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ABSTRACT 

HIF-1α in the Heart:  Provision of Ischemic Cardioprotection and Remodeling of 

Nucleotide Metabolism 

by 

Joe Wu  

 
In our studies we found that stabilized expression of HIF-1α in heart led to better 

recovery of function and less tissue death after 30 minutes of global ischemia, via 

mechanisms that preserve the mitochondrial polarization.  Our group previously showed 

that HIF-1α conferred ischemic tolerance by allowing cardiomyocytes to use fumarate 

as an alternative terminal electron acceptor to sustain anaerobic mitochondrial 

polarization.  The source of fumarate was identified as the purine nucleotide cycle 

(PNC).  Here we discovered that HIF-1α upregulates AMP deaminase 2 (AMPD2), the 

entry point to the PNC.  The combination of glycolysis and the PNC may protect the 

heart's nucleotide resources.  We subsequently examined the effects that HIF-1α exerts 

on nucleotide metabolism in the ischemic heart.  We found that HIF-1α expression 

reduces adenosine accumulation in the ischemic heart.   As ATP is depleted during 

ischemia, AMP accumulates.  Our results suggest that AMP metabolism is shunted 

towards AMPD2 rather than the adenosine producing 5'-nucleotidase pathway.  

Subsequently, we treated hearts with the PNC inhibitor hadacidin followed by 30 

minutes of global ischemia.  Inclusion of hadacidin reduced ATP and adenylate energy 

charge in the hearts.  These findings allow us to propose that activity of the PNC 

prevents the F0F1 ATP synthase from consuming glycolytic ATP in order to maintain 

mitochondrial polarization during ischemia.  Thus, the PNC provides ATP sparing 
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effects and preserves the energy charge in the ischemic heart.  The fact that ATP and 

adenylate energy charge is better preserved during the initial 20 minutes of ischemia in 

HIF-1α expressing hearts is supportive of our observation that HIF-1α upregulates the 

PNC.  HIF-1α also upregulates adenosine deaminase, which degrades adenosine.  The 

limitation of adenosine accumulation may help HIF-1α expressing hearts avoid toxicity 

due to chronic adenosine exposure.  Finally, we found that HIF-1α induces the 

expression of the nucleotide salvage enzyme hypoxanthine phosphoribosyl transferase 

(HPRT).  Upon reperfusion HPRT serves to reincorporate the nucleotide degradation 

product, hypoxanthine, into the adenylate pool and may prevent the production of 

reactive oxygen species.  Collectively, HIF-1α robustly protects the heart from ischemic 

stress and it upregulates several pathways whose cardioprotective role may extend 

beyond the remodeling of nucleotide metabolism. 
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CHAPTER 1 

INTRODUCTION 

 

 Diatomic oxygen (O2) has not always been a major component of the earth's 

atmosphere.  For instance, during the early Proterozoic era O2 content was less than 

10-5 times that found in the present day atmosphere (Pavlov and Kasting 2002).  During 

that time photosynthetic organisms released O2 into the atmosphere as a metabolic 

waste product.  However, the O2 released readily reacted with iron and other organic 

matter (i.e. O2 sinks).  Approximately 2.4 billion years ago the O2 sinks became 

saturated and atmospheric O2 levels began to accumulate to that found in the present 

day atmosphere.  Concurrently, O2 consuming organisms started to evolve.      

 

 In regards to the importance of oxygen in sustaining life of aerobic organisms, 

Semenza has said that "no substance which when withheld causes death faster" 

(Semenza 1998).  This is because O2 is crucial to cellular survival as it is coupled to 

oxidative phosphorylation in order to produce the cell's energy currency, ATP (Figure 

1.1).  Mechanistically, electron pairs can enter the electron transport chain at complex I 

(I, NADH-CoQ reductase) or complex II (II, succinate-CoQ reductase).  Electrons 

proceed to complex III (III, CoQ-cytochrome C reductase) then to complex IV (IV, 

cytochrome C oxidase) (Figure 1.1).  At complexes I, III, and IV, H+ ions are 

translocated into the intermembrane space as electrons proceed down the redox 

gradient.  A total of 10 or 6 H+ are translocated depending on whether NADH or 

succinate is used as the initial electron donor.  4H+ re-enter the mitochondrial matrix to 

power the F0F1 ATP synthase so that production of ATP can occur.  Compared to 
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glycolysis alone, which only generates a net of 2 ATP molecules per glucose, aerobic 

respiration can generate 30 ATP molecules per glucose and is therefore much more 

efficient (Rich 2003).  Given the importance of O2 for survival, an intricate method of 

oxygen sensing and ability to adapt in oxygen poor environments exists.  This is evident 

by the ability of humans to survive altitudes as high as 29,000 feet as in the case of 

Messner and Habeler in their ascend of Mount Everest without oxygen 

supplementation. 

 

Figure 1.1:  O2 is coupled to the synthesis of ATP via oxidative phosphorylation.  Electrons can 

enter the electron transport chain at I (NADH-CoQ reductase) or at II (succinate-CoQ 

reductase).  In either case, 2e- are passed onto III (CoQ-cytochrome C reductase) then onto IV 

(cytochrome C oxidase).  The passing of an electron pair down the electron transport chain 

leads to 10 H+ and 6 H+ that are translocated to the intermembrane space depending on 

whether NADH or succinate is used as the initial donor, respectively.  The translocation of H+ 

into the intermembrane space sets up an electrochemical gradient, which is then used to power 

ATP synthesis.  Adapted from Lodish et al. (2007). 

 

 The cell's adaptive responses to inadequate oxygen supply is mediated by a 

transcription factor known as hypoxia inducible factor-1 (HIF-1).  HIF-1 was identified 

and named by Semenza and Wang in their effort to find the transcription factor binding 

to a 50 nucleotide hypoxia inducible enhancer on the human erythropoietin gene 

(Semenza and Wang 1992).  Later work revealed that HIF-1 is composed of a 120 kDa 
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α subunit (HIF-1α) and a 91-94 kDa β subunit (HIF-1β) (Wang and Semenza 1995).  

Structurally, HIF-1 belongs to the basic helix-loop-helix PAS family of transcription 

factors (Wang et al. 1995). 

 
 While HIF-1β is constitutively expressed in the nucleus (Jiang et al. 1996), the 

cellular level of HIF-1α is tightly regulated by O2.  Under normoxic conditions a family of 

prolyl hydroxylase domain containing enzymes (PHDs) hydroxylate proline residues 

(Bruick and McKnight 2001; Epstein et al. 2001) on HIF-1α's oxygen-dependent 

degradation (ODD) domain.  It has been recognized that these residues are proline 402 

and proline 564 (Ivan et al. 2001; Jaakkola et al. 2001; Yu et al. 2001; Chan et al. 

2005).  Hydroxylation of these proline residues subsequently allows for interaction of 

von Hippel-Lindau (VHL) tumor suppressor with HIF-1α.  Once VHL binds, HIF-1α 

becomes polyubiquintinated and is subsequently directed towards proteasomal 

degradation (Figure 1.2).  The transcriptional activity of HIF-1α is also controlled by 

oxygen.  During normoxia factor inhibiting HIF (FIH) hydroxylates asparagine residue 

803 (Mahon et al. 2001; Hewitson et al. 2002; Lando, Peet, Gorman, et al. 2002).  

Hydroxylation of this asparagine residue prevents the binding of transcriptional 

coactivators CBP/p300 to HIF-1α's c-terminal transactivation domain (Lando, Peet, 

Whelan, et al. 2002).  Upon stabilization HIF-1α translocates into the nucleus and 

dimerizes with the β subunit (Jiang et al. 1996; Chilov et al. 1999) where transcription of 

genes containing the core 5'-RCGTG-3' hypoxic response element occurs (Semenza et 

al. 1996) (Figure 1.3). 
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 Hypoxia inducible factor-1 has been shown to elicit the upregulation of a vast 

array of genes.  An important adaptation mediated by HIF-1 is ATP production in the 

absence of oxidative phosphorylation via glycolysis.  As such, the core hypoxic 

response element has been found in genes encoding various enzymes of the glycolytic 

pathway (Semenza et al. 1996).  HIF-1 also stimulates the expression of glucose 

transporters in order to increase cellular glucose uptake (Hayashi et al. 2004; Baumann 

et al. 2007).  Hypoxia inducible factor overexpression is a common theme observed in 

cancer and is associated with VHL deficiency in renal cell carcinoma (Maxwell et al. 

1999; Zhong et al. 1999).  Therefore, it was not surprising that German physiologist Otto 

Warburg observed that cancer cells readily produce ATP through glycolysis rather than 

oxidative phosphorylation even in the presence of oxygen.  This phenomenon was 

rightfully named the "Warburg effect" (Warburg 1956).  Semenza has recently found 

that HIF-1α drives the Warburg effect in cancer (Semenza 2007).  Besides the induction 

of glycolysis HIF-1 also upregulates genes that promote oxygen delivery to the cell.  As 

mentioned previously, HIF-1 is responsible for inducing the expression of erythropoietin, 

which stimulates red blood cell synthesis and an increase in hematocrit (Semenza and 

Wang 1992).  Furthermore, HIF-1 increases the expression of vascular endothelial 

growth factor (VEGF) to promote angiogenesis (Liu et al. 1995; Carmeliet et al. 1998; 

Ryan et al. 1998).  
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Figure 1.2:  HIF-1α protein level and activity is tightly regulated by oxygen.  Hydroxylation of 

proline (Pro) residues 402 and 564 by prolyl hydroxylase (PHD) allows von Hippel-Lindau (VHL) 

factor to recognize and bind to HIF-1α's oxygen dependent degradation domain (ODD).  

Subsequently HIF-1α is ubiquitinated and directed towards proteasomal degradation.  Under 

normoxic conditions HIF-1α transcriptional activity is also suppressed.  Factor inhibiting HIF 

(FIH) hydroxylates asparagine (Asn) residue 803, thus preventing the binding of transcriptional 

co-activators CBP/p300 at HIF-1α's c-terminal transactivation domain (cTAD).  Adapted and 

modified from Semenza (2004). 

 

 
Figure 1.3:  Decline in O2 during hypoxia suppresses the activity of PHDs and FIH, thus 

stabilizing and activating HIF-1α.  O2 is a cofactor that is needed for the enzymatic activity of 
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PHDs and FIH.  When O2 level declines, PHDs and FIH activity is abrogated thus stabilizing and 

activating HIF-1α.  HIF-1α translocates into the nucleus, dimerizes with HIF-1β to initiate the 

transcription of genes containing the core 5'-RCGTG-3' hypoxia response element (HRE).  

Adapted and modified from Semenza (2004). 

 

 O2 delivery to the heart tissue is diminished during ischemia.  It is now 

recognized that HIF-1α may play a central role in cardioprotection during ischemic 

stress.  Ischemic preconditioning is a phenomenon whereby exposure of hearts to short 

sublethal durations of ischemia-reperfusion is able to provide protection from further 

damage upon exposure to subsequent longer and lethal episodes of ischemic stress.   

Following a preconditioning protocol consisting of 4 rounds of 5 minutes of ischemia/5 

minutes of reperfusion an increase in HIF-1α protein levels was observed (Eckle et al. 

2008).   In mouse models with a null allele of the HIF-1α locus a loss of preconditioning 

protection in heart was noted (Cai et al. 2003; Cai et al. 2008).  Also, repression of HIF-

1α via siRNA was found to attenuate ischemic preconditioning protection (Eckle et al. 

2008).  Ockaili et al. and Poynter et al. demonstrated that the use of pharmacologic 

inhibitors of prolyl hydroxylase to induce HIF-1α also confers cardioprotection (Ockaili et 

al. 2005; Poynter et al.).  Similarly, administration of siRNA which silences prolyl 

hydroxylase or knockout of prolyl hydroxylases to stabilize HIF-1α have proven to be 

cardioprotective (Natarajan et al. 2006; Hyvarinen et al.).  A drawback to studies using 

PHD inhibitors or knockout is that prolyl hydroxylases mediates pathways in addition to 

HIF-1α (Cummins et al. 2006; Elvidge et al. 2006).  As a result ischemic 

cardioprotection provided by PHD inhibition cannot be solely attributed to HIF-1α 

expression.  Nevertheless, recent findings strongly indicate a prominent role for HIF-1α 

in cardioprotection during ischemia. 
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 As previously mentioned, HIF-1α is degraded in the presence of oxygen.  In 

order to assess the direct effects that HIF-1α expression exerts on the heart, we used a 

mouse model containing a cardiac-specific and doxycycline regulated HIF-1α transgene 

that is mutated to be stable and active in the presence of oxygen, thus circumventing 

the oxygen mediated degradation and suppression of HIF-1α.  Using this mouse model 

we sought to: 1) establish the cardioprotective role of HIF-1α; 2) identify HIF-1α 

mediated mechanisms that provide ischemic cardioprotection; 3) evaluate the metabolic 

changes in the heart as a result of HIF-1α expression. 
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CHAPTER 2 
 

HIF-1α IN THE HEART:  PROTECTIVE MECHANISMS 
 

This work has been published in Wu et al., American Journal of Physiology, Heart and 
Circulatory Physiology, volume 305 (6), H821-H828, 2013 

 
 
SUMMARY 
 
Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that directs many of the 

cellular responses to hypoxia.  In these studies, we have used a mouse model 

containing a cardiac-specific, oxygen-stabilized, doxycycline (Dox-off) regulated HIF-1α 

transgene to probe the role of HIF-1α in cardioprotection.  Hearts used in these studies 

were derived from wildtype (WT) mice, as well as those maintained on doxycycline to 

suppress the HIF-1α transgene (Non-I) or denied doxycycline to express the HIF-1α 

transgene for 2 days (2D) or 6 days (6D).  Whereas HIF-1α protein is undetectable in 

WT mouse hearts, it is present in heart tissue of Non-I transgenic mice, presumably 

because of leakiness of the promoter construct.  In mice denied doxycycline for 2 or 6 

days, HIF-1α is overexpressed to a much greater extent than Non-I or WT animals, as 

expected.  WT and HIF-1α expressing hearts (Non-I, 2D and 6D induced) were 

subjected to 30 minutes of ischemia, and functional recovery was measured upon 

reperfusion.  Recovery of pre-ischemic left ventricular developed pressure was 14% for 

WT, 67% for Non-I hearts, 64% for 2D, and 62% for 6D hearts.  6D hearts have 

increased pre-ischemic glycogen reserves, higher glycogen synthase protein levels, and 

significantly higher lactic acid release during ischemia.  6D HIF hearts were also better 

able to maintain ATP levels during ischemia compared with WT and Non-I hearts. 

