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ABSTRACT 

Cellular-based Brain Pathology in the Anterior Cingulate Cortex of Males with  

Autism Spectrum Disorder 

by 

Jessica D. Crawford 

Autism spectrum disorder (ASD) now affects 1 in 68 children in the United States.  

Disorders within this spectrum share hallmark deficits in verbal and nonverbal 

communication, repetitive behavior, and social interaction.  The cause of ASD is still 

unknown.  Even though hundreds of genetic abnormalities have been identified in ASD, 

these markers account for less than 1% of all ASD cases.  Researchers continue to 

search for pathological markers common to all or most cases of ASD.  The research 

presented in this dissertation used a novel combination of state-of-the-art methods to 

investigate brain pathology in ASD.  Postmortem anterior cingulate cortex (ACC) from 

ASD and typically developing brain donors was obtained from 2 national brain banks.  

The ACC was chosen for study because of its documented role in influencing behaviors 

characteristically disrupted in ASD.  An initial study revealed elevated glial fibrillary 

acidic protein (GFAP) in ACC white matter from ASD brain donors compared to typically 

developing control donors.  Laser capture microdissection was then employed to isolate 

specific cell populations from the ACC from ASD and control brain donors.  Captured 

cells were used to interrogate potential gene expression abnormalities that may underlie 

biological mechanisms that contribute behavioral abnormalities of ASD.  The expression 

of 4 genes associated with synaptic function, NTRK2, GRM8, SLC1A1, and GRIP1, 

were found to be significantly lower in ACC pyramidal neurons from ASD donors when 
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compared to control donors.  These expression abnormalities were not observed in 

ACC glia.  Given robust evidence of neuronal and glial pathology in the ACC in ASD, a 

novel method for whole transcriptome analysis in single cell populations was developed 

to permit an unbiased analysis of brain cellular pathology in ASD.  A list of genes that 

were differentially expressed, comparing ASD to control donors, was produced for both 

white matter and pyramidal neuron samples.  By examining the ASD brain at the level of 

its most basic component, the cell, methods were developed that should allow future 

research to identify common cellular-based pathology of the ASD brain.  Such research 

will increase the likelihood of future development of novel pharmacotherapy for ASD 

patients.    
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CHAPTER 1 

INTRODUCTION 

 

Autism Spectrum Disorder 

Autism spectrum disorder (ASD) is a collection of development disorders that 

affect social interaction, verbal and nonverbal communication, and repetitive behaviors.  

Based on new diagnostic guidelines released in the Diagnostic and Statistical Manual of 

Mental Disorders V (DSM-V) (American Psychiatric Association, 2013), the spectrum 

now includes autistic disorder, pervasive developmental disorder not otherwise 

specified (PDD-NOS), and Asperger’s syndrome.  The world prevalence of ASD is 1% 

(Kim et al., 2011).  Children with ASD can be found in countries throughout the world, 

but the greatest number of affected individuals occurs in the United States.  There has 

been a 78% increase in the number of ASD cases since 2002.  The disorder now 

affects 1 in 68 in the United States with a male to female ratio of 5:1 (Baio, 2014).  A 

more age-targeted report from the Centers for Disease Control (CDC) found that as 

many as 1 in 50 school-age children in the United States could be affected (Blumberg et 

al., 2013). 

With the worldwide increase in the number of cases per year, many countries 

including the United States and France have designated this disorder as a national 

concern and in response have increased funds for services and research.  Currently 

ASD is costing the United States $250 billion per year (Buescher, Cidav, Knapp, & 

Mandell, 2014).  Despite the increase in awareness and efforts to impede the rise in this 

disorder, the social burden will only grow in the coming years.  In the next 10 years it is 
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projected that the cost for the United States could reach $400 billion per year (Buescher 

et al., 2014).  In additional to the cost associated with caring for any child, families of 

ASD individuals will spend an addition $35,000 per year for care and services (Horlin, 

Falkmer, Parsons, Albrecht, & Falkmer, 2014).  This cost typically increases after age 

18 when school-related services end.  The root of cost stems from the nature of the 

disorder.  ASD is diagnosed very early in life and is a life-long disorder.  It does not 

change the life expectancy of individuals meaning that services are need for 60 plus 

years.  Other comorbidities, especially intellectual disabilities, only add to the cost and 

amount of services needed for the individual.  The fact that no effective treatments exist 

to prevent, slow the progress, or cure this disorder increases the urgency for 

understanding the pathobiological development and progression of this disease.   

 

Diagnostic Methods 

Due to the nature of a spectrum disorder, the presentation of signs and 

symptoms is extremely heterogeneous throughout the population.  Researchers and 

clinicians believe that the broad variability in ASD presentation might shed light on the 

etiology of the disorder, which has yet to be discovered.  However, the lack of 

information about the pathophysiology of ASD translates to a purely behavioral 

diagnosis.  The most common diagnostic technique employs a standardized 

assessment called the Autism Diagnostic Interview Revised (ADI-R) (Le Couteur, 

Haden, Hammal, & McConachie, 2008).  Children are generally diagnosed around 18 

months to 2 years of age.  Due to a push for early intervention, emerging diagnostic 

tests have allowed for a diagnosis to be made prior to a child’s second birthday based 
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on review of home videos and parental reporting (Adrien et al., 1991, 1992; Baranek, 

1999; Maestro, Casella, Milone, Muratori, & Palacio-Espasa, 1999; Mars, Mauk, & 

Dowrick, 1998; Massie, 1978; Osterling & Dawson, 1994; Rosenthal, Massie, & Wulff, 

1980; Werner, Dawson, Osterling, & Dinno, 2000; Zakian, Malvy, Desombre, Roux, & 

Lenoir, 2000; Zwaigenbaum et al., 2005).  Early intervention is one of the top concerns 

for clinicians.  It is a well-accepted theory that the earlier behavioral therapy and 

intervention can take place in a patient’s life, the better the overall prognosis will be for 

that individual.  Individuals are more likely to live independently and be employed as 

adults.  In addition to a better outcome, the cost of lifetime care and services can be 

reduced by as much as two thirds if intervention is started early (Buescher et al., 2014). 

 

Current Treatments  

Current treatment paradigms include drugs that offer symptomatic relief paired 

with behavioral modification therapy.  Currently there are only two drugs that have been 

approved by the Food and Drug Administration (FDA) for the treatment of behaviors 

associated with ASD.  These drugs are the atypical antipsychotics risperidone and 

aripiprazole, which are approved to treat irritability in 6-17 year old children with ASD 

(Blankenship, Erickson, Stigler, Posey, & McDougle, 2010; Kirino, 2012; Wink, 

Erickson, & McDougle, 2010). Despite the wide use of these drugs in the ASD patient 

population, they are not targeted at the core symptoms of ASD.  Many drugs, including 

antidepressants and anticonvulsants, are prescribed for “off-label” use in hopes of 

managing other aspects of the disease such as hyperactive and self-harming behaviors 

or common comorbidities (Lofthouse, Hendren, Hurt, Arnold, & Butter, 2012).   
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Despite the emphasis on the core behavioral deficits, physiological symptoms 

are also present.  ASD patients display symptoms ranging from seizures to 

gastrointestinal abnormalities (Kral, Eriksen, Souders, & Pinto-Martin, 2013; Robinson, 

2012).  Due to the lack of treatment options available, many parents have turned to 

alternative medicines and treatments such as dietary restriction or various vitamin 

regimens in hopes of alleviating symptoms (Levenson, 2013; Lofthouse et al., 2012).  

One of the most popular of these treatments remains the gluten-free, casein-free diet 

(Whiteley et al., 2012).  The popularity of this treatment still holds despite reports that it 

has no effect of the symptoms of ASD (Marí-Bauset, Zazpe, Mari-Sanchis, Llopis-

González, & Morales-Suárez-Varela, 2014). Because reasonable treatment options are 

not available to significantly enhance outcomes, reverse the disease, or arrest its 

progress, parents and clinicians are turning to treatment options that do little to improve 

the quality of life for these patients.  Sadly, these nonevidence based and alternative 

treatments increase the cost of the disorder in the face of little benefit to the ASD 

patient. 

 

Etiology of ASD 

 As discussed above, there are no effective treatments for ASD mainly due to the 

lack of an identifiable cause.  The increase in research over the last decade has 

produced many clues to guide researchers.  As with any spectrum disorder, it could be 

hypothesized that the heterogeneity of symptom presentation could represent different 

underlying causes.  For ASD these causes can be divided into three categories.  There 

are a percentage of ASD cases that can be linked to other neurological disorders such 
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as tuberous sclerosis (Barton & Volkmar, 1998; Wassink, Brzustowicz, Bartlett, & 

Szatmari, 2004).  Chromosomal abnormalities can also account for a small percentage 

of ASD cases (Bruining et al., 2014; Devlin & Scherer, 2012; Konstantareas & 

Homatidis, 1999; Liao et al., 2013).  However, these associations with ASD only 

account for about 10% of the population of ASD patients.  The remaining 90% of cases, 

which are categorized as idiopathic autism, have an unknown origin.  A variety of 

factors including environmental exposures and genetic abnormalities have been linked 

to idiopathic autism (Blake, Hoyme, & Crotwell, 2013).   

 

Role of Genetics 

 A vast amount of the current research in ASD is based on patient genetics.  

Research on the genetics of ASD has identified over 100 mutations thought to 

contribute to the development of ASD (Betancur, 2011).  These mutations include 

chromosomal alterations, copy number variations, and single gene mutations.  Some of 

the major mutated genes of interest that are worth noting are PTEN, the SHANK family, 

and the NLGN family.  The majority of these genes are neurological based with a great 

number of them encoding synapse-related proteins.  Some of these known gene and 

chromosomal mutations also play a role in other neuropsychiatric and autism-related 

disorders where the genetic based etiology of the disease is more certain, such as 

Fragile X and Angelmann syndromes.  A unifying genetic or biochemical basis of ASD 

might be hard to elucidate due to the prevalence of comorbidities in ASD patients.  In 

this patient population 70% of individuals have at least one other diagnosed psychiatric 

disorder with over 40% have two or more comorbid disorders (Simonoff et al., 2008).  
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The identification and treatment of these other disorders are so essential that diagnostic 

tools have been developed to screen for these psychiatric disorders with the presence 

of ASD behavioral symptoms (Leyfer et al., 2006; Leyfer, Tager-Flusberg, Dowd, 

Tomblin, & Folstein, 2008).       

Regardless of the complexity of the disorder, there is little doubt that genetics 

play a role in the etiology of autism, but there is equal evidence to show that genetics is 

not the only factor.  The strongest evidence comes from twin studies of autism 

concordance.  Twin studies show that genes play some role in the development of the 

disease but are not the only factors at work.  The prevalence of ASD among 

monozygotic twins is 35% to 90% (Ronald & Hoekstra, 2011). However, as a spectrum 

disorder symptoms are highly variable even between monozygotic twins resulting in 

differential placement on the ASD spectrum.  These findings suggest that environmental 

factors affect underlying genetic variation to promote ASD onset.   

 One of the most recent twin studies was performed on a population in California 

in 2011.  Based of the findings of this study, gene mutations are likely to account for 

roughly 55% of the cases of autism (Hallmayer et al., 2011).  This is much lower than 

previously reported rates.  There are several possible reasons for the outcome of this 

study.  One is the inclusion of a boarder population of twins that represented a variety of 

socioeconomic groups.  Most previous twin studies were on smaller, more homogenous 

populations.  Another reason affecting the lower gene contribution to ASD risk could be 

related to changes in diagnostic criteria over time.  By 2011 the DSM IV was using the 

spectrum-based diagnostic criteria.  Moving forward with the newest diagnostic criteria 

release in the DSM V, this study best describes the current population of ASD patients.  
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However, with only half of the cases of idiopathic ASD accounted for, researchers must 

look to other factors to fully understand this group of disorders.   

 

Environmental Factors 

An increase in the human ingestion of synthetic chemicals and compounds has 

paralleled the increase in ASD rates.  Both pregnant women and children are being 

exposed to these chemicals on a daily basis and strikingly only a small percentage have 

been researched to determine what potential harmful effects could be produced in 

susceptible populations.  Because gene mutations only account for some of the cases 

of ASD, researchers are also interested in the role of environmental factors in the 

pathology of ASD.  These factors not only include the outdoor environment such as 

external pollutants and heavy metals (Bjorklund, 2013) but also prenatal environmental 

factors such as maternal antibodies, infection, and inflammation.  

There has been a controversial debate about the link between autism and 

vaccines.  In the late 1990s the issue first received attention after a publication in the 

Lancet claimed that the measles-mumps-rubella (MMR) vaccination could cause autism 

(Wakefield et al., 1998).  The number of parents vaccinating their children dropped in 

response to the article.  Even though the article was later retracted due to falsified data, 

the issue is still debated and the number of children receiving vaccinations is still down.  

Since the initial publication, researchers have been trying to reassure the public about 

the safety and positive benefits of vaccinating children (Godlee, Smith, & Marcovitch, 

2011; Savoy, 2014; Taylor, Swerdfeger, & Eslick, 2014).    

ASD is considered a developmental disease because symptoms emerge at the 
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same time the brain is undergoing major growth and changes.  Researchers have been 

trying to identify at what point (prenatal or postnatal) development is affected and ASD 

occurs.  There is strong evidence to suggest that a maternal infection or an active 

immune response during pregnancy increases the chance of delivering a child with ASD 

(Lee et al., 2014; Zerbo et al., 2013).  Maternal antibodies and other diffusible factors of 

the immune response cross the placenta and may alter the undeveloped immune 

system of the fetus (Poletaev et al., 2014).  Some of these antibodies have been 

classified as anti-brain and are associated with severe cognitive dysfunction (Piras et 

al., 2014).           

 Maternal antibodies are not the only substances that can cross the placental 

barrier.  There is also evidence that the medications used during pregnancy can 

increase the risk of ASD.  Not all prescription drug use is associated with ASD.  Drugs 

such as steroids and cardiovascular drugs were not found to increase the risk of ASD in 

children (Gardener, Spiegelman, & Buka, 2009).  The largest risk is linked to the use of 

psychoactive drugs, in particular antidepressants (Gidaya et al., 2014; Harrington, Lee, 

Crum, Zimmerman, & Hertz-Picciotto, 2013).   More research is needed to see the 

effects of these drugs in a larger population and determine if the mother’s need for 

treatment outweighs the risk to the child. 

 

Brain Pathology  

Despite autism first being observed in 1940s (Kanner, 1943), it was not until the 

1980s that researchers started to uncover the underlying neuropathology.  One of the 

first anatomical features of ASD to be noted was an increase in head size.  Brain 
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imaging data supports that a similar increase in brain growth occurs in 90% of autistic 

males under the age of 4 (Courchesne et al., 2001).  It is not clearly understood if this 

overall increase in brain size remains through adulthood.  This is mostly due to the lack 

of adult population studies.  To date, there have not been any reliable correlations found 

between an increase in brain size and key behavioral traits associated with ASD.  With 

the advent of new imaging technologies that allow for the division of specific brain 

structure volumes to be measure separately, behavior specific correlation could begin to 

be discovered with focus on the regions thought to modulate those behaviors.   

The brain consists of two matter types.  Gray matter is comprised of the neuronal 

cell bodies and various glial cell types including protoplasmic astrocytes, 

oligodendrocytes, and microglia.  As the neuronal axons leave the gray matter to make 

connections to other brain areas, the axons pass into white matter.  Within white matter, 

the axons are covered by oligodendrocytes creating the myelin sheath and supported 

by other glial cell types including fibrous astrocytes and microglia.  Brain imaging 

studies have found that these two matter types do not undergo the same growth pattern 

in the ASD brain.  Evidence suggests that white matter show a greater enlargement in 

the ASD brain during early childhood than gray matter (Courchesne et al., 2001; Hazlett 

et al., 2005; Herbert et al., 2003).  However, gray matter overgrowth changes have 

been found to last into adulthood, whereas white matter alterations are transient and 

only seen in young children (Hazlett, Poe, Gerig, Smith, & Piven, 2006).   

The white and gray matter changes mentioned above are most likely the result of 

underlying cellular changes.  The variation in growth pattern between the two matter 

types could be attributed to the differing cell populations in each matter type.  Within the 



	  

22	  

cortical gray matter, there are microstructural changes observed in the ASD brain.  

Cortical tissue contains a vast amount of minicolumns, which are functional units that 

contain both excitatory and inhibitory neurons working together to maintain brain 

homeostasis.  In the ASD brain there is an imbalance in these minicolumns due to 

disruptions in the inhibitory force (Casanova, Buxhoeveden, Switala, & Roy, 2002; 

Casanova & Trippe, 2009).  Cellular dysfunction has also been noted in white matter 

where an excess of interstitial space has been attributed to the pathology of a yet 

unknown cell type found in white matter (Groen, Buitelaar, van der Gaag, & Zwiers, 

2011). 

  

Methods for Researching ASD Pathology 

 In addition to the genetics data produced by using patient’s blood samples 

discussed above, the other main research methodologies used to study ASD are brain 

imaging in living subjects, modeling ASD using laboratory animals, and pathology 

studies using human postmortem tissue from ASD brain donors.  Each of these 

methods provides unique information to our understanding of ASD.  A relatively recent 

introduction of animal models and patient tissue samples into ASD research has 

opened the door to the application of molecular and cellular techniques to determine the 

underlying pathology of ASD.  Brain imaging was discussed in a previous section in 

regards to brain structure studies.  The other two methodologies are reviewed below.   

