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ABSTRACT 

Regulation of C-reactive Protein Gene Expression and Function 

by 

Avinash Thirumalai 

 

Human C-reactive protein (CRP) is the prototypic acute phase protein whose serum concentration 

increases rapidly during inflammation. CRP is also associated with atherosclerosis; it is deposited 

at lesion sites where it may interact with modified lipoproteins. There are 2 major questions 

regarding CRP: 1. How is the serum concentration of CRP regulated? 2. What are the functions of 

CRP in atherosclerosis?  

 

Our first aim was to determine the role of the constitutively expressed transcription factor Oct-1 in 

regulating CRP gene expression. We found that Oct-1 overexpression inhibited (IL-6+IL-1β)-

induced CRP gene expression; maximal inhibition required the binding of Oct-1 to an octamer 

motif at (-59 to -66) on the CRP promoter. Oct-1 overexpression inhibited both (IL-6+IL-1β)-

induced and C/EBPβ-induced CRP gene expression even when the Oct-1 site was deleted. These 

findings suggest that Oct-1 is a repressor of CRP gene expression that acts via binding to its 

cognate site on the CRP promoter as well as through indirect interactions with other promoter-

bound transcription factors.  

 

Our second aim was to investigate the interaction of CRP with oxidized low density lipoprotein 

(ox-LDL). Acidic pH, a hallmark of atherosclerotic lesions, reversibly alters CRP structure and 

exposes a hidden binding site that enables CRP to bind ox-LDL. Using site-directed mutagenesis 
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we constructed a CRP mutant (E42Q) that showed significant binding to ox-LDL at physiological 

pH. E42Q CRP required a less acidic pH for maximal binding and bound ox-LDL more 

efficiently than wild type CRP at any pH. We then examined if reactive oxygen species also 

induced CRP – ox-LDL interaction. H2O2-treated CRP bound ox-LDL at physiological pH. Like 

acidic pH, H2O2-treatment induced only a local structural change exposing the ox-LDL binding 

site. E42Q and H2O2-modified CRP are tools to study the function of CRP in animal models of 

atherosclerosis, which may not have an inflammatory environment sufficient to modify CRP and 

induce binding to atherogenic ox-LDL.  

 

We conclude that Oct-1 is one of the critical regulators of CRP gene expression, and that CRP can 

be modified in vitro to convert it into an atherogenic LDL-binding molecule.  
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CHAPTER 1 

INTRODUCTION 

 

C-reactive protein (CRP) is an evolutionarily conserved protein that participates in the 

response to systemic inflammation. CRP was discovered in Oswald Avery‟s laboratory during 

their studies of patients infected with Streptococcus pneumoniae and is named as such as it 

precipitated the C-polysaccharide of the pneumococcal cell wall (Abernathy and Avery 1941; 

Macleod and Avery 1941a;  Macleod and Avery 1941b). CRP is a member of the 

evolutionarily conserved pentraxin family of proteins, which consists of the short pentraxins 

CRP and Serum Amyloid P component (SAP) and the long pentraxins PTX3, PTX4, and the 

neuronal pentraxins (reviewed in Agrawal et al. 2009).  

 

Structure of CRP 

The CRP molecule is a pentamer made up of 5 identical, noncovalently associated ~23 

kD subunits arranged symmetrically around a central pore (Fig. 1.1). Each subunit is made up 

of 206 amino acids folded into 2 antiparallel β sheets with a flattened jelly-roll topology and 

binds to 2 Ca
2+

 ions. The binding site for phosphocholine (PCh), the classical ligand of CRP, 

on each subunit is oriented on the same side in the pentamer, thus forming a „recognition face‟. 

The PCh-binding site is made by the 2 bound Ca
2+

 ions and an adjacent hydrophobic pocket 

formed by the amino acids Phe
66

, Thr
76

, and Glu
81

. The phosphate group of PCh coordinates 

directly with the 2 Ca
2+

 atoms, while the choline group lies within the hydrophobic pocket. 

The 3 methyl groups of choline interact with Phe
66

, while Glu
81

 interacts with the positively 

charged nitrogen atom of choline. Thr
76

 is critical for forming an appropriately sized pocket 
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for PCh (Roux et al. 1983; Shrive et al. 1996; Thompson et al. 1999). This binding site has 

also been shown to be involved in the binding of CRP to other nonclassical ligands such as 

phosphoethanolamine, cholesterol, and histones at physiological pH (Szalai et al. 1999; Black 

et al. 2003).  