Interestingly, Non-I hearts showed no significant increase in glycogen reserves, 
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glycolytic flux, or greater ATP preservation during ischemia and yet were protected to a 

similar extent as the 6D hearts.  Finally, the mitochondrial membrane potential of 

isolated adult myocytes was monitored during anoxia or treatments with cyanide and 2-

deoxyglucose.  HIF-1α expression was shown to protect mitochondrial polarization 

during both stress treatments. Taken together, these data indicate that, while HIF-1α 

expression in heart does induce increases in compensatory glycolytic capacity, these 

changes are not necessarily required for cardioprotection, at least in this model of 

ischemic stress. 

 
INTRODUCTION 
 
 Hypoxia-inducible factor-1α (HIF-1α) is a master regulatory transcription factor 

that directs the cellular response to hypoxia.  When in vivo oxygen tension is sufficient, 

HIF-1α is hydroxylated at proline residues 402 and 564 by a family of prolyl hydroxylase 

domain-containing proteins (PHDs1–3) (2, 27).  Hydroxylation of HIF-1α results in its 

recognition by von Hippel-Lindau factor and its subsequent degradation via proteasomal 

pathways.  Hydroxylation of asparagine residue 803 (Asn803) by factor-inhibiting HIF 

provides an additional regulatory mechanism for HIF-1α (10, 13).  The hydroxylation of 

Asn803 blocks the binding of coactivators CBP/p300 to the C-terminal activating domain 

of HIF-1α, thereby limiting its transcriptional activity.  Thus, HIF-1α is both stabilized and 

its transcription activity is increased through these mechanisms when oxygen tension 

drops.  The present studies are designed to establish if HIF-1α is sufficient to confer 

protection to the heart against ischemia-reperfusion injury and to begin to explore the 

mechanisms through which this protection is afforded.  In pursuit of these aims, we 

used a transgenic mouse model containing a HIF-1α cDNA with alanine substitutions at 
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Pro402, Pro564, and Asn803 as described by Bekeredjian et al. (1).  These 

substitutions result in a HIF-1α protein, termed HIF-1α-PPN, that is stable and displays 

full transcriptional activity in normoxic conditions.  A tetracycline-regulated construct 

was used to obtain regulation of transgene expression.  In the presence of doxycycline, 

transgene transcriptional expression is suppressed and induced when doxycycline is 

excluded from the diet.  The expression of the tetracycline transactivator protein is 

driven by a cardiac-specific myosin heavy chain promoter, thus limiting HIF-1α 

transgene expression to the cardiac myocytes in these animals. 

 HIF-1α was identified in kidney cells as the transcriptional inducer of the 

erythropoietin gene (23, 24, 30).  Subsequently, HIF-1α has been found to be 

ubiquitously expressed and to regulate hundreds of genes involved in metabolism, 

angiogenesis, and stress survival.  One can view the changes directed by HIF-1α as 

compensatory adaptations to an oxygen-deficient environment.  For instance, HIF-1α 

induces the expression of multiple glycolytic enzymes, including glucose transporter 1, 

aldolase A, enolase 1, lactate dehydrogenase, phosphofructokinase, and 

phosphoglycerate kinase (26).  This upregulation of glycolysis decreases the cell's 

reliance on oxidative phosphorylation for ATP.  Most studies on HIF-1α have been 

performed in cancer models, either cell lines or tumor tissue.  Here HIF-1α has been 

found to be a potent promoter of angiogenesis via its upregulation of vascular 

endothelial growth factor and other angiogenic factors (25).  More recently HIF-1α has 

been ascribed the role as the primary driver of the Warburg effect, or the high rates of 

aerobic glycolysis displayed by cancer cells (15).  The close linkage between tumor 
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growth and metastatic potential and the ability to attract vascularization explains the 

intense interest in HIF signaling as it relates to cancer. 

 In heart, much less is known about the role of HIF-1α in pathophysiology. 

Recently, prolonged overexpression of HIF-1α was shown to induce a cardiomyopathy 

that was fully reversible upon cessation of HIF-1α expression.  In the aforementioned 

study, reduced sarco(endo)plasmic reticulum Ca2+-ATPase expression was linked to the 

contractile dysfunction that was observed (1).  In another study, cardiomyocytes treated 

with prolyl hydroxylase inhibitors to induce HIF-1α reduce ATP turnover by 85%, with 

the majority of these energy savings derived from attenuation of calcium 

handling/contractile activities (29).  These findings indicate that HIF-1α may be an 

important driver of the dysfunction observed in ischemic heart disease.  On the other 

hand, evidence has begun to emerge that HIF-1α plays a central role in 

cardioprotection.  Ischemic preconditioning is a phenomenon where exposure of hearts 

to short sublethal durations of ischemia-reperfusion provides protection from further 

damage upon exposure to subsequent longer and normally lethal episodes of ischemic 

stress.  In a mouse model with a null allele of the HIF-1α locus resulting in less 

expression of HIF-1α, a complete loss of preconditioning protection in heart was noted 

(3).  In another recent study, small-interfering RNA (siRNA) repression of HIF-1α was 

found to attenuate preconditioning protection (6).  Several reports have also shown that 

the use of pharmacological prolyl hydroxylase inhibitors to induce HIF-1α levels confers 

cardioprotection in several disparate cardiac model systems (19, 22, 28, 31).  Similarly, 

administration of siRNA, which targets PHD2 (16) or genetic models where PHD2 is 

ablated, proves cardioprotective (17).  Because PHDs have targets in addition to HIF-
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1α, such as Iκkinase-1 (5), studies where PHD is inhibited do not necessarily prove HIF-

1α involvement.  Nonetheless, taken together, these recent findings strongly indicate a 

prominent role for HIF-1α in preconditioning and cardioprotection.  Less clear are the 

HIF-1α-induced mechanisms that are important in providing protection from ischemia-

reperfusion injury in heart.  In these studies, we compare the ischemic stress tolerance 

of hearts that are induced to express HIF-1α-PPN in varying amounts and durations to 

begin to probe the aforementioned questions. 

EXPERIMENTAL PROCEDURES 

 Reagents:  Sterile oxyrase was purchased from Oxyrase (Mansfield, OH). 

Tetramethylrhodamine (TMRM) was purchased from Life Technologies (Grand Island, 

NY).  2,3,5-Triphenyl-2H-tetrazolium chloride (TTC) was obtained from Tokyo Kasei 

Kogyo (Tokyo, Japan).  Rabbit polyclonal primary antibody against HIF-1α was obtained 

from Novus Biologicals (Littleton, CO), whereas rabbit monoclonal primary antibody 

against glycogen synthase was obtained from Cell Signaling (Danvers, MA).  Goat anti-

rabbit secondary antibodies were purchased from Millipore (Billerica, MA) and Cell 

Signaling.  Doxycycline hydrochloride was purchased from RPI (Mount Prospect, IL). 

 Animal model:  B6C3F1 mice containing the HIF-1α-PPN transgene have been 

previously described by Bekeredjian et al. (1).  All mice used were males between 2 and 

3.5 months of age and were routinely maintained on a 625 mg/kg doxycycline-replete 

diet (Harlan Research Laboratories, Madison, WI).  In experiments requiring 2 days of 

HIF-1α expression (2D), mice were switched from doxycycline food to doxycycline-

replete water containing 73 mM sucrose (Mallinckrodt Baker, Phillsburg, NJ) and 0.416 
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mM doxycycline hydrochloride for 2 days followed by maintenance of mice on regular 

food and water for two additional days.  In experiments requiring 6 days of HIF-1α 

expression (6D), mice were maintained on doxycycline-free food and water for 5–7 days 

before experimentation.  Wildtype (WT) B6C3F1 mice were obtained from Harlan.  

Animals were handled in accordance to a protocol reviewed and approved by the East 

Tennessee State University Committee on Animal Care. 

 Isolation of cardiomyocytes from adult mice:  Myocytes from adult mice hearts 

were isolated according to procedures described by O'Connell et al. (18).  Isolated 

myocytes were suspended in 10 ml of plating medium with 25 µM blebbistatin and 

incubated on plates that were precoated with matrigel (BD Biosciences, Rockville, MD) 

diluted 1:40 in DMEM-F-12 (GIBCO, Grand Island, NY) for 1 hour in 5% CO2.  After 

incubation in plating medium, myocytes were maintained on culture medium with 25 µM 

blebbistatin.  Experiments using adult mice cardiomyocytes were performed on the 

same day as cell isolation. 

 Preparation of mice heart homogenates:  Hearts from wildtype (WT), non-

induced (Non-I), 2D, and 6D mice were excised and washed briefly in PBS to remove 

excess blood.  Hearts were then immediately clamped with a set of tongs that were pre-

chilled in liquid nitrogen.  They were then ground into a fine powder using a mortar and 

pestle under liquid nitrogen.  The powdered heart tissue was homogenized in RIPA 

buffer composed of 50 mM Tris�HCl, pH 7.4 (Calbiochem, Darmstadt, Germany), 1% v/v 

Triton X-100 (Fisher, Pittsburgh, PA), 1% w/v sodium deoxycholate (Fisher), 0.1% w/v 

SDS (EMD, Billerica, MA), and 1 mM EDTA (Fisher) with 1:40 protease inhibitor cocktail 
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mix (Sigma, St. Louis, MO).  The homogenates were centrifuged at 12,000 g at 4°C for 

10 minutes.  The supernatant was collected.  Protein concentration for the supernatant 

was determined using the Pierce BCA protein assay kit from Thermoscientific 

(Rockford, IL) according to the manufacturer's protocol. 

 SDS-PAGE and western blot:  HIF-1α and glycogen synthase expression were 

evaluated using standard SDS-PAGE and Western blotting techniques.  Protein 

samples were separated using SDS-PAGE in Pierce Tris-HEPES-SDS 4–20% precast 

polyacrylamide gels (Thermoscientific).  Proteins were transferred to polyvinylidene 

difluoride membranes (BioRad, Richmond, CA) at 75 volts for 2 hours.  After transfer, 

Ponceau S (Sigma) staining was used to ensure complete transfer and equal protein 

loading.  Membranes were blocked in 5% nonfat dry milk in TBS with 0.1% Tween 20 

(TBS-T) for 1 hour at room temperature.  HIF-1α expression was probed using a rabbit 

polyclonal primary antibody diluted 1:500 in TBS-T, and glycogen synthase expression 

was probed with a rabbit monoclonal primary antibody at 1:1,000 dilution in TBS-T.  

Both membranes were incubated at 4°C overnight and washed for 5 minutes in TBS-T 

(5x) before incubation with goat anti-rabbit horseradish peroxidase-conjugated (HRP) 

secondary antibody.  Protein bands were detected using the Pierce supersignal 

chemiluminescence substrate (Thermoscientific) in the G:Box fluorescence and 

chemiluminescence imaging system (Syngene, Frederick, MD).  Densitometry was 

performed using ImageJ (National Institutes of Health, Bethesda, MD). 

 Langendorff perfusion:  Hearts were retrograde perfused through the aorta with 

Krebs buffer containing (in mM): 118.5 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 24.8 
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NaHCO3, 2.5 CaCl2, and 10.6 glucose.  The buffer was equilibrated with 95% O2 and 

5% CO2 and maintained at 37°C.  A fluid-filled silicon balloon was inserted in the left 

ventricle through the mitral valve for left ventricular developed pressure (LVDP) 

measurement with a pressure transducer (AD Instruments, Dunedin, New Zealand).  

Balloons were fabricated using methods previously published (14).  Hearts were 

allowed to stabilize during a 25 minute baseline period after which, function, tissue 

viability, lactate accumulation, ATP, and ADP levels were evaluated after hearts had 

been subjected to various ischemia-reperfusion protocols.  For measurement of lactate 

production during ischemia, the perfusate during the first 5 minutes of reperfusion was 

collected.  Lactate content was measured colorimetrically (450 nm) in a 96-well plate 

format following instructions from the Biovision lactate assay kit (Biovision, Milpitas, 

CA). 

 Evaluation of tissue viability after ischemia-reperfusion:  After the initial 

stabilization period, hearts were subjected to 30 minutes of ischemia and 60 minutes of 

reperfusion.  At the end of the protocol, the hearts were perfused with 1% TTC and then 

taken off the cannula to incubate for 15 minutes at 37°C.  Afterwards, the hearts were 

sliced transversely, and images of the transverse slices were taken using a Microtek 

film scanner (Microtek International, Hsinchu, Taiwan).  The viable (stained dark 

orange) and non-viable (unstained yellow) sections were analyzed using Adobe 

Photoshop (Adobe Systems, San Jose, CA). 

 Measurement of pre-ischemic glycogen reserves:  For glycogen content, frozen 

powdered heart tissue was transferred to an Eppendorf tube and 500 µl of ddH2O was 
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added.  The samples were immediately boiled for 5 minutes and centrifuged at 13,000 

RPM.  Protein concentration was determined using the Pierce BCA assay kit 

(Thermoscientific).  Glycogen content was measured colorimetrically at 570 nm on a 96-

well plate format following instructions provided with the Biovision glycogen assay kit 

(Biovision). 

 Measurement of nucleotides:  ATP and ADP measurements in hearts subjected 

to ischemia were done using high-performance liquid chromatography (HPLC) following 

a method established by Giannattasio et al. (7).  At the end of the respective perfusion 

protocol (pre-ischemic, 5, 10, 20, or 30 minutes of ischemia; or 30 minutes of ischemia 

followed by 30 minutes of reperfusion), hearts were freeze-clamped and then pulverized 

to a fine powder using a mortar and pestle.  Next, the frozen heart tissue was 

homogenized in 400 µl of 4% perchloric acid (Alfa Aesar, Ward Hill, MA) to extract 

nucleotides. The homogenate was incubated on ice for 20 minutes.  Following 

incubation, the homogenate was centrifuged at 15,000 g for 15 minutes at 4°C.  The 

supernatant containing total nucleotides was collected and stored in −80°C until further 

processing.  The remaining tissue pellet was lyophilized to obtain the dry tissue weight. 

 Before measurement of ATP and ADP on HPLC, the samples containing total 

heart nucleotides were neutralized in a solution consisting of 4/5 volume 2 M KOH 

(Fisher) and 1/5 volume 1 M KH2PO4 (MP Biomedical, Solon, OH).  After neutralization, 

the samples were incubated on ice for 10 minutes and centrifuged for 15 minutes at 

15,000 g at 4°C.  The resulting supernatant was collected and filtered through a 0.22-

µm syringe filter (Millipore). 
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 HPLC runs were performed using a binary gradient with increasing organic 

strength.  The binary gradient was programmed into the LCsolutions data acquisition 

software (Shimadzu Scientific Instruments, Columbia, MD).  The mobile phases were 

buffer A, which consists of 8 mM tetrabutylammonium hydrogen sulfate (Acros Organic, 

Morris Plains, NJ) and 0.1 M KH2PO4 (MP Biomedical).  Buffer B consists of 8 mM 

tetrabutylammonium hydrogen sulfate (Acros Organic) and 0.1 M KH2PO4 (MP 

Biomedical) with the addition of 30% CH3CN (Fisher).  Both mobile phase buffers were 

pH to 6.  Sample (100 µl) was injected into a 20-µl loop, and peak detection was done 

using the SPD-M20A diode array detector at 254 nm (Shimadzu Scientific Instruments) 

and recorded with the LCsolutions data acquisition software.  The areas of the peaks 

corresponding to ATP and ADP were integrated using the LCsolutions postrun analysis 

program (Shimadzu Scientific Instruments).  Total ATP and ADP content expressed in 

units of µmole was calculated from the respective calibration curves and normalized 

against the amount of dry tissue collected (grams). 

