; Renvoise et al. 2012) have focused around arvicoline (microtine) 

rodents. 

One micromammal genus that is often used as a proxy for climate studies is Microtus, 

consisting of both New and Old World voles (Rodentia; Arvicolidae).  Fossil records of Microtus 

often consist of only isolated molars (i.e. Martin 1968; Hallberg et al. 1974; Zakrzewski 1985; 

Bell & Repenning 1999; Wallace 2006) and are therefore problematic.  Such scrappy material 

can create a challenge to identify members of this genus down to species level, due to variability 

of characters within a species, along with a lack of diagnostic characters (Zakrzewski 1985; Bell 

& Repenning 1999; Bell & Bever 2006). Consequently, improved methods for classification of 

isolated fossil teeth have been the focus of many recent studies (e.g. Wallace 2006; McGuire 

2010, 2011; McGuire & Davis 2013).  
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Solely relying on traditional Microtus identification methods is often not enough to 

confidently place fossil material to species level.  These traditional techniques should be the first 

step in an ongoing process.  The advent of the digital age provides us with statistical and spatial 

software that allow a more thorough examination.  Additionally, recent DNA studies on many 

lemming taxa have showed different species composition than previously thought (Burns 1980; 

Ehrich et al. 2000; Fedorov et al. 2003; Fulton et al. 2013).  Moreover, similar studies show that 

dispersion and re-colonization was different than expected before and after the Pleistocene 

(Fedorov et al. 2003; Wallace 2009; Semken et al. 2010; Shafer et al. 2010;  Hope et al. 2011; 

Fulton et al. 2013).    

The project presented here focuses on four interrelated topics, so the organization is 

written in a manner that follows the compounding nature of the study.  In other words, results of 

a chapter directly affect the outcome of subsequent chapters (i.e. results from Ch. 3 generate the 

questions in Ch. 4).  Consequently, the primary goals here are:    

1. Comparing superimpositions using generalized rotational fitting (GRF) (Adams, Rohlf 

& Slice 2004), as preformed in Wallace (2006) to create Bookstein Shape Coordinates (see 

Bookstein 1991), versus using a Generalized Procrustes fit (GPA) (Rohlf & Slice 1990), used in 

McGuire (2010; 2011), McGuire & Davis (2013), to generate the shape variables used in the 

analysis of landmark data on the lower m1s of Microtus.  Both methods have produced viable 

data and conclusions, but there has not been a direct comparison of the two methods using the 

same dataset.  By comparing both methods on the same species (M. pennsylvanicus (Meadow 

vole) and M. xanthognathus (Taiga vole)), a preferred method can be ascertained for identifying 

Microtus spp. 
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2. Differentiating M. xanthognathus, M. richardsoni (Water vole), and M. pennsylvanicus 

lower first molars (m1).  Microtus xanthognathus and M. richardsoni have the two largest (on 

average) sized sets of molars of the extant Microtus spp. (Ludwig 1984; Conroy & Cook 1999).  

Historically these two species have been separated from the rest of the extant Microtus species 

by having lower first molars greater than 3.2 mm in length (Hallberg et al. 1974; Semken & 

Wallace 2002).  However, Wallace (2006) shows that molar size alone is not a reliable method to 

distinguish Microtus species.  For this reason M. pennsylvanicus is also included here due to its 

wide geographic range and high molar variability (Martin 1968; Guilday 1982b; Davis 1987; 

Barnosky 1990).  Microtus richardsoni is often distinguished from other Microtus spp. by a 

bulbous anterior complex on the lower m1 (Burns 1982; Semken & Wallace 2002).  Here, the 

above stated superimposition and landmark techniques will be tested to see if such methods can 

successfully differentiate these three vole species.  Due to the varying nature of M. 

xanthognathus molars in the fossil record (Guilday & Bender 1960; Guilday 1982b), this could 

be a useful alternative method of identification. 

Currently the range of M. xanthognathus includes the boreal forests of central Alaska and 

northwestern Canada, across to the Hudson Bay, down into south central Alberta (Fig. 1) 

(Conroy & Cook 1999).  However, fossil specimens of M. xanthognathus have been found as far 

south as Arkansas (Hallberg et al 1974).  M. richardsoni’s geographic range today forms two 

distinct bands (Fig. 1).  One that extends from southern Oregon into British Colombia along the 

Cascades; and a larger eastern band that follows the Rocky Mountains from Northern Utah up to 

Alberta; with fossil remains found in a similar region (Ludwig 1984).  M. pennsylvanicus has a 

wide distribution spanning most northern North American grasslands; from Alaska, through 

Canada, into the southeastern US and into the west (Fig. 1), with a fossil record that is equally as 
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broad (Reich 1981).  Given their overlapping ranges in the past and present, it is possible to have 

all three species recovered from the same paleontological/archeological site.  It should be noted 

that M. pennsylvanicus’s fossil range may be overestimated.  Other species such as M. 

chrotorrhinus, M. mexicanus, M. montanus, M. longicaudus, and M. californicus show similar 

occlusal m1 patterns.   

3. Revisiting Guilday’s (1977) report on Clark’s Cave, VA., by applying the methods 

lined out above to review the ratio of 5-closed triangle morph Microtus (specifically M. 

pennsylvanicus vs. M. xanthognathus); then the 3-closed triangle morph Microtus (M. pinetorum 

(Pine vole) vs. M. ochrogaster(Prairie vole)) collected from Clark’s Cave.  All of the 3-closed 

triangle morph Microtus were classified as M. pinetorum by Guilday et al (1997), based upon 

geographic probability.  Therefore, the presences of M. ochrogaster is tested using geometric 

morphometric techniques.   

Microtus pinetorum’s range covers most of the eastern United States (Fig. 2); stretching 

from southern Maine to northern Florida across to eastern Texas up into Wisconsin (Smolen 

1981).  Clark’s Cave would be an extra-limital occurrence for M. ochrogaster.  Its current most 

eastern range is western West Virginia (Fig. 2).  It ranges into the northeastern corner of New 

Mexico up to Alberta (Stalling 1990).  Most extra-limital records found are from Oklahoma, 

Texas and more southern New Mexico (Smartt 1977; Stalling 1990).     

4. Collecting and screening new samples from the cave to look for species that were 

previously not found or recognized in Guilday et al. (1977).  The volume of new sediment 

collected compared to that which was reported from Guilday et al. (1977) is much less; however, 

the new site is in a slightly different location within the cave.  Updated identification techniques 

can also lead to new or different identifications. 
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Fig. 1 - Modern geographic distribution of Microtus pennsylvanicus, M. xanthognathus, M. richardsoni, M. chrotorrhinus 

including the location of Clark’s Cave, Virginia.  Modified from Hall (1981). 
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Fig. 2 - Modern geographic distribution of Microtus pinetorum and M. ochrogaster including the of location Clark’s Cave, Virginia.  

Modified from Hall (1981).
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Background 

Schubert (1997) states: 

 “Studies of well documented Quaternary environmental changes are necessary for 1) 

Understanding the intricacies of past climatic fluctuations, 2) Providing a foundation for 

interpreting modern biological communities, and 3) Testing and refining models used to 

predict future climatic change.” 

 When using mammal fossil material (especially micromammal) to interpret the 

paleoclimate or environment there is an inherent advantage to working in the Quaternary.  Most 

late Pleistocene and Holocene species are extant today (i.e. Guilday 1982b; Graham, 1986; 

Graham & Mead 1987; Graham & Grimm 1990), which provides a modern analog for 

comparison.  However, such comparisons are made under the assumption that the diet, behavior, 

and environmental preferences of modern species still apply to their Quaternary counterparts 

(Bell & Bever 2006; Stewart 2009; George 2012).  Predicting how extreme environmental 

pressures (such as those caused by the last ice age) would alter the behaviors of species can be 

difficult.  It can also be challenging to interpret how modern species reacted and interacted with 

extinct species (Stewart 2009; George 2012).  Pressures such as these can lead to non-analog 

faunas (i.e. Graham & Mead 1987; Semken et al. 2010) and different groupings of taxa than 

would otherwise be expected (Graham & Grimm 1990).  These communities and groupings can 

persist even after the pressure has subsided (Graham & Mead 1987; Graham & Grimm 1990).  

Many such variables along with a limited amount of identifiable characters in small mammal 

material, can lead to inaccurate species richness models.  As a result, it is highly likely that the 

number of identified Quaternary species from the fossil record is either inflated from the use of 
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geographic assumption to identify species, or underrepresented; due to an inability to 

differentiate species based solely on crainodental characters (George 2012).     

 Mid-Appalachian regions provide examples of non-analog faunas from the end and post 

last glacial maximum (LGM).  Guilday (1982a) bounds this region between 34 and 36 degrees 

north latitude.  This region of the Appalachian Plateau and Ridge and Valley includes: most of 

Pennsylvania, West Virginia, the eastern halves of Kentucky, Ohio, and Tennessee, and the 

western parts of Virginia and Maryland (Guilday 1982a).  Palynological studies by Watts (1979) 

and Wright (1981) indicate that during the late glacial (18-12kya) the region would have been 

predominantly covered with coniferous forests, intermixed with grasslands.  By the Holocene the 

region switched to predominately deciduous forest (Guilday 1982a).  

 Guilday (1982a) divides the late Pleistocene fauna into four categories: (1) species that 

are extinct, (2) present day boreal species, (3) present day Midwestern prairie species, and (4) 

species that still remain in the area today.  Much of the megafauna of the area did not survive 

into the Holocene (e.g. Graham & Lundelius 1984; Barnosky et al. 2004; etc.).  Microfauna of 

Mid-Appalachia at the time were dominated by boreal taxa, highlighted by arctic adapted voles 

and lemmings restricted to northern Canada and Alaska today.  Dicrostonyx sp. (the collared 

lemming) is one of the best examples of this; today restricted to the Arctic tundra (Hall 1981), 

but has been collected from various Pleistocene aged deposits (Grady & Garton 1981; Mead & 

Mead 1989).  Prairie species such as ground squirrels indicate that there were grasslands during 

the late Pleistocene.  Temperate species found in the region today would have been found at 

lower volumes than presently.  A slightly dryer climate that had less severe temperature swings 

in the summer and winters is one proposed model that may have permitted the cohabitation of 

these taxa (Graham & Grimm 1990).   
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Cave Paleontology 

 Cave deposits are a vital part of the Quaternary fossil record.  As of 1994 based on 

records from FAUNMAP Working Group (1994) nearly 52% of the late Pleistocene taxonomic 

record comes from cave deposits (Jass & George 2010).  Bones accumulate in caves as a result 

of animals living in, falling into, becoming trapped in, washing in post mortem, or being 

deposited by predators (Andrews 1990).  When looking at Quaternary cave faunas, the 

geographic location of the cave will not have changed drastically, but the climate, and 

subsequently the taxa that inhabited the cave will have changed through time. 

 During the 1960’s-70’s there was an explosion of central Appalachian cave exploration.  

During this time many reports on the flora and fauna found from these karst system deposits 

were being published.  John Guilday and his teams were at the forefront (Guilday & Bender 

1958; Guilday 1962; Guilday et al. 1964; Guilday & Parmalee 1965; Guilday et al. 1966; 

Guilday 1967; Guilday 1971; Guilday et al. 1977; Guilday & Hamilton 1978; Guilday et al. 

1978) of this and are responsible for much of our knowledge of the area’s prehistoric fauna.  

Sites like this provide large numbers of microfauna that were often not found, or overlooked at 

archeological sites and other non-karst paleontological sites. 

Clark’s Cave 

 Focus here is on one particular site, Clark’s Cave, Virginia.  From the original report 

(Guilday et al. 1977) 3.9 m3 of sediment was extracted for entrance 2 of the cave.  Five hundred 

and forty kg of matrix was dry screened through 6mm mesh screens.  The remaining 180 kg of 

sediment was screened and washed through 1 mm mesh at the New Paris field laboratory.  Bone 

and teeth material was further sorted and is stored at the Carnegie Museum, PA.    
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 The aim of the Guilday et al. (1977) study was threefold: (1) Identification to species if 

possible, (2) Establishing minimum number of individuals (MNI) for each taxon, (3) Looking at 

possible size differences between recent and fossil populations.  For the mammals in this study, 

identifications were focused primarily on dental and cranial material.  Very little mammalian 

postcranial material was cataloged or identified (but is still stored at the Carnegie Museum).  

However, identifications of avian, amphibian, reptilian, and fish material was primarily on 

postcranial material.   

Preservation of bone and teeth was chemically good, but rather fragmented, with very 

little articulation.  All of the bird and micromammal material recovered were from extant species 

(Guilday et al. 1977).  Other material recovered was from reptiles, amphibians, fish, crayfish, 

insects, gastropods, bivalves, along with plant material.  Two groups that represented the highest 

number of individuals were Arvicolinae (voles) and Vespertilionidae (common bats) (Guilday et 

al. 1977).  The number of species identified from the deposit by group are: Flora (8), Insetca 

(11), Crustacea (2), Gastropoda (20), Bivalvia (2), Osteichthyes (bony fish) (7), Amphibia (9), 

Reptilia (5), Aves (68), Mammalia (53).  Some of these species identifications are best guesses 

(cf.) or have names that are no longer proper nomenclature.  

 Clark’s Cave (CC) is located is 12 km southwest of Williamsville in Bath County, 

Virginia (Guilday et al. 1977).  It is located in north-central Virginia (Fig. 2), in the George 

Washington National Forrest, along the south bank of the Cowpasture River (a relatively slow 

and meandering river).  CC is a large maze style cave, with complex passageways 10,355 meters 

in length (Fig. 3), formed in lower Devonian limestone cliffs (Helderberg group, New Scottland 

member) (Bick 1962), capped by the mainly sandstone Oriskany formation (Palmer 2009).  