 

Animal Models of ASD  

In the efforts to create a dynamic model of the disorder researchers have turned 
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to animal models.  A wealth of genetic data already exists from ASD patients that 

provide numerous genes of interests for the creation of models.  One downside to this 

approach is the hypothesis that it takes several gene abnormalities occurring together in 

order to produced the disease.  When researchers create a knockout mouse for one of 

the major genes associated with ASD, the animal only presents with one or two of the 

behavioral core symptoms but not all three of them.  Even though these animals are not 

used for comprehensive studies of ASD, the models have produced information about 

what genes are important for specific behaviors and brain development.  For example, 

the PTEN knockout mouse shows deficits in social interaction and an increase in 

repetitive behavior but shows no change in communication.  However, these changes 

seems to be associated with alternation of synaptic signaling (Lugo et al., 2014).   

Another criticism of current animal models is the lack of anatomical pathology.  

The disorder is diagnosis solely on behavior and the current models do well in modeling 

the behavioral features of autism.  Most validation studies for these models do not 

examine the underlying brain pathology along with behavior.  Those studies that have 

taken the step to include anatomical validation have yielded very few models that show 

the brain abnormalities seen in patients with autism.   

The mouse model that has been most accepted and researched in regards to 

ASD is the BTBR T+tf/J mouse.  This mouse is an inbred strain that exhibits all three of 

the hallmark behaviors of ASD.  These behavioral traits have been tested using multiple 

behavioral methods for the measurement of social interaction, communication, and 

repetitive behaviors (Bolivar, Walters, & Phoenix, 2007; McFarlane et al., 2008; Meyza 

et al., 2012).  This model also displays neuroanatomical changes as well.  Some of the 
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more notable brain changes are the absence of the corpus callosum and size alteration 

in the hippocampus.  These structural changes have been found in a small number of 

ASD patients but are not widespread in the population.  This model was created using a 

forward genetic model system where researchers create a model that exhibits the 

characteristics of a disorder and then find the genes responsible for the changes.  This 

could prove to be a better approach than reverse genetic model creation because 

multiple gene abnormalities are required for ASD to occur.   

 

Use of Postmortem Tissue in ASD Research 

The use of postmortem brain tissue from autistic donors allows researchers to 

interrogate molecular and cellular pathology underlying brain abnormalities discovered 

using in vivo imaging techniques.  However, there are several limitations to the use of 

postmortem tissue as there is with any research methodology.  A large downside is the 

variation found in human subject studies.  Unlike animal or cell culture models, subject 

to subject variability is a consideration that has to be taken into account during the 

planning phase of any postmortem experiment or project.  Factors such as tissue 

quality, age, sex, postmortem interval time, medical history, and toxicology could 

influence findings.  In the studies presented here our lab has controlled for as many of 

these factors as was possible by matching control and ASD cases by the potentially 

confounding variable.  For those variables that could not be matched across control and 

ASD cases, statistical methods were used to evaluate the potential effect of the variable 

on experimental outcomes.  

 Another limitation is the static nature of a tissue sample.  Postmortem tissue 
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allows for the investigation of a disease state at one time point.  This type of sample 

lends itself well to studies designed to measure expression levels of various genes and 

proteins or even structural and morphometric analysis.  However, the tissue sample 

cannot be manipulated biochemically to investigate mechanisms by which pathology is 

initiated or induced.  Once data are collected from postmortem tissue, the research 

approach must then move to an appropriate model of the disease that allows for a 

dynamic environment, i.e. reverse translational research.  

 Despite the drawbacks of human postmortem brain research, the use of these 

tissues allows for a detailed examination of the biological and molecular processes 

associated with the disease state in the human subject.  In an editorial from Autism 

Research, the official journal of the International Society for Autism Research, the 

editor-in-chief. Anthony Bailey addressed the need for ASD research using postmortem 

tissues stating that the field could only move forward by uncovering the molecular 

pathology that postmortem tissue can provide (Bailey, 2008).  A growing group of ASD 

researchers agree with. Bailey’s understanding of the importance of postmortem 

studies.  This has prompted the worldwide campaign, It Takes Brains, to increase brain 

donations and provide support for postmortem researchers.  Even with the increased 

interest in ASD postmortem research, the field is still alarmingly behind that of other 

brain disorders.  Not only are there a small number of ASD brains available, but proper 

typically developing age matched controls are also needed.  Typically developing 

controls are defined as individuals who do not have any diagnosis classified as a 

developmental disorder as well as other diagnosed medical disorders.  These controls 

are important because they allow for the comparison of brain pathology in the presence 
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and absence of ASD at a given age point.   

The use of ASD postmortem tissue has so far been limited to stereology and 

homogenate sample-based protein studies.  While these studies have been paramount 

in introducing the use of postmortem tissue into ASD research, the resolution of these 

experiments has not been high enough to truly identify underlying molecular pathways 

or cellular changes associated with ASD.  The brain is a very complex organ made up 

of highly specialized areas communicating within and between each other to function 

properly.  At the core of this organization are numerous cell types that play a role in this 

overall structure and function.  Currently, ASD postmortem studies have focused on 

these areas as whole entities despite the underlying cellular complexity.  This could be 

one reason that past postmortem studies have done little in the way of producing 

answers about the cellular basis of ASD.   

 

Overview of Experiments 

This dissertation presents a set of studies that systematically increase the 

resolution of analysis of ASD pathology, i.e. interrogating potential gene expression 

abnormalities in specific brain regions, brain matter types, and then cell types.  By 

combining both molecular approaches and postmortem brain tissue, a better 

understanding of pathology should be achieved.  My research was focused specifically 

on ASD brain pathology, but the methods used could be applied to study any 

neurological or psychiatric disease.  The pathways and genes found to be altered in 

these studies could also serve as a starting point for the investigation of other diseases 

or could be employed in animal models using transgenic technology.   
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Chapter 2 begins with the investigation of cell specific protein markers within gray 

and white matter regions of Brodmann area 24 (BA24) and Brodmann area 10 (BA10).  

As discussed above, ASD postmortem brain research had not investigated brain 

pathology within a specific brain region at a tissue or cellular level.  By simply dividing 

the brain regions by the matter types (white versus gray), we start to reduce the number 

of different cell types present in the experimental sample.  This study directed my single 

cell studies to identify specific cell populations that could contribute to pathology. 

Chapter 3 used laser capture microdissection to examine the glutamate signaling 

pathway that is critical to brain function and that is thought to be disrupted in ASD.  Data 

from functional imaging and genetics studies support the theory that there is an 

imbalance in the excitatory/inhibitory system of the brain of ASD patients (Pizzarelli & 

Cherubini, 2011; Snijders, Milivojevic, & Kemner, 2013; Tebartz van Elst et al., 2014).  

This study analyzed the expression of key glutamate receptor and transporter genes as 

well as neurotrophic pathways in laser captured neurons and astrocytes from typically 

developing and ASD brains.  The results of this study further emphasize the need for 

cell population based studies of brain pathology.  The neuronal, but not glial, cell 

population exhibited significant differences in the expression of several genes 

comparing control and ASD brains.  The expression of these genes was also 

investigated in homogenate punched-dissected samples, which are gray matter 

samples that are dissected using a 3.5 mm trephine punch and contained all gray 

matter cell types.  However, these changes were not found in homogenate punch-

dissected samples from the same subjects.  This illustrates that the presence of multiple 

cell populations in the experimental sample can present an inaccurate picture of brain 
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pathology.    

The gene and protein expression alterations discovered in the previously 

discussed studies compelled our lab to ask how much could be learned about the 

regulation of gene expression in a single cell population.  With little to no data about the 

potential molecular mechanism(s) underlying ASD brain pathology, we wanted to find 

other gene or pathway alterations that could help us further understand the cell specific 

data we produced.  Chapter 4 discusses the development of a method to fully 

characterize the transcriptional footprint of a specific cell type and what differences exist 

comparing brains of control and ASD donors.  This method was based on RNA-Seq, 

which provides in-depth analysis of the transcriptome.  This sequencing method 

produces vast amounts of data including transcript copy number, differential expression 

genes, rare isoforms, splicing variants, transcriptional start points, and identification of 5’ 

and 3’ ends of transcripts.  Because the main objective was to determine feasibility of 

this method, my research focused on identifying differentially expressed genes in single 

populations of cells comparing ASD and typically developing control donors.  My 

research did not dismiss the other forms of data that RNA-Seq provides, but studies 

investigating rare isoforms or alternative transcriptional regulators that are identified by 

RNA-Seq are currently beyond the resources of our lab due to the small number of pairs 

we currently have in our brain bank.  We could be capable of performing this type of 

analysis in the future through collaboration or addition of tissue to our bank.  However, 

these types of studies are beyond the scope of the current project.     

Other methods could be used to examine differential expression, such as 

microarrays and RT-qPCR.  However, these methods only provide relative 
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quantification of changes in transcription.  RNA-Seq’s absolute quantification of 

transcript through sequencing permits a more advance analysis than data collected 

using microarrays.  As our brain bank grows in number, absolute quantification allows 

for the addition of pairs in separate analyses.  Hence, over time we can analyze 

additional pairs and add to our existing database.  Also in future studies others can 

retrospectively mine the database sequence information that is being created.  

As more and more researchers adopt next generation sequencing techniques, 

RNA-Seq is becoming a commonly used technique for transcriptional analysis, almost 

replacing microarrays.  However, herein we pushed the limits of this technology by 

analyzing laser captured single cell populations.  The nature of LCM samples makes 

experimentation difficult because of the small amount of sample collected for analysis 

and because of RNA degradation issues.  Chapter 4 discusses the experimental 

considerations and limitations of using LCM samples as well as advances in RNA-

based methods that allows for low input sequencing.  

The CDC reports that there has been a 78% increase in autism over the last 

decade (Baio, 2014). Despite advances in the understanding of ASD, there is currently 

no known cause.  As presented in this dissertation, we examine ASD brain pathology at 

the single cell level in order to identify molecular pathologies that could reveal targets 

for the future development of treatments for ASD.  In addition, LCM and RNA-Seq 

technologies were paired to identify gene expression abnormalities in specific cell types, 

a pairing that has not been successfully employed by other laboratories to date.  ASD 

research is thereby moved forward by developing methods to identify key molecular and 

cellular pathways involved in the pathology of this disease. 
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CHAPTER 2 

ELEVATED GFAP PROTEIN IN ANTERIOR CINGULATE CORTICAL WHITE MATTER 

IN MALES WITH AUTISM SPECTRUM DISORDER 

 

INTRODUCTION 

Autism spectrum disorder (ASD) is a developmental disorder characterized by 

disruption of social interaction behaviors, reduced verbal and non-verbal 

communication, and the presence of repetitive behaviors.  The reported prevalence of 

this disorder has grown rapidly with the current estimate of affected children to be 1 in 

68 (Blumberg et al., 2013). A variety of factors including environmental exposures and 

genetic abnormalities have been linked to ASD (Blake et al., 2013).  Besides behavioral 

deficits, ASD patients suffer from other comorbidities including seizures and 

gastrointestinal abnormalities (Kral et al., 2013; Robinson, 2012).  Current treatment 

paradigms include drugs that offer individual symptomatic relief paired with behavioral 

modification therapy.  Reasonable treatment options are not available to significantly 

improve quality of life, reverse the disorder, or arrest its progress.  Thus, the need for 

understanding the neuropathology of this disorder is crucial.      

In addition to the behavioral deficits mentioned above, ASD patients display 

anatomical brain abnormalities when compared to typically developing control subjects.  

ASD brain pathology has been described using imaging methods such as fMRI and 

brain volumetric analysis.  Both developmental and structural changes have been found 

in brain regions subserving behaviors that are affected in ASD.  There is an aggressive 

overgrowth in brain volume in ASD in both the cerebrum and cerebellum between ages 
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two and four when compared to age-matched control subjects.  By middle to late 

childhood, ASD and age-matched control brains are similar in size (Courchesne et al., 

2011).  White and gray matter in the brain do not undergo the same pathological 

changes in size and development and it is unclear if gross brain abnormalities are linked 

to specific cellular alterations and dysfunction (as reviewed by Amaral et al., 2008).  

A consistent pathological finding in the ASD brain is abnormal white matter.  

Diffusion tensor imaging (DTI) studies have been used to investigate white matter 

pathology by measuring the amount of diffusion through brain matter.  White matter is 

more restrictive to the movement of water molecules than gray matter resulting in 

decreased diffusion relative to gray matter.  Increased diffusion of water in white matter 

has been observed in ASD as compared to typically developing subjects, possibly 

resulting from excess interstitial space in ASD (Groen et al., 2011).  Several studies of 

this nature have shown an overall increase in white matter size and a decrease in 

structural integrity in ASD, further suggesting that cells within the white matter are 

dysfunctional and/or structural changes exist in axons passing through white matter 

(Groen et al., 2011; Ingalhalikar et al., 2011; Noriuchi et al., 2010; Radua et al., 2010; 

Sundaram et al., 2008).  The specific types of cells that contribute to these white matter 

abnormalities in ASD are unknown.  Macroglial cells, specifically astrocytes and 

oligodendrocytes, are found abundantly in white matter tracts, whereas there are few 

neuron cell bodies.  Hence, it seems reasonable to speculate that dysfunction in 

macroglia accounts for at least part of the ASD-associated deficits in white matter 

integrity.  

The purpose of this study was to examine the levels of two proteins expressed 
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abundantly by brain astrocytes and oligodendrocytes in ASD.  Glial fibrillary protein 

(GFAP) is considered a marker of astrocytes.  GFAP is up-regulated following an insult 

or injury to the brain, additionally making it an indicator of CNS pathology (Sofroniew & 

Vinters, 2010). Myelin oligodendrocyte glycoprotein (MOG) is marker protein for mature 

myelin-producing oligodendrocytes.  Since the myelin sheath has an integral role in 

neurotransmission, myelin abnormalities could result in dysfunction of neuronal 

conduction along axons in ASD.  This study investigated GFAP and MOG protein 

expression in white and gray matter from the ventral anterior cingulate cortex 

(Brodmann area 24; BA24) and the anterior prefrontal cortex (BA10) using postmortem 

brain tissues from age-matched typically developed control and ASD donors.  These 

brain areas were selected for their documented role in influencing behaviors 

characteristically disrupted in ASD such as social interaction and repetitive behaviors.  

Findings here show elevated GFAP immunoreactivity (ir) in ASD that is both matter and 

brain area specific.  The specificity of these findings guide future studies to elucidate the 

cellular pathology associated with ASD.  

 

Methods 

Brain Tissues 

Frozen tissue blocks containing BA24 and BA10 from 14 ASD donors and 14 

typically developed control donors were obtained from Autism Tissue Program, Harvard 

Brain Tissue Resource Center (Belmont, MA) and NICHD Brain and Tissue Bank for 

Developmental Disorders (Baltimore, MD) (Table 2.1).  This study was reviewed and 

approved for exemption by the Institutional Review Board of East Tennessee State 
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University under the Department of Health and Human Services exemption 45 CFR 

46.101(b) relating to the use of publicly available unidentifiable pathology specimens.  

ASD and control donors were matched prior to experimentation as closely as possible 

by age primarily, but also by RNA quality (Table 2.1), to reduce the impact of these 

factors on protein and mRNA data from the two groups.  ASD donors met diagnostic 

criteria outlined in the Diagnostic and Statistical Manual (DSM) IV for autistic disorder.  

The Autism Diagnostic Interview-Revised (ADI-R) and other medical records were also 

used to confirm diagnoses.  Causes of death and comorbidities are not included in 

Table 2.1 to protect the identities of the decedents.  Cause of death for typically 

developed control donors included asphyxia (3), drowning (3), motor vehicle accident 

(2), heart attack (2), dilated cardiomyopathy (1), pneumonia (1), commotio cordis (1), 

and an unknown cause (1).  Cause of death for ASD donors included asphyxia (2), 

heart attack (1), cardiac arrhythmia (1), congestive heart failure (1), cardiopulmonary 

arrest (1), motor vehicle accident (1), acute respiratory distress syndrome (1), stopped 

breathing (1), skull fracture (1), subdural he9morrhage (1), cancer (1), diabetic 

ketoacidosis (1), and bowel obstruction (1).   
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Table 2.1.  Subject demographic information. 