 Measurement of mitochondrial membrane potential during anoxia and metabolic 

inhibition:  Adult mice cardiomyocytes were plated on 50-mm MatTek dishes (MatTek, 

Ashland, MA) and incubated in 1.5 ml of culture medium as described by O'Connell et 

al. (18) with 200 nM TMRM at 37°C and 5% CO2.  After 30 minutes of incubation in 200 

nM TMRM, the culture medium was substituted with 50 nM TMRM in PBS plus 5 mM 

glucose and 10 mM succinate.  Before imaging, a cover slip was placed over the cells, 

and 15 µl of sterile oxyrase were added.  Oxyrase selectively removes oxygen, creating 

depletion of oxygen in the cardiomyocyte's immediate surroundings.  Fluorescent 

imaging was performed on the Zeiss Axio Observer Z1 inverted fluorescent microscope 
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(Zeiss, Gottingen, Germany).  Images for cardiomyocytes from all mice groups were 

captured using the Zeiss AxioCam MRm monochrome digital camera (Zeiss) at t0, the 

time point immediately after culture medium was substituted with PBS plus 5 mM 

glucose, 10 mM succinate, and 50 nM TMRM.  Subsequent images were captured after 

0.5, 1, 1.5, and 2 hours of incubation with oxyrase.  Images were analyzed with the 

Zeiss AxioVision 4.8.2 software. The number of polarized myocytes (i.e., those 

exhibiting TMRM fluorescence) was counted at each time point of oxyrase incubation 

and was expressed as a percent of polarized myocytes prior to anoxia.  For 

measurement of mitochondrial membrane potential during inhibition of oxidative 

phosphorylation and glycolysis, isolated myocytes were incubated with 200 nM TMRM 

in culture medium for 30 minutes.  After this period, culture medium was replaced with 

PBS plus 50 nM TMRM, 2 mM sodium cyanide (Mallinckrodt Baker), and 5 mM 2-

deoxyglucose (2-DG; Acros), and a series of fluorescent images were taken at 0, 15, 

30, 45, and 60 minutes of incubation. The number of polarized rod-shaped cells at each 

incubation time point (i.e., those displaying TMRM fluorescence) was counted and 

expressed as a fraction of polarized cells prior to cyanide and 2-deoxyglucose 

treatment. 

 Statistical analysis:  Data reported here are expressed as means±SEM.  

Statistical analysis was performed using one-way ANOVA followed by Student-

Newman-Keuls post hoc testing using GraphPad Prism 5 (La Jolla, CA). 

RESULTS 

HIF-1α-expressing hearts tolerate ischemia better.  
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 Hearts derived from WT and transgenic animals induced to express HIF-1α for 

the indicated times were retrograde perfused and subjected to 30 minutes of ischemia 

followed by reperfusion to allow recovery.  No differences in the spontaneous beating 

rate or LVDP were noted between HIF-1α-expressing and control hearts before 

ischemia.  Upon cessation of perfusion, the ischemic contracture was found to be more 

slowly developing and of a lower ultimate magnitude in 2D- and 6D-induced HIF-1α 

hearts (Figure 2.1).  Recovery of function following ischemia was remarkably higher in 

Non-I, 2D, and 6D HIF-1α-induced hearts compared with WT hearts (Figure 2.2A).  The 

magnitude of ischemic contracture was significantly lower for 2D-induced and 6D-

induced hearts, but not Non-I hearts, compared with the WT hearts (Figure 2.2B). 

 Next, tissue viability after the ischemic challenge was assessed using TTC 

staining.  Tissue viability was found to correlate well with the enhanced functional 

recovery of the hearts (Figure 2.3, A and B).  Somewhat surprisingly, the recovery of 

pre-ischemic LVDP and tissue viability of HIF-1α-PPN Non-I hearts was equivalent to 

the 2D-induced and 6D-induced hearts (Figures 2.2 and 2.3).  This finding caused us to 

examine the possibility of HIF-1α-PPN “leakage” in the hearts of animals maintained on 

a doxycycline-replete diet.  Indeed, we find that, while Non-I heart extracts contain far 

less HIF-1α protein than their induced counterparts, they do have higher levels than WT 

hearts (Figure 2.3C).  Perhaps this should not have been unexpected given that HIF-1α-

PPN has been modified to be stable under normoxic conditions via the substitution of 

critical amino acids within its degradation domain.  Thus, any small expression leakage 

will result in some accumulation of the stable HIF variant.  The results indicate that, 

while HIF-1α-PPN expression is much lower in the Non-I hearts, it is sufficient to protect 
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to a similar extent, at least against this stress protocol.  In contrast, the moderation of 

ischemic contracture appeared to require the higher, induced levels of HIF-1α (Figure 

2.2B). 

HIF-1α causes glycogen synthase induction, glycogen accumulation, and 
increased glycolytic flux during ischemia.  

 Because ischemic contracture has been reported to be delayed and reduced in 

magnitude by higher glycogen reserves, we next examined the effects of HIF-1α 

expression on glycogen levels in the HIF-expressing and WT hearts.  Although a trend 

was observed for higher glycogen reserves in all the hearts expressing HIF-1α-PPN, 

only the 6D HIF-induced mouse hearts had significantly higher levels of glycogen stores 

compared with WT and Non-I hearts (Figure 2.4A).  Given the higher glycogen stores at 

the initiation of ischemia, we sought to estimate the glycolytic flux during the 30 minutes 

of no-flow ischemia.  Accordingly, the next experiment measured the lactic acid 

accumulated during the 30 minutes of ischemia that is released during the first 5 

minutes of reperfusion (Figure 2.4B).  As with glycogen stores, lactic acid release was 

significantly elevated in the 6D HIF-induced hearts compared with hearts from WT and 

the Non-I HIF-1α-PPN mice.  Recent reports indicating that glycogen synthase is a HIF-

1α-responsive gene might explain the higher levels of glycogen stores in the HIF-

expressing hearts.  Consistent with this, we find significantly elevated glycogen 

synthase protein levels in HIF-1α-PPN transgenic mice hearts (Figure 2.4C).  

Interestingly, glycogen synthase protein levels are elevated to a similar extent in Non-I 

hearts as those induced for 2 and 6 days.  The discrepancy between glycogen synthase 

and glycogen levels among the experimental groups probably reflects the complex array 
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of factors that ultimately determine tissue glycogen levels.  Nonetheless, these results 

showing that HIF-1α directs induction of glycogen synthase and glycogen accumulation 

in adult heart are important findings.  Given that glycogen granule accumulation is a 

hallmark of the hibernating myocardium (9), it indicates that HIF-1α may be a driver of 

this pathophysiological phenotype. 

The upregulation of glycolytic metabolism does not explain the protection 
afforded by HIF-1α.  

 The well-known ability of HIF-1α to induce many of the enzymes that comprise 

the glycolytic pathway when coupled to elevated glycogen stores suggests an obvious 

avenue to achieve the cardioprotection observed in the HIF-1α-PPN hearts.  

Mobilization of the glucose stores, and enhanced glycolysis and its attendant ATP 

production during stoppage of perfusion, is consistent with the moderation of ischemic 

contracture and increased lactic acid release that we observe in HIF-expressing hearts. 

To address the issue of glycolytically produced ATP moderating the contracture and the 

damage sustained during ischemia, hearts were flash-frozen at intervals during 

ischemia and extracted, and nucleotide contents were measured with HPLC.  Examples 

of HPLC chromatograms showing nucleotides and their metabolites are provided in 

Figure 2.5.  Hearts derived from 2D- and 6D-induced HIF-1α-PPN hearts maintained 

significantly elevated levels of ATP at 20 and 30 minutes of ischemia compared with WT 

control hearts (Figure 2.6A).  Among the experimental groups, only 6D-induced HIF-1α-

PPN hearts maintained significantly elevated ATP:ADP ratio at any time point of 

ischemia (Figure 2.6B).  The comparison of ATP depletion between Non-I HIF-1α-PPN 

and WT hearts showing no differences in the degree of ATP depletion is most 
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interesting given the high degree of ischemic tolerance the Non-I hearts display.  These 

findings call into question the relative importance of the compensatory increases in 

glucose stores and glycolytic enzymes in the protective phenotype of the HIF-1α-PPN 

hearts.  Other mechanisms besides increasing glycolytic flux during ischemia are 

suggested to be employed by HIF-1α to protect the myocardium.  The next series of 

experiments were designed to begin to probe alternative mechanisms of protection. 

 Previously, we found that the ability of mitochondria to maintain polarization 

during simulated ischemia is strongly associated with protection in the heart cell (29). 

Thus, we tested whether isolated adult cardiomyocytes from HIF-1α-PPN hearts also 

display improved mitochondrial function under similar conditions.   Adult cardiomyocytes 

were isolated from WT, Non-I, 2D- and 6D-induced HIF-1α-PPN hearts and subjected to 

anoxia.  Mitochondrial polarization was monitored with TMRM potentiometric dye for 2 

hours under these conditions.  We find that HIF-1α-PPN myocytes maintained 

mitochondrial polarization in significantly greater numbers than WT cells, with 6D-

induced cardiomyocytes performing best, being little affected over the 2 hour period 

(Figure 2.7).  In the next experiment, the dependency of protection on enhanced 

glycolytic flux was directly addressed.  Myocytes derived from WT, Non-I, 2D- and 6D-

induced HIF-1α-PPN hearts were treated with cyanide and 2-DG to block both oxidative 

phosphorylation and glycolysis, and mitochondrial polarization was followed for 1 hour. 

We find that HIF-1α-expressing myocytes are able to maintain mitochondrial membrane 

potential under these conditions to a significantly greater extent than WT myocytes 

(Figure 2.8).  This finding causes us to conclude that the well-known compensatory 

increase in glycolytic capacity that is induced by HIF-1α is not necessary for the 
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ischemic tolerance conferred by HIF-1α and points to the existence of additional 

mechanisms that center on the mitochondrion. 

DISCUSSION 

 Twenty years after its discovery, HIF-1α is well established to play a central role 

in the cellular response to hypoxia; however, much less is known about its 

cardiospecific effects.  In these studies, we show that forced expression of a stabilized 

mutant version of HIF-1α confers robust protection to adult heart in a common ex vivo 

model of ischemia-reperfusion injury.  Given the prominence of ischemic stress in the 

constellation of pathologies grouped under the umbrella of heart disease, it is of great 

interest to understand the mechanisms the cardiomyocyte employs to protect itself 

against hypoxia stress.  Certainly HIF's actions in protecting the myocyte from 

irreversible damage during ischemia can be regarded as beneficial.  On the other hand, 

evidence also exists that ascribes a pathological role to HIF-1α in the context of 

decreased myocardial function during chronic hypoxia such as occurs in ischemic heart 

disease.  Indeed HIF's pathological and protective mechanisms are likely to overlap, in 

that decreased function and lower ATP turnover represent powerful protective 

maneuvers when oxygen becomes limited (11, 12).  In this vein, we should note that 

HIF-1α-PPN induction for up to 6 days did not change the basal contractile 

characteristics (i.e., LVDP when paced, or spontaneous heart rate, data not shown) of 

mice hearts when they were examined ex vivo with Langendorff perfusion. Thus, the 

robust ischemic protection afforded by HIF-1α expression was not accompanied by any 

indication of pathological response in the time frames examined in this study. 
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 The most prominent effect of HIF-1α-PPN expression on the response of the 

perfused heart to 30 minutes of ischemia is an attenuated ischemic contracture. 

Sometimes referred to as “stone heart,” the underlying mechanisms governing 

contracture are not completely understood (8).  Initiation of contracture is closely tied to 

the rate of ATP depletion and exhaustion of internal glycogen stores (8).  It is important 

to note, however, that the severity of ischemic contracture does not correlate with 

myocardial protection or recovery of function in heart.  This is best illustrated by the fact 

that ischemic preconditioning, which is highly protective, shortens the time until onset of 

contracture probably through depletion of glycogen stores.  This has led to the 

suggestion that glycogen and high rates of glycolysis and acidification during ischemia 

are detrimental to cellular recovery.  The degree of severity and length of the ischemic 

insult probably determine whether mobilization of glycogen stores and glycolytic ATP 

production are effectively beneficial or detrimental to tissue viability (4).  For instance, 

with chronic low-flow ischemia, enhanced glycolytic ATP generation greatly improves 

functional outcomes. 

 Recently, muscle glycogen synthase was shown to be a HIF-1α-inducible gene in 

C2C12 skeletal muscle myotubes and several cell lines (21).  Our results show that HIF-

1α elevates glycogen synthase in adult heart cells and leads to glycogen accumulation, 

especially in 6D HIF-1α-induced hearts, where significant elevations of glycogen 

synthase, glycogen, and lactic acid production during ischemia were noted.  Of 

importance, the enhanced glycolysis was reflected in a significant diminishment of ATP 

depletion in the 6D-induced hearts during ischemia.  The finding that HIF-1α is sufficient 

to cause glycogen accumulation in the adult myocardium is also of significance. 
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Glycogen accumulation is a hallmark of hibernating myocardium.  Given previous 

findings that HIF-1α suppresses oxidative phosphorylation (20), ATP turnover, and 

contractile function (29), a strong circumstantial argument can be made that HIF-1α may 

play a large role in directing the hibernating phenotype in heart.  As mentioned above, 

however, we were unable to detect any changes in contractile function or oxidative 

respiration in 6D HIF-induced hearts.  Specifically, LVDP, dP/dt, and O2 consumption 

were measured in WT, Non-I, and 2D- and 6D-induced hearts, whereas pacing was 

increased in 200-beat/minute step increments from 300 to 1,300 beats/minute.  No 

significant changes in these parameters were found between the hearts in any of the 

experimental groups (data not shown).  We are presently uncertain why HIF-1α-

expressing hearts fail to show any evidence of reduced oxidative phosphorylation (29) 

or contractile function (1) noted in other model systems.  Several possible explanations 

are currently being tested but are beyond the scope of these studies, which have 

focused upon the protective effects of HIF-1α-directed changes. 