There are 6 major entrances in the limestone cliff side; located about 30m above the river 
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(Guilday et al. 1977).  Entrances open up to talus slopes and old collapse features.  The rest of 

the hillside is vegetated and slopes down to the bank of the river at a steep to moderately steep 

gradient; depending on location.  CC is mostly dry especially in the more explored regions near 

the entrances. 
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Fig. 3 - Passageways of Clark’s Cave (Modified from Rod Morris map, 1965) courtesy of Rick Lambert.    
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Specimens used in this study, and from Guilday et al. (1977), come from entrance 2, as 

seen in (Fig 4).  Entrance 2’s amphitheater traditionally serves as the main entrance to the cave, 

as entrance 1 is not accessible by foot (one would need to rappel in from above).  While standing 

in the amphitheater there are 3 separate passages one can take.  The right and center passages 

(while facing the cliff) lead into the cave, while the left passage is a small off shoot that leads 

back to the bluff face.   

 Material used in both studies was collected out of the right passageway.  Field Site No. 3 

(the Clark’s Cave faunal deposit (Guilday et al. 1977) was collected near the top of a loose 

unconsolidated talus slope that fed into the amphitheater talus slope.  Ninety percent of the 

material collected in that study was cliff wastage, the remaining 10% was organic material and 

dark brown dry soil (Guilday et al. 1977).  A datum (labeled: 7/19/14 – 002) now marks the site 

of their excavation.    

 Material excavated on July 19-20, 2015 by the East Tennessee State University (ETSU) 

team came from sediment just down-slope from Field Site No. 3 (of Guilday et al. 1977).  

Sediment was collected from a small ledge, raised about 40 cm from the floor (Fig. 4).  Material 

appears to have been winnowed out from deeper inside the cave.  Since this material had been 

slightly raised off the floor it was less disturbed and more packed down than the loose talus on 

the cave floor.  There was a thin layer of moss or lichen on top of the sediment in a few regions.  

The matrix was made up of mostly organic material and dark soil/clay with the remaining 

material being wastage from the cave. 
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Fig. 4 - Right passageway of Entrance 2 in Clark’s Cave, VA.  Material was collected from the 

ledge in the bottom left corner of the right image, marked by black oval. 

 No radiocarbon dates were collected or published from Guilday et al. (1977); it was 

hypothesized that the deposit was created between 11-20kya.  This age range was chosen based 

on the taxa collected, hypothesized rate of accumulation based on modern raptor roosts, and 

similarities in a previously dated site at New Paris No. 4, PA. (Guilday et al. 1964).  Subsequent 

dates have been obtained from material from Clark’s Cave that back up the suggested age.  

These dates point to a late glacial age (10-15kya) deposit: [Radiocarbon years before present ± 1 

standard deviation (RC yr. BP ± 1 SD)] [M. xanthognathus (14,440 ± 70), T. striatus (13,570 ± 

70), P. breweri (12,930 ± 70), N. floridana (12,530 ± 60; 12,340 ± 60; 12,270 ± 60; 11,170 ± 

60)] (Semken et al. 2010).   
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Microtus Morphometrics 

 Microtus spp. are commonly used to reconstruct paleoclimate and environment (e.g. 

Guilday & Hamilton 1978; Martin 1991; Bell & Barnosky 2000; McGuire 2011; Renvoise et al. 

2011).  Microtus molars have diagnostic occlusal patterns (Fig. 5).  The lower first molar has 

historically been used to differentiate species.  Due to their variant molar morphology (most 

common method of identification) multiple studies have been published cautioning the 

classification to species, especially with very small sample sizes (Guilday 1982b; Bell & 

Repenning 1999; Bell and Barnosky 2000; Bell & Bever 2006; Jass & Bell 2011).   

 

Fig. 5 - Basic arvicoline molar nomenclature.  Left to right: lower right 1st molar (m1) and upper 

right 1st molar (M1) of Microtus richardsoni, and m1 of Synaptomys cooperi.  Enamel is the 

black band surrounding each element of the tooth; whereas dentine is the white or lightly shaded 

regions.  Dentine wears more easily than enamel creating depressions on the surface of the tooth.  

Cementum is the darker shaded region on the external surface of the tooth, primarily within the 

re-entrant angles.  Lower molars: the intervening triangles (T1, T2, etc.), re-entrant angles (R1, 

R2, etc.), and salient angles (S1, S2, etc.) are numbered in increasing order starting anterior to 

the posterior loop; ending at the anterior loop.  Reverse is applied to upper molars.  Anterior 

complex (AC), posterior loop (PL), and anterior loop (AL) are labeled accordingly.  Specimens 

are not to scale. Modified from van der Meulen (1978) & Wallace (2006).   

  

 Wallace (2006) was the first published study to use landmarks along with morphometric 

techniques to differentiate species of Microtus.  He was able to show that using a 3.2mm length 
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of the lower first molar to separate M. xanthognathus from M. pennsylvanicus was an inadequate 

method of differentiation.  The landmark scheme developed in that study is applicable to fossil 

and extant Microtus worldwide.  Using the same landmark scheme but slightly different 

statistical procedure McGuire (2010; 2011]) and McGuire & Davis (2013) looked at inter / intra-

species difference between western North American Microtus spp. to infer geographic and 

climatic changes.  Similar questions were examined in a study by Renvoise et al. (2012) using 

different landmark techniques, on European Microtus spp.  

 

Abbreviations 

ADW = Animal Diversity Website; CC = Clark’s Cave, Virginia; cf. = confer; DA = 

Discriminant analysis; ETMNH = East Tennessee State University & General Shale Natural 

History Museum; ETSU = East Tennessee State University; ETVP = East Tennessee Vertebrate 

Paleontology; GPA = Generalized Procrustes analysis; GRF = Generalized rotational fit; kya = 

Thousand years ago; LGM = Last Glacial Maximum; M = Upper molar; m = Lower molar; 

MDA = Multidiscriminant analysis; MNI = Minimum number of individuals; MPM = Microtus 

pennsylvanicus morph; MXM = Microtus xanthognathus morph; NISP = Number of identified 

specimens; PCA = Principle component analysis; R = re-entrant angle; S = salient angle; sp. = 

Species; spp. = Species (plural); T = triangle. 
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CHAPTER 2 

MATERIALS AND METHODS 

Excavation 

On July 19th and 20th, 2014 sediment was collected from Clark’s Cave, by a group 

affiliated with the Geoscience Department at East Tennessee State University (ETSU) and the 

East Tennessee State University & General Shale Natural History Museum (ETMNH).  

Excavation was permitted by the Virginia Department of Conservation and Recreation (see 

Appendix B).   Multiple locations within the cave and around Entrance 2 were sampled, 

however specimens used here come from sample: Clark’s Cave 7/19/14 – 003; 6 sediment bags 

collected as a bulk sample.  Specimens and sediment from this and the other locations that were 

collected are stored at the ETMNH. 

Specimens 

Specimens Used in Chapter 3 

 Material used in chapter 3 is composed of extant specimens borrowed from the 

Smithsonian included: Microtus xanthognathus from Alaska and Canada (n=32) and M. 

richardsoni from Wyoming, Washington and Canada (n=30).  All specimens were collected as 

skin and skull.  M. pennsylvanicus data was from Wallace (2006), see Appendix A.  Only m1s 

were used because they are the most common tooth used to distinguishing different species of 

Microtus.  To limit sources of error, only right m1s were used.  If the right molar was too 

damaged, the left molar was used, and specimens were converted by multiplying the x variable 

by (-1) (after the specimen was photographed and digitized) to produce a mirror image.  Being 

able to use both rights and lefts is also critical for fossil specimens; where a large sample size (of 
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the same side) would most likely be unavailable. Moreover, because identification is the primary 

goal when looking at fossil specimens, not to establish each taxon’s morphospace, utilization of 

every specimen is critical. 

Specimens Used in Chapter 4 

 Material from Wallace (2006) and the Smithsonian were also used in chapter 4, along 

with the specimens collected from the 2014 Clark’s Cave excavation and specimens from 

Guilday’s 1977 excavation.  Specimens collected by Guilday et al. (1977) were borrowed from 

the Carnegie Museum of Natural History, Vertebrate Paleontology Collection.  All specimens 

borrowed from the Smithsonian (for this study) were cataloged as M. pinetorum (see Appendix 

A), per identifications made by Guilday et al. (1977).  Identifications and comparison to 

previously collected specimens was the main focus, therefore, both left and right molars were 

used in the chapter 4 study; facilitating a larger sample size.   

Unlike in the study in chapter 3, there were no specimens that possessed a complete 

dentary with both sets of molars on either side of the mandibular symphysis.  Therefore, if a 

molar was too damaged it was excluded from the data set.  To stay consistent with, and 

incorporate the data from chapter 3, all left molars were converted to “rights” by multiplying the 

x variable by (-1) as before.  This was done for all 5-closed triangle morph Microtus; however, 

because a majority of left molars were present for the 3-closed triangle clade Microtus, the 

opposite conversion was performed for those specimens.  Three- and 5-closed triangle morph 

molars were never included together in the same data set, thus posing no potential source of error 

in this study.   
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Identification 

 All Microtus lower first molars collected from Clark’s Cave by Guilday et al. (1977) and 

ETSU were treated as unknowns.  Initial identification was only taken to either 3- or 5-closed 

triangle morph Microtus.  This can easily be performed via observation via a microscope.  The 

next step was to place tentative identifications (or morphotypes) to the species level, using 

traditional methods of identification.  Specimens identified as 5-closed triangle morph were 

assigned to one of two morphotypes: M. pennsylvanicus morph (encompassing M. 

pennsylvanicus or M. chrotorrhinus) or M. xanthognathus morph (encompassing M. 

xanthognathus or M. richardsoni).  If the length of the m1 was greater than or equal to 3.2 mm 

(Hallberg et al. 1974) it was assigned to M. xanthognathus morph (MXM).  Less than 3.2 mm 

(Hallberg et al. 1974) was assigned to M. pennsylvanicus morph (MPM).  Unknowns were then 

combined with the specimens from chapter 3 (which are taken to be knowns) to test what 

percentage of the assigned morphotypes were correct.   

Three-closed triangle morph specimens were assigned to one of two morphotypes: M. 

pinetorum or M. ochrogaster.  Molars with enamel that has roughly the same thickness on the 

leading and trailing edges (van der Meulen 1978; Martin 1991; Semken & Wallace 2002), and an 

anteriorly directed, deep 6th re-entrant angle (Martin 1987; Semken & Wallace 2002) were 

assigned as M. pinetorum.  If the molar had a sixth re-entrant angle that was shallower (Martin 

1987; Semken & Wallace 2002), and enamel that was the same thickness on the leading end and 

trailing end (van der Meulen 1978; Martin 1991; Semken & Wallace 2002) it was assigned to M. 

ochrogaster.   
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Assumptions of Microtus spp. 

Assumptions 1-4 are modified from Wallace (2006) and are listed below. 

1.  Occlusal patterns of Microtus m1s have not experienced significant change, which 

would impact these analyses, since the Pleistocene.  Individual species have likely experienced 

morphological change both spatially and temporally, but as long as such interspecific changes 

are less significant than current intraspecific differences, the changes should prove irrelevant to 

the analyses.  

2.  Fossil molars of a particular taxon are more similar to extant specimens, of said taxon, 

than they are to any other taxon’s molars.  This is similar to assumption one and must apply 

regardless of the specimen’s geologic age. 

3.  All recognized Quaternary species of North American Microtus are extant.  None of 

the widely distributed continental micromammals have been included in the end-Pleistocene 

extinction in North America (Martin 1967; Graham & Lundelius 1984; FAUNMAP 1994; Jass & 

Bell 2011).   

4.  Morphotypes are equivalent to biological species.  Complete correlation between 

morphotypes and biological species in the fossil record may be unreachable.  Regardless, most 

specimens can be placed within a morphotype with a high degree of confidence.  

Landmarks 

The 21 landmarks developed by Wallace (2006) are used in this study (Table 1).  These 

landmarks (Fig. 6) were selected for ease of repeatability by another user, their likely 

preservation in the fossil record, and the shared ability to be used across Microtus spp.   
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Table 1 - Description of Landmarks Used in Analysis (adapted from Wallace 2006).  

Landmark 

No. Description of landmark 

1 Terminal end of the enamel band on lingual side of posterior loop. 

2 Most medial point of re-entrant angle 1 at the boundary between enamel and cement. 

3 Intersection of leading and trailing edges of enamel on triangle 1. At the boarder of enamel and dentine. 

4 Most medial point of re-entrant angle 3 at the boundary between enamel and cement. 

5 Intersection of leading and trailing edges of enamel on triangle 3.  At the boarder of enamel and dentine. 

6 Most medial point of re-entrant angle 5 at the boundary between enamel and cement. 

7 Intersection of leading and trailing edges of enamel on triangle 5.  At the boarder of enamel and dentine. 

8 Most medial point of re-entrant angle 7 at the boundary between enamel and cement. 

9 Intersection of leading and trailing edges of enamel on triangle 7.  At the boarder of enamel and dentine. 

10 Intersection of leading and trailing edges of enamel on triangle 6.  At the boarder of enamel and dentine. 

11 Most medial point of re-entrant angle 6 at the boundary between enamel and cement. 

12 Outside edge of enamel band at point of maximum curvature along the leading edge of triangle 4. 

13 Intersection of leading and trailing edges of enamel on triangle 4.  At the boarder of enamel and dentine. 

14 Most posterior position along the boundary of dentine and enamel of the trailing edge of triangle 4. 

15 Most medial point of re-entrant angle 4 at the boundary between enamel and cement. 

16 Outside edge of enamel band at point of maximum curvature along the leading edge of triangle 2. 

17 Intersection of leading and trailing edges of enamel on triangle 2.  At the boarder of enamel and dentine. 

18 Most posterior position along the boundary of dentine and enamel of the trailing edge of triangle 2. 

19 Most medial point of re-entrant angle 2 at the boundary between enamel and cement. 

20 Outside edge of enamel band at point of maximum curvature along the leading edge of the posterior loop. 

21 Terminal end of the enamel band on labial side of posterior loop. 

 

 

Fig 6 - Landmarks used in this study (Modified from Wallace 2006). Occlusal view of “Microtus 

ochrogaster”- morph (left) and “M. pennsylvanicus”- morph (right) m1s.  Landmark location 

homologous for both morphs.  Scale bar equals 1 mm.   