Pair ID Age Gender RINa PMI 
(hours)b Toxicology Assays Tissue 

  Controls               
1 AN14757 24 M 7.8 21.33 No drugs reported  LCMc, qPCRd, WBe BA24, BA10 

2 AN07176 21 M 8 29.91 No drugs reported  LCM, qPCR, WB BA24, BA10 

3 AN07444 17 M 7.5 30.75 Sertraline LCM, qPCR, WB BA24, BA10 

4 5408 6 M 7 16 No drugs reported  LCM, qPCR, WB BA24, BA10 

5 4848 16 M 7.6 15 No drugs reported  LCM, qPCR, WB BA24, BA10 

6 5342 22 M 8.1 14 No drugs reported  LCM, qPCR, WB BA24, BA10 

7 5079 33 M 7.3 16 Ethanol LCM, qPCR, WB BA24, BA10 

8 M3231M 37 M 7.4 24 No drugs reported  LCM, qPCR, WB BA24, BA10 

9 AN12137 31 M 7.3 32.92 No drugs reported  qPCR, WB BA24, BA10 

10 AN03217 19 M 7.6 18.58 No drugs reported  qPCR, WB BA24, BA10 

11 AN00544 17 M 7.8 28.92 No drugs reported  qPCR, WB BA24, BA10 

12 AN17425 16 M 7.5 26.16 No drugs reported  qPCR, WB BA24, BA10 

13 4590 20 M 7.6 19 No drugs reported  qPCR, WB BA24, BA10 

14 4670 4 M  7 17 No drugs reported  WB BA10 

  MEAN 20.21   7.54 22.11       
  SEM 2.46   0.09 1.75       
                  
  ASD               
1 AN04166 24 M 8.1 18.51 No drugs reported  LCM, qPCR, WB BA24, BA10 

2 AN03935 20 M 8.6 28 No drugs reported  LCM, qPCR, WB BA24, BA10 

3 AN02987 15 M 6.5 30.83 No drugs reported  LCM, qPCR, WB BA24, BA10 

4 5144 7 M 8 3 No drugs reported  LCM, qPCR, WB BA24, BA10 

5 5302 16 M 6.6 20 
Risperidone, 

Fluvoxamine, Clonidine, 
Insulin 

LCM, qPCR, WB BA24, BA10 

6 5176 22 M 7.1 18 Risperidone LCM, qPCR, WB BA24, BA10 

7 5297 33 M 7.1 50 Quetiapine, Fluoxetine, 
Valproate, Ziprasidone LCM, qPCR, WB BA24, BA10 

8 5027 37 M 7.7 26 Risperidone, Fluvoxamine LCM, qPCR, WB BA24, BA10 

9 AN11989 30 M 7.7 16.06 
Sertraline, Clomipramine, 

others for pain 
management and CHFf 

qPCR, WB BA24, BA10 

10 AN07817 19 M 7.2 14.83 No drugs reported  qPCR, WB BA24, BA10 

11 AN00764 20 M 8 23.66 Minocycline qPCR, WB BA24, BA10 

12 AN04682 15 M 7.6 23.23 No drugs reported  qPCR, WB BA24, BA10 

13 4999 20 M 7 14 No drugs reported  qPCR, WB BA24, BA10 

14 5308 4 M  6.5 21 No drugs reported  WB BA10 
  MEAN 20.14   7.41 21.94       
  SEM 2.42   0.17 2.84       
  P valueg 0.98   0.51 0.96       

a RNA integrity number (index of RNA quality)  
b Postmortem interval 
c Laser capture microdissection 
d Quantitative polymerase chain reaction  
e Western blotting 
f  Congestive heart failure 
g Results of an independent t-test comparing control and ASD groups. 
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Tissue Preparation and Sectioning 

Frozen tissue sections (50 µm) of BA24 and BA10 were cut using a cryostat 

microtome (Leica CM3050S) and tissue samples were punch-dissected from sections 

using a disposable 3.5 mm trephine.  White and gray matter samples were separately 

collected for each brain area (Fig 2.1A).  Frozen tissue sections (10 µm) cut using the 

same microtome were prepared as previously described for laser capture 

microdissection (LCM) (Ordway, Szebeni, Duffourc, Dessus-Babus, & Szebeni, 2009). 

Western Blotting 

Protein from punch-dissected samples was isolated using ice-cold Tris-EDTA 

buffer with a protease inhibitor cocktail (Thermo Scientific, Rockford, IL) and sonication 

for 20 sec. Equal amounts of protein (10 µg per lane; Micro BCA Protein Assay Kit; 

Thermo Scientific, Rockford, IL) per sample were diluted 1:1 in SDS sample buffer and 

separated by electrophoresis using pre-cast Tris-Glycine gels (NuSep, Bogart, GA).  

Subsequently, resolved proteins were transferred onto nitrocellulose membranes.  

Membranes were incubated with 5% milk-based blocking agent (Bio-Rad, Hercules, 

CA), and then incubated with primary antibody overnight at 4o C.  Primary antibodies 

included GFAP (1:500, Sigma-Aldrich, St. Louis, MO), MOG (1:1500, Abcam, 

Cambridge, MA), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; control for 

loading; 1:1000, EMD Millipore, Billerica, MA).  Membranes were washed with TBS-

Tween (0.5%) buffer (Boston BioProducts, Ashland, MA) three times for 10 min, 

incubated with anti-mouse (1:5000) and anti-rabbit (1:20,000) secondary antibody for 

one h at 22o C and washed again three times for 10 min with TBS-Tween (0.5%) buffer 

(Boston BioProducts, Ashland, MA).  Immunochemically identified bands were detected 
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using horseradish peroxidase conjugated secondary antibodies reacted with the 

chemiluminescent substrate, Amersham ECL Prime Western Blotting Detection 

Reagent (GE Healthcare, Piscataway, NJ).  Bands were visualized and analyzed using 

a G:Box imager (Syngene, Frederick, MD).  Paired ASD and typically developed control 

samples were run on the same gel in triplicate along with a set of protein standards.  

Data were normalized to GAPDH-ir measured on the same blot, after stripping GFAP 

and MOG antibodies.  Band densities were measured using GeneTool software 

(Syngene, Frederick, MD).  

Laser Capture Microdissection 

Laser capture of astrocytes identified using a rapid immunohistochemical stain 

for GFAP (Fig. 2.1B-D) was performed on an Arcturus XT (Life Technologies, Grand 

Island, NY) as previously described (Ordway et al. 2009).  



	  

37	  

 

Figure 2.1.  Tissue collection of white and gray matter and laser capture 

microdissection of astrocytes.  Panel A shows gray and white matter regions in BA24 

identified with GFAP immunostaining (2x magnification).  Panel B shows GFAP 

immunostained cells (individuals cell indicated by arrows) in white matter (40x 

magnification).  Shown in panel C is the absence of laser captured cells in the tissue 

section following capture (20x magnification).  Panel D shows the GFAP 

immunoreactive cells adhered to the polymer cap (20x magnification). 
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Quantitative Polymerase Chain Reactions 

Total RNA was isolated from tissue samples using the Maxwell simplyRNA LEV 

kit (Promega, Madison, WI).  The quality of RNA extracted from brain tissue samples 

was assessed using the Bioanalyzer RNA 6000 Nano chip (Agilent Technologies, Santa 

Carla, CA) and all samples had RNA integrity number (RIN) values of ≥ 6.5.  RNA was 

converted to double-stranded cDNA using Superscript III reverse transcriptase kit 

(Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol.  Quantitative real-

time PCR (qPCR) was performed using cDNA template, 2x Platinum PCR quantitative 

supermix-UDG (Invitrogen, Grand Island, NY), 10 µM fluorogenic probe, and 250 nM 

gene specific primers on the Stratagene MX3000P (Agilent Technologies, Santa Carla, 

CA).  Intron-spanning primers were designed using PrimerQuest software (Integrated 

DNA Technologies, Coralville, IA) in a region of the target gene containing no 

secondary structure as determined by mFold3 (Zuker, 2003) shown in Appendix B.  For 

some genes, primers were obtained from Qiagen (Valencia, CA).  Each sample was 

analyzed in triplicate.  A five point standard curve on each plate was used to determine 

reaction efficiency and copy number of amplicons.  Gene expression data were 

normalized to the geometric mean of three housekeeping genes, GAPDH, TBP, and 

Ribo18S1.  Fold-differences in gene expression between control and ASD groups were 

determined using the 2-ΔΔCT method (Livak & Schmittgen, 2001).  To quantify RNA 

levels from laser captured astrocytes, a semi-quantitative end-point PCR method was 

used as described previously (Ordway et al., 2009), wherein target genes were 

normalized with the average of two reference genes, GAPDH and Ribo18S1.  
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Statistical Analysis 

A Grubb’s test was used or remove outliers in data sets (Grubbs, 1950).  Data 

from ASD and typically developed control donors were statistically compared using the 

Student’s t-test for independent measures.  As an additional check (see Results), data 

were also analyzed using the t-test for paired measures and the statistical findings for 

these paired tests are included in supplementary materials.  Differences were 

considered statistically significant at p < 0.05.  Pearson’s correlation analysis was used 

to determine possible effects of age, RIN, and postmortem interval (PMI) on dependent 

variables.  Because many correlations were examined, a p < 0.01 was chosen a priori to 

reduce the risk of type I errors.  Statistical analysis was performed using SPSS (version 

21, IBM, New York, NY) and graphed using Prism (version 5.0b, GraphPad Software, 

La Jolla, CA).   

 

RESULTS 

Donors and tissues.  

Careful pairing of ASD and typically developed control donors was performed 

prior to the initiation of experiments as described in the Methods.  As a result, there 

were no statistically significant differences between the two groups of donors when 

comparing ages, RINs or PMIs (Table 2.1). 

Western blot analysis of white and gray matter GFAP and MOG  

Levels of GFAP-ir and MOG-ir were measured in four brain regions, including 

white and gray matter areas of both BA10 and BA24.  Except for BA10 gray matter 

(r2=0.68; p=0.001) from ASD donors only, there were not significant correlations 
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between age and levels of GFAP-ir or MOG-ir in any of the brain regions (Table 2.2).  

This lack of correlation was observed whether examining potential age effects in control 

and ASD separately, or when examining age versus protein levels for all subjects from 

both groups.  Likewise, levels of GFAP-ir and MOG-ir did not significantly correlate with 

either RIN or PMI in any brain region (Table 2.2).   
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Table 2.2.  Pearson’s correlation analysis of GFAP-ir and MOG-ir for BA24 and BA10 

white (WM) and gray (GM) matter versus age, RIN, and PMI.     

 All Subjects 
        

  Age RIN PMI 

  r2 p value r2 p value r2 p value 

B
A

24
 WM GFAP 0.03 0.45 0.00 0.97 0.04 0.35 

WM MOG 0.00 0.81 0.04 0.34 0.08 0.19 
GM GFAP  0.06 0.25 0.01 0.70 0.08 0.18 
GM MOG 0.00 0.89 0.00 0.93 0.00 0.93 

B
A

10
 WM GFAP 0.03 0.03 0.03 0.54 0.01 0.71 

WM MOG 0.05 0.40 0.00 0.89 0.00 0.98 
GM GFAP  0.20 0.03 0.00 0.92 0.07 0.25 
GM MOG 0.20 0.03 0.02 0.49 0.10 0.15 

        
 Control Subjects Only 
        

  Age RIN PMI 

  r2 p value r2 p value r2 p value 

B
A

24
 WM GFAP 0.15 0.24 0.02 0.65 0.03 0.57 

WM MOG 0.05 0.48 0.13 0.25 0.17 0.18 
GM GFAP  0.04 0.52 0.31 0.05 0.13 0.22 
GM MOG 0.14 0.23 0.01 0.81 0.08 0.38 

B
A

10
 WM GFAP 0.46 0.07 0.10 0.44 0.01 0.82 

WM MOG 0.28 0.18 0.05 0.58 0.00 0.91 
GM GFAP  0.18 0.19 0.07 0.42 0.03 0.61 
GM MOG 0.03 0.62 0.04 0.53 0.08 0.40 

        
 ASD Subjects Only 
        

  Age RIN PMI 

  r2 p value r2 p value r2 p value 

B
A

24
 WM GFAP 0.02 0.68 0.01 0.75 0.08 0.38 

WM MOG 0.02 0.69 0.02 0.66 0.05 0.53 
GM GFAP  0.17 0.19 0.02 0.65 0.06 0.45 
GM MOG 0.04 0.53 0.01 0.78 0.00 0.87 

B
A

10
 WM GFAP 0.32 0.15 0.33 0.14 0.08 0.49 

WM MOG 0.08 0.51 0.00 0.87 0.02 0.71 
GM GFAP  0.68 0.001 0.00 0.94 0.38 0.04 
GM MOG 0.06 0.46 0.01 0.82 0.21 0.16 
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 Age was the primary criteria for matching control and ASD donors.  Given the 

lack of consistent effects of age on GFAP-ir levels, further statistical analyses of 

Western blot data utilized a t-test for independent measures.  Significantly elevated 

levels of GFAP-ir were observed in BA24 white matter of ASD donors as compared to 

control donors (Fig. 2.2A; p=0.008).  In contrast, MOG-ir levels were similar in these 

same tissues from control and ASD donors (Fig. 2.2A; p=0.85).  Furthermore, no 

significant differences were observed for GFAP-ir or MOG-ir levels comparing control 

and ASD donors for BA24 gray matter (Fig. 2.2B; GFAP p=0.88; MOG p=0.67), BA10 

white matter (Fig. 2.2C; GFAP p=0.13; MOG p=0.17), or BA10 gray matter (Fig. 2.2D; 

GFAP p=0.50; MOG p=0.94).  Since the study was originally set up and performed in a 

matched pair design (see Methods), we also examined the data using a paired t-test, 

which yielded very similar results (Table 2.3). 
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Figure 2.2.  Western blot analysis of GFAP-ir and MOG-ir in punch-dissected white and 

gray matter from BA24 and BA10 of typically developing control donors (open symbols) 

and ASD donors (closed symbols).  Immunoreactivity levels are normalized to GAPDH-

ir determined on the same blot.  (A) BA24 white matter; (B) BA24 gray matter; (C) BA10 

white matter; (D) BA10 gray matter.  Statistical significance is noted in the horizontal bar 

above the data points.  

 

 

Table 2.3.  Paired Student’s t-test analysis of GFAP-ir and MOG-ir for BA24 and BA10 

white and gray matter. 

 BA24 BA10 
 WM GM WM GM 

GFAP p=0.006 p=0.85 p=0.10 p=0.39 

MOG p=0.64 p=0.54 p=0.21 p=0.87 
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qPCR analysis of GFAP and MOG expression 

Because ASD was associated with elevated GFAP protein levels in BA24, we 

examined gene expression levels of glial markers using RNA isolated from 

homogenates of white or gray matter from ASD and control donors.  There were no 

significant correlations between age or PMI with levels of GFAP or MOG gene 

expression.  RIN significantly correlated with levels of GFAP expression (p=0.003) only 

in BA24 white matter and only in control subjects (Table 2.4).  No significant differences 

in the levels of expression of either GFAP (Fig. 2.3A; p=0.61) or MOG (Fig 2.3A; 

p=0.20) were observed comparing control and ASD donors.  Comparison of gene 

expression levels in BA24 white matter of control and ASD donors using a paired t-test 

yielded similar results (Table 2.5).  Likewise, gene expression for GFAP and MOG in 

gray matter was not different comparing control and ASD donors as assessed using an 

independent (Fig. 2.3B; GFAP, p=0.52; MOG, p=0.95) or a paired t-test (Table 2.5). 
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Table 2.4.  Pearson’s correlations analysis of GFAP and MOG expression for BA24 

white (WM) and gray (GM) matter and BA24 white and gray matter laser captured 

astrocytes versus age, RIN, and PMI.     

  All Subjects 
        
  Age RIN PMI 
  r2 p value r2 p value r2 p value 

W
M

 GFAP 0.00 0.79 0.01 0.72 0.01 0.58 
MOG 0.12 0.10 0.06 0.22 0.02 0.56 
LCM GFAP 0.13 0.21 0.43 0.01 0.02 0.64 

G
M

 GFAP 0.00 0.78 0.04 0.41 0.02 0.55 
MOG 0.00 0.77 0.01 0.73 0.18 0.048 
LCM GFAP 0.07 0.32 0.12 0.19 0.25 0.051 

        
  Control Subjects Only 
        
  Age RIN PMI 
  r2 p value r2 p value r2 p value 

W
M

 GFAP 0.00 0.99 0.56 0.003 0.00 0.98 
MOG 0.27 0.07 0.03 0.55 0.00 1.00 
LCM GFAP 0.25 0.25 0.34 0.17 0.15 0.39 

G
M

 GFAP 0.00 0.94 0.21 0.18 0.07 0.46 
MOG 0.06 0.45 0.00 0.85 0.01 0.79 
LCM GFAP 0.28 0.18 0.10 0.45 0.25 0.21 

        
  ASD Subjects Only 
        
  Age RIN PMI 
  r2 p value r2 p value r2 p value 

W
M

 GFAP 0.02 0.62 0.15 0.19 0.05 0.45 
MOG 0.01 0.74 0.13 0.25 0.07 0.40 
LCM GFAP 0.06 0.59 0.50 0.08 0.50 0.08 

G
M

 GFAP 0.01 0.73 0.15 0.24 0.01 0.76 
MOG 0.01 0.73 0.01 0.79 0.48 0.02 
LCM GFAP 0.01 0.82 0.26 0.19 0.26 0.19 
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Figure 2.3.  Levels of expression of 

GFAP and MOG in punch-dissected white 

(A) and gray (B) matter from BA24 of 

typically developing control donors (open 

symbols) and ASD donors (closed 

symbols).  Gene expression levels are 

normalized to the geometric mean of 

stable references genes (GAPDH, TBP, 

and Ribo18S1).  No statistically 

significant differences were observed. 

 

 
 

Table 2.5.  Paired Student’s t-test analysis of GFAP and MOG expression for BA24 

white and gray matter and BA24 white and gray matter laser captured astrocytes. 

 BA24 
 WM Punch GM Punch WM LCM GM LCM 

GFAP p=0.67 p=0.58 p=0.82 p=0.15 
MOG p=0.18 p=0.96   
	  

	  

Laser-captured BA24 astrocyte PCR analysis for GFAP expression 	  

We considered the possibility that the use of LCM to specifically capture GFAP-

immunoreactive astrocytes for PCR analysis of GFAP gene expression might yield a 

more accurate analysis of astrocyte GFAP gene expression levels than measuring gene 
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expression in mRNA isolated from homogenates of cortical tissue.  Hence, LCM 

collected GFAP-immunoreactive astrocytes from both BA24 gray and white matter from 

eight of the control-ASD donor pairs used for protein studies above.  There were no 

significant correlations between age or PMI with levels of GFAP or MOG gene 

expression.  RIN significantly correlated with levels of GFAP expression (p=0.01) only in 

BA24 white matter and only when all subjects from both groups were combined (Table 

2.4).  Levels of GFAP expression were not different comparing control and ASD donors, 

in both white (p=0.93;) and gray matter (p=0.11) cell populations analyzed using 

independent t-test (Fig. 2.4) or a paired t-test (Table 2.5).   