 In these studies, we have exploited our inducible HIF-1α-PPN transgenic system 

to provide something akin to the dose-response curve, where the influence of HIF-1α is 

absent in the wildtype: < in Non-I << 2D-induced < 6D-induced derived hearts.  This 

pseudo dose-response yielded interesting insights into the biology of the compensatory 

responses elicited by HIF-1α.  We examined pre-ischemic glycogen reserve, glycolytic 

activity, and ATP depletion kinetics during ischemia in WT, Non-I, and 2D- and 6D-

induced mice hearts.  We found that the Non-I HIF-1α-PPN hearts did not show 

significant increases in pre-ischemic glycogen store, glycolytic flux during 30 minutes of 

ischemia, or increased ability to maintain ATP levels during various times of ischemia 
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compared with WT hearts.  Nonetheless, Non-I hearts were protected to the same 

extent as hearts induced to express HIF-1α for 2 and 6 days.  This suggests that, while 

increasing glycogen reserves before, and glycolytic flux during, ischemia clearly 

represent a compensatory response; it may not comprise the primary mechanism of 

protection to the total global ischemia employed in these studies. 

 Similar to these studies, our work examining the cardioprotective mechanisms of 

the O2 sensor in neonatal cardiomyocytes called into question the central importance of 

the induction of glycolytic capacity and glycogen accumulation in protection (28).  In 

previous work, we found that HIF-1α expression, albeit as the result of 

dimethyloxalylglycine treatment rather than genetic manipulation, led a persistent ability 

to maintain mitochondrial polarization during anoxia or cyanide poisoning, even when 

glycolysis was blocked or the reverse mode of ATP synthase was inhibited.  After 

extensive analysis, we ultimately concluded that fumarate was used as an alternate 

terminal electron acceptor to allow electron flux to continue through complex I during 

anoxia or cyanide poisoning (29).  In the studies shown in Figure 2.7 and Figure 2.8 

isolated adult heart cells were tested in vitro to determine whether the protection 

observed in HIF-expressing hearts would translate into stabilized mitochondrial 

polarization during anoxia.  In both anoxic conditions permissive for glycolysis, and in 

conditions where both oxidative phosphorylation and glycolysis are blocked (cyanide 

and 2-DG present), mitochondrial membrane potential was significantly better 

maintained in the HIF-1α-expressing cardiomyocytes.  Taken together, these results 

reveal that HIF-1α can provide ischemic cardioprotection via mechanisms independent 

of compensatory increases in glycolytic flux and ATP preservation.  Studies are 
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underway to quantitatively measure the flux through fumarate respiratory pathways that 

HIF-1α induces. 

 Clearly HIF-1α is initiating a complex multifactorial compensatory program that 

equips the adult cardiomyocyte with remarkable tolerance to hypoxic stress.  The most 

well-known HIF-1α-driven response to hypoxia is the induction of glycolytic pathway 

enzymes (25).  Our data confirm that glycolytic capacity is increased by HIF-1α in adult 

murine cardiomyocytes and that this reserve is tapped during acute ischemia. 

Somewhat surprising, the findings also call into question the central importance of this 

increased glycolytic capacity as the central mechanism leading to the powerful 

protection conferred by HIF-1α in the acute no-flow ischemic protocol that we employ. 

Rather, isolated cell studies implicate mechanisms that preserve mitochondrial function 

during ischemia in the powerful cardioprotection that is observed. 
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FIGURES 

 

Figure 2.1:  Response of murine hearts with varying degrees of hypoxia-inducible factor-1α 

(HIF-1α) expression to 30 minutes of ischemia, followed by reperfusion.  Shown are exemplary 

condensed pressure tracings from Langendorff-perfused hearts derived from wildtype (WT) and 

HIF-1α-PPN mice that were not induced (Non-I) and induced to express HIF-1α for 2 days (2D 

induced) or 6 days (6D induced).  Hearts were subjected to 30 minutes of ischemia following 

pre-equilibration for at least 20 minutes, whereupon they were allowed to recover.  In some 

hearts, the left ventricular balloon was deflated during ischemia and reperfusion.  In the example 

shown here, the balloon was allowed to remain inflated so that ischemic contraction could be 

measured.  LVDP, left ventricular developed pressure. 
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Figure 2.2:  Quantification of cardiac functional recovery after ischemia of the experiment shown 

in Figure 2.1. A: recovery of LVDP after 30 minutes of ischemia.  B: ischemic contracture 

expressed as a percent of basal LVDP. *P < 0.05 vs. WT; n = 6–8 hearts. 
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Figure 2.3:  HIF-1α expression limits myocardial ischemic damage.  A: typical 

triphenyltetrazolium chloride (TTC) staining pattern in WT, non-induced, 2D-induced, and 6D-

induced mouse hearts post-ischemic reperfusion insult; note that viable tissue stains a darker 

orange color.  B: viable tissue was determined by TTC staining in perfused hearts following 30 

minutes of ischemia and 60 minutes of reperfusion.  The percent viable tissue was quantified 

using images of transverse sections of heart ventricles and Adobe Photoshop software.  *P < 

0.05 vs. WT.  C: representative Western blot showing HIF-1α protein levels in protein extracts 

from hearts in the indicated treatment groups. 
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Figure 2.4:  Glycogen reserves are increased in HIF-1α-expressing hearts.  A: measurement of 

glycogen content in WT, non-induced, 2D-induced, and 6D-induced mouse hearts (n = 4 

hearts).  B: accumulated lactate was measured in the perfusion buffer effluent collected during 

the initial 5 minutes of reperfusion after 30 minutes of ischemia.  C: Western blot showing 

glycogen synthase protein levels in WT, non-induced, 2D-induced, and 6D-induced mouse heart 

extracts.  D: densitometry analysis of the glycogen synthase protein band intensity from the 

Western blot experiment shown in C (n = 4). *P < 0.05 vs. WT.  #P < 0.05 vs. non-induced. 
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Figure 2.5:  Examples of HPLC chromatograms showing the content of adenine nucleotides, 

nucleosides, and nucleobases in mouse hearts.
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Examples of HPLC chromatograms showing the content of adenine nucleotides, 

nucleosides, and nucleobases in mouse hearts.  A:  pre-ischemic wildtype mouse heart.  

 

 

 

 
Examples of HPLC chromatograms showing the content of adenine nucleotides, 

ischemic wildtype mouse heart.  B:  
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pre-ischemic 6 day HIF-1α induced (6D) mouse heart.  C:  wildtype mouse heart after 30 

minutes of ischemia.  D:  6 day HIF-1α induced (6D) mouse heart after 30 minutes of ischemia.  

Peaks:  (1) hypoxanthine {RT=5.05 minutes}, (2) xanthine {RT=5.34 minutes}, (3) inosine 

{RT=8.02 minutes}, (4) IMP {RT=8.89 minutes}, (5) adenosine {RT=12.66 minutes}, (6) AMP 

{RT=13.32 minutes}, (7) ADP {RT=18.40 minutes}, (8) ATP {RT=22.49 minutes}.  RT stands for 

retention time for the indicated peak. 

 

 

Figure 2.6:  ATP levels are better maintained during ischemia in hearts where HIF-1α 

expression has been induced.  Hearts were freeze-clamped and extracted at the indicated time 

points of ischemia.  ATP and ADP levels were measured by reverse-phase HPLC (see 

experimental procedures).  A: ATP content in hearts subjected to increasing durations of 

ischemia.  ATP levels are expressed as a percentage of pre-ischemic values within all 

experimental groups.  Pre-ischemic ATP values were 26.4 ± 3.7, 27.7 ± 8.7, 19.4 ± 11.2, and 

21.4 ± 2.4 µmole/g dry tissue in WT, non-induced, 2D-induced, and 6D-induced mouse hearts, 

respectively.  B: the ATP-to-ADP ratio expressed as a percentage of the pre-ischemic values, 

which are 3.3 ± 0.6, 4.5 ± 1.0, 4.8 ± 0.3, and 3.1 ± 0.6 for WT, non-induced, 2D-induced, and 

6D-induced mouse hearts, respectively.  The data represent means±SEM (n = 3–9).  *P < 0.05 

vs. WT. 
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Figure 2.7:  Mitochondrial membrane polarization is better maintained in HIF-1α-expressing 

adult cardiomyocytes during anoxia.  A: typical TMRM fluorescent image of WT, non-induced 

(Non-I), 2 day-induced (2D), and 6 day-induced (6D) mouse heart cardiomyocytes after 0, 0.5, 

1, 1.5, and 2 hours of anoxia.  B: cells with polarized mitochondria relative to the amount before 

anoxia expressed as means±SEM (n = 3–8). *P < 0.05 vs. WT. 
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Figure 2.8:  HIF-1α-expressing cardiomyocytes maintain polarized mitochondria when both 

oxidative phosphorylation and glycolysis is blocked.  A: representative TMRM fluorescent 

images of cardiomyocytes obtained from WT, Non-I, 2D-induced, and 6D-induced mice after 0, 

15, 30, 45, and 60 minutes of cyanide (CN−) and 2-deoxyglucose (2-DG) treatment to block 

oxidative phosphorylation and glycolysis, respectively.  B: number of rod-shaped cells with 

polarized mitochondria relative to the amount prior to cyanide and 2-DG treatment expressed as 

means±SEM (n = 3).  *P < 0.01 vs. WT.   
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CHAPTER 3 
 

HIF-1α IN THE HEART:  EXPRESSION OF PURINE NUCLEOTIDE CYCLE 
ENZYMES 

 
 

SUMMARY 
 
Previous studies have shown that activation of HIF-1α signaling conferred the ability for 

cardiomyocytes to use fumarate as an alternative terminal electron acceptor to sustain 

anoxic mitochondrial electron transport chain (ETC) activity.  Further investigations 

revealed that the source of fumarate was the nucleotide metabolic pathway known as 

the purine nucleotide cycle (PNC).  In those studies, HIF-1α signaling was induced via 

treatment with prolyl hydroxylase (PHD) inhibitor dimethyloxaloylglycine (DMOG).  

However, as PHD activates pathways in addition to HIF-1α, the direct effect of HIF-1α 

on PNC activity cannot be established.  Here, we utilized wildtype mouse hearts and 

hearts in which HIF-1α is overexpressed to establish whether HIF-1α directly induces 

the enzymes in the PNC.  We report that HIF-1α induces the entry point of the PNC, 

AMP deaminase 2 (AMPD2) while not affecting downstream reaction steps 

adenylosuccinate synthetase (ADSS) and adenylosuccinate lyase (ADSL).  During 

ischemia, the inability for glycolysis to meet ATP demands of the heart leads to an 

imbalance between ATP consumption and ATP synthesis.  Thus, ATP in the heart is 

depleted and AMP accumulates.  AMP can be metabolized by AMP deaminase to IMP.  

Subsequent cycling of IMP through the PNC regenerates AMP.  Thus, the PNC acts as 

a conservation pathway for the heart's nucleotide pool.  The induction of glycolysis in 

conjunction with the PNC by HIF-1α may preserve the heart's adenine nucleotide 

resources during ischemic insult.  These considerations provide the motivation for us to 
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pursue a full understanding of how HIF-1α influences nucleotide metabolism in the 

ischemic heart and results will be presented in the next chapter. 

 

INTRODUCTION 
 

 Studies pioneered by Peter Hochachka demonstrated that succinate is a major 

metabolic end product associated with anoxia (3, 4).  Mechanisms leading to succinate 

production via the conversion of succinyl-CoA and reduction of fumarate have been 

proposed by Hochachka  (Figure 3.1) (3).  Studies by Weinberg et al., Hohl et al., and 

Sridharan et al. have demonstrated that in kidney and cardiomyocytes, succinate 

synthesis under anaerobic conditions occurs mainly via fumarate reduction at 

mitochondrial complex II as indicated in Figure 3.1 (5, 10, 12).   

 
 Sridharan et al. demonstrated that activation of the HIF-1α signaling cascade in 

neonatal mice cardiomyocytes, albeit via treatment with prolyl hydroxylase inhibitor 

DMOG, led to enhanced succinate production during anoxia (10).  These studies led to 

the unexpected finding that aspartate transamination as proposed by Hochachka (3) 

was not the source of fumarate used for succinate synthesis.  The source of fumarate 

instead, was the nucleotide metabolic pathway known as the purine nucleotide cycle 

(PNC; see Figure 3.2).  As ATP is depleted during anoxic stress, AMP accumulates.  

The series of reactions in the PNC starts when AMP is converted to IMP by AMP 

deaminase (Figure 3.2).  IMP is subsequently metabolized by adenylosuccinate 

synthetase, an enzyme that uses aspartate as a co-factor to generate S-AMP (Figure 

3.2).  Hochachka observed that anoxia leads to a depletion in cellular aspartate (3).  

From studies conducted by Sridharan et al., it is clear that the decrease in aspartate is 

due to its metabolism by adenylosuccinate synthetase (10).  S-AMP is finally 
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metabolized by adenylosuccinate lyase to produce AMP and fumarate (Figure 3.2).  

Those cardiomyocytes treated with DMOG were able to initiate electron transfer by 

oxidizing NADH at complex I (Figure 3. 2).  The resulting electron is then taken up by 

fumarate at complex II, which acts as the terminal electron acceptor in place of oxygen.  

This mechanism leads to the synthesis of succinate and the continual pumping of H+ 

from the mitochondrial matrix into the intermembrane space, thus allowing DMOG 

treated cardiomyocytes to maintain mitochondrial polarization during anoxia, leading to 

tolerance from anoxic stress (10). 

 

 Results presented in chapter 2 provide evidence that HIF-1α confers in 

cardiomyocytes, the ability to maintain mitochondrial polarization during ischemia.  

Studies conducted by Sridharan et al. demonstrated that HIF-1α may induce PNC 

activity (10).  In those studies performed by Sridharan et al., HIF-1α signaling was 

activated via inhibition of prolyl hydroxylases (10).  Prolyl hydroxylases target pathways 

in addition to HIF-1α (2).  The aim in this portion of our studies is to examine the 

expression of PNC enzymes in wildtype and HIF-1α expressing hearts in order to 

determine whether HIF-1α directly induces the expression level of PNC enzymes.   

 
EXPERIMENTAL PROCEDURES 
 

 AMP deaminase (AMPD) mRNA expression:  RNA was extracted from wildtype 

mouse hearts (Harlan Research Laboratories, Madison, WI) and HIF-1α-PPN Non-I, 2D, 

and 6D mouse hearts using TRIzol reagent (Life Technologies, Carlsbad, CA).  RNA 

concentration as well as integrity were determined using the Agilent Bioanalyzer 

(Agilent Technologies, Santa Clara, CA).  cDNA was synthesized using the Superscript 

III cDNA synthesis kit (Life Technologies).   For each cDNA synthesis reaction, 2 µg of 
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RNA was added to 1.25 µM oligo(dT)20, 50 ng random hexamers, 0.5 mM dNTP mix, 80 

U RNaseOUT, 5 mM DTT, 1.25 mM MgCl2, and 400 U reverse transcriptase in a final 

volume of 40 µl.  The cDNA synthesis reaction was allowed to proceed for 1 hour at 

50oC and then terminated by heating at 70oC for 15 minutes.  Quantitative PCR was 

performed in triplicate for all samples in a 96 well plate format on the CFX96 real-time 

PCR detection system (BioRad Laboratories, Richmond,CA).  40 cycles were carried 

out.  Each reaction consisted of 50 ng cDNA and1.5 µl of Quantitect AMPD2 or 

transferrin primer from Qiagen in 1x SsoFast Evagreen supermix (BioRad Laboratories).  