Shape Variables 

Photographs of the specimens were taken with a Leica EZ4 HD stereo microscope, using 

the computer program Leica Application Suite V4, in the East Tennessee State University 
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(ETSU) Department of Geosciences microscope/camera lab.  Damaged specimens (if a landmark 

could not be placed due to damage or extreme weathering) were not used in the analysis.  Two-

dimensional coordinates were digitized on images using tpsDig2 ver. 2.17 (Rohlf 2013a), using 

the 21 landmarks from Wallace (2006).  All data was then combined into one tps file (including 

the original M. pennsylvanicus data from Wallace (2006)) using tpsUtil ver. 1.58 (Rohlf 2013c).  

A Generalized Procrustes analysis (GPA) was then preformed on the data, using tpsSuper ver. 

2.00 (Rohlf 2013b), that superimposes the specimens by translating the centroid of each 

specimen (having an x and y coordinate) with that of the mean specimen.  Consequently, overall 

size is normalized across all specimens.  Specimens were then oriented in a manner that creates 

the smallest summed squared distances between each of the landmarks (this is part of the 

superimposition).  These new coordinates were then used to compare shape differences between 

samples (Adams et al. 2004).  Results of the GPA produce 42 shape variables, with each 

landmark contributing an x and y coordinate.  The steps in the above paragraph were repeated for 

each individual analysis. 

Analysis 

Shape variables were then uploaded into the program SPSS for windows (version 21.0; 

SPSS Inc., Chicago, Illinois).  A principle component analysis (PCA) was run for both 

groupings, to look for initial separation.  Discriminant analysis / Multidiscriminant analysis 

(DA/MDA) were run to look for separation among species.  Stepwise discriminant analyses, with 

a P=.05 (significance), were used to isolate the most significant variables (that separate out the 

species). 
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CHAPTER 3 

USING GEROMETRIC MORPHOMETRICS TO DIFFERENTIATE MICROTUS 

RICHARDSONI, MICROTUS XANTHOGNATHUS, AND MICROTUS PENNSYLVANICUS 

LOWER FIRST MOLARS 

Results 

Principle Component Analysis (PCA) 

 M. xanthognathus vs. M. richardsoni. 

Results of the PCA show a noticeable separation between the two species (Fig. 7a).  

Separation between the two species occurs around the first axis; with almost all of the M. 

xanthognathus plotting in the negative range of the first axis and the vast majority of the M. 

richardsoni plotting in the positive range.  Results of the PCA warranted preforming a DA to 

look for further separation between the two species, and to isolate the landmarks that best 

separate the two taxa. 

 M. xanthognathus vs. M. richardsoni vs. M. pennsylvanicus. 

Results of the PCA show a good separation between the three species (Fig. 7b).  As was 

seen in (Fig. 7a), M. xanthognathus and M. richardsoni separate by the first axis.  Microtus 

pennsylvanicus separates from the other two species around the second axis.  Results of this PCA 

also warranted preforming a DA. 
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Fig. 7. - Results of Principle Component Analysis with first two scores plotted, against each other a) M. xanthognathus and M. 

richardsoni. PCA score 1 accounts for 28.2% of the variance while PCA score 2 accounts for 9.9% and with b) Microtus 

xanthognathus, M. richardsoni, and M. pennsylvanicus. PCA score 1 accounts for 22.9% of the variance while PCA score 2 accounts 

for 17.6%.



 

35 
 

Discriminant Analysis (DA) 

 M. xanthognathus vs. M. richardsoni.  

 All specimens were correctly classified to species by the analysis including all variables 

and when a stepwise was performed.  This held true for the original and cross-validated results.  

The stepwise discriminant function isolated 10 significant variables (X9, Y9, X11, Y8, X10, 

X18, Y12, Y7, Y17, X5) with a probability F= .05 (Table 2).  Microtus xanthognathus 

specimens plot as positive values of the discriminant function, whereas M. richardsoni 

specimens plot as negative values (Fig. 8a).  These values change drastically when a stepwise is 

performed (Fig. 9a).  The five most correlated scores from both the DA and Stepwise DA are 

listed in Table 3. 

Table 2 - Variables Selected by the Stepwise Discriminant Analysis. 

Variables 
Wilks' 

Lambda 

X9 0.068 

Y9 0.094 

X11 0.075 

Y8 0.082 

X10 0.077 

X18 0.058 

Y12 0.061 

Y7 0.059 

Y17 0.061 

X5 0.058 

   

Table 3 - Top Five Most Correlated Scores from Structure Matrix. 

DA 

Variables 

Correlation 

score 

Stepwise 

DA 

Variables 

Correlation 

score 

Y13 0.249 X9 -0.347 

X9 0.225 Y17 -0.261 

Y10 0.217 X10 0.233 

X19 -0.173 X11 0.184 

Y17 0.169 X18 0.183 
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Multidiscriminant Analysis (MDA) 

 M. xanthognathus vs. M. richardsoni vs. M. pennsylvanicus.   

 100% of the original “known” cases classified correctly to species in the standard MDA.  

However, only 96.5% of the cross-validated grouped cases correctly classified to species (Table 

4): with one M. richardsoni classified as M. pennsylvanicus and two M. pennsylvanicus 

classified as M. richardsoni.  When a stepwise MDA was performed both the original and cross-

validated identified 100% of the species correctly.  The stepwise multidiscriminant function 

isolated 12 significant variables (X9, Y19, Y2, Y9, X21, Y10, X11, Y17, X10, Y4, Y16, Y8) 

with a probability F= .05 (Table 5).  Microtus richardsoni and M. pennsylvanicus plot as 

positive values of the first discriminant function, with M. xanthognathus plotting as negative 

values.  Microtus richardsoni plots with negative values of the second discriminant function, 

with M. pennsylvanicus plotting as positive values.  M. xanthognathus has positive and negative 

values of the second discriminant function (Fig. 8b).   
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Table 4 - Classification and Cross-Validated Table from Multidiscriminant Analysis. Species 

Code 1) Microtus xanthognathus, 2) M. richardsoni, 3) M. pennsylvanicus. 

      Predicted Group Membership   

    Species Code 1 2 3 Total 

Original Count 1 32 0 0 32 

    2 0 30 0 30 

    3 0 0 23 23 

  % 1 100 0 0 100 

    2 0 100 0 100 

    3 0 0 100 100 

Cross-validated Count 1 32 0 0 32 

    2 0 28 2 30 

    3 2 1 22 23 

  % 1 100.0 0 0 100 

    2 0 93.3 6.7 100 

    3 0 4.3 95.7 100 

 

 

Table 5 - Variables Selected by Stepwise Multidiscriminant Analysis.  

Variables 
Wilks’ 

Lambda 

X9 .021 

Y19 .021 

Y2 .021 

Y9 .020 

X21 .024 

Y10 .019 

X11 .023 

Y17 .021 

X10 .019 

Y4 .019 

Y16 .019 

Y8 .018 

 

Stepwise MDA is not as clean as the standard MDA.  First discriminant function plots M. 

xanthognathus as positive values and M. richardsoni as negative values with most M. 

pennsylvanicus plotting as negative values.  Second discriminant function plots M. richardsoni 

and most M. xanthognathus as positive points, whereas the M. pennsylvanicus plot as negative 
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points (Fig. 9b).  The five most correlated scores for the first two functions used in the MDA are 

listed in Table 6.  

Table 6 - Top Five Most Correlated Scores Used in MDA from Structure Matrix. 

Variables 

Correlation 

score 

function 1 

Variables 

Correlation 

score 

function 2 

X9 -0.325 Y13 0.285 

Y13 -0.241 Y8 -0.273 

X7 -0.232 Y2 -0.264 

X10 0.202 Y10 0.254 

Y10 -0.197 Y15 -0.241 
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Fig. 8 - A) Results of Discriminant Analysis for Microtus xanthognathus and M. richardsoni with all variables included and B) 

Results of Multidiscriminant Analysis with first two scores plotted, against each other for M. xanthognathus, M. richardsoni, and M. 

pennsylvanicus with all variables included.  Function 1 accounts for 65.4% of the variance with Function 2 accounting for the 

remaining 34.6%. 
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Fig. 9 - A) Results of Discriminant Analysis for Microtus xanthognathus and M. richardsoni with only those variables selected by the 

stepwise analysis and B) Results of Multidiscriminant Analysis with first two scores plotted, against each other for M. xanthognathus, 

M. richardsoni, and M. pennsylvanicus with only those variables selected by the stepwise analysis.  Function 1 accounts for 57.7% of 

the variance with Function 2 accounting for the remaining 42.3%. 
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Discussion 

Previous studies have primarily separated Microtus richardsoni from M. xanthognathus 

by the presence of a bulbous anterior complex of the lower m1 of M. richardsoni (Burns 1982; 

Semken & Wallace 2002) (Fig. 10).  The current study provides an alternative method of 

differentiating the two species even if the anterior complex is slightly damaged or missing.  In 

comparison with other 5-closed triangle Microtus, M. xanthognathus m1s have a more 

pronounced lingual curvature (Fig. 10).  M. pennsylvanicus tend to have much sharper salient 

angles in comparison to the other two species.  Figure 11 shows a linear scatter plot of all 21 

landmarks from all specimens used here.   

 

Fig. 10 - Occlusal views of lower first molars from: Left) Microtus pennsylvanicus (left molar, 

rotated for the purpose of this figure), collected from Clark’s Cave tentative ID CCD-201L; 

Center) M. xanthognathus (right molar), USNM-109459; M. richardsoni (right molar), USNM-

170391.  Scale bar = 2mm. 

 The five most significant variables that make up the discriminant function separating M. 

xanthognathus and M. richardsoni are listed in Table 3.  The more robust nature of the M. 
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richardsoni triangles seems to be driving the function.  Four of the five variables (Y13, X9, Y10, 

Y17) are from landmarks on the salient edge of the triangles.  Figure 11 shows that for 

landmarks 10, 13, and 17 M. xanthognathus consistently occupies a more anterior location 

(higher “morphospace”) on the tooth than M. richardsoni.   M. xanthognathus m1s show a more 

pronounced curvature compared to most other Microtus species as seen from the plotting of 

landmark 9 (Fig. 11).  The variable with the fourth strongest correlation with the function is X19. 

This may be a character that would have been easily overlooked, but upon looking, R2 on M. 

richardsoni tend to have a more anterior curve to them.  This results in landmark 19 plotting in a 

higher morphospace for M. richardsoni.  

 When comparing the variables selected for differentiating M. xanthognathus and M. 

richardsoni vs. all three species (inclusion of M. pennsylvanicus) there are many similarities, but 

also important differences.  The five most correlated variables that make up multidiscriminant 

function 1 separating M. xanthognathus, M. richardsoni, and M. pennsylvanicus are listed in 

Table 6.  The top five most correlative variables with function 1 are all from salient triangle 

angles (X9, Y13, X7, X10, Y10).  As can be seen from Figure 9a function 1 separates M. 

xanthognathus from the other two species.  It is not surprising that variables X9 and X7 are 

among the top five most correlated as they show the characteristic lingual curvature on the labial 

side of the M1, which is diagnostic of M. xanthognathus (Semken & Wallace 2002; Fig. 11). 

Variables X10 and X13 correspond to T6 and T4 respectively.  Both these variables show a more 

lingual occupation of “morphospace”.  Figure 11 shows that variable Y10 for M. xanthognathus 

and M. pennsylvanicus plot in a higher morphospace than M. richardsoni.      

 As seen in Fig. 8b, MDA function 2 separates M. richardsoni from M. pennsylvanicus.  

The five most correlated variables with function 2 can be seen in Table 6.  Figure 11 shows that 
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landmarks 10 and 13 in M. pennsylvanicus plot more anteriorly than M. richardsoni.  This is 

logical as S4 and S6 are angled anteriorly in M. pennsylvanicus and posteriorly to medially in M. 

richardsoni.   Variables Y8, Y2, and Y15 also show strong correlation with function 2 and 

Figure 11 indicates that M. richardsoni have deeper more anteriorly curved R1, R4, and R7.  
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Fig. 11 - Generalized scatter plot of the 21 landmarks (see figure 3) for all 3 species. Note that 

the greatest spread of the landmarks (and most telling morphology) is at the anterior end of the 

tooth; whereas the posterior-medial portion exhibits the least variation (more conservative). Also 

note the distinct spread of landmarks for each of the three taxa: Microtus xanthognathus 

exhibiting a relatively “thin” tooth (more medially placed landmarks), M. richardsoni exhibiting 

a very “wide” tooth, and M. pennsylvanicus exhibiting an intermediate spread. Numbers next to 

clusters indicate the landmark. 