 

Figure 2.4.  Levels of expression of GFAP in laser captured astrocytes from BA24 white 

and gray matter of typically developing control donors (open symbols) and ASD donors 

(closed symbols).  Gene expression levels are normalized to the average of levels of 

expression of references genes (GAPDH and Ribo18S1).   
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DISCUSSION 

Autism has been considered a disorder of aberrant connections between and 

within brain regions.  This theory of disrupted connectivity is supported by findings of 

reduced axon thickness and neuronal disorganization (Courchesne et al., 2007; 

Minshew & Williams, 2007; Zikopoulos & Barbas, 2010).  Most ASD research to date 

has focused on pathology of neurons with little regard to the other major cell types of 

the brain.  Physiologically, glia assist neurons in a variety of ways including protecting 

neurons from cytotoxic glutamate exposure, providing vital growth factors essential for 

neuronal survival, and providing support for electrical conduction along axons.  

Pathology of glia could lead to the aberrant functioning of neurons and could account for 

imaging abnormalities seen in ASD white matter (Zeidán-Chuliá et al., 2014), making it 

imperative to determine the possible contributory role of glial to the etiology of this 

disease.   

Within the ASD field, protein expression studies utilizing postmortem brain 

tissues have been mostly limited to the examination of brain areas, as whole entities, 

with little regard for differences between white and gray matter.  Glial cells occur in both 

gray and white matter.  However, the function and types of glia differ between these 

types of brain tissue.  For example, protoplasmic astrocytes are found in gray matter, 

whereas fibrous astrocytes are present in white matter.  Each of these astrocytes types 

have their own function and structure (Kimelberg, 2010). Increases in GFAP-ir have 

been observed in the frontal and parietal cortices, cerebellum, and the anterior cingulate 

gyrus of autistic subjects when compared to age-matched controls, suggesting the 

presence of reactive astrogliosis (Laurence et al., 2005; Vargas et al., 2005). These 
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studies used homogenized brain tissues without anatomically distinguishing between 

white and gray matter or cell types within these brain regions.  The present study is the 

first to evaluate two glial cell markers separately in gray and white matter.  The results 

of this study demonstrate elevated levels of the astrocyte marker, GFAP, specifically in 

white matter in BA24 of the ventral anterior cingulate cortex from ASD donors as 

compared to matched typically developing control donors.   

Astrocytes compose the bulk of activated glial cells in ASD, although microglia 

are also activated (Vargas et al., 2005).  Viral and inflammatory processes as well as 

direct brain trauma can increase astrocyte reactivity (Sofroniew & Vinters, 2010).  Many 

cytokines and inflammatory factors are up-regulated in the ASD brain (Pardo, Vargas, & 

Zimmerman, 2005), factors that may mediate glial activation and subsequent increases 

in GFAP expression in ASD.  Glia activation is a phasic process that involves many 

different biochemical pathways.  Based on the type of insult, astrocytes can return to a 

non-reactive state, trigger cellular mechanisms of defense, and/or induce astrocytic 

proliferation aimed at remodeling the affected brain area (Pekny, Wilhelmsson, & 

Pekna, 2014).  The phasic nature of GFAP regulation might explain the large range of 

GFAP-ir levels observed in white and gray matter of all subjects in the present study.   

GFAP expression in BA24 white matter was similar comparing ASD and control 

donors, despite a difference in GFAP protein levels.  Others have noted a different 

response pattern in translational and transcriptional regulation of GFAP as well as a 

biphasic expression of GFAP in activated cells (Tawfik, LaCroix-Fralish, Nutile-

McMenemy, & DeLeo, 2005) which could account for the apparent discrepancy in the 

present study.  We also considered that homogenate tissue samples contain a variety of 
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cells that could make it difficult to distinguish the cellular source of pathology.  

Therefore, potential gene expression differences were also interrogated in laser 

captured astrocytes.  However, no change in the gene expression of glial markers was 

found in laser captured astrocyte populations from control and ASD brains.  It is also 

possible that GFAP protein increases are occurring in other glial cell types that also 

express GFAP, such as microglia, which were not studied here.  Neurons and other glial 

cell types can release diffusible factors during cellular stress that can cause cellular 

activation to occur (Sofroniew & Vinters, 2010).  Future studies are needed to determine 

the specific mechanism and cellular source of white matter GFAP activation in ASD.  

Previous research has implicated a role of oligodendrocyte pathology in ASD.  

Increases in myelin density around the corpus callosum in the ASD brain has been 

demonstrated using magnetization transfer imaging (MTI), a method used to visualize 

myelin in the brain (Gozzi et al., 2012).  The myelin increase may result from aberrant 

signaling by growth factors that mediate myelination in the white matter (Zaccaria, 

Lagace, Eisch, & McCasland, 2010; Zikopoulos & Barbas, 2013).  Oligodendrocytes are 

also very sensitive to metabolic changes that can be produced by various pathologies 

(Butts, Houde, & Mehmet, 2008).  Oxidative stress and pro-inflammatory events in ASD 

could also contribute to pathology in this cell type (Angelidou et al., 2012; Ghanizadeh 

et al., 2012).  In the present study, no differences in MOG protein levels or gene 

expression were observed comparing control and ASD donors.  Since MOG is 

expressed in mature myelinating oligodendrocytes, it remains possible that 

oligodendrocytes at earlier stages of differentiation may be selectively or preferentially 

affected in ASD due to the above-mentioned evidence of aberrant signaling during the 
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cell maturation process.  Further study measuring proteins that are specifically 

expressed by immature oligodendrocytes is warranted. 

We found that elevated GFAP protein levels in ASD were not only specific to 

white matter relative to gray matter, but also occurred in BA24 but not in BA10.  Among 

many attributes of BA24, it mediates behaviors related to social interaction (Gariépy et 

al., 2014), deficits of which are hallmark behavioral traits of ASD.  Numerous previous 

studies have demonstrated pathology in BA24.  Imaging and immunohistochemical 

studies have shown significant differences in BA24 between ASD and control brains 

including early developmental brain overgrowth in ASD (Minshew & Williams, 2007) as 

well as prominent glial activation in ASD (Vargas et al., 2005).  BA24 also receives 

direct inputs from the limbic system, an area of the brain that modulates social and 

emotional behaviors and that also displays prominent ASD pathology (Devinsky, 

Morrell, & Vogt, 1995).  

Limitations 

While white and gray matter were dissected and analyzed separately, these 

samples still included a variety of cell types found within each type of tissue.  The 

availability of postmortem tissue itself is a severe limitation in current and previous ASD 

studies.  Available brain specimens are not only few in number, but also those available 

are from donors who were exposed to a number of medications that could influence 

experimental outcomes.  In selecting and pairing study subjects, we used exclusion 

criteria to narrow down the study population to reduce variation in experimental data.  

Subjects with any co-morbidity, including epilepsy, were excluded.  One ASD subject 

did have a seizure prior to death but had no reported history of seizure disorders.  
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Because of the selection criteria of this study, it is important to note that our data 

reflects pathology in a specific subset (no seizure disorders) of the ASD population. 

 

CONCLUSION AND FUTURE DIRECTION 

This is the first study that demonstrates distinct protein expression abnormalities 

in white matter not gray matter from BA24 brain tissue in humans.  This finding 

suggests a very distinct cellular response to pathology in this brain region that did not 

extend to the other cortical region in this study.  While this study is important in moving 

the field toward the identification of a pathological target, it lacks the clarity and depth 

needed to identify a distinct cellular source or pathophysiological mechanism.  ASD 

patients symptomatically present with vast differences in abnormal behaviors.  Using an 

approach targeted at molecular pathology within a single cell population, a common 

cellular dysfunction may be found that could unify our conceptualization of ASD brain 

pathology throughout the spectrum.  In addition, identification of key cellular 

abnormalities could result in the development of novel targeted treatments for ASD. 
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CHAPTER 3 

NTRK2 EXPRESSION DEFICIT IN LASER CAPTURED PYRAMIDAL 

NEURONS FROM THE ANTERIOR CINGULATE CORTEX IN MALES WITH AUTISM 

SPECTRUM DISORDER 

 

Background 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes 

repetitive behaviors and impairments in social communication and interaction (American 

Psychological Association, 2013).  In recent years, ASD and disorders with associated 

autism behaviors have largely been attributed to genetic etiology in the literature (as 

reviewed by Jeste & Geschwind, 2014).  However, it is likely that the heterogeneity of 

ASD results from a complex interplay of inherited genetics and developmental 

influences that result in abnormal intercellular communication in the brain.  It is 

anticipated that areas of the brain that modulate the behaviors that are disrupted in ASD 

are particularly vulnerable to the cellular pathobiology of ASD likely includes disrupted 

connectivity between discrete areas of the brain that modulate behaviors that are 

abnormal from infancy.  

The anterior cingulate cortex (ACC), an area of the brain that is involved in social 

and repetitive behaviors (Amaral et al., 2008), has consistently displayed abnormalities 

in ASD as revealed through imaging and neuroanatomical studies.  Functional MRI was 

used to demonstrate hypoactivation of the anterior cingulate cortical activity between 

subjects with ASD and unaffected control subjects when conducting social tasks (as 

reviewed by Di Martino et al., 2009).  However, resting-state differences have also been 
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identified in the ACC, suggesting that this brain area may display inherent alterations 

that are task-independent, but may substantially augment functional connectivity 

disassociations (Kennedy & Courchesne, 2008).  Alternative methods including SPECT 

(Sasaki et al., 2010), EEG (Santesso et al., 2010; Sokhadze et al., 2010; Vlamings, 

Jonkman, Hoeksma, van Engeland, & Kemner, 2008), PET (Buchsbaum et al., 2001; 

Hall, Szechtman, & Nahmias, 2003; Nakamura et al., 2010), and fractional anisotropy 

(Thakkar et al., 2008) have also demonstrated abnormalities in the cingulate cortex in 

ASD.  

The few postmortem studies that have focused on the anterior cingulate cortex 

have identified molecular and anatomical differences between ASD and 

developmentally normal control brain tissue.  Stereology studies using the neocortex of 

the anterior cingulate indicated that neurons were smaller and demonstrated increased 

cell packing density (Simms, Kemper, Timbie, Bauman, & Blatt, 2009).  Reductions in 

both mRNA and protein levels of the axonal guidance proteins plexinA4 and roundabout 

2 were identified in tissue homogenates of ACC from ASD donors (Suda et al., 2011), 

as well as alterations in serotonin (Thanseem et al., 2010) and GABA (Oblak, Gibbs, & 

Blatt, 2009, 2010) related genes.  Interestingly, increased gene expression in the 

transcriptional control factor, Sp1, was found in postmortem ACC from ASD donors, 

which could have wide spread implications and contribute to the complexity of ASD.  

Collectively, these studies demonstrate that pathology in the ACC exists in autism.  

However, little is known about what types of cells in the ACC are affected.         

Pyramidal neurons in layer III of the neocortex are key cellular mediators of 

neural output of the anterior cingulate cortex.  These pyramidal cells are excitatory 
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glutamatergic neurons that have a complex synaptic relationship with many other cell 

types in other neocortical layers of the ACC, including inhibitory neurons, glia, and long-

range projecting glutamate neurons of layer 5.  The current study was undertaken to 

investigate specific cellular pathology of pyramidal cells in layer III of the ACC from ASD 

donors.  The levels of expression of several glutamate-related genes were measured 

specifically in pyramidal neurons captured by laser microdissection from layer III of the 

ACC from postmortem brain tissue from ASD donor and developmentally normal control 

subject brain tissue.  The glutamate-related genes chosen for study were those 

associated with ASD identified in gene association, laboratory animal, and/or 

postmortem pathology studies (Barnby et al., 2005; Dölen et al., 2007; Jamain et al., 

2002; Pinto et al., 2010; Purcell, Jeon, Zimmerman, Blue, & Pevsner, 2001; Rainey & 

van der Walt, 1998) and/or because of their strong association with glutamatergic 

neurotransmission.  Additionally, two neurotrophic factor genes (BDNF and NTRK2) 

were studied because of the link between glutamatergic transmission and BDNF 

signaling (Browne & Lucki, 2013) and the association of BDNF and NTRK2 pathology in 

ASD (Correia et al., 2010).  The findings of this study demonstrate that ACC in ASD is 

associated with abnormal levels of expression of several genes related to glutamate 

neurotransmission, with the most striking finding being a robust reduction of NTRK2 

gene expression.  

 

Methods 

Brain Tissue   

Brain tissues for ASD and control donors were provided by the National Institutes 
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for Child Health and Development (NICHD) Brain and Tissue Bank (Baltimore, MD) and 

the Autism Tissue Program (Belmont, MA).  In total, brain tissue from 12 

developmentally normal control donors and 12 ASD donors were used for the different 

experiments (see Table 3.1).  Comorbidities and causes of death were not included in 

the table in order to protect donor identities.  However, control donors died by drowning 

(3 donors), heart condition (3 donors), trauma (3 donors), asphyxia (1 subject), 

pneumonia (1 subject), and unknown cause (1 subject).  It should be mentioned that 

one control subject was diagnosed with depressive disorders and died by suicide.  The 

ASD donors died by trauma (3 donors), asphyxia (3 donors), acute respiratory distress 

syndrome (1 subject), cardiopulmonary arrest (1 subject), cancer (1 subject), 

ketoacidosis (1 subject), bowel obstruction (1 subject), and cardiac arrhythmia (1 

subject).  The ASD group had one subject that the ASD diagnosis could not be 

medically confirmed after death and one subject that had a single seizure episode but 

did not have a medical diagnosis of seizure disorder.  The samples were closely 

matched by gender and age.  Additionally, we analyzed RNA integrity values (RIN, 

index of RNA quality) in matched pairs of donors prior to experimentation to be sure 

these were closely matched for the paired analyses (Auer et al., 2003).    
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Table 3.1.  Subject demographic information. 

Pair ID Age Gender RINa PMI 
(hours)b Toxicology Assays Tissue 

Control Donors 
1 AN14757 24 M 7.8 21.33 No drugs reported LCMc, qPCRd BA24, BA10 

2 AN07176 21 M 8 29.91 No drugs reported LCM, qPCR BA24, BA10 

3 AN07444 17 M 7.5 30.75 Sertraline LCM, qPCR BA24 

4 5408 6 M 7 16 No drugs reported LCM, qPCR BA24, BA10 

5 4848 16 M 7.6 15 No drugs reported LCM, qPCR BA24, BA10 

6 5342 22 M 8.1 14 No drugs reported LCM, qPCR BA24, BA10 

7 5079 33 M 7.3 16 Ethanol LCM, qPCR BA24, BA10 

8 M3231M 37 M 7.4 24 No drugs reported LCM, qPCR BA24, BA10 

9 4590 20 M 7.6 19 No drugs reported LCM, qPCR BA10 

Mean ±  SEM 
(BA24 donors) 

22.0 
±3.4 

 
 

7.59 
±0.13 

20.9 
±2.4  

Mean ±  SEM 
(BA10 donors) 

22.4 
±3.4 

 
 

7.60 
±0.13 

19.4 
±1.9  

ASD Donors 
1 AN04166 24 M 8.1 18.51 No drugs reported LCM, qPCR BA24, BA10 

2 AN03935 20 M 8.6 28 No drugs reported LCM, qPCR BA24, BA10 

3 AN02987 15 M 6.5 30.83 No drugs reported LCM, qPCR BA24 

4 5144 7 M 8.0 3 No drugs reported LCM, qPCR BA24, BA10 

5 5302 16 M 6.6 20 
Risperidone, 
Fluvoxamine, 

Clonidine, Insulin 
LCM, qPCR BA24, BA10 

6 5176 22 M 7.1 18 Risperidone LCM, qPCR BA24, BA10 

7 5297 33 M 7.1 50 

Quetiapine, 
Fluoxetine, 
Valproate, 

Ziprasidone 

LCM, qPCR BA24, BA10 

8 5027 37 M 7.7 26 Risperidone, 
Fluvoxamine LCM, qPCR BA24, BA10 

9 4999 20 M 7.0 14 No drugs reported LCM, qPCR BA10 

Mean ±  SEM  
(BA24 donors) 

21.6 
±3.4 

 
 

7.46 
±0.27 

24.3 
±4.8  

Mean ±  SEM 
(BA10 donors) 

22.2 
±3.3 

 
 

7.53 
±0.24 

23.4 
±5.4  

P valueg (BA 24) 0.94  0.68 0.53  
P valueg (BA10) 0.98  0.79 0.60  

a RNA integrity number (index of RNA quality)  
b Postmortem interval 
c Endpoint PCR analysis of reversed transcribed RNA isolated from cells collected by laser capture microdissection 
d Quantitative polymerase chain reaction of reverse transcribed RNA isolated from punch-dissected tissues 
g Results of a two-tailed independent t-test comparing control and ASD groups. 
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Tissue preparation   

Blocks of tissue containing ACC, specifically Brodmann area 24 (BA24), and 

prefrontal cortex Brodmann area 10 (BA10) were received and stored at -80oC.  All 

brain tissues were obtained from the left hemispheric side except AN03935.  Tissue 

homogenates used for quantitative PCR were obtained using a 3 mm trephine to punch-

dissect a 50 µm section of gray matter from the anterior cingulate that contained all 6 

neocortical layers.  A cryostat microtome was used to section tissue blocks for laser 

capture microdissection (LCM).  Tissue from the cortex was sectioned at -20oC and 10 

µm sections were mounted slides that were immediately placed in a chilled microslide 

on ice.  Between each tissue block, all physical elements of cryosectioning were 

thoroughly cleaned with 100% ethanol to avoid any cross contamination.  Sectioned 

tissue was desiccated at room temperature for 5 minutes and stored at -80oC until use.  