AMPD2 mRNA expression was normalized to that of reference gene transferrin and 

results were reported as a percent change in gene expression relative to wildtype. 

      

 Protein expression of PNC enzymes:  Protein samples from WT and HIF-1α-PPN 

Non-I, 2D, and 6D mouse hearts were prepared according to methods detailed in 

chapter 2.  AMPD2 was probed using a mouse monoclonal primary antibody diluted 

1:1000 in TBS-T (Abcam, Cambridge, MA).  ADSS was probed using a rabbit polyclonal 

antibody against ADSS diluted 1:1000 in TBS-T (Proteintech Group, Inc., Chicago, IL).  

The membranes were incubated in primary antibody at 4°C overnight.  After incubation 

in primary antibody, the membranes were washed for 5 minutes in TBS-T (5x) before 

incubation with 1:5000 rabbit anti-mouse horseradish peroxidase conjugated secondary 

antibody for AMPD2 (Abcam) or 1:5000 goat anti-rabbit secondary for ADSS (EMD).  

Protein bands were detected using the Pierce supersignal chemiluminescence 

substrate (Thermoscientific) in the G:Box imaging system (Syngene, Frederick, MD).  

Densitometry of the protein band corresponding to AMPD2 or ADSS was obtained using 
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ImageJ (National Institutes of Health, Bethesda, MD) and results were normalized to 

that of wildtype. 

 
 Sample preparation for PNC enzyme activity assays:  Wildtype mouse hearts 

and HIF-1α Non-I, 2D, and 6D mouse hearts were perfused briefly with phosphate 

buffer saline to wash out excess blood.  Hearts were then ground into a fine powder 

over liquid nitrogen and homogenized in a buffer consisting of 0.089M potassium 

phosphate, 0.18M potassium chloride, and 0.1mM dithiothreitol with 1% v/v protease 

inhibitor cocktail.  BCA assay was used to determine the protein concentration of the 

homogenates.    

   

 AMP deaminase activity:  AMP deaminase enzyme activity was assessed using 

a procedure described by Raffin (8).  Homogenates were diluted to a protein 

concentration of 2.5 µg/µl.  400 µl of the 2.5 µg/µl heart homogenate, which 

corresponds to 1 mg of protein, were added to 2 ml of a reaction mixture containing 

(mM):  50 cacodylic acid, 150 KCl, 10 AMP.  A 250 µl aliquot of the reaction was taken 

upon initiation of the reaction (t0) and after 2 hours of incubation at room temperature.  

125 µl of 4% perchloric acid (Alfa Aesar, Ward Hill, MA) was used to extract nucleotides 

from the reaction aliquots and IMP was detected at 254 nm using the high performance 

liquid chromatography procedure described in chapter 2 and quantified using a 

calibration curve.  IMP production was obtained by subtracting the initial (t0) level from 

that detected after 2 hours of incubation.  AMP deaminase specific activity was reported 

as nmoles of IMP produced per minute per mg protein. 
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 ADSS activity:  Homogenates were diluted to a protein concentration of 2 µg/µl in 

substrate free reaction buffer consisting of 27 mM imidazole-HCl, 50 mM potassium 

chloride, 8.3 mM MgCl2, 5 mM KH2PO4, and 0.16 mM DTT (pH 7.2).  250 µl of the 2 

µg/µl homogenate were added to 350 µl of substrate buffer (i.e. substrate free reaction 

buffer plus substrate).  The final concentration of substrates (mM) in 600 µl of reaction 

volume was 0.5 IMP, 0.3 GTP, 16 creatine phosphate, 4 aspartate, and 0.25 mg 

creatine phosphokinase.   The ADSS reaction is powered by hydrolysis of GTP and the 

resulting GDP strongly inhibits this reaction step in the PNC.  As a result, the nucleotide 

triphosphate regenerating system consisting of creatine phosphate and creatine 

phosphokinase was added to the reaction to regenerate GTP.  S-AMP levels, measured 

by HPLC at 268 nm were determined upon initiation of the reaction (t0) and after 30 

minutes (t30) of incubation at 37oC and quantified using a calibration curve.  S-AMP 

production was calculated by subtracting the initial (t0) S-AMP content from that found 

after 30 minutes (t30) of reaction.  Specific activity of ADSS was expressed as µmoles of 

S-AMP produced per minute per mg protein.    

 

 ADSL activity:  The protein concentration of heart homogenates was diluted to 2 

µg/µl using 50 mM tris (pH 7.4).  250 µg (125 µl) of each sample were added to 175 µl 

of reaction buffer (50 mM tris with 0.25 mM S-AMP).  Immediately after the reaction was 

started (t0), a 125 µl aliquot of sample was taken and nucleotides were extracted with 

62.5 µl of 4% perchloric acid in order to get a basal level of AMP.  The remaining 

sample was allowed to react for 30 minutes (t30) at 37oC.  After the 30 minute incubation 

period, 125 µl of sample were drawn and nucleotide extraction was again extracted with 

62.5 µl of 4% perchloric acid.  Perchloric acid extracts were adjusted to pH 7 with a 
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buffer consisting of 4/5 volume 2M KOH and 1/5 volume 1M KH2PO4.  AMP in the 

neutralized perchloric acid extracts was determined using reverse phase HPLC at 254 

nm and quantified with its corresponding calibration curve.  AMP production was 

calculated by subtracting the initial (t0) AMP content from that detected after 30 minutes 

(t30) of reaction incubation.  ADSL activity is reported as µmoles of AMP generated per 

minute per mg protein.   

  
 Statistical analysis:  Data reported are expressed as means±SEM.  Statistical 

significance was tested using one-way ANOVA followed by SNK post-hoc test using 

GraphPad Prism 5 (La Jolla, CA).  Where appropriate,  Student's t-test was used to test 

for statistical significance. 

 

RESULTS 
 

 Figure 3.3a shows that mRNA levels of the enzyme regulating entry into the 

purine nucleotide cycle (PNC), AMP deaminase isoform 2 (AMPD2) is upregulated in 

Non-I, 2D, and 6D mouse hearts as compared to wildtype.  It took 6 days of HIF-1α 

induction (6D) however, for AMPD2 protein to accumulate to levels greater than that 

found in wildtype mouse hearts (Figures 3.3b & 3.3c).  In concurrence with the elevated 

protein expression of AMPD2 in the 6D mouse heart extracts, we find that activity of 

AMP deaminase was increased relative to wildtype hearts (Figure 3.3d).  We did not 

observe any changes in protein or activity level of adenylosuccinate synthetase and 

adenylosuccinate lyase between wildtype and HIF-1α expressing (6D) mouse hearts 

(Figures 3.4 & 3.5). 

 
 
 



56 

 

DISCUSSION 
 

 The purine nucleotide cycle has been shown to operate in skeletal muscle, 

kidney, brain, liver and heart (1, 6, 7, 9, 11).  Here, we find that the enzyme regulating 

entry into the purine nucleotide cycle, AMP deaminase isoform 2 (AMPD2) is induced 

by HIF-1α.  During ischemia, glycolysis is used to generate ATP.  However, the rate at 

which ATP is produced from glycolysis cannot match the rate of ATP consumption.  

Thus, ATP is depleted and AMP accumulates.  AMP can be metabolized to IMP by 

AMP deaminase.  Metabolism of IMP by subsequent enzymes of the PNC regenerates 

AMP, which can be thought of as a conservation mechanism for the heart's adenine 

nucleotides.  In addition to glycolysis, which supplies ATP, we now know that HIF-1α 

induces AMPD2, the entry point to the PNC.  These two pathways may function to 

enhance the preservation of the heart's adenine nucleotide pool during ischemia.  

Taken together, these results provide the rationale for us to perform a detailed 

investigation on the effect that HIF-1α exerts on nucleotide metabolism in the ischemic 

heart, results of which will be presented in the next chapter. 
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FIGURES 

 
Figure 3.1:  Pathways leading to succinate production during anoxia in diving mammals as 

proposed by Peter Hochachka.  One pathway starts with the conversion of pyruvate to alanine, 

which generates α-ketoglutarate.  α-Ketoglutarate then enters the mitochondria and is converted 

to succinyl-CoA.  In a reaction catalyzed by succinate thiokinase, succinyl-CoA is converted to 

succinate and GTP or ATP is concamittantly produced.  An alternative pathway initiates when 

aspartate becomes transaminated to oxaloacetate.  Malate dehydrogenase then converts 

oxaloacetate to malate, which enters the mitochondria where it is metabolized to fumarate.  

Fumarate then becomes reduced to succinate at complex II.  Adapted from Hochachka et al. (3)   
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Figure 3.2:  The purine nucleotide cycle (PNC).  The PNC starts when AMP is deaminated to 

IMP by AMP deaminase (AMPD).  Subsequently, IMP is converted to S-AMP in a reaction 

catalyzed by adenylosuccinate synthetase (ADSS).  S-AMP is converted back to AMP utilizing 

adenylosuccinate lyase (ADSL).  The ADSL reaction step also produces fumarate, which can be 

used as an alternative terminal electron acceptor in the electron transport chain to maintain 

anaerobic mitochondrial respiration. 
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Figure 3.3:  HIF-1α upregulates the mRNA, protein, and activity of AMP deaminase (AMPD) in 

mouse hearts.  Hearts were obtained from wildtype mice and those in which the HIF-1α-PPN 

transgene was suppressed (Non-I) or allowed to be expressed for 2 days (2D) or 6 days (6D).  

a) AMPD2 gene expression in mouse heart homogenates was examined using qPCR and 

normalized to reference gene transferrin.  Results are expressed as the % change in gene 

expression relative to WT (n=6).  b) Western blot showing AMPD2 protein expression in mouse 

heart homogenates.  c) Quantification of AMPD2 protein levels in mouse heart homogenates 

(n=6-8).  d) AMPD activity assessed by the amount of IMP produced per minute per mg protein 

in a buffer system containing excess AMP (n=5). * P<0.05 versus WT. 

 

 
Figure 3.4:  HIF-1α does not change the protein expression or activity of ADSS in the heart.  

Extracts were obtained from wildtype (WT) mouse hearts and those where the HIF-1α-PPN 
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transgene has been suppressed (Non-I), expressed for 2 days (2D), or expressed for 6 days 

(6D) to examine protein and activity levels of ADSS.  a)  Representative western blot showing 

ADSS expression in adult mouse heart extracts (top); average ADSS protein expression in 

mouse hearts (n=3-5) (bottom).  b)  Average ADSS activity in mouse hearts (n=5). 

 

 
Figure 3.5:  Adenylosuccinate lyase (ADSL) activity is not different in wildtype and HIF-1α 

expressing 6 day (6D) mouse hearts.  Hearts were obtained from wildtype mice and those that 

have been denied doxycycline to express the HIF-1α-PPN transgene for 6 days (6D) and 

activity of adenylosuccinate lyase was examined.  n=3. 
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CHAPTER 4 
 

HIF-1α IN THE HEART:  REMODELING OF NUCLEOTIDE METABOLISM LEADING 
TO ATTENUATION OF ADENOSINE ACCUMULATION DURING ISCHEMIC STRESS 

 
 
SUMMARY 
 

O2 delivery to heart tissue is compromised during ischemia.  As a result, ATP production 

via oxidative phosphorylation becomes inhibited.  While glycolysis can produce ATP 

anaerobically, the rate of ATP synthesis from this process cannot match the rate of ATP 

consumption.  Therefore, ischemia in the heart leads to a net depletion of ATP and the 

nucleotide pool while nucleobases accumulate.  Having identified that HIF-1α 

upregulates AMP deaminase, the entry point to the adenylate conserving purine 

nucleotide cycle (PNC), we sought to examine how HIF-1α influences nucleotide 

metabolism in the ischemic heart.  Here, we found that HIF-1α expression in the heart 

prevents the degradation of nucleotides under the ischemic setting.  As ATP degrades 

during ischemia, AMP accumulates.  AMP can be metabolized to adenosine by 5'-

nucleotidase isoform 1 or the PNC.  Here, we noted that HIF-1α limits adenosine 

accumulation in the ischemic heart, consistent with the shunting of AMP metabolism 

towards the cardioprotective PNC.  Our group previously showed that HIF-1α confers 

ischemic tolerance by allowing cardiomyocytes to use PNC derived fumarate to sustain 

anaerobic mitochondrial respiration.  Upon further examination, we found that HIF-1α 

also upregulates adenosine deaminase, an enzyme that degrades adenosine.  HIF-1α's 

role in reducing adenosine accumulation in the ischemic heart may seem paradoxical 

since adenosine is known to be a cardioprotective molecule.  However, recent evidence 

indicates that chronic exposure to adenosine can cause toxicity.  Therefore, HIF-1α 

expression may allow the heart to circumvent the toxicity caused by chronic adenosine 
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exposure.  Collectively, we found that HIF-1α not only preserves the hearts adenine 

nucleotide pool, but it also upregulates pathways whose role in cardioprotection may go 

beyond the remodeling of nucleotide metabolism.  

 
INTRODUCTION 
 
 During ischemia, ATP production via oxidative phosphorylation ceases.  

Glycolysis can generate ATP anaerobically, however, the rate of ATP synthesis from 

glycolysis cannot match the rate at which ATP is consumed.  ATP and the heart's 

nucleotide pool becomes rapidly depleted during ischemia (Figure 4.1) (1, 15, 16, 34).  

This results in the formation of non-phosphorylated nucleoside products such as inosine 

and adenosine, which can freely diffuse into the extracellular space, where they are 

further degraded to nucleobases such as hypoxanthine (Figure 4.1).  The loss of 

nucleosides and nucleobases to the extracellular space reduces the amount of 

precursors that are available for re-synthesis of purine nucleotides via the salvage 

pathway.  Thus, this represents a critical route in which the cellular nucleotide pool is 

depleted during ischemic insult.   

 
 Maintenance of the adenine nucleotide pool is of great importance in the 

ischemic heart, as these are the metabolites necessary for ATP production.  The 

synthesis of adenine nucleotides from de novo pathways is very slow and energetically 

expensive (25) and the loss of precursors limits nucleotide resynthesis from salvage 

pathways.  Furthermore, de novo nucleotide synthesis requires glucose-6-phosphate, 

an intermediate in glycolysis (see review by Lunt et al, 2011) (20).  Under the ischemic 

setting, not only is oxygen delivery diminished, but compromised blood flow in the 
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coronary vasculature limits the delivery of nutrients such as glucose, which is 

metabolized by glycolysis to generate glucose-6-phosphate.  As such, the diminished 

glucose delivery to the heart tissue further hinders de novo nucleotide synthesis.  While 

contractile activity is abolished upon the onset of ischemia, the heart still relies on ATP 

to maintain ionic homeostasis.  Hence, mechanisms that help conserve the heart's 

valuable nucleotide resources could prove protective.   