Errors in proper identification of the species in the MDA may have stemmed from an 

unequal sample size of M. pennsylvanicus in comparison to the other two species.  As in Wallace 
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(2006), a standard discriminant function produces better separation, in all of the analyses, than 

with a stepwise discriminant.  Such disparity may indicate that Microtus m1s share enough 

morphological similarity that all variables should be included.  Careful evaluation of each 

variable should be considered before elimination from any future analyses.  

Conclusions 

Wallace (2006) used a Bookstein (1991) shape coordinates method to analysis landmark 

data, resulting in variables produced from landmarks 2 and 9 (Fig. 6) being excluded from said 

analysis, in order to align the remaining landmarks.  The study presented here points to the 

importance of those two landmarks in identifying the three Microtus species in this and future 

studies.  In the stepwise DA of M. xanthognathus and M. richardsoni variables X9 and Y9 were 

significant to classifying the taxa (Table 2).  In the stepwise MDA of M. xanthognathus, M. 

richardsoni and M. pennsylvanicus, X9, Y9, and Y2 are the three most important variables in 

classifying the specimens, based on Wilks’ Lambda values (Table 5).  The importance of these 

variables in the stepwise DA’s points to the favorable use of a GPA over GRF for this and 

similar Microtus studies.   

“Bulbous” or “broad” are vague terms, and leave room for question when trying to 

differentiate between the m1 of a M. richardsoni and M. xanthognathus.  This study provides a 

more concrete method of differentiating the two.  This study also builds on the work produced by 

Wallace (2006) and provides an improved method for differentiating Microtus lower first molars.  

Proper identification of Microtus and other microtine species will aide in the proper 

reconstruction of paleoenvironments in the Quaternary; especially important for species that 

share, or have shared, similar geographic ranges.  Studies such as these can help shed light on 

errors on identifications in the past and open new doors for future research.   
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CHAPTER 4 

RE-EXAMING THE CLARK’S CAVE MICROTUS USING MORPHOMETIRCS 

 Three distinct tests will be performed in this chapter, looking for: 1) the presence of 

Microtus richardsoni; 2) the ratio of M. pennsylvanicus morph vs M. xanthognathus morph, and 

3) the ratio / presence of M. pinetorum and M. ochrogaster, in the CC deposit.  The first two tests 

use 106 5-closed triangle morph Microtus m1s collected from Clark’s Cave (ETSU group) to test 

traditional vs morphometric techniques of identification.  Of those specimens, 87 had a lower 

first molar length of less than 3.2 mm (classified as M. pennsylvanicus morph using the 

traditional measurement division), and 19 possessed an m1 length of greater than or equal to 

3.2mm (assigned to M. xanthognathus).    

Clark’s Cave Microtus richardsoni test 

Results 

 PCA. 

 Following the methods outlined in chapter 2, results of PCA show noticeable separation 

between the known M. richardsoni specimens and the M. pennsylvanicus and M. xanthognathus 

fossils (Fig. 12).  Microtus richardsoni specimens plot in the bottom right quadrant of (Fig. 12), 

while the majority of the unknowns plot within the M. pennsylvanicus cluster or M. 

xanthognathus cluster.  The first two eigenvalues (10.214 and 5.236) make up 24.320% and 

12.467% of the variance respectively.  Sufficient separation is shown by the PCA, warranting a 

MDA be performed.  
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Fig. 12. - Results of Principle Component Analysis with first two scores plotted, against each 

other for Microtus pennsylvanicus, M. xanthognathus, M. richardsoni, and 5-closed triangle 

morph Microtus from Clark’s Cave (CC).  PCA score 1 is responsible for 24.32% of the variance 

with PCA score 2 responsible for 12.47% of the variance.  Known specimens were wild caught 

and collected skin and skull. 

 MDA. 

 Unlike in the PCA there is not a uniform break between the M. richardsoni specimens 

and the unknowns, especially amongst the unknowns assigned as MPM (Fig. 13a).  Of the 106 

unknowns: 31 (29.2%) were classified as M. pennsylvanicus, 45 (41.5%) were classified as M. 
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xanthognathus, and 31 (29.2%) were classified as M. richardsoni (Table 6).  The majority of the 

unknowns classified as M. xanthognathus grouped with the known specimens of that species.  

The same is not true of the unknowns classified as M. pennsylvanicus; with the bulk of these 

specimens grouping within the middle range between the three knowns, spilling into all three 

clusters.  Function 1 has an eigenvalue of 17.109 and accounts for 65.4% of the variance.  

Function 2 has an eigenvalue of 9.069 accounting for the remaining 34.6% of the variance.   

Table 7 - Classification and Cross-Validated Table from Multidiscriminant Analysis.  Species 

Code 1) M. pennsylvanicus, 2) M. xanthognathus, 3) M. richardsoni, Ungrouped Cases are the 

Unknown 5 Closed Triangle Morph Microtus. 

      Predicted Group Membership   

    Species Code 1 2 3 Total 

Original Count 1 23 0 0 23 

    2 0 32 0 32 

    3 0 0 30 30 

    Ungrouped cases 31 44 31 106 

  % 1 100 0 0 100 

    2 0 100 0 100 

    3 0 0 100 100 

    Ungrouped cases 29.2 41.5 29.2 100 

Cross-validated Count 1 22 0 1 23 

    2 0 32 0 32 

    3 2 0 28 30 

  % 1 95.7 0 4.3 100 

    2 0 100 0 100 

    3 6.7 0 93.3 100 

 

 When a stepwise MDA is preformed there is a change in the ratio of unknowns assigned 

to either M. xanthognathus or M. pennsylvanicus (Fig. 13b).  Number of unknowns classified as 

M. richardsoni remained the same at 31 (making up 29.2% of the unknowns); however 

unknowns classified as M. pennsylvanicus increased to 42 (39.6%), while the number of M. 

xanthognathus classified fell to 33 (31.1%) (Table 8).  Function 1 has an eigenvalue of 7.989 

responsible for 59.9% of the variance.  Function 2 has an eigenvalue of 5.358 responsible for 



 

49 
 

40.1 % of the variance.  The stepwise multidiscriminant function isolated 11 significant variables 

(X9, Y19, Y2, Y9, X21, Y10, X11, Y17, X10, Y4, Y16) with a probability F = .05. 

Table 8 - Classification and Cross-Validated Table from Stepwise Multidiscriminant Analysis.  

Species Code 1) M. pennsylvanicus, 2) M. xanthognathus, 3) M. richardsoni, Ungrouped Cases 

are the Unknown 5-closed Triangle Morph Microtus. 

      Predicted Group Membership   

    Species Code 1 2 3 Total 

Original Count 1 23 0 0 23 

    2 0 32 0 32 

    3 0 0 30 30 

    Ungrouped cases 42 33 31 106 

  % 1 100 0 0 100 

    2 0 100 0 100 

    3 0 0 100 100 

    Ungrouped cases 39.62264 31.13208 29.24528 100 

Cross-validated Count 1 23 0 0 23 

    2 0 32 0 32 

    3 0 0 30 30 

  % 1 100 0 0 100 

    2 0 100 0 100 

    3 0 0 100 100 
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Fig. 13 - Results of Multidiscriminant Analysis with first two scores plotted, against each other for Microtus pennsylvanicus, M. 

xanthognathus, M. richardsoni, and 5-closed triangle morph Microtus from Clark’s Cave (CC) with A) all variables included. 

Function 1 accounts for 65.4% of the variance with Function 2 accounting for the remaining 34.6%, and B) with only those variables 

selected by the stepwise analysis.  Function 1 accounts for 59.9% of the variance with Function 2 accounting for the remaining 40.1%.  

Known specimens were wild caught and collected skin and skull.
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Discussion 

 Results of the PCA seems to support the notion that there were no M. richardsoni 

collected from the site; a not surprising result as fossil records only come out of the western US 

and Canada, similar to its current range today (Ludwig 1984) (Fig. 1).  That is not to suggest that 

it would be impossible to find M. richardsoni in an eastern deposit as there are taxa such as M. 

xanthognathus which has much wider extra-limital fossil ranges.  Circular reasoning is 

commonly used in identifying Microtus spp. and should be avoided to assure more accurate and 

unbiased identifications.  If no one is expecting to find M. richardsoni in eastern deposits they 

could be misidentified as M. xanthognathus.  Guilday and Bender (1960) discuss the variation 

seen in yellow-cheeked vole molars and how some specimens show a bulb like anterior complex.  

A lack of M. richardsoni in eastern NA could be an indication that: 1) their range did not 

drastically shift as a result of glaciation, 2) the species is not that old, or 3) that there is a 

sampling error. 

 After running an MDA I expected a more clear separation between the M. richardsoni 

and the rest of the specimens, because of the separation seen from the PCA.  Results from 

chapter 3 showed, if good separation is seen from the results of a PCA, the results from a MDA 

will show greater separation.  However, the opposite proved true as the MDA classified 29% of 

the unknown specimens as M. richardsoni.  As I see it, the PCA depicts a more accurate 

representation of the Microtus collected from the site and I do not feel comfortable classifying 

any of the specimens as water voles.  Data presented in Figure 13a and Table 7 show that all of 

the unknowns classified as M. richardsoni were assigned as M. pennsylvanicus morph.  These 

unknowns in both the standard and stepwise MDA do not fully penetrate the M. richardsoni 

cluster, unlike the unknowns that grouped with the other two known clusters.  Unknowns 
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classified as M. richardsoni group around the central region of the chart.  For M. pennsylvanicus 

and M. xanthognathus clusters, unknowns show up at the extreme end of their respected clusters.  

 The results suggest that all of the unknowns classified as M. richardsoni were assigned to 

the MPM group.  Unknowns assigned as MXM grouped in the M. xanthognathus third of the 

graph.  More than the 19 specimens in the MXM group were classified as M. xanthognathus, 

meaning that some of the MPM group were classified as M. xanthognathus, as was expected.  

When visually comparing tooth morphology, M. richardsoni and M. xanthognathus m1s look 

more similar to each other than they do to M. pennsylvanicus (Semken & Wallace 2002).  At first 

glance this is true for size and sharpness of the salient angles of the triangles (Fig. 10).  M. 

richardsoni on average have the largest m1 of the NA Microtus, and all of the MPM group 

molars are less than 3.2mm in length.  Their size coupled with the fact that during the initial 

classification stage there were very few teeth that even resembled a M. richardsoni morphology, 

support Guilday et al. (1977)’s assessment that there are no M. richardsoni in the Clark’s Cave 

deposit.   

 A number of potential factors may have led to the MDA classifying unknowns as M. 

richardsoni.  1) The variant nature of M. pennsylvanicus occlusal tooth morphology.  It would 

not be surprising that a population of meadow voles developed a morphology resembling the 

triangle orientation of water voles.  2) Assumption 1 from chapter 2 is false and M. 

pennsylvanicus has changed morphologically since the Pleistocene.  3) At the end Pleistocene, 

the climate and landscape of Virginia would be different than present and M. pennsylvanicus 

may have adapted a set of characters more similar to another Microtus species as a response to 

environmental pressures.  4) Weathering process may have altered some of the MPM group 

leading to misclassification.  5) A fifth and more likely scenario is that other than T6 on M. 
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richardsoni, the water vole and meadow vole share more anteriorly pointing salient angles, in 

comparison to the taiga vole.  After performing a superimposition and normalizing size, the 

orientation of the salient angles would group M. richardsoni and M. pennsylvanicus specimens 

closer together in comparison to M. xanthognathus specimens.   

 As a result, I feel comfortable in stating that there were no M. richardsoni collected in the 

(ETSU) sample and most likely the sample from Guilday et al. (1977).  Consequently, M. 

richardsoni will no longer be considered a species option in the MXM specimens.  This should 

increase the accuracy on the rest of the analyses.  Removing one of the species allows the 

analysis to focus on just the characters that separate out M. pennsylvanicus and M. 

xanthognathus (in this case).  With each subsequent group added to a DA, a weaker result is 

produced.  Ideally MDA’s should be used as a means of parsing out groups (species, options, 

etc.), performed in this study.   

Clark’s Cave Microtus pennsylvanicus morph / M. xanthognathus morph ratio test 

Results 

 PCA. 

 Results of the PCA do not show any unsurprising trends.  A rough line of separation 

seems to be running diagonally from the bottom left to the top right (Fig. 14).  MXM unknowns 

plot well with their known counterparts; while MPM unknowns show more mixing.  The first 

two eigenvalues (7.988 and 8.261) make up 19.019% and 8.261% of the variance respectively.  

Sufficient separation is shown in the PCA that an MDA was worth performing. 
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Fig. 14 - Results of Principle Component Analysis with first two scores plotted against each 

other for Microtus pennsylvanicus, M. xanthognathus, and 5-closed triangle morph Microtus 

from Clark’s Cave (CC).  PCA score 1 accounts for 19% of the variance and PCA score 2 

accounts for 8.3% of the variance.  Known specimens were wild caught and collected skin and 

skull. 

 DA. 

 Results of the DA give a similar result to the PCA.  Specimens fall out on one side or the 

other, but there are also a lot of unknowns that fall near the boundary of both species (Fig. 15a).  

Of the 106 unknown specimens: 38 (35.8%) were classified as M. pennsylvanicus and the 
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remaining 68 (64.2%) were classified as M. xanthognathus (Table 9); a noticeable amount of 

variation from the assigned morphotypes.  Results of the stepwise DA shows a more even 

separation than the standard DA and PCA.  A cluster of M. pennsylvanicus morphs still remain in 

the middle, but they are much more concentrated (Fig. 15b).  Of the 106 unknown specimens: 47 

(44.3%) were classified as M. pennsylvanicus and the remaining 59 (55.7%) were classified as 

M. xanthognathus (Table 10).  Nine variables were used in the stepwise analysis: (X9, Y9, Y12, 

Y2, X14, Y17, X3, Y19, Y16).   