 

Figure 1.1. Crystal structure of PCh-complexed CRP. The phosphocholine moiety is shown 

using ball-and-stick representation, while the Ca2+ ions are shown as green spheres 

(adapted from Thompson et al. 1999). 

 

On the opposite „effector face‟ of CRP there is a cleft extending from the center of each 

subunit to the central pore. This cleft is necessary for the interaction of CRP with complement 

protein C1q and the Fcγ receptors (Agrawal and Volanakis 1994; Agrawal et al. 2001; Bang et 

al. 2005). Structural studies have shown that the largely positively charged globular head of 
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C1q interacts with the largely negatively charged central pore of the CRP pentamer, and that 

this interaction is critically dependent on several amino acid residues present within the cleft, 

including the amino acids Asp
112

 and Tyr
175 

(Agrawal and Volanakis 1994; Agrawal et al. 

2001). Optimal binding of C1q with ligand-bound CRP requires a slight conformational 

change in the CRP pentamer, and this change seems to depend on the ligand to which CRP is 

bound (Gaboriaud et al. 2003). 

 

Functions of CRP 

In humans, CRP has been characterized as a key acute phase protein and mediates the 

inflammatory response. CRP binds to substances with exposed PCh-groups such as 

pneumococcal C-polysaccharide on bacterial cell walls, low-density lipoprotein, and apoptotic 

or damaged cells in a Ca
2+

-dependent manner (Agrawal et al. 1997; Bhakdi et al. 1999; 

Volanakis 2001; Chang et al. 2002). The ligand-bound CRP then binds to C1q, the initiating 

factor of the classical complement pathway (Agrawal and Volanakis 1994; Volanakis 2001). 

Activation of the classical complement pathway mediates the clearance of pathogens and 

cellular debris, either by formation of the membrane-attack complex or by opsono-

phagocytosis by macrophages. Ligand-bound CRP has also shown to interact directly with Fcγ 

receptors on macrophages and induce phagocytosis (Bang et al. 2005).  

Studies using mouse models of pneumococcal infection have shown that CRP protects 

mice against lethal infection with S. pneumoniae by decreasing bacteremia and increasing 

survival (Mold et al. 1981; Yother et al. 1982; Szalai et al.1995; Simons et al. 2014). 

Passively administered human CRP is protective in mice only when injected 6 h before to 2 h 

after infection but not when administered 24 h postinfection. The PCh-binding pocket is 
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necessary for the CRP-mediated initial protection of mice against lethal pneumococcal 

infection and involves complement activation (Suresh et al. 2006; Agrawal et al. 2008; Gang 

et al. 2012). Some studies have also shown that CRP can protect mice against lethal 

pneumococcal infection when the PCh-binding site is mutated, suggesting the involvement of 

an as yet unknown PCh-binding independent mechanism (Suresh et al. 2007). The reasons as 

to why CRP is not protective when administered during later stages of infection are not 

known. 

 

Significance of Serum CRP Levels 

In healthy individuals the median concentration of CRP in the serum is 0.8µg/ml. During 

the acute phase response the serum levels of CRP increases to 500 µg/ml or more (Pepys and 

Hirschfield 2003). The serum levels of CRP have also been known to increase many hundred- 

to thousand-fold during other acute inflammatory states and also in some noninflammatory 

conditions such as following stress or cellular injury (Fig. 1.2). Serum CRP levels are therefore 

used diagnostically as a measure of systemic inflammation. Following the resolution of 

inflammation, there is an equally rapid reduction of plasma CRP to basal levels (Kushner 

1982; Gabay and Kushner 1999).  

Minor elevations of serum CRP levels are also found in chronic inflammatory 

conditions, for example, during atherosclerosis. These have been associated with an increased 

risk of developing atherosclerosis and subsequent cardiovascular disease (Libby and Ridker 

2004). However, it is not clear whether the elevated CRP levels are an independent risk factor 

and predict the disease or if they are involved in its pathogenesis (Kushner and Elyan 2008; 

Agrawal et al. 2010). 



19 
 

 

Figure 1.2. Chances in plasma concentrations of  proteins during the acute phase response 

(adapted from Gabay and Kushner 1999). 