 
    In the previous chapter, we show that the reaction step regulating entry into the 

purine nucleotide cycle (PNC), AMP deaminase isoform 2 (AMPD2) is induced by HIF-

1α.  Activity of the PNC has been demonstrated in isolated cardiomyocytes subjected to 

anoxic stress (13, 14, 33).  Sabina et al. proposed that the PNC acts to conserve the 

cellular adenine nucleotide pool (32).  As ATP is degraded during ischemia, AMP 

accumulates.  The fate of AMP is either metabolism to adenosine by 5'-nucleotidase 

isoform 1 (5'NT-I) or IMP by AMPD2 (Figure 4.1).  Adenosine is uncharged and freely 

diffuses out of the myocyte.  Alternatively, the IMP that is generated by AMP deaminase 

can be utilized by subsequent steps of the PNC to regenerate AMP, thus fulfilling the 

PNC's role in adenine nucleotide conservation.  In addition to glycolysis, we have 

identified another HIF-1α induced pathway that may exert protective effects on the 

heart's nucleotide resources during ischemia.  As such, it became important for us to 

examine in detail, the effects that HIF-1α exerts on nucleotide metabolism in the heart 

during ischemic stress.  
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EXPERIMENTAL PROCEDURES 
 
 Nucleotide metabolism:  Nucleotide metabolism during ischemia was examined 

in WT as well as HIF-1α Non-I, 2D, and 6D mouse hearts.  All hearts were perfused with 

Krebs buffer containing (in mM): 118.5 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 24.8 

NaHCO3, 2.5 CaCl2, and 10.6 glucose on the Langendorff apparatus for 25 minutes to 

allow stabilization.  Following the stabilization period, hearts were subjected to either 5, 

10, 20, or 30 minutes of ischemia, or perfusion for 2.5 minutes with glucose-free Krebs 

buffer containing 5 mM glycolytic inhibitor iodoacetate (Acros Organics, Morris Plains, 

NJ) followed by 20 minutes of ischemia.  After ischemic stress, nucleotides were 

extracted with 400 µl of 4% perchloric acid and were measured with HPLC as detailed 

in chapter 2.  Nucleotides were quantified using their respective calibration curve and 

results were expressed as µmoles of nucleotide per gram dry tissue.  

 
 Protein expression of adenosine deaminase:  Protein samples from mouse 

hearts were prepared according to experimental procedures outlined in chapter 2.  

Adenosine deaminase was probed using a rabbit polyclonal antibody diluted 1:400 in 

TBS-T (Novus Biologicals, Littleton,CO) and incubated overnight with rocking at 4oC.  

After incubation in primary antibody, the membranes were washed 5x5 minutes with 

TBS-T and then incubated with a goat anti-rabbit horseradish peroxidase conjugated 

secondary antibody (EMD) for 1 hour at room temperature.  The band corresponding to 

adenosine deaminase was detected using the Pierce supersignal chemiluminescence 

substrate in the G:BOX imaging system (Syngene, Frederick, MD).  Densitometry of the 

protein band corresponding to adenosine deaminase was done using ImageJ (National 

Institutes of Health, Bethesda, MD) and results were normalized to that of wildtype.    
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 Adenosine deaminase activity:   Activity of adenosine deaminase was 

determined in WT and 6D mouse heart homogenates according to a method developed 

by Hartwick et al (11).  The volume of homogenate corresponding to 250 µg protein was 

added to a reaction mixture containing 0.065F KH2PO4, 0.06F Na2HPO4, and 17.5 mM 

adenosine.  The volume of reaction mixture added to the homogenates was such that 

the final adenosine concentration in the reaction was 3.5 mM.  Half of the reaction was 

immediately taken out to obtain the initial inosine content (t0).  The remaining half of the 

reaction was allowed to incubate at room temperature for 40 minutes.  HPLC was used 

to monitor the amount of product (i.e. inosine) formed during the reaction.  The amount 

of inosine produced during the incubation period is obtained by subtracting the inosine 

content at the start of the reaction (t0) from the inosine content after the 40 minute 

incubation period.  Adenosine deaminase specific activity was expressed as nmoles of 

inosine formed per minute per mg protein.   

 
 Statistical analysis:  Data reported are expressed as means±SEM.  Statistical 

significance was tested using one-way ANOVA followed by SNK post-hoc test using 

GraphPad Prism 5 (La Jolla, CA).  Where appropriate,  Student's t-test was used to test 

for statistical significance. 

 
RESULTS 
 
 Figure 4.2 shows that HIF-1α allows for better preservation of the heart's total 

adenine nucleotide pool (i.e. sum of ATP, ADP, and AMP) during ischemic stress.   

As ATP degrades during ischemia, AMP accumulates.  AMP accumulation was 

hastened in wildtype mouse hearts during ischemia (Figure 4.3).  The accumulation of 
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AMP during ischemia was delayed in the HIF-1α-PPN mouse hearts.  It took 20 minutes 

of ischemic stress for AMP in Non-I and 2D hearts to reach levels equivalent to wildtype 

(Figure 4.3).  After 30 minutes of ischemia, AMP accumulation was equal across the 

heart groups (Figure 4.3).   

 
 AMP that accumulates during ischemia has two fates.  First, AMP can be 

degraded to adenosine via a reaction catalyzed by 5'-nucleotidase (Figure 4.1).  As 

evident by Figure 4.4a, adenosine accumulated readily in wildtype hearts upon 

exposure to ischemic insult.  On the other hand, adenosine accumulation in Non-I and 

2D hearts was delayed and did not match the levels found in wildtype until 30 minutes 

of ischemia have elapsed.  In hearts that have been expressing HIF-1α for 6 days, 

adenosine levels failed to increase even after 30 minutes of ischemia (Figure 4.4a).  

Alternatively, AMP can be metabolized to IMP during ischemia.  The Non-I, 2D, and 6D 

heart accumulated lower levels of IMP as compared to wildtype after 20 and 30 minutes 

of ischemia (Figure 4.4b).     

 
 Figure 4.5a shows that inosine levels during the initial 20 minutes of ischemia 

was lower in 6D hearts as compared to wildtype, Non-I, and 2D hearts.  Nucleoside 

phosphorylase can further metabolize inosine to hypoxanthine, which is further 

degraded to xanthine.  Here, we found that while hypoxanthine and xanthine levels 

increased in the ischemic heart, they were not different in HIF-1α-PPN hearts as 

compared to wildtype at any time point of ischemia (Figures 4.5b & 4.5c).   

 
 In this initial series of studies, we found that expression of HIF-1α for 6 days 

prevented the buildup of adenosine in the ischemic heart.  In chapter 2, we showed that 
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HIF-1α expression for 6 days enhances glycolytic activity and preservation of ATP in the 

heart during ischemia.  Here, we also showed that in hearts where HIF-1α has been 

expressed for 6 days, the accumulation of AMP was lower during the initial 20 minutes 

of ischemia (Figure 4.3).  Thus, the reduction of adenosine accumulation in HIF-1α 

expressing hearts may merely reflect the lower amount of AMP available for metabolism 

by 5'-nucleotidase.   

  
 To test our hypothesis, we perfused hearts with 5 mM of glycolytic inhibitor 

iodoacetate followed by 20 minutes of ischemia.  At the end of this ischemic stress 

protocol, ATP, ADP, and AMP were reduced to similar levels in wildtype and 6D hearts 

(Figure 4.6).  Yet, 6D hearts still failed to accumulate adenosine to levels similar to that 

in wildtype, while IMP level was not different between these two heart groups (Figure 

4.7).  Here, it is crucial to note that inosine, hypoxanthine, and xanthine accumulated to 

higher levels in 6D mouse hearts as compared to wildtype after this ischemic stress 

protocol (Figure 4.7).  Taken together, our results indicate that pathways besides 

glycolysis must be responsible for decreasing the accumulation of adenosine in the 

ischemic 6D hearts.    

 
 An obvious explanation for the attenuation of adenosine in 6D hearts is the 

increased expression of AMP deaminase isoform 2 (AMPD2).  However, we also 

considered the following two factors in our endeavor to identify mechanisms that 

attenuated adenosine levels in the ischemic 6D HIF-1α expressing hearts.  First is the 

observation that less adenine nucleotides were degraded in the 6D hearts during the 

ischemic time course but levels of hypoxanthine and xanthine that accumulated was 



70 

 

equivalent to wildtype.  Second, ATP, ADP, and AMP were depleted to the same level 

in wildtype and 6D hearts when glycolysis was blocked prior to ischemia but yet 6D 

hearts were able to accumulate more inosine, hypoxanthine, and xanthine, the 

downstream degradation products of adenosine and IMP (Figure 4.1).  These two 

observations led us to believe that adenosine deaminase was upregulated in 6D hearts, 

thus allowing for more rapid degradation of adenosine (Figure 4.1).  Figure 4.8 shows 

that indeed, protein and activity of adenosine deaminase is induced in the extracts of 6 

day HIF-1α expressing hearts.   

 
DISCUSSION 
 
 In these studies, we find that HIF-1α preserves adenine nucleotides during 

ischemia in the heart.  The accumulation of nucleotide breakdown products required the 

shortest duration of ischemic stress in wildtype mouse hearts.  A delay is observed in 

Non-I and 2D hearts.  The breakdown of adenine nucleotides is slowest in the 6D 

hearts.  These results suggests a pseuo-dose response such that nucleotide depletion 

during ischemia is fastest in wildtype, slower in Non-I and 2D hearts, and slowest in 6D 

hearts. 

 
 Studies where we blocked glycolysis prior to ischemia indicated additional 

mechanisms contribute to the reduction of adenosine accumulation that we have 

observed during ischemia in 6 day HIF-1α expressing hearts.  The first mechanism we 

considered was the reaction catalyzed by adenosine kinase, which converts adenosine 

back to AMP.  However, as ATP is needed as a phosphate donor to adenosine, the 

likelihood that adenosine kinase is functional under ischemic conditions is slim.  Indeed, 
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it has been shown that adenosine kinase activity is suppressed during ischemic stress 

(5, 21, 27). 

  
 Our finding that HIF-1α induces the expression of AMP deaminase isoform 2 

(AMPD2) provides one explanation to our observation that HIF-1α expression reduces 

adenosine accumulation in ischemic heart.  This suggests that AMP metabolism is 

diverted towards the PNC during ischemia in hearts that express HIF-1α, which should 

enhance the production of fumarate.  As our group has shown in the past, HIF-1α allows 

cardiomyocytes to utilize fumarate derived from the PNC to maintain anaerobic 

mitochondrial respiration, thus leading to enhanced ischemic tolerance.  Our 

observation that adenosine accumulation is limited in HIF-1α expressing hearts is 

consistent with the higher activity of the cardioprotective PNC.  Surprisingly, we 

observed that in HIF-1α expressing hearts, IMP did not accumulate to levels higher than 

wildtype hearts during ischemia, even though HIF-1α upregulates AMP deaminase.  

Unlike tetanic activity of skeletal muscle, where IMP accumulation is proportional to the 

amount of ATP degraded (26), IMP has not been detected in ischemic hearts (16).  This 

has led Manfredi to propose that unknown mechanisms are preventing IMP 

accumulation in the heart during ischemia (24).  Taken together, a multitude of factors 

may play a role in determing the levels of IMP in the heart during ischemic stress and 

we hope to identify these in future studies.  

 
 To further identify pathways that contribute to reduced adenosine accumulation 

during ischemia, we focused on our observation that 6D HIF-1α expressing hearts were 

able to achieve equal or higher levels of adenosine breakdown products during 
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ischemia as compared to wildtype mouse hearts.  Consistent with this result, we found 

that adenosine deaminase protein and activity in heart extracts from 6D mice were 

higher than wildtype.  Our results are consistent with work done by Eltzschig, which 

showed that hypoxia induces the mRNA and protein expression of adenosine 

deaminase (7). 

 
 The finding that HIF-1α limits adenosine accumulation contradicts the protective 

role that this metabolite has been ascribed, particularly in the realm of cardioprotection 

(17, 29, 35, 37).  This is achieved through signaling via various isoforms of cell surface 

adenosine receptors (6, 19, 28).  Immune response has been recognized to contribute 

to the adverse effects associated with ischemia (10, 18).  Various studies show that 

adenosine plays a role in suppressing immune cells by inhibiting their transmigration 

through the vasculature and reducing their production of proinflammatory cytokines (3, 

9, 12).  On the other hand, it has been recognized that chronic exposure to adenosine 

causes toxicity.  Blackburn has postulated that toxicity from chronic adenosine exposure 

may arise from receptor downregulation and activation of adenosine receptors on 

surrounding immune cells (2).  Downey's group showed that prolong exposure of 

adenosine receptors to agonist led to abolishment of cardioprotection provided by 

preconditioning (36).  These results are suggestive of receptor downregulation as a 

result of chronic adenosine exposure.  Adenosine has been shown to stimulate mast 

cell degranulation (31).  In addition, adenosine may also be proarrhythmic (8, 23).  

Furthermore, adenosine has been shown to induce fibrosis (4, 22, 30).  Thus, HIF-1α 

may play a role in maintaining the intricate balance between the benefits of adenosine 

signaling and ill-effects associated with chronic adenosine exposure.  Future studies 



73 

 

should examine whether adenosine exposure, long-term, triggers maladaptive 

responses during ischemia and whether HIF-1α provides an approach to limit this. 

  
 Collectively, nucleotide metabolism is remodeled by HIF-1α.  These remodeling 

processes result in better preservation of adenine nucleotides during ischemia.  More 

importantly, HIF-1α reduces the amount of adenosine that accumulates in the ischemic 

heart.  This result is consistent with higher activity of the cardioprotective PNC pathway 

and also suggests that HIF-1α expression in the heart may limit the toxicity associated 

with chronic exposure to adenosine. 
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FIGURES 
 

 

Figure 4.1:  Nucleotide degradation pathways in the ischemic heart.  During ischemia, the rate 

of ATP consumption exceeds its synthesis from glycolysis.  As a result, there is a net 

degradation of ATP and the heart's nucleotide pool while the nucleobase hypoxanthine 

accumulates.   PNC = purine nucleotide cycle.  AMPD2 = AMP deaminase isoform 2.  ADSS = 

adenylosuccinate synthetase.  ADSL = adenylosuccinate lyase.  5'NT-1 = 5'-nucleotidase 

isoform 1 (AMP specific).  5'NT-II = 5'-nucleotidase isoform 2 (IMP specific).  HPRT = 

hypoxanthine phosphoribosyl transferase.  HIF induced pathways are denoted by blue arrows.  