Table 9 - Classification and Cross-Validated Table from Discriminant Analysis.  Species Code 

1) Microtus pennsylvanicus, 2) M. xanthognathus, the Ungrouped Cases are the Unknown 5-

closed Triangle Morph Microtus. 

      Predicted Group Membership   

    Species Code 1 2 Total 

Original Count 1 23 0 23 

    2 0 32 32 

    Ungrouped cases 38 68 106 

  % 1 100 0 100 

    2 0 100 100 

    Ungrouped cases 35.8490566 64.1509434 100 

Cross-validated Count 1 21 2 23 

    2 3 29 32 

  % 1 91.30434783 8.695652174 100 

    2 9.375 90.625 100 
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Fig. 15 - Results of Discriminant Analysis for Microtus pennsylvanicus, M. xanthognathus, and Clark’s Cave (CC) unknowns with A) 

all variables included and B) only those variable selected by the stepwise analysis.  Known specimens were wild caught and collected 

skin and skull.
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Table 10 - Classification and Cross-Validated Table from Stepwise Discriminant Analysis.  

Species Code 1) Microtus pennsylvanicus, 2) M. xanthognathus, Ungrouped Cases are the 

Unknown 5-closed Triangle Morph Microtus. 

      Predicted Group Membership   

    Species Code 1 2 Total 

Original Count 1 23 0 23 

    2 0 32 32 

    Ungrouped cases 47 59 106 

  % 1 100 0 100 

    2 0 100 100 

    Ungrouped cases 44.33962264 55.66037736 100 

Cross-validated Count 1 23 0 23 

    2 0 32 32 

  % 1 100 0 100 

    2 0 100 100 

 

Discussion 

 Both the DA and the stepwise DA indicate that there is a much higher proportion of M. 

xanthognathus in the deposit than would previously have been assumed, helping confirm the 

conclusion that size alone is an inadequate method of differentiating MPM from M. 

xanthognathus.  Morphological analyses should be the primary focus of future and past 

identification.  Ideally whole dentitions should be used for corrected identifications.  However, 

when working in the fossil record, complete Microtus skulls are few and far between. 

 It should not be surprising that the average length of MPM and M. xanthognathus molars 

from the past are different than that of modern specimens.  M. pennsylvanicus occlusal molar 

patterns have already been shown to have high levels of variation, it is not that hard to believe 

that size will vary as well.  A host of ecological pressures could select for different size and 

morphology.  With time averaging you could have very different populations providing different 
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morphologies.  Even within the same depositional time range, a multitude of predators at the 

sight may have significantly different hunting ranges pulling from different populations.   

 Clark’s Cave is so far from the current range that it should not be a surprise that there is a 

significant size difference in some M. xanthognathus specimens.  Bergmann’s rule could be a 

simple answer to this question.  Virginia is much further south than the arctic.  The taiga vole has 

a limited range today; were it to have a much larger southern range today, I see no reason why 

we wouldn’t see significant variation is size.  Though I know of no study, it’s worth testing 

variation in occlusal molar pattern in sympatric vole species, in comparison to populations of 

those same species that are isolated from each other.  To see if competition over the same 

resources causes a change in morphology.  If this were to occur, size and morphology differences 

could be the result of competition in non-analog faunas.   

 The useable minimum number of individuals (MNI) of MPM collected from the ETSU 

sample was 48 specimens (right m1).  The useable MNI of M. xanthognathus (ETSU sample) 

was 11 (right m1).  Total this puts the useable MNI for five closed triangle morph Microtus at 59.  

A DA was run using these numbers to allow for comparison to the MNI’s reported in Guilday et 

al. (1977).  Of the 59 specimens: 21 (35.6%) were classified as MPM, the remaining 38 (64.4%) 

specimens were classified as M. xanthognathus (Table 11).   
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Table 11 - Classification and Cross-Validated Table from Discriminant Analysis.  Species Code 

1) Microtus pennsylvanicus, 2) M. xanthognathus, the Ungrouped Cases are the Unknown 5-

closed Triangle Morph Microtus. 

      Predicted Group Membership   

    Species Code 1 2 Total 

Original Count 1 23 0 23 

    2 0 30 30 

    Ungrouped cases 21 38 59 

  % 1 100 0 100 

    2 0 100 100 

    Ungrouped cases 35.59322034 64.40677966 100 

Cross-validated Count 1 21 2 23 

    2 2 28 30 

  % 1 91.30434783 8.695652174 100 

    2 6.666666667 93.33333333 100 

 

 Using a DA the MNI of M. xanthognathus from the ETSU sample is 38, accounting for 

64.4% of the total MNI for 5-closed triangle morph Microtus collected from the site.  Though 

this is a much smaller sample size than that collected in Guilday et al. (1977) I feel the same ratio 

can be applied to that sample collected.  There the MNI of MPM collected was 950 (m1s).  The 

MNI on the subsequent M. xanthognathus was 511 (m1s).  Resulting in a total MNI of 5 closed 

triangle morph Microtus as 1461 (m1s).  Applying the ratio stated above on this sample would 

result in an MNI of roughly 941 M. xanthognathus and 520 MPM, resulting in a nearly 180 

degree flip in classification. 

 Without whole skulls it is difficult to determine the ratio of M. pennsylvanicus to M. 

chrotorrhinus.  I do not feel comfortable using the ratio of upper M2s or M3s and extrapolating to 

the number of MPM m1s.  Guilday et al. (1977) obtained adjusted MNI’s for M. pennsylvanicus 

and M. chrotorrhinus in this way.  All three of these teeth are different sizes and will therefore, 

likely preserved in different quantities.  Examination of the collected M3s (using techniques in 

Guilday (1982b) and Semken & Wallace (2002)) show all three species of the 5-closed triangle 
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morph Microtus are present.  Therefore the best this study can say is that both MPM species are 

present at the sight.  This is the safest assumption.   

Clark’s Cave Microtus pinetorum / M. ochrogaster ratio test 

 For this study 194 specimens M. pinetorum from the Carnegie collection were used in the 

analysis along with eight 3-closed triangle morph Microtus from the ETVP collection.  Using 

traditional methods (van der Meulen 1978; Martin 1987; Martin 1991; Semken & Wallace 2002) 

43 of the total 202 specimens were classified as M. pinetorum and the remaining 155 were 

classified as M. ochrogaster.  A stark difference from only M. pinetorum being present in the 

deposit.  

Results 

 PCA. 

 Results of the PCA shows a distinct gap between the two clusters created.  With the M. 

ochrogaster group clustered at the bottom right of Figure 16a and the M. pinetorum group 

clustered in the upper left section of the graph.  Some intermixing of the two species occurs 

within their respected clusters, suggesting misidentifications were made.  The first two 

eigenvalues (12.893 and 5.540) make up 30.697% and 13.190% of the variance respectively.  

Results of the PCA showed sufficient separation that a MDA was worth preforming. 
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Fig. 16 - A) Results of Principle Component Analysis with first two scores plotted, against each other for Microtus pinetorum and M. 

ochrogaster.  PCA score 1 accounts for 30.7% of the variance with PCA score 2 accounting for 13.2% of the variance and B) Results 

of Discriminant Analysis for M. pinetorum and M. ochrogaster with all variables included. 
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DA. 

 No modern analogs (knowns) were included in this study.  A sizeable modern 

comparative sample was not obtained.  Therefore, no specimen was assigned as an unknown in 

this analysis.  Results of the discriminate may have shown some variance if modern specimens 

were included.  Figure 16b shows separation amongst the two species.  Overlap occurs towards 

the middle of the graph.  Of the 43 specimens assigned as M. pinetorum: the discriminate 

classified 33 (76.7%) of these as woodland voles and the other 10 (23.3%) as prairie voles 

(Table 12).  Of the 155 specimens assigned as M. ochrogaster: the discriminate classified 11 

(7.1%) of these as woodland voles and the other 144 (92.9%) specimens as prairie voles.   

Table 12 - Classification and Cross-Validated Table from Discriminant Analysis.  Species Code 

1) Microtus pinetorum, 2) M. ochrogaster. 

      Predicted Group Membership   

    Species Code 1 2 Total 

Original Count 1 33 10 43 

    2 11 144 155 

  % 1 76.74418605 23.25581395 100 

    2 7.096774194 92.90322581 100 

Cross-validated Count 1 24 19 43 

    2 20 135 155 

  % 1 55.81395349 44.18604651 100 

    2 12.90322581 87.09677419 100 

 

Upon observation of the PCA results, 7 M. ochrogaster are plotted in the M. pinetorum 

bubble and 17 M. pinetorum are plotted in the M. ochrogaster range.  Interpreted to be 

specimens that fall into the in-between category (where it was hard to confidently assign which 

species the molar belonged to).  These 24 teeth were then assigned to the opposite species from 

which they were originally identified and a DA was run again.  Resulting in a 99% grouping of 
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specimens as they were newly assigned (Table 13).  With all of the M. pinetorum grouping 

correctly and only 2 M. ochrogaster grouping as woodland voles.   

Table 13 - Classification and Cross-Validated Table from Discriminant Analysis, with Adjusted 

Classifications.  Species Code 1) Microtus pinetorum, 2) M. ochrogaster. 

      Predicted Group Membership   

    Species Code 1 2 Total 

Original Count 1 33 0 33 

    2 2 163 165 

  % 1 100 0 100 

    2 1.2121 98.7878 100 

Cross-validated Count 1 32 1 33 

    2 4 161 165 

  % 1 96.9696 3.03 100 

    2 2.4242 97.5757 100 

 

Discussion 

I feel confident saying that M. ochrogaster was collected from the Clark’s Cave deposit, 

based on my identification and the results of the PCA and DAs.  Both methods support this 

conclusion, suggesting that using geographic probability to classify 3-closed triangle Microtus in 

this case was a poor assumption.  The ratio of M. pinetorum to M. ochrogaster was not as 

expected.  Initial expectations were that a few prairie voles would show up in the deposit.  The 

current study suggests that the deposit is much richer in prairie voles than woodland voles.   

The initial discriminate classifies about 21% (Table 12) of the 3-closed triangle morph 

Microtus molars to be M. pinetorum.  While, the DA with modified identifications classifies only 

about 17% (Table 13) of the 3-closed triangle morph Microtus molars to be M. pinetorum.  

Results from the initial discriminate were less conclusive because a DA will try to group like 

specimens together.  This resulted in the analysis trying to group some M. ochrogaster as M. 



 

64 
 

pinetorum and vice versa.  After identifications were adjusted / corrected base off the PCA 

results, classifications made by the second DA were much cleaner. 

Results of the discriminate analysis were most helpful in identifying the “in-between” 3-

closed triangle morph Microtus specimens.  While examining the specimens under a scope it 

became very obvious that there were three types of m1s.  Those that were clearly M. pinetorum 

(Fig. 17), those that were clearly M. ochrogaster (Fig. 17), and those that showed characteristics 

of both species.  Results the PCA and DAs show that I misidentified some of these in-between 

specimens, as was expected.  Using morphometric analysis helps in eliminating some of the 

guess work. 

 

Fig. 17 - Occlusal view of right lower first molars for: Left) Microtus ochrogaster, tentative ID 

TCT-35R; M. pinetorum, tentative ID TCT-252R.  Both specimens part of CM-24576.  Scale bar 

= 2mm. 
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One of the limitations in using landmark data to perform a discriminate analysis is that 

some of your collection is not included in the analysis.  Fragmented or damaged material was 

excluded from the analysis as it either deviates to far from the normal range or prohibited the 

placement of landmarks.  Because of this I would expect a slightly higher proportion of M. 

pinetorum specimens.  During the examination process it was evident that in general M. 

pinetorum like specimens showed more signs of weathering.  In particular doming of the 

occlusal surface of the tooth (Fig. 18).  In count and proportions M. pinetorum molars tended to 

show much higher signs of exaggerated doming, a strong indicator of digestion (Andrews 1990).  

Potential evidence that there was more than one predator source for the material in the deposit.   

 

Fig. 18 - Severe doming of occlusal surface of Microtus pinetorum (CM-24576, tentative ID: 

TCT 100).  Indicative of digestion.  Scale bar = 2mm. 

Both of these species occupy very different niches.  Having both in the same deposits 

suggests one of two things.  1) That both a forested and more open grassland biome were within 

the hunting range of the raptor(s) roosting at the cave site at the time.  2) The two different 

species were deposited at different times, representing a changing landscape during glacial and 

interstadial periods.  Dates on the deposit (Semken et al. 2010) would suggest that particular taxa 
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show periods of presence and absence in accordance with Heinrich events (Alley & MacAyeal 

1994) and other climatic fluctuations.  It should be noted that the lack of presence does not 

necessarily mean absence and should be considered in climate studies. 

Conclusions 

In using the Clark’s Cave fossil deposit as a case study we see that when modern 

techniques of species identification can result in significant changes in species accounts.  This 

was true of both 5 and 3 closed triangle morph Microtus, even resulting in the recording of a 

previously unreported taxa from the site (M. ochrogaster).  These results stress the importance 

that these and similar techniques continue to be used and developed.   

This study also brings to light the importance of going back and revisiting fossil 

collections in museums.  Studies like Guilday et al. (1977) are important as they are the 

foundation upon which we build knowledge.  Everything in our power should be done to 

strengthen our foundation as this can only lead to clearer more accurate studies in the future.  

Work presented here may not be classified as “sexy” and most journals these days are looking 

for new original research, but that should not dampen the importance of these studies.  Someone 

could spend many lifetimes of research revisiting past studies.   