All subject tissue pairs were sectioned or punch-dissected on the same day to ensure 

storage time is identical for all tissue pairs.        

 

Laser capture microdissection 

Neurons were visualized by staining frozen 10 µm thick sections with the 

Histogene staining kit (Life Technologies; Grand Island, NY) according to 

manufacturer’s instructions.  In short, the protocol used a cresyl violet stain on an 

ethanol fixed slide followed by a series of dehydration steps.  Stained slides were 

placed in a vacuum chamber until ready for LCM.  Astrocytes were identified using a 

modified glial fibrillary acidic protein (GFAP) rapid immunohistochemistry protocol as 

previously described (Chandley et al., 2012; Ordway et al., 2009).  Briefly, 10 µm slides 
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were fixed in acetone (5 min), blocked in horse serum (10 min), incubated with GFAP 

antibody  (10 min; ThermoFisher, Pittsburgh, PA) anti-mouse antibody (5 min; 

Vectastain, Burlingame, CA), and avidin-biotinylated horseradish peroxidase (5 min; 

Jackson ImmunoResearch, West Grove, PA).  The GFAP stain was visualized using 

diaminobenzidine (Sigma; St. Louis, MO) with ammonium nickel sulfate (Sigma; St. 

Louis, MO) for 5 min, then for an additional 5 min with 0.1% H2O2.  Afterwards, the slide 

was ethanol dehydrated with 5 min incubation in xylene.  The slide is kept in a vacuum 

chamber for 10 min prior to LCM.     

LCM was performed using an Arcturus XT (Life Technologies) instrument.  

Neurons were extracted onto CapSure macrocaps using a 25 µm spot size that is first 

cut by a ultraviolet (UV) laser and then placed onto the cap by infrared (IR) laser 

spotting.  Neurons were morphologically identified in layer III of the neocortex at 40X 

magnification (Figure 3.1C-D).  Astrocytes were captured using an Arcturus Veritas (Life 

Technologies; Grand Island, NY) instrument.  Astrocytes were morphologically identified 

at 60X magnification and placed onto caps by IR laser only using a 10 µm spot size 

(Figure 3.1E-F).  Cells were removed from cap using lysis buffer incubation at 42oC.                        
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Figure 3.1.  Laser capture microdissection of pyramidal neurons and astrocytes.   

Shown in Panel A is the absence of laser captured nissl-stained pyramidal 

neurons from cortical layer 3 in BA24 gray matter tissue following capture (20x 

magnification).  Panel B shows those cells adhered to the polymer cap (20x 

magnification).  Panel C and D illustrate the before (C) and after (D) capture images for 

nissl-stained BA24 pyramidal neurons (40x magnification).  Panel E and F shows the 

same laser capture process for GFAP immunostained astrocytes in BA24 gray matter 

(60x magnification). 

 

RNA preparation and reverse transcriptase 

 Total RNA was extracted from tissue homogenates using the Maxwell 

simplyRNA LEV kit (Promega, Madison, WI).  Laser captured cells using the 
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RNAqueous Micro kit with DNase treatment (Life Technologies; Grand Island, NY).  

RNA quality was assessed by measuring RIN values obtained using the Agilent 2100 

Bioanalyzer (Agilent Technologies; Santa Clara, CA).  RNA samples were reverse 

transcribed into cDNA using the Superscript III kit (Life Technologies; Grand Island, NY) 

that contained oligodT and random hexamer primers.   

 

Quantitative polymerase chain reaction 

Gene specific primers were either designed using Mfold web server software 

(Zuker, 2003)  and primer quest design software (IDT; Coralville, IA) to generate 100 

base-pair amplicons to span exon junctions. Some primers were purchased from a 

vendor (Qiagen; Valencia, CA).  Gene primer sequences are shown in Appendix B.  To 

quantify transcripts, endpoint PCR was used for RNA isolated from laser captured cells 

and real-time quantitative PCR (qPCR) was used for RNA isolated from tissue 

homogenates as previously described (Ordway et al., 2009; Xiang et al., 2008).  For 

PCR reactions (BDNF, GRIN2D, GRIN2B, and GRM8) that were initially problematic 

using 5Prime Hot Master Mix Taq polymerase (5Prime; Gaithersburg, MA), a modified 

polymerase from Qiagen (Valencia, CA) was employed using the same reaction 

parameters.  

 

Statistical analysis  

 Calculations for qPCR data involved converting cycle threshold (Ct) values to 

fold-change between control and autism donors using the 2-ΔΔCT method by Livak and 

Schmittgen (Livak & Schmittgen, 2001).  Endpoint PCR data was computed as relative 
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values generated from the ratios of amounts of target gene expression to the average of 

two reference gene expressions.  Afterwards, both data from qPCR and endpoint PCR 

were analyzed by the paired Student t-test.  Statistical results are reported before and 

after Holm’s Bonferroni correction (Gaetano, 2014; Holm, 1979) for the number of 

comparisons as noted in the results below.  Pearson’s correlation was used to 

determine possible effects of postmortem variables (age, RIN, and PMI) on the 

expression of each gene.  Given the number of correlation tests, a p<0.01 was chosen a 

priori to indicate statistical significance in order to reduce type I errors. 

 

Results 

Glutamate-related gene expression.   

The levels of expression of 7 ionotropic glutamate receptor subunit genes 

(GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN2D, GRIK2, GRIA1) and two metabotropic 

glutamate receptor genes (GRM5, GRM8) were measured in BA24 pyramidal neurons 

and surrounding astrocytes from ASD and age-matched control donors.  GRM8 

expression was not detectable in astrocytes.  Levels of GRM8 expression were 

modestly lower in pyramidal neurons from ASD donors compared to matched control 

donors (t=2.89; p=0.034), but statistical significance was lost when the p value was 

corrected for the number of matched pair comparisons of gene expressions in neurons 

(Table 3.2).  No other differences in the levels of expression of any glutamate receptor 

gene were observed in either pyramidal neurons or astrocytes comparing ASD to 

control donors (Figure 3.2).  
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Figure 3.2.  Levels of expression of ionotropic glutamate receptor subunits and 

metabotropic glutamate receptors.  

Expression of glutamate receptors and receptor subunits was measured in laser 

captured BA24 pyramidal neurons and separately in surrounding astrocytes of typically 

developing control donors (open symbols) and ASD donors (closed symbols).  Gene 

expression levels are normalized to the averaged levels of expression of references 

genes (GAPDH and Ribo18S1).  Mean values are noted by horizontal lines and 
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statistical significance (uncorrected for the number of comparisons) is noted above the 

data points.  

 

 

Table 3.2.  Results of Holm-Bonferroni Sequential Correction of  

multiple paired Student’s t-tests of gene expression data from BA24 neurons. 

Gene (protein) 
P value from 
Paired t-test 

P’ from 
correctiona   Significance? 

RNA18S1 / GAPDH 0.3774 1.000 No 
GRIN1 (NR1) 0.0533 0.583 No 
GRIN2A (NR2A) 0.9051 1.000 No 
GRIN2B (NR2B) 0.1160 1.000 No 
GRIN2C (NR2C) 0.9924 1.000 No 
GRIN2D (NR2D) 0.1146 1.000 No 
GRIA1 (GluR-1) 0.2424 1.000 No 
GRIK2 (GRIK2, GluK2) 0.3793 1.000 No 
GRM5 (mGluR5) 0.1061 1.000 No 
GRM8 (mGluR8) 0.0340 0.408 No 
SLC1A1 (EAAT3) 0.0235 0.312 No 
SLC17A7 (VGlut1) 0.5034 1.000 No 
GRIP1 (GRIP1) 0.0064 0.090 No 
BDNF (BDNF) 0.4846 1.000 No 
NTRK2 (NTRK2,TrkB) 0.0006 0.009 Yes 
a Holm-Bonferroni corrected p value 

 

 

Additional genes associated with glutamatergic neurotransmission were 

interrogated in BA24 pyramidal neurons and astrocytes, including glutamate transporter 

genes, SLC1A1, SLC1A2, SLC1A3, SLC17A7, and the glutamate receptor interacting 

gene, GRIP1.  Of these genes, the expression of astrocyte-associated transporter 

genes SLC1A2 and SLC1A3 was not measured in neurons and the neuronal glutamate 

transporter gene SLC1A1 was not measured in astrocytes.  Levels of SLC1A1 (t= 2.88; 
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p=0.024) and GRIP1 (t=3.84; p =0.006) gene expression were lower in pyramidal 

neurons captured from ASD donors as compared to matched control donors (Figure 

3.33).  However, statistical significance was lost when p values were corrected for the 

number of matched pair comparisons (Table 3.2).  No significant differences in the 

levels of expression of any of the glutamate-related genes, SLC1A2, SLC17A7, and 

GRIP1, were observed in astrocytes comparing ASD to matched control donors (Figure 

3.3). 

 

 

Figure 3.3.  Levels of expression of glutamate transporter genes and a glutamate 

receptor interacting gene.  

Gene expression was measured in laser captured BA24 pyramidal neurons and 

separately in surrounding astrocytes of typically developing control donors (open 
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symbols) and ASD donors (closed symbols).  Gene expression levels are normalized to 

the averaged levels of expression of references genes (GAPDH and Ribo18S1).  Mean 

values are noted by horizontal lines and statistical significance (uncorrected for the 

number of comparisons) is noted above the data points. 

 

 

BDNF/NTRK2.   

Levels of expression the neurotrophic factor gene BDNF and its receptor gene 

NTRK2 were measured in pyramidal neurons and astrocytes from BA24 (Figure 3.4).  

BDNF expression in both neurons and astrocytes was similar comparing ASD to 

matched control donors.  However, NTRK2 expression levels were robustly lower in 

pyramidal neurons (t=5.87; p=0.0006), but not astrocytes, from ASD donors as 

compared to control donors.  The difference in NTRK2 expression levels between ASD 

and control donors remained statistically significant after correction for the number of 

matched comparisons (Table 3.2). 
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Figure 3.4.  Levels of expression of BDNF and its receptor gene NTRK2.  

Gene expression was measured in laser captured BA24 pyramidal neurons and 

separately in surrounding astrocytes of typically developing control donors (open 

symbols) and ASD donors (closed symbols).  Gene expression levels are normalized to 

the averaged levels of expression of references genes (GAPDH and Ribo18S1).  Mean 

values are noted by horizontal lines and statistical significance (uncorrected for the 

number of comparisons) is noted above the data points. 

 

 

Expression of selected genes in BA10.   

The expression levels of four genes were studied in BA10 pyramidal neurons 

from ASD and control donors.  Chosen for study were those genes analyzed in BA24 

pyramidal neurons that demonstrated either no difference (GRM5), marginal or modest 

differences (GRIN1, SLC1A1) or highly significant differences (NTRK2) comparing ASD 

to control donors as noted above.  In this set of experiments, BA10 tissue from one age-

matched pair of donors used in the BA24 studies above was not available; BA10 tissue 

from one different age-matched pair of donors was substituted as noted in Table 3.1.  

The expression levels of each of these four genes in laser captured pyramidal neurons 

from BA10 were similar in ASD and matched controls (Figure 3.5; GRIN1 t=0.74, 

p=0.49; GRM5 t=0.90, p=0.40; SLC1A1 t=0.26, p=0.80; NTRK2 t=0.03, p=0.97). 
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Figure 3.5. Levels of expression of GRM5, GRIN1, SLC1A1, and NTRK2 in 

pyramidal neurons of BA10.  

Gene expression was measured in laser captured BA10 pyramidal neurons from 

typically developing control donors (open symbols) and ASD donors (closed symbols).  

Gene expression levels are normalized to the averaged levels of expression of 

references genes (GAPDH and Ribo18S1).  Mean values are noted by horizontal lines.  

No statistically significant differences were observed. 

 

 

Demographic variables, reference genes, and tissue factors.   

There were no statistical differences between ASD and matched control donors 

of BA24 tissue regarding age, RIN, or PMI values (Table 3.1).  Likewise, there were no 

differences in these variables comparing groups of donors of BA10 tissue (Table 3.1).  

There were no significant correlations between age or PMI and any of the 15 gene 
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expressions measured in BA24 pyramidal neurons (Table 3.3).  There was a significant 

correlation between levels of GRIN2C expression and RIN values, but there were no 

other correlations between RIN and the levels of any mRNA that was studied in BA24 

pyramidal neurons.  In BA24 astrocytes, age correlated significantly with NTRK2 gene 

expression levels (p=0.002), but not with levels of any other gene (Table 3.4).  RIN did 

not significantly correlate with expression levels of any gene in BA24 astrocytes, while 

PMI correlated with only SLC17A7 gene expression in BA24 astrocytes (Table 3.4).  In 

BA10 pyramidal neurons, there were no significant correlations between age, RIN, or 

PMI and the levels of expression of any of the target or reference genes (Table 3.5). 
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Table 3.3.  Pearson’s correlation analyses for possible relationships between gene 

expression levels in BA24 neurons and age, RNA quality (RIN) and postmortem interval 

(PMI). 

Genea (proteinb) Statistic Age RIN PMI 

RNA18S1 / GAPDHc 
Pearson Correlation -.309 .043 -.250 

Sig. (2-tailed) .243 .875 .350 
N 16 16 16 

GRIN1 (NR1) 
Pearson Correlation .050 .318 -.226 

Sig. (2-tailed) .855 .231 .400 
N 16 16 16 

GRIN2A (NR2A) 
Pearson Correlation -.055 .531 .176 

Sig. (2-tailed) .851 .051 .548 
N 14 14 14 

GRIN2B (NR2B) 
Pearson Correlation .109 .579 -.250 

Sig. (2-tailed) .687 .019 .351 
N 16 16 16 

GRIN2C (NR2C) 
Pearson Correlation .229 .642d -.091 

Sig. (2-tailed) .394 .007 .737 
N 16 16 16 

GRIN2D (NR2D) 
Pearson Correlation .322 .082 .203 

Sig. (2-tailed) .224 .763 .452 
N 16 16 16 

GRIA1 (GluR-1) 
Pearson Correlation -.374 .213 -.012 

Sig. (2-tailed) .154 .429 .966 
N 16 16 16 

GRIK2 (GRIK2, GluK2) 
Pearson Correlation -.316 .250 -.346 

Sig. (2-tailed) .233 .350 .189 
N 16 16 16 

GRM5 (mGluR5) 
Pearson Correlation -.017 -.117 -.435 

Sig. (2-tailed) .953 .677 .105 
N 15 15 15 

GRM8 (mGluR8) 
Pearson Correlation .131 .140 .029 

Sig. (2-tailed) .684 .664 .929 
N 12 12 12 

SLC1A1 (EAAT3) 
Pearson Correlation -.191 .285 -.591 

Sig. (2-tailed) .478 .284 .016 
N 16 16 16 

SLC17A7 (VGlut1) 
Pearson Correlation .003 .312 -.358 

Sig. (2-tailed) .991 .240 .173 
N 16 16 16 

GRIP1 (GRIP1) 
Pearson Correlation -.128 .265 -.030 

Sig. (2-tailed) .638 .320 .913 
N 16 16 16 

BDNF (BDNF) 
Pearson Correlation .005 -.084 -.212 

Sig. (2-tailed) .985 .757 .430 
N 16 16 16 

NTRK2 (NTRK2,TrkB) 
Pearson Correlation .522 .271 -.076 

Sig. (2-tailed) .038 .310 .780 
N 16 16 16 
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Table 3.4.  Pearson’s correlation analyses for possible relationships between 

gene expression levels in BA24 astrocytes and age, RNA quality (RIN) and 

postmortem interval (PMI). 

Genea (proteinb) Statistic Age RIN PMI 

RNA18S / GAPDHc 
Pearson Correlation .074 .119 .443 

Sig. (2-tailed) .786 .662 .085 
N 16 16 16 

GRIN1 (NR1) 
Pearson Correlation .092 .133 -.003 

Sig. (2-tailed) .736 .624 .991 
N 16 16 16 

GRIN2A (NR2A) 
Pearson Correlation .282 .516 -.116 

Sig. (2-tailed) .290 .041 .670 
N 16 16 16 

GRIN2B (NR2B) 
Pearson Correlation .523 .520 -.060 

Sig. (2-tailed) .038 .039 .826 
N 16 16 16 

GRIN2D (NR2D) 
Pearson Correlation .547 .395 .227 

Sig. (2-tailed) .028 .130 .398 
N 16 16 16 

GRIA1 (GluR-1) 
Pearson Correlation -.046 .490 .009 

Sig. (2-tailed) .865 .054 .975 
N 16 16 16 

GRM5 (mGluR5) 
Pearson Correlation .577 .328 .112 

Sig. (2-tailed) .019 .216 .679 
N 16 16 16 

SLC1A3 (EAAT1) 
Pearson Correlation -.340 -.238 -.344 

Sig. (2-tailed) .197 .375 .192 
N 16 16 16 

SLC1A2 (EAAT2) 
Pearson Correlation -.101 .023 -.186 

Sig. (2-tailed) .711 .932 .491 
N 16 16 16 

SLC17A7 (vGlut1) 
Pearson Correlation -.470 .214 -.655d 

Sig. (2-tailed) .066 .426 .006 
N 16 16 16 

GRIP1 (GRIP1) 
Pearson Correlation -.086 -.146 .378 

Sig. (2-tailed) .751 .590 .149 
N 16 16 16 

BDNF (BDNF) 
Pearson Correlation .479 -.153 .492 

Sig. (2-tailed) .060 .571 .053 
N 16 16 16 

NTRK2 (NTRK2, TrkB) 
Pearson Correlation .711d .123 .187 

Sig. (2-tailed) .002 .649 .488 
N 16 16 16 
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Table 3.5.  Pearson’s correlation analyses for possible relationships between gene 

expression levels in BA10 neurons and age, RNA quality (RIN) and postmortem interval 

(PMI).  