Major pathways that have been proposed previously by others are shown in bold black arrows.  

Adapted from Jennings et al. (16). 
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Figure 4.2:  Wildtype mouse hearts are inept at preserving the adenine nucleotide pool during 

ischemia.  Wildtype mouse hearts, hearts not expressing the HIF-1α-PPN transgene (Non-I), 

and hearts made to express the HIF-1α-PPN transgene for 2 days (2D) and 6 days (6D) were 

subjected to the indicated durations of ischemia.  Nucleotides were measured using HPLC and 

the sum of ATP, ADP, and AMP was taken as the total adenine nucleotide pool.  Pre-isch 

denotes pre-ischemia.  * P<0.05 versus wildtype.  # P<0.05 versus 6D.  n=3-9.    

 
Figure 4.3:  AMP levels in ischemic adult mouse hearts.  Hearts were obtained from wildtype 

mice and those in which the HIF-1α-PPN transgene is suppressed (Non-I), expressed for 2 days 

(2D) or 6 days (6D).  AMP levels were measured at the indicated durations of ischemic stress.  

Pre-isch denotes pre-ischemia.  * P<0.05 versus wildtype.  # P<0.05 versus 6D.  n=3-9. 

 

 

Figure 4.4:  HIF-1α reduces the amount of adenosine and IMP that accumulates in the ischemic 

heart.  Wildtype mouse hearts as well as those not expressing the HIF-1α-PPN transgene (Non-

I), expressing the HIF-1α-PPN transgene for 2 days (2D) and 6 days (6D) were subjected to the 
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indicated durations of ischemia and nucleotides were measured with HPLC.  a) Adenosine.  b)  

IMP.  * P<0.05 versus wildtype.  # P<0.05 versus 6D.  n=3-9. 

 

 
Figure 4.5:  Accumulation of inosine, hypoxanthine, and xanthine in mouse hearts subjected to 

total ex vivo ischemic stress.  Hearts were obtained from wildtype mice and those in which the 

HIF-1α-PPN transgene is suppressed (Non-I), expressed for 2 days (2D) or 6 days (6D).  Hearts 

were subjected to the indicated durations of ischemia.  Nucleotides were extracted and 

measured using HPLC.  Pre-isch denotes pre-ischemia.  a) Inosine.  b) Hypoxanthine.  c) 

Xanthine.  * P<0.05 versus wildtype, # P<0.05 versus 6D.  n=3-9. 

 

 
Figure 4.6:  Inhibition of glycolysis reduces post-ischemic content of ATP, ADP, and AMP to 

similar levels in wildtype hearts and those expressing the HIF-1α-PPN transgene for 6 days.  

Hearts were obtained from wildtype mice and those in which the HIF-1α-PPN transgene was 

expressed for 6 days (6D).  Hearts were perfused for 2.5 minutes with 5 mM glycolytic inhibitor 
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iodoacetate then subjected to 20 minutes of ex vivo ischemia.  After ischemic stress, 

nucleotides were extracted and measured using HPLC.  n=4-5. 

 
Figure 4.7:  Inhibition of glycolysis followed by ischemia leads to attenuation of adenosine (Ado) 

accumulation but increases in accumulation of inosine (Ino), hypoxanthine (HX), and xanthine 

(Xan) in hearts expressing the HIF-1α-PPN transgene.  Hearts were obtained from wildtype 

mice and those in which the HIF-1α-PPN transgene was expressed for 6 days (6D).  Hearts 

were perfused for 2.5 minutes with 5 mM glycolytic inhibitor iodoacetate then subjected to 20 

minutes of ex vivo ischemia.  After ischemic stress, nucleotides were extracted and measured 

using HPLC.  * P<0.05 versus wildtype.  n=4-5. 

 

 
Figure 4.8:  HIF-1α expression induces the protein and activity of adenosine deaminase (ADA).  

Heart homogenates were obtained from wildtype mice and those in which the HIF-1α-PPN 

transgene was suppressed (Non-I), expressed for 2 days (2D), or expressed for 6 days (6D).  a)  

Representative Western Blot showing adenosine deaminase expression (top); average 

expression of adenosine deaminase from 4 to 7 mouse hearts (bottom). b)  Adenosine 

deaminase specific activity in homogenates from 5 mouse hearts.  # P<0.05 versus 6D.  * 

P<0.05 versus wildtype.   
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CHAPTER 5 
 

THE PURINE NUCLEOTIDE CYCLE AND ITS EFFECTS ON NUCLEOTIDE 
METABOLISM IN THE ISCHEMIC HEART 

 
 
SUMMARY 
 
We found that HIF-1α reduces the accumulation of adenosine in the ischemic heart.  

This is consistent with the shunting of AMP metabolism towards AMP deaminase, which 

is upregulated by HIF-1α.  AMP deaminase represents the step regulating entry into the 

nucleotide metabolic pathway known as the purine nucleotide cycle (PNC).  To 

establish a better understanding of the role that the PNC plays in the ischemic heart, we 

perfused wildtype and 6 day HIF-1α induced (6D) mouse hearts with 50 µg/ml (0.42 

mM) adenylosuccinate synthetase inhibitor, hadacidin followed by treatment of hearts to 

30 minutes of ex vivo ischemic stress.  We found that inhibition of the PNC led to a 

reduction of ATP, ATP:ADP, and adenylate energy charge in wildtype and 6D hearts 

during ischemia.  The inhibition of adenylosuccinate synthetase by hadacidin should 

decrease the availability of fumarate used to maintain anaerobic mitochondrial 

respiration.  Our studies allow us to propose a new physiological role for the PNC, 

which is that the PNC preserves ATP, ATP:ADP, and adenylate energy charge via the 

provision of fumarate, which is used as an alternative terminal electron acceptor in 

place of O2 to maintain mitochondrial polarization during ischemia.  This prevents the 

reverse mode operation of the F0F1 ATP synthase, which consumes ATP in order to 

maintain the mitochondrial membrane potential during ischemia.  Therefore, the 

induction of the PNC may contribute to the better preservation of energy charge up to 

20 minutes of ischemic stress that we have observed in 6D HIF-1α expressing hearts. 
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INTRODUCTION 
 
 In chapter 2, we showed that HIF-1α upregulates AMP deaminase, the enzyme 

regulating entry into the PNC.  Furthermore, our finding that HIF-1α attenuates 

adenosine accumulation in ischemic hearts is consistent with the induction of AMP 

deaminase.  Studies related to the PNC have for the most part been done on skeletal 

muscle.  On the other hand, knowledge regarding the PNC and its function in the heart 

remains much more elusive.  Unlike skeletal muscle, studies by Taegtmeyer found that 

workload does not affect the activity of the PNC in heart (8).  This led the group to 

discount any significant role for the PNC in the heart.  However, the heart is particularly 

well equipped to maintain its high energy phosphate content as workload is varied (5).  

Therefore, the model system used by Taegtmeyer may not have been able to capture 

the physiological significance of the PNC in the heart (8).  To delineate the role of the 

PNC in the heart, we subjected hearts to ex vivo ischemia, a condition similar to 

exercise in skeletal muscle where ATP becomes readily depleted.  Hearts were 

subjected to 30 minutes of ischemia alone or pre-treatment with hadacidin, which is a 

PNC inhibitor at the step of adenylosuccinate synthetase, followed by exposure to 30 

minutes of ischemic stress.  Nucleotide content in the heart was measured after 

ischemic stress.  Results were compared between wildtype and HIF-1α expressing 

mouse hearts. 

 
EXPERIMENTAL PROCEDURES 
 
 Nucleotide metabolism:  Wildtype mouse hearts and hearts derived from our HIF-

1α-PPN non-induced (Non-I), 2 day induced (2D), and 6 day induced (6D) mice were 

perfused with Krebs buffer containing (in mM): 118.5 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 
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KH2PO4, 24.8 NaHCO3, 2.5 CaCl2, and 10.6 glucose on the Langendorff apparatus for 

25 minutes to allow stabilization.  Following the stabilization period, hearts were either 

subjected to 5, 10, 20, or 30 minutes of ischemia or perfused for 15 minutes with Krebs 

buffer containing 50 µg/ml hadacidin followed by 30 minutes of ischemia.  Hearts were 

freeze clamped and nucleotides were extracted with 400 µl of 4% perchloric acid.  The 

nucleotide extracts were incubated on ice for 20 minutes.  Following incubation, the 

nucleotide extracts were centrifuged at 15,000 g for 15 minutes at 4°C and the 

supernatant containing nucleotides was removed.  The remaining pellet was lyophilized 

in order to obtain the dry weight (grams) of tissue collected.  Nucleotides were 

measured with HPLC and quantified with their respective calibration curve.  Results are 

expressed as µmoles of nucleotide per gram dry tissue. 

 
 Energy status of the heart:  The heart's energy status provides an indication of 

the energy that can be harnessed during ATP hydrolysis that can be used to carry out 

cellular work and is commonly assessed by calculating the ATP:ADP ratio.  The higher 

the ATP:ADP ratio, the more energy is harnessed upon removal of a phosphate group 

from ATP.  However, under conditions when cellular energetics is compromised, AMP 

content is much more easily perturbed compared to the content of ADP (3).  For 

example, AMP:ATP is equal to (ADP:ATP)2 (3).  Thus, a 5 fold increase in ADP:ATP 

leads to a 25 fold amplification in AMP:ATP.  Therefore, AMP is the best suited 

metabolite used to regulate cellular energetics.  In fact, the cell utilizes AMP activated 

protein kinase as a regulator of cellular energetics via modulation of various metabolic 

pathways (4).  Thus, AMP content must be accounted for when quantifying the energy 

status of the cell.  The adenylate energy charge (EC), first proposed by Atkinson (1), is 
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calculated from the values of the adenine nucleotide pool and is given by Equation 1.  

This parameter is starting to be much more commonly used to describe cellular 

energetics.   EC ranges from 0 to 1 and is approximately 0.8 in a healthy cell.  A higher 

EC indicates that ATP utilization is favored. 

energy charge	�	
ATP+0.5ADP

ATP+ADP+AMP
     Equation 1 

 
 

 Statistical analysis:  Data reported here are expressed as means±SEM.  

Statistical significance was tested using one way ANOVA with SNK post-hoc test or 

Student's t-test in GraphPad Prism 5 (La Jolla, CA). 

 
RESULTS 
 
 In these studies, we observed that HIF-1α induction for 6 days (6D) provides 

strong preservation of ATP:ADP (Figure 2.5) and adenylate energy charge (Figure 5.1).  

We find that hadacidin treatment prior to ischemia led to a drastic reduction in ATP and 

ADP in both wildtype and 6D mouse hearts (Figure 5.2a and 5.2b).  AMP levels 

increased in both wildtype and 6D hearts when hadacidin was administered prior to 30 

minutes of ischemia (Figure 5.2c).  The changes in adenine nucleotide content resulted 

in a substantial decrease in the heart's ATP:ADP and adenylate energy charge (Figure 

5.3). 

 
 Next, we examined the effect that hadacidin had on nucleotide breakdown 

products adenosine and IMP in the ischemic heart.  While adenosine levels did not 

change in 6D hearts, it more than doubled in hearts from wildtype mice (Figure 5.4a).  

We find that hadacidin had no effect on IMP content in wildtype hearts and 6D hearts 

that were subjected to 30 minutes of ex vivo ischemia (Figure 5.4b).  Adenosine and 
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IMP can both be degraded to inosine, which is then metabolized by nucleoside 

phosphorylase to hypoxanthine.  We noted that levels of these metabolites were 

unaltered when hadacidin was administered prior to the initiation of ischemic stress 

(Figure 5.5). 

 
DISCUSSION 
 
 The purine nucleotide cycle has been postulated to play a role in conserving 

adenine nucleotides.  For instance, AMP deaminase deficiency leads to exercise fatigue 

and poor recovery of the skeletal muscle's adenine nucleotide pool upon termination of 

intense physical activity (6).  Here, we find that inhibiting the PNC with hadacidin prior to 

ischemia did not enhance the decline of the heart's total adenine nucleotide pool or alter 

the accumulation of nucleotide degradation products.  Only changes in the distribution 

of adenine nucleotides were observed, which is reflected as a decrease in ATP, 

ATP:ADP, and adenylate energy charge.  The lowering of energy charge under these 

stress conditions severely limits the heart's ability to perform cellular work.   

 
 The preservation of cellular energy status (i.e. ATP:ADP ratio) is one of the 

previously postulated roles that the PNC plays.  This is brought about by the coupling of 

the adenylate kinase (2 ADP ↔ ATP + AMP) and the AMP deaminase reactions, 

whereby metabolism of AMP by AMP deaminase shifts the equilibrium of adenylate 

kinase towards ATP synthesis, thus preserving the ATP:ADP ratio.  Data obtained from 

this study allows us to propose a novel approach in which the PNC preserves energy 

status.  While fumarate reduction at complex II can support ATP production by the ATP 

synthase, it has been argued persuasively that this mechanism is unlikely to occur both 
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on theoretical and experimental grounds (2).  Inhibition of adenylosuccinate synthetase 

by hadacidin should reduce the fumarate available for maintenance of anaerobic 

mitochondrial respiration.  As such, the F0F1 ATP synthase would act in reverse in order 

to maintain the mitochondrial membrane potential, in the process further depleting ATP.  

Therefore, reducing the heart's ATP, ATP:ADP, and energy charge during ischemic 

stress.  Thus, our novel proposal is that activity of the PNC prevents the reversal of the 

F0F1 ATP synthase in order to maintain the mitochondrial membrane potential, thereby 

preserving the heart's ATP during ischemic stress.  Collectively, we have identified that 

in addition to glycolysis, the PNC is another crucial mechanism that helps maintain the 

heart's adenylate energy charge during ischemia.  The induction of the PNC by HIF-1α 

may contribute to the ability of the HIF-1α expressing (6D) hearts to preserve energy 

charge better than wildtype hearts, at least up to 20 minutes of ischemic stress. 
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FIGURES 
 

 
Figure 5.1:  HIF-1α preserves adenylate energy charge during ischemia.  Hearts from wildtype 

mice and those maintained on doxycycline to suppress the HIF-1α-PPN transgene (Non-I), 

denied doxycycline for 2 days (2D) or 6 days (6D) to express the HIF-1α-PPN transgene for 2 

and 6 days, respectively, were subjected to the indicated durations of ex vivo ischemia and 

nucleotides ATP, ADP, and AMP were measured using HPLC and adenylate energy charge 

was calculated.  Pre-isch = pre-ischemia. * denotes P<0.05 versus wildtype.  # denotes P<0.05 

versus 6D.  n=3-9. 

 

 
Figure 5.2:  Hadacidin treatment prior to ischemic stress further reduces ATP and ADP but 

increases AMP accumulation in the heart.  Hearts were obtained from wildtype mice and those 

denied doxycycline for 6 days (6D) to induce the expression of the HIF-1α-PPN transgene.  