Another important issue raised here is the danger of over classifying.  Species level 

identifications are frequently sought, but the reality is that sometimes this is not feasible.  Saying 

you can only take a particular taxon to Genus sp. still tells you something.  It can also be 

dangerous to try and stretch and assume a classification.  If incorrect this can then paint an 

improper interpretation of environment.  Leaving something as Genus sp. can lead to someone 

developing a new technique in the future that can better solve this problem.    
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CHAPTER 5 

CLARK’S CAVE BONE DEPOSIT 

Taxonomic Remarks 

Below is a tentative faunal list of species collected from CC 7/19/14 – 003 (Table 14).   

Material recorded in this section is limited to mammalian material that was identifiable.   

Table 14 - Faunal List, Entrance 2, Site 7/19/14 -003, Clark’s Cave. 

MAMMALIA         
(Identified 
by M.H.S) 

Scientific name Common name NISP MNI 

1 Sorex arcticus  Arctic shrew 2 1 
2 Sorex longirostris  Southeastern Shrew 1 1 
3 Blarina sp.  Short-tailed Shrew 36 3 
4 Parascalops breweri  Hairy-tailed Mole 3 1 
5 Condylura cristata  Star-nosed Mole 2 1 
6 Myotis sp.  Little Brown Bats  17 11 
7 cf. Perimyotis sp.  Pipistrelles 3 3 
8 Eptesicus fuscus  Big Brown Bat 10 5 
9 cf. Lasiurus sp.  Hairy-tailed Bats 8 6 

10 cf. Corynorhinus sp.  Big-eared Bats 1 1 
11 Tamias cf. T striatus  Eastern Chipmunk 1 1 
12 Tamias minimus  Least Chipmunk 1 1 
13 cf. Sciurus sp. Tree Squirrels 1 1 
14 Glaucomys cf. G. volans  Southern Flying Squirrel 1 1 
15 Peromyscus cf. P. leucopus  White-footed Mouse 33 10 
16 Peromyscus cf. P. maniculatus  Deer Mouse 57 15 
17 Neotoma sp.  Woodrat  27 6 
18 Myodes gapperi  Southern Red-backed Vole 27 9 
19 Phenacomys sp.  Heather Vole 3 2 
20 Microtus pennsylvanicus  Meadow Vole 38 21 
21 Microtus chrotorrhinus  Rock Vole 22 13 
22 Microtus xanthognathus  Yellow-cheeked Vole 68 38 

23 
Microtus pinetorum or  Woodland Vole or 

15 7 
M. ochrogaster Prairie Vole 

24 Ondatra zibethicus  Muskrat 3 1 
25 Synaptomys borealis  Northern Bog Lemming 5 2 
26 Synaptomys cooperi  Southern Bog Lemming 4 2 
27 Napaeozapus cf. N. insignis  Woodland Jumping Mouse 3 1 
28 Zapus cf. Z. hudsonicus  Meadow Jumping Mouse 6 1 
29 Mustela nivalis  Least Weasel 4 2 
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Recorded material is limited to mainly dental and some cranial material.  In rare cases 

such as with moles a post-cranial element was used in an identification.  Fragmented and post-

cranial material is not listed but is a large portion of the deposit. 

Mammalia – Mammals 

Order: Eulipotyphla – Insectivores 

Family: Soricidae – Shrews 

REFERRED MATERIAL: 10 partial dentaries; 5 lower 1st incisors. 

REMARKS: This material could be easily classified as shrew but was either too broken or too 

weathered to identify below. 

Sorex arcticus – Arctic shrew 

REFERRED MATERIAL: 1 right, 1 left dentary. 

REMARKS: Arctic shrews are a medium sized shrew with a distinctive tri-color pelage.  Found in 

the boreal forests of Canada and small portions of northcentral United States (Kirkland & 

Schmidt 1996).  Though they are confined to boreal forest regions, they prefer open wet areas 

such as marshes and meadows.  Fossil remains are common from Pleistocene deposits in the 

central and southern Appalachian region, along with from the Great Plains.  Much of this region 

is south of its current distribution.  Almost all Pleistocene records are south of the furthest extent 

of the Laurentide ice sheet during the LGM (Kirkland & Schmidt 1996).  Identifications were 

made using Carraway (1995).      

Sorex longirostris – Southeastern Shrew 

 REFERRED MATERIAL: 1 right dentary. 
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REMARKS: Southeastern shrews are a small member of the genus Sorex and possess short 

tails.  As the name suggest they are found throughout the southeastern United States.  With their 

northern range spanning from Maryland over to Missouri, and their southern extent into 

Louisiana across to Florida (French 1980).  Favors wet areas, but have also been found in dry 

sandy soils.  They are synonymous with thick ground cover.  Due to the sparseness of its capture 

in snare traps it has been deemed a rare shrew.  Similar in appearance to S. cinereus; there has 

been one tentative fossil identification (Parmalee 1967) from a fissure fill deposit in Monroe 

County, Illinois.  Identification made using Carraway (1995).  Characters that separated from 

similar members of the genus were length of dentary (≤ 6.5mm), pigment arrangement on the i1 

(1st lower incisor), and width of the m1 (≥ 1.1 mm).   

Sorex sp. – Unidentified Sorex 

REFERRED MATERIAL: 1 right, 1 left dentary. 

REMARKS: Based off size and coloration could say it wasn’t Blarina, but could not identify to 

species within Sorex. 

Blarina sp. - Short-tailed Shrew 

REFERRED MATERIAL: 4 partial skulls; 3 right dentary; 4 right, 2 left partial dentaries; 7 

maxillary fragments with molars; 5 lower, 4 upper 1st incisors; 4 lower, 3 upper molars. 

REMARKS: Short-tailed shrews are large and robust shrew having a shorter and more robust 

snout.  There range includes much of the northeastern and northcentral United States and 

adjacent southern regions of Canada (George et al. 1986).  The southern extent of the range is 

northern Georgia.  Most commonly found in deep leaf liter of hardwood forests, but can be found 

in grasslands and pine forests.  Increase in size with latitude.  Fossil remains are found 
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throughout their range.  Measurements collected from Guilday et al. (1977) would indicate a 

more northern locality.  Suggesting a colder climate.  Identification made using Carraway 

(1995). 

Family: Talpidae – Moles 

Parascalops breweri – Hairy-tailed Mole 

REFERRED MATERIAL: 1 right dentary with no molars; 1 right ulna, 1 humerus.  

REMARKS: Hairy-tailed moles are a medium sized mole with a short tail and a long narrow snout.  

Ranging is from the northeaster US and southeastern Canada down the Appalachian plateau to 

the very northeastern tip of South Carolina (Hallett 1978).  Found in both coniferous and 

deciduous woodlands.  Most commonly found in sandy loam soils that have good surface 

coverage and sufficient moister.  Tend to avoid saturated clay rich soils (Hallett 1978).  Fossil 

specimens are not abundant but have been found from Pleistocene cave faunas.  Identifications 

were made with modern specimens from East Tennessee State Vertebrate Paleontology (ETVP) 

Comparative Collection.      

Condylura cristata – Star-nosed Mole 

REFERRED MATERIAL: 1 right, 1 left partial dentary. 

REMARKS: Star nose moles are named for the star shaped ring at the end of its nose made up of 

22 fleshy tentacle-like appendages.  They are reported as excellent swimmers and much less 

fossorial than other moles.  Found in wet areas in meadows, woods, and swamps; usually found 

in mucky soil (Petersen & Yates 1980).  Current range is in eastern Canada and the US, spanning 

from Minnesota into Georgia.  Pleistocene records of the mole are found from deposits in the 
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central Appalachians and Missouri.  Identifications were made with modern specimens from the 

(ETVP) Comparative Collection.         

Order: Chiroptera – Bats 

REFERRED MATERIAL: 144 dentary fragments; 32 maxillary fragments; 255 lower molars; 110 

upper M1s and M2s; 12 upper M3s; 116 premolars; 234 incisors and canines. 

Family: Vespertilionidae – Common bats 

REFERRED MATERIAL: 15 dentary fragments with 2 premolar alveoli present; 58 dentary 

fragments with 3 premolar alveoli present; 9 maxillary fragments with 3 premolars alveoli 

present. 

Myotis spp. – Little Brown Bats (Mouse Eared Bats) 

REFERRED MATERIAL: 11 right, 6 left dentaries. 

REMARKS: Myotis is a large and diverse genus with over 100 species; 38 in the New World 

(Simons 2005).  When dealing with fragmentary or fossil specimens it can be very challenging to 

classify down to species level (Toomey 1993; Jansky 2013).  Guilday et al. (1977) classifies 5 

species: (M. lucifugus, M. sodalis, M. keeni, M. leibii, and M. grisescens), some that are common 

to the eastern US today.  I did not feel there was enough material to classify to species.  

However, it is likely that there are multiple members of the genus in the deposit.  Gannon & 

Raez (2006) and Jansky (2013) showed evidence for identification to the species level using 

geometric morphometrics.  Identifications were made via modern comparisons from ETVP 

collections, Hillson (2005), and the Animal Diversity Website (ADW) (produced by the 

University of Michigan, Museum of Zoology).    
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cf. Perimyotis sp. – Pipistrelles 

REFERRED MATERIAL: 3 right partial dentaries. 

REMARKS: Pipistrelles or tri colored bats are a small bat that has two species in the US today: P. 

Hesperus (Western Pipistrelle) and P. subflavus (Eastern Pipistrelle) (Hall 1981).  Guilday et al. 

(1977) reported the eastern pipistrelle making up 53% of the bats recorded from a three hours 

mist net trapping at entrance no. 3 (Guilday et al. 1977).  Making it highly probable that this is in 

fact the species in the deposit.  However, with the fragmented dentary material in the deposit I 

did not feel comfortable taking it to species.  Identifications were made via modern comparisons 

from ETVP collections, Hillson (2005), and the ADW.   

Eptesicus fuscus – Big Brown Bat 

REFERRED MATERIAL: 4 right, 5 left partial dentaries; 1 upper premolar. 

REMARKS: Big brown bats are distinguishable from most Vespertilionids in their range by their 

large broad head, husky body, short rounded ears, and short, broad wings.  This species is found 

in and around forests; deciduous much more than coniferous (Kurta & Baker 1990).  Ranging 

throughout much of North America: from southern Canada, throughout the US into Mexico and 

the highlands of Central America to Columbia.  It is the most abundant Pleistocene bat found in 

North America (Kurta & Baker 1990).  Identifications were made via modern comparisons from 

ETVP collections, Hillson (2005), and the ADW.  This is a common species found at the cave 

today.  Composed of 15% of the mist-netted sample (Guilday et al. 1977).  

cf. Lasiurus sp. – Hairy-tailed Bats 

REFERRED MATERIAL: 2 right, 6 left dentaries. 
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REMARKS: Hairy-tailed bats have long, robust wings for fast and strong flight.  These bats will 

roost on tree branches as opposed to in caves.  Many of the northern taxa migrate south in the 

winter (Simmons 2005).  Found throughout North America (Hall 1981).  They are generally 

found living in forests.  As they are not a cave dwelling bat it is not surprising that none were 

noted from the mist-netting sample (Guilday et al. 1977).  Identifications were made via modern 

comparisons from ETVP collections, Hillson (2005), and the ADW.   

cf. Corynorhinus sp. – Big-eared Bats 

REFERRED MATERIAL: 1 left partial dentary. 

REMARKS: As their name suggest these bats have very large ears.  Guilday et al. (1977) reports a 

few specimens of Plecotus cf. townsendii.  Townsend Big-eared bats are now classified under the 

genus Corynorhinus.  This bat is found in woodlands in the eastern US (Burford & Lacki 1995) 

however, there range is mainly western in nature however.  Ranging from Mexico to 

southwestern Canada, stretching east to Texas.  There are isolated populations in West Virginia, 

Kentucky, Tennessee / North Carolina border, and the four corners of Oklahoma, Missouri, 

Kansas, and Arkansas (Hall 1981).  Corynorhinus rafinesquii (Rafinesque’s big-eared bat) has a 

more eastern range but also is not found at the cave locality today (Hall 1981).  There was not 

enough material to classify to species.  Identifications were made via modern comparisons from 

ETVP collections, Hillson (2005), and the ADW.    

Order: Lagomorpha – Rabbits, Hares, Pikas 

Family: Leporidae – Rabbits, Hares 

REFERRED MATERIAL: 1 maxillary fragment with alveoli; 5 lower, 4 upper molars. 
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REMARKS: Guilday et al. (1977) reports both snowshoe hare (Lepus americanus) and New 

England cottontail (cf. Sylvilagus transitionalis).  In this deposit there were only lone molars and 

incisors that were not conducive to classification to species.  Eastern cottontail (Sylvilagus 

floridanus) are present in the area today (Hall 1981).  

Order: Rodentia – Rodents 

Family: Sciuridae – Squirrels 

Tamias cf. T. striatus – Eastern Chipmunk 

REFERRED MATERIAL: 1 right partial dentary. 

REMARKS: Eastern chipmunk are small, moderately heavy set squirrel with prominent 

longitudinal stripes along its body.  Common in and along the edges of deciduous forests (Synder 

1982).  Their range extends from southeastern Canada to Oklahoma and Louisiana up to 

southcentral Canada.  Pleistocene records are common and extend much further west than the 

modern range (Synder 1982).  Identifications were made via modern comparisons from ETVP 

collections and Hillson (2005). 

Tamias minimus – Least Chipmunk 

REFERRED MATERIAL: 1 left dentary. 