Genea (proteinb) Statistic Age RIN PMI 

RNA18S1 / GAPDHc 
Pearson Correlation -.122 -.407 .002 

Sig. (2-tailed) .653 .148 .995 
N 16 14 14 

GRIN1 (NR2A) 
Pearson Correlation .114 .415 .059 

Sig. (2-tailed) .675 .140 .841 
N 16 14 14 

GRM5 (mGluR5) 
Pearson Correlation .328 .228 .088 

Sig. (2-tailed) .215 .432 .765 
N 16 16 14 

SLC1A1 (EAAT3) 
Pearson Correlation -.105 .659 .282 

Sig. (2-tailed) .722 .020 .374 
N 14 12 12 

NTRK2 (NTRK2, TrkB) 
Pearson Correlation -.234 .537 -.094 

Sig. (2-tailed) .420 .072 .773 
N 14 12 12 

 

 

Reference genes were carefully chosen as those that were stable in their 

expression levels across the two groups of subjects.  The ratios of levels of expression 

of RNA18S1 and GAPDH were not significantly different in laser captured BA24 

neurons (t = 1.00, p = 0.35), BA24 astrocytes (t = 0.93, p = 0.38), or BA10 neurons (t = 

1.82, p = 0.11) comparing ASD and matched control donors (Figure 3.6).  
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Figure 3.6.  Ratio of reference gene expression levels.  

Gene expression was measured for GAPDH and Ribo18S1 in typically developing 

control donors (open symbols) and ASD donors (closed symbols).  The ratio of gene 

expression between the two reference genes was compared for control and ASD 

subjects for BA24 neurons and astrocytes and BA10 neurons to ensure that the 

reference genes had stable expression levels between the groups.  No statistically 

significant differences were observed. 

 

 

It should be noted that we wished to screen multiple brain regions for these gene 

expression changes to determine the extent to which they occurred in the brain.  

Because LCM is time-intensive and expensive, we attempted to measure SLC1A1, 

GRIP1, NTRK2 expression in RNA isolated from homogenates of ACC.  However, we 

were unable to detect any differences in expression of these genes in RNA isolates 
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from homogenates of ACC, using tissues collected from seven of the eight ASD – 

control donor pairs that were used for the LCM study above (Figure 3.7).  To verify the 

stability of reference gene expression levels across the two groups of subjects, the 

ratios of GAPDH and TATA expression were examined and were not found significantly 

different when comparing ASD and matched control donors (t = 0.19, p = 0.86) (Figure 

3.8).  

 

Figure 3.7.  Levels of expression of SLC1A1, GRIP1, and NTRK2 in punch-

dissected BA24 gray matter.   

Gene expression was measured in typically developing control donors (open symbols) 

and ASD donors (closed symbols) using RNA isolated from homogenates of punched-

dissected gray matter rather than specific laser captured cells as shown in Figures 1-5.  

Gene expression levels were determined by real time PCR and are normalized to the 

geometric mean of stable references genes (GAPDH and TATA).  No statistically 

significant differences were observed. 
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Figure 3.8.  Ratio of reference gene expression levels for qPCR.  

Gene expression was measured for GAPDH and TATA in typically developing control 

donors (open symbols) and ASD donors (closed symbols).  The ratio of gene 

expression between the two reference genes was compared for control and ASD 

subjects for BA24 punch-dissected gray matter tissue samples to ensure that the 

reference genes had stable expression levels between the groups.  No statistically 

significant difference was observed. 

 

 

Four of the ASD donors had been prescribed psychotherapeutic medications, 

with three of the four receiving SSRI antidepressants and four of the four receiving 

antipsychotic drugs (see Table 3.1).  Considering that effects of psychotherapeutic 

drugs might contribute to observed differences in gene expression in BA24 neurons as 

shown above, a comparison was made of antidepressant/antipsychotic exposed ASD 

donors to ASD donors not exposed to these drugs.  Albeit the sample sizes of these two 
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groups are small and that these two subgroups were not matched for age and other 

demographic variables, there were no significant difference in levels of GRM8 (unpaired 

t-test; t=0.17, p=0.87), GRIP1 (0.01, p=0.99), SLC1A1 (t=0.28, p=0.79), NTRK2 (t=0.59, 

p=0.57) comparing antidepressant/antipsychotic exposed ASD donors to ASD donors 

without these drugs. 

 

Discussion 

This study examined the expression of genes involved in glutamatergic 

neurotransmission in ASD.  We found modestly low levels of expression of genes 

encoding a glutamate receptor (GRM8), glutamate transporter (SLC1A3), and a 

glutamate receptor anchoring protein (GRIP1), and a robust reduction in expression of a 

neurotrophin receptor gene (NTRK2) in pyramidal neurons dissected by LCM from ACC 

tissue of donors with ASD when compared to typically developing controls.  This is the 

first study to use LCM to isolate a specific cell population to examine the molecular 

pathology of ASD.  The use LCM to capture distinct cell populations provided cellular 

resolution to the assessment of pathology, and permitted identification of gene 

expression changes that we were unable to detect using homogenates of the same 

brain region in the same subjects.  The difference in the results of LCM of single cell 

populations versus homogenates of tissues is likely the result of overlapping gene 

expression in other unaffected cell types that in essence dilute cell-specific gene 

expression changes, as has been demonstrated in research on Alzheimer’s disease 

(Ginsberg & Che, 2005; Ginsberg et al., 2004).  The gene expression deficits identified 

in the present study were restricted to ACC pyramidal neurons and not found in 
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surrounding astrocytes in the same brain region, or in pyramidal neurons in BA10 of the 

prefrontal cortex, suggesting the presence of a cell- and region-specific pathology in 

ASD. 

Cells used for this study were dissected from the neocortical layer III of the ACC 

where both changes in cell size and packing density have been demonstrated 

previously (Simms et al., 2009).  Also, mini-column disturbances i.e. reduced column 

width and increased column number have been shown in the ACC with pyramidal 

neurons demonstrating misalignment (Casanova et al., 2002).  An increase in spine 

density of pyramidal neurons in frontal, parietal and temporal lobes has been reported 

for ASD (Avino & Hutsler, 2010), although the ACC has not been studied to date. The 

present study identifies specific gene expression abnormalities in glutamatergic 

pyramidal cells and adds to the growing body of literature that implicates these 

excitatory neurons in the complex pathobiology of autism. 

 A recent study demonstrated that neurons, not glia, from the neocortex of 

multiple brain regions exhibited decreased gene expression that indicated abnormal 

columnar architecture within all six cortical layers that the authors referred to as 

“patches” (Stoner et al., 2014).  The authors of these data acknowledge that they have 

uncovered a unique ASD cortical pathology involving several genes that are found in 

multiple cell types, (Stoner et al., 2014); but no mechanism of pathogenesis is known.  

In addition, an elevated number of neurons has been detected in layer VI of the ASD 

ACC indicating that incomplete migration of neurons may have occurred during 

development (Simms et al., 2009).  Our studies have identified abnormal gene 

expression in pyramidal neurons, but not glia, that could contribute to abnormal 
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columnar structure in the neocortex in autism.  

 A striking finding of this study was the decreased expression of the growth factor 

receptor gene NTRK2B in ACC pyramidal neurons from ASD donors.  This gene 

encodes the high-affinity tyrosine kinase B receptor, TrkB, the ligand for which is BDNF, 

NT-3 and NT-4/5 (Klein et al., 1991; Klein, Lamballe, Bryant, & Barbacid, 1992).  TrkB 

signaling is of critical importance to cell function, with ligand-activated TrkB engaging 

several intracellular signaling pathways including MAPK, PI3, and ERK that are 

important in neurotransmission, plasticity and differentiation (Boulle et al., 2012).  

Several laboratories have reported elevated peripheral and central BDNF levels in ASD 

(Connolly et al., 2006; Correia et al., 2010; Miyazaki et al., 2004; Nelson et al., 2006; 

Perry et al., 2001). A genetic association between polymorphisms of NTRK2 and ASD 

has also been identified (Correia et al., 2010).  It seems unlikely that a functional 

polymorphism NTRK2 that might account for the observed reduction in NTRK2 

expression in pyramidal cells since one would expect NTRK2 gene expression to be 

similarly affected in astrocytes and pyramidal neurons in other brain regions.  Of the 

cells that we studied, we found the reduction of NTRK2 only in ACC pyramidal neurons.  

Interestingly, the most strongly associated polymorphisms in ASD were found in the 

intron-spanning regions of NTRK2, which could reflect aberrant transcriptional 

mechanisms under cell-specific control in ASD.  Mouse knock out (KO) models indicate 

that NTRK2 deficient mice die soon after birth (Klein et al., 1993; Rohrer et al., 2004).  

However, mice with a conditional loss of NTRK2 expression exhibit a wide variation in 

behavior ranging from social deficits to antisocial behavior (as reviewed by Lindholm & 

Castrén, 2014). Interestingly, the TrkB receptor in BDNF conditional KO mice develop 
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BDNF-independent signaling mechanisms (Di Lieto et al., 2012). It is noteworthy that 

the BTBR mouse model for ASD exhibits reduced TrkB protein expression (Scattoni, 

Martire, Cartocci, Ferrante, & Ricceri, 2013).  Defective TrkB signaling has been shown 

in Angelmann (Cao et al., 2013) and Fragile X (Uutela et al., 2014) mouse models, both 

of which are syndromes with a high incidence of autistic features. The present study 

provides further support for a role of BDNF/TrkB in ASD, specifically providing evidence 

of reduced NTRK2 gene expression in ACC pyramidal neurons.    

Gene expression changes in synapse-related genes have been demonstrated in 

disorders that have autistic features such as Angelmann Syndrome and Fragile X 

Syndrome (as reviewed by Ebert & Greenberg, 2013).  Abnormalities in 

neurotransmitter signaling networks are likely to be a core component of the cellular 

neurobiology of ASD.  We chose to interrogate potential expression changes in several 

genes associated with excitatory amino acid cell signaling in autism.  Three of these 

genes, SLC1A1, GRIP1, and GRM8, demonstrated trends toward reduced expression 

in ACC pyramidal neurons in ASD.  SLC1A1 is responsible for glutamate uptake from 

the synapse by pyramidal neurons while GRIP1 anchors AMPA receptors to the cell 

membrane. GRM8 inhibits the adenylyl cyclase/cAMP pathway and decreases the 

likelihood of cell death associated with excess NMDA signaling (Ambrosini, Bresciani, 

Fracchia, Brunello, & Racagni, 1995).  The decreased expression of GRM8 receptor in 

ASD, if accompanied by reduced GRM8 receptor, could leave pyramidal cells 

susceptible to neurotoxic effects of elevated glutamate signaling through the NMDA 

receptor.  This neurotoxic effect could be amplified further if reduced SLC1A1 

expression observed in ASD results in less glutamate transporter activity at the 
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glutamatergic synapse, thereby further increasing glutamate activation of NMDA 

receptors on these pyramidal neurons.  Reduced GRIP1 expression, as we observed in 

ASD, could be a compensatory mechanisms to override excess NMDA receptor 

activation by glutamate.   Whatever the exact sequence or consequence, abnormal 

expression levels of these genes implies that excitatory output from the ACC via 

pyramidal neurons is disrupted in ASD.  Because GRIP1 and NTRK2 is expressed by 

multiple cell types, it cannot be dismissed that these glutamatergic-related gene 

expression decreases are only found in excitatory cells.  While we did not find GRIP1 or 

excitatory transporter changes (SLC1A2 and SLC1A3) in the glia cells studied herein, 

altered expression of these genes could occur in inhibitory neurons of the ACC, which 

were not studied.  Nevertheless, any disruption of glutamate transmission and function 

implicates a compromise in the delicate balance of inhibitory and excitatory neuronal 

activity of the ACC.  Future studies need to include a more detailed examination of gene 

expression in other cell types of the ACC. 

 

Limitations 

 There were several limitations in the current study that should be taken into 

consideration.  First, like many studies of ASD relying on postmortem brain tissue, the 

number of donors available was limited and reduced the power of the study.  It should 

be noted that all donors that had a history of seizure disorder were excluded from the 

study to reduce experimental variability.  Our laboratory has observed that the use of 

LCM to isolate distinct cell populations results in reduced variability of data, permitting 

the use of smaller sample sizes to obtain statistical significance.  ASD is a highly 
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heterogeneous disorder and there were not enough brain donors to permit us to 

examine the gene expressions in subgroups of donors based on clinical presentation.  

Changes in gene expression do not always correlate with changes in the expression of 

the cognate protein, and often a change in gene expression is not temporally correlated 

with changes in the cognate proteins.  Hence, whether reduced NTRK2B expression in 

ASD pyramidal neurons results in lower TrkB protein in these cells is not currently 

known.  Nevertheless, altered levels of NTRK2B expression in ASD is highly suggestive 

of perturbed TrkB signaling in ASD.  ASD donors used in the present study were 

exposed to psychotherapeutic drugs that could alter gene expression, particularly 

selective serotonin uptake inhibitor (SSRIs) and risperidol, an atypical antipsychotic.  

But, repeated administration of the antidepressants tranylcypromine, sertraline, or 

desipramine to rats increases NTRK2 expression (Nibuya, Morinobu, & Duman, 1995). 

Hence, reduced NTRKB expression in the present study is unlikely to reflect previous 

antidepressant drug therapy.  Repeated treatment of rats with ripseridol produced no 

change in TrkB immunoreactivity in the brain (Angelucci, Mathé, & Aloe, 2000), again 

suggesting that psychotherapeutic drug exposure is not a likely mediator of reduced 

NTRK2 expression in ASD in the present study.  Findings herein demonstrate no 

obvious effect of psychotherapeutic drug exposure on NTRK2 (or GRM8, GRIP1, 

SLC1A1) expression.  Tissue-related physical factors were considered as possible 

sources of variance in these experiments.  However, there were no significant 

differences between ASD and control donor samples when comparing age, RNA quality 

(RIN), postmortem intervals (Table 3.1).  
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Conclusions  

Multiple gene abnormalities are significantly associated with ASD (Betancur, 

2011).  It therefore seems likely that multiple etiologies exist that can result in ASD.  

Brain pathology is downstream to gene polymorphisms and etiologies, and more 

proximal to the pathophysiology underlying the abnormal behaviors.  Hence, the 

neuropathology of autism may be more limited in terms of variability than the genotypes 

that can contribute to it, i.e. different etiologies may result in a similar 

structural/neurochemical abnormality that disrupts function to produce a specific set of 

behavioral abnormalities.  The present study was designed to examine possible 

disruption of a key neuronal unit, the glutamatergic pyramidal neuron, of the ACC in 

ASD.  The data presented here reveals strong evidence of disrupted neurochemistry of 

ACC pyramidal neurons, specifically involving glutamatergic neurotransmission and 

neurotrophic factor (BDNF) signaling through the TrkB receptor.  It is tempting to 

speculate that abnormalities in ACC as revealed in imaging studies of ASD patients are 

at least partially the result of deficits in pyramidal neuronal function in the ACC as 

revealed in the present study.  Pyramidal neurons in layer III of the ACC synapse with 

other cortical neurons including inhibitory neurons and long-range pyramidal motor 

neurons in layer V and the present findings suggest that neural communication with 

these other brain areas or pathways is altered in ASD.  Interestingly, pyramidal neurons 

take years to reach maturity, possibly well into adolescence (Huttenlocher, 1970), 

indicating that normal neural development of this cell type may be especially vulnerable 

to deleterious environmental influences occurring early in life.  
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CHAPTER 4 

RNA-SEQ ANALYSIS OF LASER CAPTURED SAMPLES FROM ANTERIOR 

CINGULATE CORTEX OF MALES WITH AUTISM SPECTRUM DISORDER 

 

Introduction 

Ginsberg et al (Ginsberg, Alldred, & Che, 2011) have shown significant 

disparities between gene expression differences found using homogenate brain 

samples versus laser captured single cell populations from the same tissues. The 

Ginsberg study used microarrays to examine the brains of control and Alzheimer’s 

disease (AD) subjects.  Microarray data from CA1 captured cell populations displayed a 

dissimilar gene expression profile compared to the data obtained from hippocampal 

homogenate samples.  Genes found to be essential for the dysfunction of CA1 neurons 

in AD were not found significantly altered in the homogenate samples.  We have also 

observed different findings depending on whether tissue contains multiple or single cell 

types (compare Figures 3.7 and 3.4 for NTRK2 expression).  These findings 

demonstrate the need to focus gene expression profiling on single cell populations in 

order to achieve a better understanding of the biochemical and cellular basis of 

pathology.   

Within the ASD research field to date, molecular pathology studies used brain 

samples that contain multiple cell types.  The results of these studies have been 

insufficient to formulate a theoretical etiology of the disease.  ASD is a spectrum of 

disorders with patients exhibiting vast differences in symptom presentation.  By using an 

approach targeted at molecular pathology within a single cell population, a common 
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cellular dysfunction might be found that could unify our conceptualization of ASD brain 

pathology throughout the spectrum.  Identification of key cellular abnormalities could 

result in the development of novel targeted treatments for ASD.  In this study, LCM was 

used to obtain clusters of multiple cell types and separately, selected cell populations.  