 

Regulation of CRP Gene Expression 

CRP is primarily produced in the liver, although extra-hepatic synthesis of CRP is 

known to occur in certain conditions. Hepatic CRP production is the primary determinant of 

serum CRP levels (Kushner and Kaplan 1961; Hurlimann et al. 1966; Kushner and Feldman 

1978). Due to the difficulties in obtaining primary human hepatocytes, various human 

hepatoma cell lines have been used to study transcriptional regulation of the CRP gene. 

Studies from multiple labs have shown that cytokines like IL-1β, IL-6, IL-17, TGFβ, and 

TNFα regulate the transcription of the CRP gene in these cell lines (Darlington et al. 1986; 

Ganapathi et al. 1988, Poli and Cortese 1989; Castell et al. 1990; Yap et al. 1991; Zhang et al. 

1995; Wang et al. 1999; Zhang et al. 2006; Patel et al. 2007). The most commonly used model 

to study CRP gene expression has been the human hepatoma Hep-3B cell line, and in this cell 
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line CRP gene expression is primarily regulated by the IL-6 and IL-1β cytokines (Ganter et al. 

1989). 

In human hepatoma Hep-3B cells, IL-6 activates the transcription factors C/EBPβ and 

STAT3 and induces CRP gene transcription (Poli and Cortese 1989; Ramji et al. 1993; Zhang 

et al. 1996; Wang et al. 1999, Ochrietor et al. 2000; Agrawal et al. 2001). IL-1β alone does 

not induce CRP gene transcription, but synergistically enhances IL-6 induced CRP gene 

transcription by activating the transcription factor NF-κB (Darlington et al. 1986; Ganapathi et 

al. 1988; Agrawal et al. 2003; Blashcke et al. 2006; Kramer et al. 2008). In addition to these 

cytokine-induced transcription factors, 5 constitutively expressed transcription factors 

(C/EBPδ, RBP-Jκ, HNF-1, HNF-3, and OCT-1) are known to be involved in CRP gene 

regulation (Toniatti et al. 1990; Li and Goldman 1996; Voleti and Agrawal 2005; Blashcke et 

al. 2006; Nishikawa et al 2008; Reiner et al. 2008; Grimm et al. 2011).  

The proximal 157 bp of the CRP promoter (Fig. 1.3) has been shown to be sufficient 

for this synergistic interaction between IL-6 and IL-1β cytokines (Zhang et al. 1995; Li and 

Goldman 1996; Agrawal et al. 2001). The IL-6 induced transcription factor C/EBPβ binds the 

CRP promoter at 2 sites centered at -52 and -219 (Li and Goldman 1996), while STAT3 binds 

the promoter at -108 (Zhang et al. 1996). The NF-κB p50-p50 homodimer binds to a 

nonconsensus site at -47, which overlaps the proximal C/EBPβ binding site, and the NF-κB 

p50-p65 heterodimer binds to a site located at -69 (Agrawal et al. 2001; Voleti and Agrawal 

2005; Cha-Molstad et al. 2007). The constitutively expressed transcription factors C/EBPδ and 

RBP-Jκ bind to the proximal C/EBPβ and NF-κB p50-p50 sites respectively (Singh et al. 

2007), while the HNF-1 and HNF-3 binding sites are at -67 and -62 (Li and Goldman 1996). 

The Oct-1 binding site is centered at -63, and overlaps the HNF-1, HNF-3, and NF-κB p50-
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p65 binding sites (Voleti and Agrawal 2005). 

 

Figure 1.3. -300 to +3 bp of the proximal promoter region of the CRP gene. The binding sites 

of various transcription factors on the promoter are boxed (adapted from Voleti and Agrawal 

2005) 

 

 

 

Oct-1 and CRP Gene Expression 

Oct-1 is a member of the POU domain transcription factor family that is widely and 

constitutively expressed (Wang and Jin 2010). Oct-1 functions as both an enhancer, as well as 

a repressor of gene transcription (Zhou and Yen 1991; Inamoto et al. 1997; Dong et al. 2009; 

Shakya et al. 2011). Oct-1 binds specifically to an octamer motif (ATGCAAAT) and related 

sequences on promoters to regulate gene expression (Singh et al. 1986; Bhatt et al. 1996). In 

some promoter contexts Oct-1 regulates gene transcription indirectly by interacting with other 

transcription factors and cofactors that are bound to promoter sequences (Voss et al. 1991; 

Zwilling et al. 1992; Nakshatri et al. 1995; Ström et al. 1996; Prefontaine et al. 1999; Shakya 

et al. 2011). In the context of CRP gene expression, the role of Oct-1 was not known at the 

time of this study. Our lab had previously shown that Oct-1 competed with the NF-κB p50-p65 

heterodimer for binding at their overlapping cognate sites (Voleti and Agrawal 2005). In the 

basal state Oct-1 remains bound to the CRP promoter at its binding site. On cytokine treatment 

NF-B activation results in the p50-p65 heterodimer displacing Oct-1 from this site, and thus 

mediating the synergistic effect of IL-1. However, the exact role of Oct1-1 in regulating CRP 
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gene expression and the mechanism involved were not known at the time of this study.  