REMARKS: Least chipmunks are a small sciurid with a long tail.  Ranging from the Canadian 

Yukon to central Canada and adjacent northcentral US, down the Great Plains and western US 

(Verts & Carraway 2001).  Inhabiting a wide range of environments from montane coniferous 

forests, sagebrush deserts, to meadows and alpine tundra.  Previous to Guilday et al. (1977) the 

least chipmunk had not been reported from the Appalachians.  Pleistocene remains are 
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commonly found in the western US (Verts & Carraway 2001).  Identifications were made via 

modern comparisons from ETVP collections and Hillson (2005).   

cf. Sciurus spp. – Tree Squirrels 

REFERRED MATERIAL: 1 left partial maxilla with M2 and M3. 

REMARKS: There are multiple types of tree squirrels that are native to the region today (Hall 

1981).  Guilday et al. (1977) reported Sciurus cf. carolinensis (gray squirrel) and Tamiasciurus 

hudsonicus (red squirrel).  It is likely that both of the above species are in the ETSU deposit.  

There is very little material from this deposit and barely enough to place to genus.  

Identifications were made via modern comparisons from ETVP collections and Hillson (2005).   

Glaucomys cf. G. volans – Southern Flying Squirrel 

REFERRED MATERIAL: 1 right partial dentary. 

REMARKS: Southern flying squirrel are small sciurids that have adapted to gliding.  They have a 

broad, hairy, dorsoventraly compressed tail and skin membranes along the side of their bodies, 

which allow them to glide (Dolan & Carter 1977).  Found predominantly in deciduous forests.  

Their range encompasses most of the eastern US, and a small segment of southeastern Canada; 

ending at the Great Plains.  Pleistocene records come mainly from Appalachian cave deposits 

(Dolan & Carter 1977).  Identifications were made via modern comparisons from ETVP 

collections and Hillson (2005).   

Peromyscus cf. P. leucopus type – White-footed Mouse 

REFERRED MATERIAL: 1 partial dentary; 2 lower, 4 upper m1s; 7 lower, 6 upper m2s; 10 lower, 3 

upper m3s. 
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REMARKS: The white footed mouse is a fairly small member of the genus, with a narrow slightly 

haired tail.  Abundant and occupying many habitats from deciduous and mixed forests, 

brushlands, and semidesert regions.  Stretching from very southern SE Canada to Mexico 

(excluding Florida) (Lackey & Huckaby 1985).  Pleistocene records have been found through the 

US.  Identifications were made via modern comparisons from ETVP collections and Hillson 

(2005).     

Peromyscus cf. P. maniculatus type – Deer Mouse 

REFERRED MATERIAL: 1 right dentary; 2 left partial dentaries; 8 lower, 8 upper m1s; 15 lower, 10 

upper m2s; 12 lower, 1 upper m3s. 

REMARKS: The North American deer mouse looks very similar to the white-footed mouse.  

Difference between the species come from slight differences in pelage and tail appearance.  Can 

be found through much of the northern region of the continent.  It ranges from southern Mexico 

up to the Yukon, across to the northeastern Canada; excluding the SE US (Banfield 1974; Hall 

1981).  Fossil records are found throughout the range.  Identifications were made via modern 

comparisons from ETVP collections and Hillson (2005).    

Neotoma spp. – Woodrat (Packrat) 

REFERRED MATERIAL: 1 left partial dentary with m1 and m2; 1 right partial maxilla with M2 and 

M3; 6 right, 3 left lower m1s; 1 left lower m2; 2 lower m3s; 3 right, 3 left upper M1s; 2 right, 1 left 

upper M2s; 4 right upper M3s. 

REMARKS: Woodrats are medium sized rodents with fairly large ears. There are many different 

species of woodrat that range from Florida to Mexico and western Canada (Hall 1981).  Neotoma 

teeth do no vary much by species and can be hard to differentiate especially with lone teeth.  
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Woodrats are present and active today at Clark’s Cave.  Evidence of middens and active 

collecting can be seen at CC.  Guilday et al. (1977) classified all Neotoma remain as the eastern 

woodrat (Neotoma floridana).  The northern populations (from Tennessee to New York) are now 

classified as Neotoma magister (Allegheny woodrat) (Whitaker & Hamilton 1998).  I would 

expect both of the above species, and potentially others to be part of this deposit cycling in and 

out with glacial stages.  Samples collected are mainly isolated teeth and was not conducive to 

classification to species.         

Family: Cricetidae – Hamster, Voles, Lemmings, New and Old World Mice 

“Arvicolinae” – Unidentified microtine rodent 

REFERRED MATERIAL: 235 upper M1s; 149 lower, 58 upper m2s; 173 m’s. 

Myodes “Clethrionomys” gapperi – Southern Red-backed Vole 

REFERRED MATERIAL: 1 right dentary; 6 right, 6 left partial dentaries; 9 right, 5 left lower m1s. 

REMARKS: Red-backed voles have commonly been placed under the genus Clethrionomys.  It has 

been recently determined that the proper name associated to this genus was Myodes (Carleton et 

al. 2014).  It is a small slender vole.  Ranging throughout most of southern Canada and adjacent 

northern regions of the US.  Also extending south along the Rockies and Appalachians (Hall 

1981).  Found predominantly in damp coniferous forests along with mountain meadows and bogs 

(Guilday et al. 1977).  Fossil remains are common amongst Appalachian cave fauns.  

Identifications were made via modern comparisons from ETVP collections and Semken and 

Wallace (2002). 
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Phenacomys sp. – Heather Vole 

REFERRED MATERIAL: 2 left partial dentaries; 1 left lower m1. 

REMARKS: Heather voles are small short tailed voles that greatly resemble montane voles 

(Microtus montanus).  They are generally located at altitude and typically found in heather 

meadows, alpine areas, and open coniferous forests (McAllister & Hoffman 1988).  There are 

two species in North America: the western heather vole (Phenacomys intermedius) and eastern 

heather vole (Phenacomys ungava).  Neither species’ current range is close to Clark’s cave; with 

the eastern species ranging across most of Canada and the western species being along the 

Rockies and western region of US and Canada (Banfield 1974).  Guilday et al. (1977) reported 

Phenacomys intermedius.  However, it has been shown to be difficult to differentiate between 

species of the genus with fossil material (Guilday & Parmalee 1972).  For this reason specimens 

were not taken to species.  Identifications were made via modern comparisons from ETVP 

collections and Semken and Wallace (2002). 

Microtus pennsylvanicus – Meadow Vole 

REFERRED MATERIAL: 48 up M2s; 52 upper M3s. 

REMARKS: The meadow vole is an average sized vole with a relatively long tail.  As the name 

suggest they prefer damp meadows or other areas with thick grasses.  It has the largest range of 

any NA member of the genus Microtus (Fig. 1).  Their range includes most of Alaska, Canada, 

the northern and central eastern US, into the northern and central Great Plains (Reich 1981).  

Possessing a large late Pleistocene record of the species throughout their range.  Identifications 

were made via modern comparisons from ETVP collections, Guilday (1982b), and Semken and 

Wallace (2002).  Traditionally the occlusal pattern of the lower first molar has been reported as 
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the diagnostic character of this species.  This character has shown to have large degrees of 

variability (Guilday 1982b) and to be confident in identification one should have the 

corresponding upper second molar (M2) of the specimen (Semken and Wallace 2002).       

Microtus chrotorrhinus – Rock Vole 

REFERRED MATERIAL: 13 right, 9 left upper M3s. 

REMARKS: Rock voles are very similar in their appearance to the meadow vole.  Slight 

differences in pelage color separate the two species.  Found primarily in SE Canada, into New 

England and northeastern Minnesota (Fig. 1).  They also range down the Appalachians into 

eastern Tennessee and western North Carolina (Kirkland & Jannett 1982).  One has never been 

trapped in Virginia (Guilday et al. 1977).  Generally live in rocky areas in cool moist mixed and 

hardwood forests; often near a source of water.  Fossil records are from late Pleistocene 

Appalachian cave deposits (Kirkland & Jannett 1982).  Identifications were made via modern 

comparisons from ETVP collections, Guilday (1982b), and Semken and Wallace (2002).  Most 

teeth are indistinguishable from those of the meadow vole.  The two species are separated based 

on differences in occlusal pattern on the upper 3rd molars (M3) (Guilday 1982b). 

Microtus pennsylvanicus morph – M. pennsylvanicus or M. chrotorrhinus 

REFERRED MATERIAL: 21 right, 17 left lower m1s. 

REMARKS: No reliable method to differentiate M. pennsylvanicus or M. chrotorrhinus m1s from 

each other.  This would be an excellent area for further study. 

Microtus xanthognathus – Yellow-cheeked Vole 

REFERRED MATERIAL: 38 right, 30 left lower m1s. 
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REMARKS: The yellow-cheeked vole (taiga vole) is generally one of the largest of the North 

American Microtus.  Along with M. richardsoni, M. xanthognathus have on average the largest 

lower first molars amongst New World Microtus (Semken & Wallace 2002).  This is a boreal 

adapted taxa that inhabits wet forests, thriving in recently burned upland regions.  Ranging from 

the west coast of the Hudson Bay into central Alaska (Conroy & Cook 1999) (Fig. 1).  Fossil 

ranges includes many regions of northern North America south of the Laurentide ice sheet 

(Hallberg et al. 1974).  Morphotype placement was made via modern comparisons from ETVP 

collections and Semken and Wallace (2002). 

Microtus pinetorum or M. ochrogaster 

REFERRED MATERIAL: 4 right, 7 left lower m1s; 4 upper M3s. 

REMARKS: Prairie voles often have long coarse fur and are found primarily in prairies and 

grasslands, preferring dry soil.  They range throughout the central US into Canada (Stalling 

1990) (Fig. 2).  Many Pleistocene and Holocene records of the prairie vole exist inside their 

range.  Like Microtus pinetorum they share a 3 closed triangle pattern on the occlusal surface of 

their lower first molar (Semken & Wallace 2002).  Morphotype placement was made via modern 

comparisons from ETVP collections and Semken and Wallace (2002).  

Woodland voles has a slender cylindrical body plan modified for a semifossorial life.  

These voles prefer sandy soils found in deciduous forests with thick leaf litter or grassy fields 

with lots of brush (Smolen 1981).  Their range spreads throughout much of the eastern and 

Midwestern US, entering small adjacent regions of Canada (Fig. 2).  There are many late 

Pleistocene records throughout the range including some extra-limital accounts (Smolen 1981).  
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Identifications were made via modern comparisons from ETVP collections and Semken and 

Wallace (2002). 

Ondatra zibethicus - Muskrat 

REFERRED MATERIAL: 1 left partial dentary with m1; 1 upper M1; 1 lower m2. 

REMARKS: The muskrat is the largest NA microtine and has a large blunt head and is chunky in 

appearance.  Found in shallow marshes and less commonly along lakes and streams.  Their range 

covers most of Alaska and Canada, along with the majority of the US except Florida and the arid 

Southwest (Willner et al. 1980).  Good fossil records have come from Kansas and the 

Appalachians.  Identifications were made via modern comparisons from ETVP collections and 

Semken and Wallace (2002).  Teeth are very large for microtines.  Also the cement that fills in 

the re-entrant angles of the m1s is divided into horizontal bars (Semken & Wallace 2002). 

Synaptomys borealis – Northern Bog Lemming 

REFERRED MATERIAL: 1 right dentary; 1 right partial dentary with m1; 1 right, 2 left lower m1s. 

REMARKS: The northern bog lemming is small with a cylindrically shaped body.  They are found 

mainly in bogs, wet meadows, or alpine tundra (Banfield 1974).  Their range covers most of 

Alaska and western Canada, along with northeastern Canada and northern New England (Hall 

1981).  Fossil remains have been found from Pleistocene deposits in the northern and central 

Appalachians.  Identifications were made via modern comparisons from ETVP collections and 

Semken and Wallace (2002).   

Synaptomys cooperi – Southern Bog Lemming 

REFERRED MATERIAL: 2 right, 2 left lower m1s. 
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REMARKS: Southern bog lemmings are similar in appearance to the northern bog lemming.  

However, occupying a wider variety of habitat then their northern counter parts.  Are usually 

found in green grass or sedge; around bogs, dense woodland, and grass fields (Banfield 1974).  

Their range is eastern and Midwestern US and adjacent southeastern Canada (Hall 1981).  

Pleistocene records have been found as far south as Alabama.  Identifications were made via 

modern comparisons from ETVP collections and Semken and Wallace (2002).   

Family: Zapodidae – Jumping Mice 

Napaeozapus cf. N. insignis – Woodland Jumping Mouse 

REFERRED MATERIAL: 3 molars. 

REMARKS: The woodland jumping mouse has very long and narrow hind feet along with a long 

narrow tail.  Found in wet cool woods, often in areas of dense vegetation along streams.  

Typically associated with mixed forest type biomes (Whitaker & Wrigley 1972).  Their current 

range is in southeastern Canada and northeastern US, down the Appalachians into Georgia.  

Fossil remains are found from deposits throughout the central Appalachians (Whitaker & 

Wrigley 1972).  Identifications were made via modern comparisons from ETVP collections, 

Krutzsch (1954), and Hillson (2005), and the ADW.  

Zapus cf. Z. hudsonicus – Meadow Jumping Mouse 

REFERRED MATERIAL: 1 right dentary; 1 left partial maxilla with M2 and M3; 4 molars. 