Using these samples, I attempted to development experimental protocols to permit gene 

expression profiling using RNA-Seq technology.  Ultimately, I hoped to identify specific 

gene expression abnormalities in specific cell populations to further our understanding 

of ASD pathology.  However, the experimental approach of combining LCM of single 

cell populations with RNA-Seq, was a first in the field with no published study known to 

us to date.  Therefore, first and foremost was the determination of the feasibility of the 

approach. 

RNA-Seq provides in-depth transcriptome analysis that cannot be achieved using 

methods such as microarrays, providing information regarding splicing variants, 

transcriptional start points, and rare RNA isoforms.  RNA-Seq permits researchers to 

explore all levels of transcriptional regulation in the cell (Nagalakshmi, Waern, & 

Snyder, 2010; Wang, Gerstein, & Snyder, 2009; Wilhelm & Landry, 2009). This type of 

analysis has the potential to bring light to unanswered questions of ASD pathology, and 

also to establish a novel method to investigate the contributory roles of different brain 

cell types in neurological diseases.   Data generated herein will be made available for 

mining in future studies, although it is likely that samples in addition to those that I have 

now analyzed will be needed to enhance the statistical power of the study. 	  
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Methods 

Brain Tissue 

Frozen tissue blocks containing BA24 from six ASD donors and nine typically 

developed control donors were obtained from Autism Tissue Program, Harvard Brain 

Tissue Resource Center (Belmont, MA) and NICHD Brain and Tissue Bank for 

Developmental Disorders (Baltimore, MD) (Table 4.1).  This study was reviewed and 

approved for exemption by the Institutional Review Board of East Tennessee State 

University under the Department of Heath and Human Services exemption 45 CFR 

46.101(b) relating to the use of publicly available unidentifiable pathology specimens.  

ASD and control donors were matched prior to experimentation as closely as possible 

by age primarily, but also by RNA quality (Table 4.1), to reduce the impact of these 

factors from the two groups.  ASD donors met diagnostic criteria outlined in the 

Diagnostic and Statistical Manual (DSM) IV for autistic disorder.  The Autism Diagnostic 

Interview-Revised (ADI-R) and other medical records were also used to confirm 

diagnoses.  Causes of death and comorbidities are not included in Table 4.1 to protect 

the identities of the decedents.  Cause of death for typically developed control donors 

included drowning (3 donors), motor vehicle accident (2 donors), asphyxia (1 donor), 

abdominal injuries (1 donor), and heart attack (1 donor).  Cause of death for ASD 

donors included acute respiratory distress syndrome (1 donor), cancer (1 donor), 

drowning (1 donor), head trauma (1 donor), diabetic ketoacidosis (1 donor), and bowel 

obstruction (1 donor).   
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Table 4.1.  Subject demographic information.  
ID Age Gender RINa PMI 

(hours)b Toxicology Sample 

Controls             
AN14757 24 M 7.8 21.33 No drugs reported WMd, Neuron 
AN07444 17 M 7.5 30.75 Sertraline WM 

5408 6 M 7 16 No drugs reported WM, Neuron 
4848 16 M 7.6 15 No drugs reported Neuron 
5342 22 M 8.1 14 No drugs reported WM 
5079 33 M 7.3 16 Ethanol WM 

M3231M 37 M 7.4 24 No drugs reported WM, Neuron 
4337 8 M 8.4 16 No drugs reported WM 
MEAN 20.38   7.64 19.14     

SEM 3.88   0.16 2.05     
              

ASD             
AN04166 24 M 8.1 18.51 No drugs reported WM, Neuron 
AN02987 15 M 6.5 30.83 No drugs reported WM 

5144 7 M 8 3 No drugs reported WM, Neuron 

5302 16 M 6.6 20 
Risperidone, 
Fluvoxamine, 

Clonidine, Insulin 
Neuron 

5027 37 M 7.7 26 Risperidone, 
Fluvoxamine 

WM, Neuron, 
Astrocyte 

4721 8 M 6.1 16 No drugs reported WM 
MEAN 17.83   7.17 19.06     

SEM 4.59   0.35 3.90     
P valueg 0.68   0.26 0.99     

a RNA integrity number (index of RNA quality)  
b Postmortem interval 
cResults of a two-tailed independent t-test comparing control and ASD groups. 
dWhite matter 
 

 

Tissue Preparation and Laser Capture Microdissection 

Superficial white matter was laser captured from BA24 brain sections (10 µm 

thickness) mounted on PEN membrane glass slides (Life Technologies, Grand Island, 
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NY).  In order to identify cell types as well as key tissue structures and white or gray 

matter type, the tissue sections were stained using Histogene LCM Frozen Section 

Staining Kit (Life Technologies, Grand Island, NY) according to the manufacturer’s 

instructions.  Superficial white matter was defined as the white matter area directly 

adjacent to gray matter and within 3 mm of the white/gray matter border area.  Multiple 

large circular areas were captured for each sample.   

 Pyramidal neurons and white matter astrocytes were stained and captured from 

BA24 cortical layer 3 using the methods previously described in Chapter 3.  Enough 

cells were captured per samples to be able to prepare a RNA-Seq library (1000 neurons 

and 2000 astrocytes per subject) and to synthesize cDNA for PCR confirmation (500 

neurons).  Captured cells were incubated at 42°C for 30 min in the extraction buffer 

provided in the RNA isolation kit.    

  

RNA-Seq Library Preparation 

RNA was isolated from the captured samples using PicoPure RNA Isolation Kit 

(Life Technologies, Grand Island, NY) with the additional RNase-free DNase kit 

(Qiagen, Valencia, CA) step outlined in the manufacturer’s protocol.  RNA quality and 

quantity were assessed using the Agilent RNA 6000 Pico kit (Agilent Technologies, 

Santa Carla, CA).  The Ovation Single Cell RNA-Seq System (NuGEN, San Carlos, CA) 

was used to generate RNA-Seq libraries from isolated RNA.  An input amount of over 

100 pg of starting RNA was used for each library sample.  Two forms of library quality 

check were used before library pooling.  Total quantity of library produced and fragment 

length was assessed using the Agilent High Sensitivity DNA Kit (Agilent Technologies, 
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Santa Carla, CA).  This method quantified all library fragments produced.  The KAPA 

Library Quantification Kit (KAPA Biosystems, Woburn, MA) was used to determine the 

amount of correctly made library that would be able to bind to the sequencing flow cell.  

This kit is a PCR based assay that determines the concentration of library using primer 

for the P5 and P7 sequencing adaptors for the Illumina platform.  The assay included a 

six point serial dilution standard series that assisted in determining reaction efficiency 

and concentrations of samples.  

 

Library Pooling 

Each library created was uniquely barcoded with a unique sequence of DNA 

during the library preparation step.  This barcode allows multiple samples to be 

sequenced within one flow cell.  The generated data can then be sorted for individual 

samples based on this unique barcode sequence.  Since there is no method for 

downstream normalization for library input amounts in a pooled sample, it is imperative 

that each individual library be equally represented by concentration in the pooled library.  

The sample concentrations determined by the KAPA PCR quantification assay were 

used to standardize input amounts. 

 

RNA-Seq 

 Pooled libraries were sent to David H. Murdock Research Institute for 

sequencing.  Prior to sequencing, another PCR based quantification was performed on 

the pooled library sample to ensure that cluster density on the flow cell would be 

optimal.  A cBot instrument (Illumina, San Diego, CA) was used to perform cluster 
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amplification on the flow cell before sequencing.  The HiSeq2500 instrument (Illumina, 

San Diego, CA) was used for 100 base paired reads with indexing sequencing using the 

instrument’s high output sequencing run.   

 

Bioinformatics Analysis 

 Following sequencing, base calling was performed with CASAVA (v1.8.2) 

(Illumina, San Diego, CA).  Filtering and trimming of reads consisted of removal of 

Illumina Adapter Library and trimming using the following parameters (quality score 

limit: 0.05, trim ambiguous nucleotides: <2 and removed 15 bp from the 5’ and 5 bp 

from the 3’ end respectively) in the CLC Genomics Workbench 7.0.4 (Qiagen, Valencia, 

CA).  The resulting read length averaged ~80 bp.  Reads were then aligned to the 

human genome (latest version, hg38/GRCh38, assembled on December 2013, 

annotations updated in June 2014) using CLC Genomics Workbench 7.0.4 using the 

CLC’s RNA-Seq package (Mismatch cost = 2, Insertion cost = 3, Deletion cost = 3, 

Length fraction = 0.8, Similarity fraction = 0.8).  To determine differentially expressed 

genes, a Kal’s Z-test (Kal et al., 1999) was performed for comparison within pairs.  

Baggerly Beta-binomial test (Baggerly, Deng, Morris, & Aldaz, 2003) was performed for 

group comparisons using the control donors as the reference.  A false discovery rate 

(FDR) correction was used to further correct p-values achieved using the above 

proportion-based tests.  We used both paired and unpaired statistical comparisons of 

control and autism gene expressions for these preliminary data understanding that with 

the small sample size, neither approach is likely to produce data with high statistical 

confidence. 



	  

90	  

PCR Confirmation  

 RNA was isolated from the captured samples using PicoPure RNA Isolation Kit 

(Life Technologies, Grand Island, NY) with the additional RNase-free DNase kit 

(Qiagen, Valencia, CA) step outlined in the manufacturer’s protocol.  RNA samples 

were reverse transcribed into cDNA using the Superscript III kit (Life Technologies; 

Grand Island, NY) that contained oligodT and random hexamer primers.  Gene specific 

primers were purchased from a vendor (Qiagen; Valencia, CA).  Gene primer 

sequences are shown in Appendix B.  To quantify transcripts, endpoint PCR was used 

for RNA isolated from laser captured cells as previously described (Ordway et al., 2009; 

Xiang et al., 2008). Endpoint PCR data was computed as relative values generated 

from the ratios of amounts of target gene expression to a reference gene.  Afterwards, 

endpoint PCR data were analyzed by the paired Student’s t-test.   

 

Results 

Sequencing Quality Based on Phred Score 

The first step in the analysis of sequencing is base-calling.  This process consists of 

taking the multiple single nucleotide reads and composing the sequence of the fragment 

clusters.  Using the Phred scoring methods, a cut-off score of around 30 is considered 

an acceptable quality for base-calling.  A Phred score of 30 translates to a 1 in 1000 

probability of an incorrect base-call or a 99.9% accuracy in sequence detection (B. 

Ewing, Hillier, Wendl, & Green, 1998; Brent Ewing & Green, 1998).  The PHRED score 

for all samples (white matter, neuron, and astrocyte preparations) exceeded this cut-off 

by reaching an average score of 35 to 40.  A score of 40 translates to a probability of 1 
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in 10,000 incorrect base-call or a 99.99% accuracy in detection. 

 

Mapping and Alignment 

Mapping Percent and Total Reads.  The three types of sample preparations, 

white matter containing mixed populations of cells, pyramidal neurons, and GFAP-

positive astrocytes, were compared to determine if there was a difference in mapping 

percentages based on sample type.  There was no significant effect of sample type on 

the type of read produced by the samples (Figure 4.1).  White matter and neuron 

samples were further analyzed to determine if there was a difference in the mapping 

between control and ASD subject samples.  No difference was found between control 

and ASD samples for white matter (Figure 4.2A, p = 0.64) or neuron (Figure 4.2B, p = 

0.63) preparations.   

 

 

 

Figure 4.1.  Division of read types of the white matter, neuron, and astrocyte RNA-Seq 

samples.  The percent of reads mapped in pairs (white bars), mapped in broken pairs 

(shaded bars), and reads not mapped (black bars) were plotted as a percent of total 
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reads for all samples.     

 

 

 

Figure 4.2.  Comparison of read mapping between control and ASD samples for white 

matter (A) and neurons (B).  The percentage of total mapped reads (mapped in pairs 

and broken pairs) of total reads was plotted.  No significant difference was found 

between control and ASD samples for white matter or neuron samples.  

 

 

Paired Read Mapping.  For reads that were mapped as pairs, an analysis was 

done to investigate where those reads aligned (Figure 4.3).  Approximately 75% of all 

mapped paired reads aligned to intron regions for all sample preparations.  This was 

also the case when examining the alignment pattern between control and ASD samples 

for white matter (Figure 4.4A) and neuron (Figure 4.4B) sample preparations.  To 

ensure that observed intronic read mapping was in agreement with previously reported 

brain sample RNA-Seq data, the percentage of intron reads was reported (Table 4.2) for 

known high intronic genes (Ameur et al., 2011).  Each gene examined had a 52 to 

100% intronic mapping percentage.   
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Figure 4.3.  Comparison of read type for paired reads in white matter, neuron, and 

astrocyte samples.  The percent of exon (white bar), exon-exon (shaded bar), and intron 

(black bar) reads of total paired reads were plotted.   

 

 

 

Figure 4.4.  Comparison of read type for paired reads in control and ASD white matter 

(A) and neuron (B) samples.  The percent of exon (white bar), exon-exon (shaded bar), 

and intron (black bar) reads of total paired reads were plotted for white matter and 

neuron control and ASD samples.   



	  

94	  

Table 4.2.  Percentage of Intron Reads for Known High Intronic Genes.   

Ameur et al. (Ameur et al., 2011) produced a ranking of genes in the adult and fetal 

brain that produce the highest amount of intronic reads using RNA-Seq.  The top genes 

from those lists were examined in our data.  The table below contains the mean 

percentage of intron reads for each of the genes listed for all white matter, neurons and 

astrocyte samples.  For white matter and neurons samples, the mean percentage of 

intron reads is given for control and ASD subjects separately.   

  White Matter Neurons Astrocyte Gene Name Control ASD Control ASD 
PCDH9 85.69% 87.56% 91.38% 92.20% 82.50% 
PCDH7 93.29% 83.84% 85.18% 87.38% 71.70% 

QKI 57.90% 62.96% 66.95% 52.15% 69.90% 
NRXN1 89.63% 92.92% 86.05% 88.33% 96.60% 
KCNC2 72.24% 68.44% 88.93% 56.78% 100.00% 

PID1 99.84% 99.98% 99.70% 99.70% 100.00% 
KLF7 70.51% 69.28% 64.50% 70.98% 60.90% 

 

 

 Differentially Expressed Genes.  A list of differentially expressed genes (DEGs) 

comparing control and ASD donor samples (Table 4.5) was produced for white matter 

and neuron samples preparations.  The expression level of these genes was 

determined by the RPKM (reads per kilobase per million mapped reads) of exon 

mapping reads only.  Two genes, STX8 and SSR3, were selected for confirmation of 

DEGs in the BA24 pyramidal neuron samples.  The expression of the two genes was 

not found to be different comparing the same control and ASD donors as was used for 

the RNA-Seq experiment (Figure 4.6). 
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Figure 4.5.  Differentially expressed genes in white matter and neuron samples.  These 

heat maps represent the log2 transformed normalized expression value (RPKM) for 

each sample using a Baggerly beta-nominal test analysis.  (A) white matter unpaired 

analysis (B) white matter paired analysis (C) neuron unpaired analysis (D) neuron 

paired analysis 
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Figure 4.6.  Levels of expression of STX8 and SSR3 in pyramidal neurons of BA24.  

Gene expression was measured in laser captured BA24 pyramidal neurons from 

typically developing control donors (open symbols) and ASD donors (closed symbols).  

Gene expression levels are normalized to GAPDH expression levels.  Mean values are 

noted by horizontal lines.  No statistically significant differences were observed. 

 

 

 Abnormalities in Intron Mapping in ASD.  Because the majority of the mapped 

pair reads were aligned to intron regions, we examined the possibility that the 

percentage of intron reads might be predictive of an underlying pathological process in 

ASD.  To start with, two genes found to be differentially expressed between control and 

ASD subjects using exon mapped reads were compared at the level of mapped introns.  

From RNA-Seq data of control and ASD donors, I compared the reads mapped to STX8 

and HSD17B12 introns as a fraction of the total reads.  Those genes were chosen to 

have a comparison of how intron reads mapped for one gene with altered exon 

expression in neurons and one with altered exon expression in white matter.  The 

fraction of reads mapped to STX8 introns was significantly lower in ASD donors in 
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neurons but not white matter.  In contrast, the fraction of HSD17B12 reads mapping to 

intronic regions was lower in white matter but not neurons comparing control and ASD 

donors (Figure 4.7). 

 

 

Figure 4.7.  Comparison of intron reads for STX8 and HSD17B12 between control and 

ASD subject samples for neuron and white matter sample preparations.  The ratio of 

intron reads to total reads for each gene is plotted for control (open symbols) and ASD 

(closed symbols) subjects for neurons and white matter samples.  Statistical 

significance is noted in graph.   

 

Discussion 

 The primary goal of this study was to establish the feasibility of using RNA-Seq to 

examine gene expression in brains cells captured by LCM.  Three different LCM 

sampling methods were performed to determine which was suitable for this type of 

analysis.  Overall, the quality of the sequencing data was high with a PHRED score that 

exceeded 35 and over 75% of all reads mapping to the reference genome for all sample 

preparation types (white matter, neuron, and astrocyte).  There were also no observable 
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differences between samples from control and ASD subject in terms of the quality of the 

RNA-Seq data generated.  Once the ability to sequence the prepared libraries and map 

those reads to a reference genome was confirmed, the next step was to determine what 

the mapped reads represented.   