 

Rationale and Hypothesis 

The luciferase reporter assay is a sensitive and accurate assay widely used to measure the 

role of transcription factors on target gene expression. Reporter plasmids with the luciferase 

gene cloned downstream of the CRP gene promoter were used to transfect hepatoma Hep-3B 

cells. The role of Oct-1 in regulating CRP gene expression was studied using reporter plasmids 

with mutated Oct-1 sites or by cotransfection with Oct-1 overexpressing vectors. Luciferase 

assays performed with these reagents in both un-induced and cytokine-induced conditions 

elucidate the role of Oct-1 in regulating CRP gene expression. The mechanism by which Oct-1 

exerts its effects on the CRP gene was studied by performing electrophoretic mobility shift 

assay (EMSA) experiments using nuclear extracts from cytokine-treated and un-treated Hep-

3B cells, and with both wild-type and mOct oligos in which the Oct-1 binding site has been 

mutated. 

 

CRP and Atherosclerosis 

Atherosclerosis is an inflammatory disease that is initiated by the retention and 

subsequent chemical modification of low-density lipoproteins (LDL) in the artery wall. 

Activation of the endothelium at sites of LDL deposition results in monocyte recruitment into 

the arterial intima. These monocytes differentiate into macrophages and phagocytize the 

deposited, modified lipoproteins. Excessive cholesterol and lipid uptake by macrophages 

transforms them into highly proinflammatory „foam cells‟ – the key event in the progression of 

the disease. The failure to resolve initial inflammation slowly leads to the formation of an 
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atherosclerotic plaque characterized by changes in the extracellular matrix and environment, 

and in the participation of vascular smooth muscle and immune cells in a chronic 

inflammatory process (reviewed in Ross 1999; Moore and Tabas 2011). 

CRP has been implicated in the pathogenesis of atherosclerosis, although what role it 

plays is still unclear. Serum CRP levels increase minimally during atherosclerosis, yet CRP is 

found deposited at sites of atherosclerotic lesions in both humans and in animal models 

(Reynolds and Vance 1987; Hatanaka et al. 1995; Bhakdi et al. 1999; Sun et al. 2005). The 

deposition of CRP at lesion sites is independent of its serum level. Native pentameric CRP 

does not bind unmodified LDL under physiological conditions; however, CRP and LDL can 

interact with each other if either is immobilized on a solid surface. CRP binds to immobilized 

enzymatically-modified LDL (E-LDL), an interaction that is Ca
2+

-dependent and PCh-

inhibitable at physiological pH. This binding is dramatically increased in the presence of acidic 

pH (Singh et al. 2008; Singh et al. 2009). CRP – E-LDL complex formation also prevents lipid 

uptake and subsequent foam cell formation (Singh et al. 2008). Native CRP does not interact 

with the major atherogenic form of LDL, oxidized-LDL (ox-LDL) at physiological conditions. 

However, acidic pH induces a reversible structural modification in the CRP pentamer, and 

exposes a hidden binding site enabling CRP to bind immobilized ox-LDL. Substitution of one 

of the amino acids involved in inter-subunit interactions, Pro
115

 with Ala reduced the 

requirement of acidic pH by 1 unit and also increased ox-LDL binding. This suggested that the 

CRP molecule was being modified into a „loosened‟ pentameric structure (Hammond et al. 

2010).  