REMARKS: The meadow jumping mouse has very long and narrow back feet, with hind limbs that 

are longer than the forelimbs.  They also have long narrow tails.  Most commonly found in wet 

or dry grassy fields, but can also be found along streams and bogs (Whitaker 1972).  Stretching 
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from southern Alaska, throughout much of southern and eastern Canada, and along much of the 

eastern and Midwestern US.  Late Pleistocene records have been found throughout the range 

(Whitaker 1972).  Identifications were made via modern comparisons from ETVP collections, 

Krutzsch (1954), and Hillson (2005).  The meadow jumping mouse is similar in appearance and 

tooth morphology to the woodland jumping mouse (Napaeozapus insignis) (Whitaker 1972).   

Order: Carnivora – Carnivorans 

Family: Mustelidae – Weasels 

 Mustela nivalis – Least Weasel  

REFERRED MATERIAL: 2 right, 2 left partial dentaries. 

REMARKS: Least weasel are the smallest members of the order Carnivora.  Like most members of 

the genus Mustela, M. nivalis it has a long slender body with short limbs.  M. nivalis prefer open 

areas: meadows, brush, and marshlands, but can be found in coniferous forests (Sheffield & King 

1994).  Their range covers much of northern North America, Europe, northern Asia, and parts of 

North Africa.  Pleistocene records have been throughout the range on both sides of the old land 

bridge (Hall 1981).  Identifications were made via modern comparisons from ETVP collections. 

Discussion and Conclusions 

There are two species reported here that were not reported in Guilday et al. (1977), the 

southeastern shrew (Sorex longirostirs) and the prairie vole (Microtus ochrogaster).  Presence of 

the southeastern shrew would be a logical because Clark’s Cave is within its current distribution 

(French 1980).  It is regarded as one of the more rare shrews in its distribution; not commonly 

caught in traps.  At the time there may have been little to no comparative samples of this shrew, 
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inhibiting it from being identified.  It is quite possible that southeastern shrew material was 

collected and has been classified as Sorex sp. in Guilday et al. (1977).   

Lack of M. ochrogaster from the original publication was based on a faulty assumption 

by Guilday et al. (1977).  “Identification to species is based upon geographic probability.  It is 

conceivable that M. ochrogaster may be represented as well” (Guilday et al. 1977).  The 

clarification given when discussing the M. pinetorum specimens.  An assumption made most 

likely due to the current wooded nature of the surrounding area along with the fact that the 

woodland vole is found at the site today, whereas the prairie vole is not.  Unfortunately circular 

reasoning like this can lead to misidentifications or in this case the exclusion of a taxa.  

Woodland voles and the prairie voles suggest two distinctly different environments.  Without the 

prairie vole report we see a more limited view of paleoenvironment.   

I was much more hesitant to take specimens to the species level than was Guilday et al. 

(1977).  With the specimens collected by ETSU I did not feel there was enough diagnostic 

material at times that would warrant a species or even genus classification.  This is especially 

true for things like bats, which do not show much variation in their dentition across the species 

level (Toomey 1993; Jansky 2013).  When bats were taken to species they were often classified 

using “cf.”, as identification confidence was low.  Much of the bat material in the ETSU sample 

was isolated teeth.  

 Much more material was collected from Guilday et al. (1977) and as a result they had a 

much larger sample size.  More than likely providing them the opportunity to obtain more 

complete specimens then, what was extracted by ETSU.  However, if the bulk of Guilday et al. 

(1977)’s classifications to the species level were done using geography, I feel this is an unsafe 
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assumption, especially without many of these taxa having dates associated with them.  I took a 

similar approach to identifications when it came to lone squirrel or rabbit teeth.   

Unlike in Guilday et al. (1977) there is a noticeable lack of medium to large animals in 

size in my sample.  Most likely due to the difference in size of the material collected.  Even with 

the Carnegie sample being much bigger, larger animals still have very low MNI’s in comparison 

to the rest of the deposit.  This is to be expected when dealing with a raptor deposit (Guilday et 

al. 1977; Andrews 1990).  During the ETSU trip to the cave, black bear (Ursus americanus) and 

white-tailed deer (Odocoileus virginianus) remains were found within the cave.  They were not 

included within the species account as this material was not collected at site 7/19/14 – 003.  This 

material was found lying on the surface, deeper within the cave, and not within any sediment, 

likely suggesting a younger age.   
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CHAPTER 6 

SUMMARY 

 For years efforts to solve the “Microtus problem” had been mostly fruitless; especially 

when looking at the fossil record, which rarely provides complete specimens with a large sample 

sizes.  The use of geometric morphometrics on m1s is helping to un-muddy the waters.  Results 

of the study presented here help build on previously published works, by stating: 

 Until the presentation of a more accurate method, the use of a GPA should be the 

preferred method to perform a superimposition on Microtus molars.   

 Using geometric morphometrics is a reliable method to differentiate m1s of Microtus 

richardsoni from other Microtus spp., especially M. pennsylvanicus and M. 

xanthognathus. 

 Results of a PCA would suggest that M. richardsoni is not present at Clark’s Cave in 

agreement with the reporting’s of Guilday et al. (1977). 

 Results of DAs indicate that Microtus xanthognathus is the most abundant vole in the 

Clark’s Cave deposit. 

 Further examination of previously collected specimens and the results of a PCA on said 

specimens, indicate that Microtus ochrogaster is present in the CC deposit.  Worthy of 

note is that not only is it present but makes up the majority of the 3 closed triangle morph 

Microtus from the deposit. 

 A tentative list of faunal identifications is listed in this report. 

Clark’s Cave is a vast cave system with the potential for much further study.  Guilday et 

al. (1977) and this study have focused on one small locality at one particular entrance.  It is likely 
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that this cave hold deposits of multiple ages.  Other regions of the cave were sampled by the 

ETSU team, but not included in this report.  Acquisition of more radiocarbon (14C) dates from 

the entrance 2 deposit and other sites throughout the cave would help piece together a more 

complete picture.  The information that we have now from this cave is still very isolated.  It 

should be emphasized that just because a particular site has been reported on does not mean that 

everything is known about that site.  
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APPENDICES 

APPENDIX A 

LIST OF SPECIMENS ANALYSED 

Abbreviations: SUI = University of Iowa, Department of Geoscience Repository (CC= 

Comparative); YPM= Yale Peabody Museum; UMMZ= University of Michigan Museum of 

Zoology; USNM= United States National Museum; CM= Carnegie Museum. 

Specimens from Wallace (2006): 

 Microtus pennsylvanicus (n=23): SUI-365, Wisconsin; SUI-828, 831, Iowa; SUI-CC-

922, Kansas; YPM-1172, Virginia; YPM-1175, Maine; YPM-1176, Quebec; YPM-1184, 

Connecticut; YPM-1196, Nova Scotia; YPM-1199, British Columbia; YPM-1902, Manitoba; 

YPM-2034, New Mexico; YPM-2268, West Virginia; YPM-2271, New York; YPM-3655-3656, 

Minnesota; YPM-3758 Rhode Island; YPM-4045, Minnesota; UMMZ-117715-117719, 

Michigan. 

Specimens from the (USNM) collection: 

Specimens with an asterisk indicate a left molar was photographed.  

 Microtus xanthognathus (n=32): USNM-109355-109356, 109358, 109364, 109366, 

109368*, 109370, 109373, Saskatchewan; USNM-109459-109460, Alberta; USNM-110601, 

Northwest Territory; USNM-128301, 128328*, 128330, Alaska; USNM-134073-134077, 

Alberta; USNM-157281-157282, 178112, 178114, Alaska; USNM-235921-235923, Alberta; 

USNM-271710, 286851-286853, 286855, Alaska; USNM-7702, Northwest Territory. 
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 Microtus richardsoni (n=30): USNM-55288, 55290, 55708, 55751, Wyoming; USNM-

90091-90092, 142023, Washington; USNM-170391, 170396, 170398*, 170421, 170485, 

170492, 170525, 176759, 177243-177244, 177246, 177252, 177256, 223107, Wyoming; 

USNM-227130-227131, 227137, 229936, 230456, 233191, Washington; USNM-248602, 

298292, 298608, Wyoming. 

Specimens from the (CM) collection: 

 Microtus pinetorum: CM-24524, (3 left, 4 right mandibles with m1; 7 left, 5 right m1); 

CM-24576, (24 left, 18 right mandibles with m1; 136 left, 114 right m1; 31 left, 33 right M3). 
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APPENDIX B 

COLLETCION PERMIT 
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APPENDIX C 

MEASUREMENTS OF OCCLUSAL SURFACES OF COLLETCED 5 CLOSED TRIANGLE MORPH MICROTUS 

Table including the measurements of the occlusal lengths of lower first molars for the 5 closed triangle morph Microtus from Clarks 

Cave 7/19/14 – 003.  All specimens have a tentative CCD tag.  All measurements are in mm.

Specimen # Element Length 

16 m1 2.8 

17 m1 3.1 

18 m1 3.2 

19 m1 2.9 

20 m1 3.5 

21 m1 2.7 

22 m1 2.8 

23 m1 2.3 

24 m1 2.6 

25 m1 2.7 

26 jaw w/ m1 2.8 

27 jaw w/ m1 & m2 3.7 

28 jaw w/ m1 & m2 2.7 

29 jaw w/ m1 3.5 

30 m1 2.6 

31 m1 3.3 

32 m1 2.7 

33 m1 3 

34 m1 3.5 

35 m1 2.8 

36 m1 3.4 

37 m1 2.7 

38 m1 2.5 

39 m1 2.5 

40 m1 2.5 

41 m1 2.5 

42 m1 2.8 

43 m1 2.8 

44 m1 2.7 

45 m1 2.8 

46 m1 2.6 

47 m1 2.5 

48 m1 2.8 

49 m1 2.6 

50 m1 2.7 

51 m1 3.5 

52 m1 2.3 

53 m1 2.7 

54 m1 2.6 

55 m1 2.5 

56 m1 2.6 

57 m1 2.7 

58 m1 2.5 

59 m1 2.6 

60 m1 2.1 

61 m1 2.9 

62 m1 2.5 

63 m1 2.7 

96 m1 2.9 

97 m1 3.1 

98 m1 3.3 

99 m1 3.8 

100 m1 2.6 

101 m1 2.8 

102 m1 2.2 

103 m1 2.2 

104 m1 3.3 

105 m1 2.6 

106 m1 2.8 

107 m1 2.7 

108 m1 2.8 

109 m1 2.6 

110 m1 3.1 

111 m1 3.5 

112 m1 2.8 

113 m1 2.8 

114 m1 2.8 

115 m1 3.4 
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116 m1 2.5 

117 m1 2.8 

118 m1 2.6 

119 m1 2.7 

120 m1 2.7 

121 m1 3.5 

122 m1 2.9 

123 m1 2.7 

124 m1 2.4 

125 m1 2.6 

126 m1 2.6 

127 m1 2.8 

128 m1 2.5 

129 m1 2.8 

130 m1 2.9 

131 m1 2.8 

132 m1 2.7 

133 m1 2.6 

134 m1 2.7 

135 m1 2.6 

136 m1 2.7 

137 m1 3.2 

138 jaw w/ m1 2.7 

139 jaw w/ m1 2.7 

140 jaw w/ m1 2.5 

141 jaw w/ m1 & m2 2.7 

142 jaw w/ m1 2.7 

143 complete jaw 2.6 

144 jaw w/ m1 & m2 3.4 

149 m1 2.7 

150 m1 2.5 

151 m1 2.9 

152 jaw w/ m1 & m2 3.6 

153 m1 3.6 

154 m1 3.4 

155 m1 3.1 

156 m1 3.6 

157 m1 3.6 

158 m1 2.7 

159 m1 2.6 

160 m1 2.7 

161 jaw w/ m1 & m2 3.1 

162 jaw w/ m1 & m2 3.4 

163 jaw w/ m1 & m2 3.3 

164 jaw w/ m1 2.9 

165 jaw w/ m1 & m2 3.4 

184 m1 2.8 

185 m1 2.8 

186 m1 2.7 

187 m1 2.6 

188 jaw w/ m1 2.6 

189 m1 2.8 

190 dentary 2.7 

191 dentary 3 

192 dentary 2.7 

193 dentary 3.5 

194 dentary 3 

195 dentary 3.2 

196 dentary 3.4 

197 dentary 2.8 

198 dentary 3.3 

199 dentary 2.6 

200 dentary 3.5 

201 dentary 2.8 

202 dentary 2.8 

203 dentary 3 

204 dentary 2.9 

205 dentary 2.8 

206 dentary 3.3 

207 dentary 3.4 

208 dentary 3.4 

209 dentary 3 

210 dentary 3 

211 dentary 3.4 

212 dentary 3 

213 dentary 3.7 

214 dentary 2.8 

215 dentary 3 

216 dentary 2.8 

217 dentary 2.7 

218 dentary 2.6 

219 dentary 2.6 

220 dentary 2.6 

221 dentary 2.7 

222 dentary 2.7 

223 dentary 3.1 

224 dentary 2.9 

225 dentary 2.6 

226 dentary 2.7 

227 dentary 2.8 

228 dentary 2.7 

229 dentary 2.4 

230 dentary 2.5 
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231 dentary 2.5 

232 dentary 2.5 

233 dentary 2.9 

234 dentary 2.6 

235 dentary 2.7 

236 dentary 2.8 

237 dentary 2.7 

238 dentary 3.5 

239 dentary 3.6 

240 dentary 3.3 

241 dentary 3 

242 dentary 3.3 

243 dentary 3.5 

244 dentary 3.5 

245 dentary 3.5 

246 dentary 3.4 

247 dentary 3.4 

248 dentary 3.4 

249 dentary 3.5 
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APPENDIX D 

ADDITIONAL FIGURES  

 

Fig. 19 - Results of DA after classifications of 3-closed triangle morph Microtus were corrected 

based off results of PCA, with all variables included. 
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