A secondary goal of this study was to utilize LCM/RNA-Seq to compare the gene 

expression profiles of brain neurons and glia from typically developing control and ASD 

donors.  One obvious and major problem with this part of the study was a small sample 

size, and hence the low power of the statistical analyses of the comparison of the two 

study groups. During the sample preparation stage, there were more subject samples 

than those reflected in the final analysis above. However, due to various reasons such 

as poor RIN quality, low mapping rate, and low RNA-Seq library yield, samples from 

some subjects were eliminated prior to RNA-Seq analysis.  For the few control-ASD 

pairs that we were able to analyze, we generated a list of differentially expressed genes 

for the RNA-Seq data for neuron and white matter samples (Figure 4.5).  However, only 

two of the three pairs matched the RNA-Seq data by showing greater levels of STX8 

expression in ASD subjects compared to the controls using PCR confirmation (Figure 

4.6).  The small sample size could have been a cause for the inability to confirm the 

RNA-Seq finding with PCR.  We are currently working to prepare more RNA-Seq 

libraries from additional paired subjects for analysis.  For now, we assume that our 

inability to fully confirm existing RNA-Seq data is related to the small group sizes. 

Within all the sample preparation types, a high percentage of intron mapping was 

observed.  This is consistent with other RNA-Seq studies performed on brain tissue 

samples (Ameur et al., 2011; Kapranov et al., 2010).  The high amount of intron reads 
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does not affect our ability to determine differential expressed genes since the RPKM or 

expression value is determined by exon mapping reads only.  However, these intron 

reads and the differences therein between control and ASD samples suggest that other 

forms of transcriptional regulation in the brain may differentiate ASD from control 

subjects.  There is evidence that genes involved in neuronal plasticity and synaptic 

regulation are stored in an unprocessed RNA form within cell (Ameur et al., 2011).  This 

allows for another level of gene expression regulation within the dynamic cellular 

environment of the brain.  Based on the results shown in Figure 4.7, the ratio of intron 

reads to total reads is significantly difference between control and ASD samples.  This 

could reflect that the regulatory control in processing pre-mRNA to fully mature mRNA 

could be altered in ASD.  This hypothesis will need to be confirmed using intron specific 

primers.      

One of the disadvantages to using LCM collected samples is the small amount of 

material that can be obtained.  When coupling LCM with the use of postmortem brain 

tissue, restrictions such as cost, time, and limited availability of tissue does not allow for 

the collection of sufficient amounts of input materials needed for many downstream 

applications.  Due to the limited amount of sample that can be obtained from LCM, 

sample amplification is an unavoidable preparation step in the transcriptional analysis.  

The amplification step in sample preparation is a sensitive process that could introduce 

experimental artifact if not performed correctly or tailored to specific biological samples.  

Experiments were performed using both commercially available kits and LCM 

specialized protocols to determine the most effective and reliable method for sample 

amplification.  The first strand synthesis step of RNA amplification is crucial since it 
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creates the basic template for amplification.  Most methods are based on a 3’ bias 

selection for this step of amplification.  This selection technique is beneficial for reducing 

other RNA species such as rRNA and tRNA from the sample prior to mass 

amplification.  This selection reduces potential bias toward more abundant RNAs since 

mRNA and non-coding RNA are significantly outnumbered by other RNA species in the 

samples.  For samples collected from LCM, this 3’ bias could reduce fidelity in 

amplification.  Using frozen human tissue for these studies means that optimal RNA 

quality is never achieved because of decay that occurs during the brain collection 

process.  A 3’ bias selection could inadvertently exclude mRNAs that are susceptible to 

3’ degradation.  Unlike other kits available on the market, the NuGEN amplification kits 

create a first strand using 3’ and random primers giving better transcriptome coverage 

and reducing potential bias from degradation effects.  This feature makes the kits ideal 

for LCM samples based on its tolerance for less than optimal RNA integrity and a small 

RNA input requirement of 100 picograms.  However, the lack of ribosomal depletion or 

mRNA selection could have inadvertently biased our samples to pre-mRNA or intron 

containing transcripts.  Intron spanning regions are larger than exon regions and would 

be more abundantly represented in the samples.  It is still unclear if our samples 

produced enough exon based reads to truly reflect transcriptional changes at the 

mature mRNA level.  Our samples might illustrate the regulation occurring between 

transcription and the finally mRNA product.  More confirmation of the RNA-Seq data 

and more samples will be needed in order to fully answer this question.  
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Conclusion 

 When developing this method, efforts were made to circumvent the potential 

pitfalls associated with analyzing LCM samples.  We were able to control for the 

limitations of these samples by selecting protocols suitable for sample type and putting 

in controls for the biological variances of human studies.  There is still more work to be 

done to produce a full-scale analysis of transcription regulation underlying ASD brain 

pathology.  In order to achieve that goal, there must first be a characterization of the 

type of transcriptional regulation reflected in our data whether it is exon or intron based.  

The data presented above suggest potential regulation at the pre-mRNA level in 

addition to that at the mature mRNA level.  Further examination of intron based changes 

could reveal yet unknown transcriptional dysregulation associated with ASD brain 

pathology.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

 The data in this dissertation provide evidence that autism pathology exists at the 

level of white matter astrocytes and glutamatergic pyramidal neurons in the ACC.  Many 

past studies have shown gross anatomical differences between typically developing 

brains and those of autism patients.  However, those findings have not lead to an 

understanding of the underlying cause of ASD brain abnormalities.  By examining the 

pathology of autism and the cellular and molecular level as performed here, a more 

cogent understanding of autism neuropathology can be established.  It is anticipated 

that with greater knowledge of the pathological process of autism, a strategy for 

developing biologically therapeutic interventions will be possible. 

 The studies present several different methods for the examination of ASD brain 

pathology at a cellular level.  Chapter 2 used a combination of protein and gene 

expression analysis to determine the potential role of glial cell populations in ASD brain 

pathology.  For a long time glial cell populations were thought of as merely support 

cells.  In recent years glia have been found to play major roles in maintaining brain 

homeostasis.  Glial dysfunction can be observed in a variety of brain pathologies.  The 

study presented here revealed an increase in the glial marker GFAP in the ASD brain.  

This alteration was very specific to brain region (BA24 as opposed to BA10) and matter 

type (white matter as opposed to gray matter).  This type of regional specificity of 

pathology reinforced the need to further explore ASD brain pathology at a higher 

anatomical resolution.  For example, the abnormality of GFAP protein in ASD could 
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have gone undetected using a sample that contained both white and gray matters as 

typically are used in other postmortem ASD studies.   

Chapter 3 explored pathology and a remarkably greater level of resolution, i.e. in 

two cell populations, neurons and astrocytes, from a discrete area of the brain (ACC).  

This work focused on key genes in the glutamate pathway because the type of neuron 

studied (pyramidal neuron) is known to use the neurotransmitter glutamate.  Imbalances 

in this neurochemical pathway are theorized to contribute to ASD brain pathology and 

ASD behaviors.  The genes investigated encode receptors, transmitters, and synaptic 

proteins.  All of these proteins play a direct role in the release and termination of 

glutamate signaling.  Gene expression differences were found comparing control and 

ASD subjects in ACC pyramidal neurons for genes such as NTRK2 and GRIP1, but no 

changes were found for any genes in the astrocyte population.  These neuronal gene 

changes were specific to BA24 neurons and were not found in BA10 neurons from the 

same subjects.  These findings again speak to the specificity of cellular ASD pathology 

and provide a molecular basis for the excitatory and inhibitory imbalance that has been 

theorized to occur in ASD brain based on imaging studies.  Collectively, the genes 

found to be reduced in ASD provided evidence that excess receptor signaling could be 

creating neuronal dysfunction.  This type of dysfunction generally increases intercellular 

signaling pathways to the point that cell death occurs.  The death of excitatory neurons 

would certainly change the overall excitatory and inhibitory balance.  In future studies, 

we will focus on inhibitory cell populations to determine expression changes that might 

affect the overall balance of this system.  These expression changes could help reveal 

the dysfunctional or compensatory mechanisms that characterize the brain pathology of 
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ASD.   

Chapter 4 outlined the development of a protocol for a more in-depth analysis of 

transcription regulation in a disease state using laser captured samples.  While Chapter 

3 took a very targeted approach to exploring specific gene expressions in the ASD 

brain, work in Chapter 4 was designed to interrogate all gene expressions within a cell 

population of the ACC.  This approach is often considered “unbiased” in that it is not 

assuming any particular abnormality but examining all possible abnormalities in gene 

expression.  In terms of bioinformatics the data produced achieved high quality scores 

and mapping rates.  However, the protocol used to amplify the small amount of RNA 

template could have introduced a possible bias towards more abundant fragments such 

as the intron portions of pre-mRNAs.  This is evident in the high number of intronic 

mapped reads.  More analysis will need to be performed to determine the transcription 

information provided from these data.   

Overall, this research identified specific cellular pathologies that could contribute 

to ASD brain pathology and ultimately to ASD behaviors.  In addition, preliminary data 

suggest that the it is possible to combine the methods of RNA-Seq and laser capture 

microdissection to perform whole transcriptome analysis of single cell types from the 

human brain, an approached that has not been previously achieved to date.  The 

methods herein dramatically increase the anatomical and cellular resolution of the study 

of brain pathologies and greatly expand the amount of data that can be derived from 

postmortem brain samples.  Ultimately these approaches provide a unique opportunity 

for the development of new theories regarding the pathogenesis and pathology of ASD. 

Future studies will include a deeper analysis of the pathways associated with the 
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differential expressed proteins and genes found in Chapters 2 and 3 as well as 

additional validation of the method developed in Chapter 4.   
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APPENDICES 

APPENDIX A: Abbreviations and Definitions 
 
Abbreviation  Definition 
ABCB6 ATP-binding cassette sub-family B member 6 
ACC Anterior cingulate cortex 
AD Alzheimer Disease 
ADI-R Autism Diagnostic Interview Revised 
ASD Autism spectrum disorder 
AUP1 Ancient ubiquitous protein 
BA10 Brodmann area 10 
BA24 Brodmann area 24 
BDNF Brain derived neurotrophic factor 
CDC Centers for Disease Control 
CLIC4 Chloride intracellular channel 4 
Ct Cycle threshold 
DEG Differentially expressed genes 
DSM-IV Diagnostic and Statistical Manual of Mental Disorders IV 
DSM-V Diagnostic and Statistical Manual of Mental Disorders V 
DTI Diffusion tensor imaging 
EEG Electroencephalography 
ERK Extracellular signal-regulated kinases 
FDA Food and Drug Administration 
GAPDH Glyceraldehyde 3-phosphate dehydrogenase 
GFAP Glial fibrillary acidic protein 
GM Gray matter 
GRIA1 Ionotropic glutamate receptor AMPA1 
GRIK2 Ionotropic glutamate receptor kainate 2 
GRIN1 NR1; Ionotropic glutamate receptor NMDA 1 
GRIN2A NR2A; Ionotropic glutamate receptor NMDA 2A 
GRIN2B NR2B; Ionotropic glutamate receptor NMDA 2B 
GRIN2C NR2C; Ionotropic glutamate receptor NMDA 2C 
GRIN2D NR2D; Ionotropic glutamate receptor NMDA 2D 
GRIP1 Glutamate receptor interacting protein 
GRM5 mGluR5; Metabotropic glutamate receptor 5 
GRM8 mGluR8; Metabotropic glutamate receptor 8 
HSD17B12 Hydroxysteriod 17-beta dehydrogenase 12 
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IR Immunoreactivity 
ISG15 Interferon, Alpha-Inducible Protein 
KIAA0930 Uncharateristized protein C22orf9 
KO Knock out 
LCM Laser capture microdissection 
MAPK Mitogen-activated protein kinase 
MCCC1 3-methylcrotonyl-CoA carboxylase 
MMR measles-mumps-rubella vaccine 
MOG Myelin oligodendrocyte glycoprotein 
MTI Magnetization transfer imaging 
NICHD National Institutes for Child Health and Development 
NLGN Neuroligin 
NT-3 Neurotrophin-3 
NT-4/5 Neurotrophin-4/5 
NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 
PCR Polymerase chain reaction 
PDD-NOS Pervasive developmental disorder-not otherwise specified 
PET Positron emission tomography  
PI3 Phosphoinositide 3-kinase 
PMI Postmortem interval 
PPP2CB Protein phosphatase 2, catalytic subunit, beta isozyme 
PTEN Phosphatase and tensin homolog 
Ribo18S 18S ribosomal RNA 
RIN RNA integrity number 
RPKM Reads Per Kilobase per Million mapped reads  
RT-qPCR Reverse transcription real-time polymerase chain reaction 
SLC17A7 vGluT; vesicular glutamate transporter 

SLC1A1 
EAAT3; Neuronal/Epithelial High Affinity Glutamate 
Transporter, Member 1 

SLC1A2 
EAAT2; Glial High Affinity Glutamate Transporter, 
member 2 

SLC1A3 
EAAT1; Glial High Affinity Glutamate Transporter, 
member 3 

SLC35A5 Sugar Transport Protein 
SPECT Single-photon emission computed tomography 
SSR3 Signal sequence receptor, gamma 
SSRI Selective serotonin reuptake inhibitors 
STX8 Syntaxin 8 
TATA TATA box 
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TBP TATA binding protein 
TMEM9 Transmembrane protein 9 
TrkB Tryosine kinase B 
WM White matter 
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APPENDIX B. Primer Sequences of Target and Reference Genes 
 

Target or 
Reference 

Genbank 
Accession 

Number 
Primer 

Sequence 
PCR 

Product 
Size (bp) 

    
AQP4 NM_001650 (f)  TCCAAACGGACTGATGTCACTGGCT 118 

 NM_004028 (r)  CAAAGGATCGGGCGGGATTCATGC  
    

BDNF NM_170735 (f)  
AGAGCCCTGTATCAACCCAGAAACACC  112 

 NM_170732 (r)  GCAATGCCAACTCCACATAGCCTCC   
 NM_170731   
 NM_001709   
 NM_170733   
 NM_170734   
    

GAPDH NM_002046 (f) TGCACCACCAACTGCTTAGC 87 
  (r) GGCATGGACTGTGGTCATGAG  

    

GFAP NM_002055 
 

(f) AAGCTGCTAGAGGGCGAGGAGAAC 
(r) TGACACAGACTTGGTGTCCAGGCT 

99 
 

 

GRIA1 

 

NM_001200 

 

(f) GTGCGCAGCTTCCACCATGAA 
(r) CTGAGGTGATAAACTCCTCCGTGGG 

 

122 

 
GRIK2 

 
NM_000830 
NM_175611 

 
(f) ATTGACTCCAAAGGTTACGGAGTGGG 
(r) GCAGCTTCCCTTCTTCTTGGAGTTGA 

 

100 

    

GRIN1 
NM_000832 
NM_021569 
NM_007327 

(f) CCTGGAAGCAGAACGTCTCCCTGT 
(r) TGCTGCGCGAGTCACATTCCTGAT 108 

    

GRIN2A 
NM_001134407 
NM_000833 
NM_001134408 

(f) TCGACCTGGCCTTGCTTCAGTTTGT 
(r) GCTGGCTGCTCATCACCTCGTTCTT 111 

    
GRIN2B NM_000834 (f) CCTCATCACCTTCATCTGCG 125 

  (r) CATGGATGCAGCTGTAGATACC  
    

GRIN2C NM_000835 (f) TGGTGGCCATCACCGTCTTCAT 116 
  (r) CCACACGGACTTGCCGATAGTGA  
    

GRIN2D NM_000836 (f) CTTCGTGGAGACCGGCATCAGCGTC 108 
  (r) ACGAACATCATCACCCACACGGCGG  
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GRIP1 NM_021150 (f) GCCACAGAAACTCTCTCTTCTCCACC 96 

 NM_001178074 (r) CACTCTGTCTCCAATCTGTAGCACCC  
    
    

GRM5a NM_000842 (f) GCCAGCAGATCCAGCAGCCTAGTCA 
(r) TCATTCTGGGCCCACGTGACGGATT 

101 
 

    
GRM5b NM_000842 

NM_001143831 
Not available, purchased from Qiagen 125 

 
GRM8 

 
NM_000845 

 
Not available-Purchased from Qiagen 

 
78 

 NM_001127323   

 NM_001127326 
NR_028041   

    
MOG NM_002433.3 (f) CCTGCTGGAAGATAACCCTGTTTG 134 

 NM_206809.2 (r) CACTCAGAAGGGATTTCGTAGCTC  
    

NTRK2 NM_006180 (f) TGTAGTGTGGCAGGTGATCCGGT 96 
 NM_001007097 (r) GGAGCCCTGTGTGTGGCTTGTTT  
 NM_001018064   
 NM_001018065   
 NM_001018066   
    

RNA18S1 NR_003286 (f) GTAACCCGTTGAACCCCATT 131 
  (r) CCATCCAATCGGTAGTAGCG  
    

SLC1A1a NM_004170 Not available, purchased from Qiagen 110 
    

SLC1A1b NM_004170 (f) CCTGAAGTCAGTACGGTGGATGCC 
(r) GGGAGGCTTCACTTCTTCACGCTT 117 

    
SLC1A3 NM_004172 (f) TGCAAGCACTCATCACCGCTCTGGG 100 

  (r) ACGCGCTTGTCCACGCCATTGTTCT  
 

SSR3 
 
NM_007107 

 
Not available, purchased from Qiagen 

 
109 

 
STX8 

 
 

TATA 

 
NM_004683 
NR_033656 
 
NM_003194 

 
Not available, purchased from Qiagen 
 
 
(f) CACTTCGTGCCCGAAACGCCGAAT 

 
105 

 
 

88 
  (r) ATCAGTGCCGTGGTTCGTGGCTCT  
    

UBC NM_021009 (f) ATTTGGGTCGCGGTTCTTG 133 
  (r) TGCCTTGACATTCTCGATGGT  
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VGlut1 NM_020309 (f) TCGGAGAGAGCGCGAAACTCAT 99 

  (r) TGGCCACGATGATGGCATAGACT  
 

a   Denotes use in RT-PCR experiments 
b   Denotes use in Endpoint-PCR experiments
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