Hearts were subjected to 30 minutes of ex vivo ischemia with or without prior treatment with 
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PNC inhibitor, hadacidin.  After ischemia, nucleotides were extracted from the hearts and 

measured using HPLC.  a) ATP.  b) ADP.  c) AMP.  * P<0.05 versus wildtype of the similar 

treatment group.  § P<0.05 versus hearts without hadacidin treatment.  n=5.  Note that data 

from hearts subjected to 30 minutes of ischemia alone were taken from the ischemic time 

course studies presented in chapter 4. 

 

 
Figure 5.3:  Inhibition of ADSS with hadacidin prior to ischemia drastically decreases the heart's 

ATP:ADP and energy charge during ischemia.  Wildtype and 6D mouse hearts were subjected 

to 30 minutes of ex vivo ischemia with or without prior treatment with PNC inhibitor, hadacidin.  

a) ATP:ADP ratio.  b) Energy charge.  § P<0.05 versus hearts without hadacidin treatment.  

n=5.  Note that data from hearts subjected to 30 minutes of ischemia alone were taken from the 

ischemic time course studies presented in chapter 4. 

 

 
Figure 5.4:  Effects of hadacidin treatment on adenosine and IMP accumulation in ischemic 

mouse hearts.  Hearts were obtained from wildtype mice as well as those denied doxycycline for 

6 days (6D) to induce the expression of the HIF-1α-PPN transgene.  Hearts were subjected to 

30 minutes of ex vivo ischemia with or without prior treatment with PNC inhibitor, hadacidin.  

After ischemia, nucleotides were extracted from the hearts and measured using HPLC.  a) 

Adenosine.  b)  IMP.  * P<0.05 versus wildtype of similar treatment.  § P<0.05 versus hearts 

without hadacidin treatment.  n=5.  Data from hearts subjected to 30 minutes of ischemia alone 

were taken from the ischemic time course studies presented in chapter 4. 
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Figure 5.5:  Hadacidin treatment prior to ischemia did not alter inosine or hypoxanthine content 

in mouse hearts.  Hearts were obtained from wildtype mice and those denied doxycycline for 6 

days (6D) to allow expression of the HIF-1α-PPN transgene.  Hearts were subjected to 30 

minutes of ex vivo ischemia with or without prior treatment with PNC inhibitor, hadacidin.  After 

ischemia, nucleotides were extracted from the hearts and measured using HPLC.  a) Inosine.  

b) Hypoxanthine.  * P<0.05 versus wildtype of similar treatment.  n=5.  Data from hearts 

subjected to 30 minutes of ischemia alone were taken from the ischemic time course studies 

presented in chapter 4. 
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CHAPTER 6 
 

HIF-1α IN THE HEART:  UPREGULATION OF PURINE SALVAGE ENZYME 
HYPOXANTHINE PHOSPHORIBOSYL TRANSFERASE (HPRT) 

 

 
SUMMARY 
 
Ischemia in the heart leads to rapid depletion of the adenine nucleotide pool as well as 

accumulation of nucleotide degradation products such as hypoxanthine.  Hypoxanthine 

can be utilized by the salvage enzyme, hypoxanthine phosphoribosyl transferase 

(HPRT) to resynthesize adenine nucleotides.  Here we report that HPRT mRNA and 

protein are induced by hypoxia inducible factor 1α (HIF-1α) in mouse hearts.  We have 

demonstrated that HIF-1α expression leads to increased hypoxanthine accumulation in 

the ischemic heart.  Thus, suggesting that HIF-1α expression provides hearts with a 

higher capacity to regenerate adenine nucleotides upon recovery from ischemic stress.  

On the other hand, hypoxanthine can be metabolized by xanthine oxidase upon 

reperfusion to xanthine.  This reaction concomitantly generates a burst of reactive 

oxygen species (ROS).  As a result, the induction of HPRT by HIF-1α may serve the 

dual purpose of re-incorporating hypoxanthine back into the nucleotide pool and 

preventing the production of harmful ROS in ischemia-reperfusion.   

 

INTRODUCTION 
 
 During ischemia, the heart's adenine nucleotide pool is readily depleted and 

nucleobases such as hypoxanthine accumulates (2–4).  Hypoxanthine phosphoribosyl 

transferase (HPRT) is an enzyme that plays a role in nucleotide salvage (Figure 6.1).  

This enzyme catalyzes the transfer of the 5-phosphoribosyl group on phosphoribosyl 

pyrophosphate (PRPP) to hypoxanthine, leading to resynthesis of IMP.  
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Adenylosuccinate synthetase (ADSS), an enzyme of the purine nucleotide cycle (PNC) 

can utilize IMP to generate AMP, which replenishes the heart's adenine nucleotides.  

Hypoxanthine can also be degraded to xanthine by xanthine oxidase during reperfusion 

when O2 is reintroduced to the tissue (Figure 6.1).  The reaction catalyzed by xanthine 

oxidase concomitantly generates a burst of reactive oxygen species in the form of H2O2.  

Here, we wanted to determine whether HPRT, an enzyme that can stimulate nucleotide 

resynthesis and compete with xanthine oxidase for hypoxanthine to potentially reduce 

ROS is a HIF-1α induced cardioprotective pathway. 

 
EXPERIMENTAL PROCEDURES 
 
 mRNA expression of HPRT:  The mRNA expression of HPRT in wildtype and 

HIF-1α Non-I, 2D, and 6D mouse hearts was examined using quantitative PCR.  RNA 

extraction and cDNA synthesis was described under experimental procedures in 

chapter 3.  Quantitative PCR was performed in triplicate for all samples in a 96 well 

plate format on a CFX96 real-time PCR detection system (BioRad Laboratories, 

Richmond, CA).  40 cycles were carried out.  Each reaction consisted of 50 ng cDNA 

and 1.5 µl of Quantitect HPRT or transferrin primer from Qiagen in 1x SsoFast 

Evagreen supermix (BioRad Laboratories).  HPRT mRNA expression was normalized to 

that of reference gene transferrin and results were reported as a percent change in 

gene expression relative to WT. 

 
 Protein expression of HPRT:  Hearts were obtained from WT, Non-I, 2D, and 6D 

mice.  Protein sample was prepared according to experimental procedures stated in 

chapter 2.  HPRT was probed using a rabbit polyclonal primary antibody diluted to 1 
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µg/ml in TBS-T (Novus Biologicals, Littleton, CO).  The membranes were incubated at 

4°C overnight.  After incubation in primary antibody, the membranes were washed for 5 

minutes in TBS-T (5x) before incubation with 1:2500 goat anti-rabbit HRP conjugated 

secondary antibody (EMD Millipore, Billerica, MA).  Protein bands were detected using 

the Pierce supersignal chemiluminescence substrate (Thermoscientific) in the G:Box 

imaging system (Syngene, Frederick, MD).  Densitometry of the protein band 

corresponding to HPRT was obtained using ImageJ (National Institutes of Health, 

Bethesda, MD) and results were normalized to that of WT. 

 

 Statistical analysis:  Data are expressed as means±SEM.  One-way ANOVA was 

performed followed by SNK post-hoc test using GraphPad Prism 5 (La Jolla, CA).   

 
RESULTS 
 
 Figure 6.2a shows that HIF-1α induces the mRNA of HPRT.  In concurrence with 

the mRNA levels, we show that HIF-1α also induces the protein expression of HPRT 

(Figure 6.2b). 

 

DISCUSSION 
 
 Here we report that HIF-1α induces the mRNA and protein of nucleotide salvage 

enzyme hypoxanthine phosphoribosyl transferase (HPRT).  We noted in chapter 4 that 

HIF-1α expression enhances the accumulation of hypoxanthine during ischemia.  

Hypoxanthine can either be a good or harmful metabolite.  It can be utilized by HPRT to 

resynthesize adenine nucleotides.  However, it can also be converted by xanthine 

oxidase to xanthine when oxygen is reintroduced during reperfusion.  The metabolism 

of hypoxanthine by xanthine oxidase leads to a burst of ROS production.  It has been 
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demonstrated that oxypurinol, a xanthine oxidase inhibitor reduces ROS and improves 

cardiac function after ischemia-reperfusion stress (5).  Thus, the induction of HPRT by 

HIF-1α may divert hypoxanthine away from xanthine oxidase metabolism, leading to 

attenuation of ROS.  Taken together, the induction of HPRT by HIF-1α may enhance 

the re-assimilation hypoxanthine back into the adenine nucleotide pool and prevent 

production of harmful ROS during ischemia-reperfusion. 
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FIGURES 
 

 
Figure 6.1:  Hypoxanthine phosphoribosyl transferase (HPRT) reaction mechanism.  HPRT 

catalyzes the transfer of the 5-phosphoribosyl group on phosphoribosyl pyrophosphate (PRPP) 

to hypoxanthine to resynthesize IMP.  Adenylosuccinate synthetase, an enzyme of the purine 

nucleotide cycle (PNC) can utilize IMP to regenerate AMP, which replenishes the heart's 

adenine nucleotides.  The availability of O2 during reperfusion allows xanthine oxidase to 

convert hypoxanthine to xanthine, a reaction that also synthesizes a burst of ROS.  Therefore, 

HPRT induction in HIF-1α expressing hearts may also function to minimize ROS production 

during ischemia-reperfusion insult. 

 

 
Figure 6.2:  HIF-1α upregulates the mRNA and protein of hypoxanthine phosphoribosyl 

transferase (HPRT) in mouse hearts.  HPRT mRNA and protein was examined in wildtype (WT) 
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mouse hearts and those where the HIF-1α-PPN transgene was suppressed (Non-I), expressed 

for 2 days (2D), or expressed for 6 days (6D).  a) HPRT gene expression in mouse heart 

homogenates was examined using qPCR and normalized to reference gene transferrin.  Results 

are expressed as the % change in gene expression relative to WT (n=6).  b) Representative 

Western blot showing HPRT protein expression in mouse heart homogenates (top) and 

quantification of HPRT protein levels in mouse heart homogenates (n=4-7).  * P<0.05 versus 

WT. 
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CHAPTER 7 
 

SUMMARY & FUTURE DIRECTIONS 
 

 These studies showed that HIF-1α expression allows for strong protection of the 

heart during ischemic stress.  We observed that ATP preservation during ischemia in 

our HIF-1α non-induced hearts (Non-I) was not better compared to wildtype hearts, yet 

the Non-I hearts were protected to the same extent as hearts that have been expressing 

HIF-1α for 2 and 6 days.  These results suggest that the ability to preserve ATP is not 

necessarily required to protect the heart from ischemic stress.  Evidence showing that 

many of the protective mechanisms that lead to ischemic tolerance involve the 

protection of the mitochondria is beginning to emerge. 

 
 Here we showed that myocytes isolated from HIF-1α Non-I, 2D, and 6D mouse 

hearts were able to maintain mitochondrial membrane potential better than myocytes 

obtained from wildtype mouse hearts.  Previous studies by our group demonstrated that 

the HIF-1α signaling axis induces the ability for the mitochondria to use purine 

nucleotide cycle derived fumarate as a terminal electron acceptor in place of O2 to 

sustain anaerobic mitochondrial respiration.  In chapter 3 we showed that AMP 

deaminase 2, the entry point to the PNC is upregulated in extracts obtained from 6 day 

HIF-1α expressing hearts as compared to wildtype.  Here we have obtained evidence 

indicating that the protective effects provided by the PNC extends beyond the capability 

to maintain mitochondrial membrane potential during ischemia. 

 
 Treatment of hearts with hadacidin, inhibitor of the PNC at the step of 

adenylosuccinate synthetase followed by ischemia led to a decline in ATP, ATP:ADP, 
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and adenylate energy charge.  Inhibition of ADSS with hadacidin should reduce the 

amount of fumarate available for anaerobic mitochondrial respiration.  This will result in 

the reversal of the F0F1 ATP synthase in order to maintain the inner membrane potential 

of the mitochondria during ischemic stress, which will further deplete ATP.  Thus, in 

addition to sustaining the mitochondrial membrane potential, the PNC also exerts ATP 

sparing effects during ischemia.     

 
 A significant finding in these studies is that HIF-1α limited the adenosine that 

accumulates in the ischemic heart.  While consistent with the shunting of AMP 

metabolism towards the PNC rather than the adenosine producing 5'-nucleotidase 

pathway, we also find that HIF-1α upregulates adenosine deaminase.  Adenosine 

deaminase further degrades adenosine to inosine, thereby contributing to the lower 

adenosine levels that we have observed in the HIF-1α expressing hearts.  Also, we 

were surprised to see that IMP accumulation remained lower in HIF-1α expressing 

hearts as compared to wildtype mouse hearts during ischemia, even though HIF-1α 

upregulates AMP deaminase.  Manfredi and Holmes proposed that some mechanism 

prevents the accumulation of IMP in the ischemic heart.  Taken together, it is likely that 

a multitude of factors determine the instantaneous levels of IMP during ischemia.  Thus, 

we would like to obtain precise quantification of flux through the PNC in the future. 

 
 The observation that HIF-1α limits adenosine accumulation in the ischemic heart 

contradicts the protective function ascribed to adenosine, particularly from the 

perspective of cardioprotection provided by ischemic preconditioning.  However, recent 

evidence has pointed out that chronic adenosine exposure can lead to toxicity.  Future 
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investigations will establish whether HIF-1α can help the ischemic heart avoid 

adenosine toxicity. 

 
 Our studies have also led to the finding that HIF-1α induces the expression of the 

nucleotide salvage enzyme, hypoxanthine phosphoribosyl transferase (HPRT).  HPRT 

catalyzes a reaction that converts hypoxanthine back to IMP.  IMP is then converted 

back to AMP via two reaction steps:  1) IMP to S-AMP by adenylosuccinate synthetase; 

2) S-AMP to AMP by adenylosuccinate lyase.  HPRT may also act in reverse to 

metabolize IMP to hypoxanthine.  While highly speculative, the increased accumulation 

of hypoxanthine during ischemia in HIF-1α expressing versus wildtype hearts maybe 

consistent with the faster rate of IMP metabolism by HPRT.  This provides a plausible 

mechanism that could lead to lower IMP levels in our HIF-1α expressing hearts as 

compared to wildtype during ischemia.  In addition to its role in adenine nucleotide 

salvage, HPRT may also limit the amount of harmful reactive oxygen species (ROS) 

generated during reperfusion.  Future studies will establish that the induction of HPRT in 

HIF-1α expressing hearts allows for better recovery of nucleotides and limits ROS-

induced injury during reperfusion. 

 
 Taken together, we found that HIF-1α expression in the heart provides strong 

protection during ischemic stress.  Further, we identified that HIF-1α induces several 

metabolic pathways that could contribute to cardioprotection.  Future work will aim to 

quantify the flux through these metabolic pathways and to further elucidate the role of 

these pathways in cardioprotection during ischemia. 
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