To determine the function of CRP in atherosclerosis, human CRP has been used in 

different animal models of atherosclerosis. Passive administration or transgenic expression of 
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human CRP was neither atherogenic nor atheroprotective in ApoE
-/-

 and Ldlr
-/-

 mice 

(Hirschfield et al. 2005; Torzewski et al. 2005; Tennet et al. 2008; Ortiz et al. 2009). Rabbits 

transgenically expressing human CRP also did not show any difference in atherosclerotic 

lesion formation or progression (Koike et al. 2009). Studies using the ApoB
100/100

Ldlr
-/-

 mouse 

and the ApoE
-/-

CRP
-/- 

and Ldlr
-/-

CRP
-/-

 mouse models suggest that CRP might play an 

atheroprotective role. In the ApoB
100/100

Ldlr
-/-

 mouse model, administration of human CRP 

slowed plaque development (Kovacs et al. 2007). In the ApoE
-/-

CRP
-/- 

and Ldlr
-/-

CRP
-/- 

double 

knock-out mice the size of atherosclerotic lesions were either equivalent to or increased when 

compared to the ApoE
-/- 

and Ldlr
-/-

 mice, indicating that even mouse CRP, which is present at 

low levels, may be atheroprotective (Teupser et al. 2011).  

A hallmark of atherosclerotic plaques is the formation of a highly acidic 

microenvironment due to macrophage activation, proton and lactate generation, and hypoxic 

conditions in the artery wall (Silver et al. 1988; Leake 1997; Naghavi et al. 2002; Haka et al. 

2009). Acidity is known to induce LDL modification and aggregation, induce binding to 

extracellular matrix proteins, and increase retention in the artery wall, increasing the uptake of 

modified LDL by macrophages and monocytes (Sneck et al. 2005; Plithari et al. 2011; 

Lähdesmäki et al. 2012). The animal models used to study the effect of human CRP in 

atherosclerosis may not fully develop such a microenvironment at the lesion sites. Human 

CRP administered to these animals may thus not have undergone the low pH-induced 

structural modification and, therefore, may not have been able to bind ox-LDL and prevent ox-

LDL induced foam cell formation. 
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Rationale and Hypothesis 

 

 

Figure 1.4. Two adjacent subunits of the CRP pentamer, along with amino acids targeted 

for mutagenesis (red). A list of all amino acids involved in inter-subunit interactions is 

shown on the left (adapted from (5)) 

 

Acidic pH structurally changes the CRP molecule into a „loosened‟ pentamer, thus 

exposing the previously buried ox-LDL binding site. As the pH at lesion sites in animal 

models of atherosclerosis cannot be modified, it is essential to have a modified form of CRP 

that can bind to ox-LDL at physiological pH. One approach to achieve this is to use site-

directed mutagenesis to make a mutant CRP in which the ox-LDL binding site is no longer 

buried and permanently exposed. Based on our previous studies using the Pro
115

  Ala 

(P115A) mutant, we hypothesize that targeting the amino acids involved in inter-subunit 

interactions will result in a „loosened‟ pentamer that can bind to ox-LDL at physiological pH. 

Figure 1.4 shows the structure of 2 adjacent subunits of the CRP pentamer, with the list of 
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amino acids involved in inter-subunit interactions on the left. Highlighted in red are the amino 

acids that were targeted by site-directed mutagenesis. We choose to make a Glu
42

  Gln 

substitution to generate the E42Q mutant. The binding of the E42Q and P115A mutants to ox-

LDL at physiological pH was then tested and compared with that of WT CRP. The Y175A 

mutant (Tyr
175

  Ala), in which an amino acid not involved in inter-subunit interactions has 

been substituted was used as a negative control. 

In addition to acidic pH endothelial dysfunction and macrophage activation results in 

the generation of reactive oxygen species (ROS) like O2
-
 and OH

-
 ions and H2O2 at 

atherosclerotic lesions. ROS-induced deregulation of the redox environment is known to 

enhance the deposition and modification of lipoproteins, activate inflammatory signaling, and 

increase foam cell formation (Patel et al. 2000; Papaharalambus and Griendling 2007; 

Ottaviano et al. 2008; Kondo et al. 2009; Hulsmans and Holvoet 2010). Studies from other 

labs have suggested that ROS-mediated modifications of CRP may influence its function 

(Miyazawa et al. 1988; Wang et al. 2011). We hypothesized that ROS may structurally alter 

the CRP pentamer, similar to that induced by acidic pH, and enable it to bind to immobilized 

ox-LDL. To this purpose, we choose the oxidizing agent H2O2 as an example to investigate if 

ROS modify CRP and enable it to bind immobilized ox-LDL.  

 

Specific Aims 

 

1. To determine the role of Oct-1 in the regulation of CRP gene expression 

a. To determine whether Oct-1 acts as an activator or repressor of CRP gene 

expression in Hep-3B cells 

b. To determine the requirement of the Oct-1-binding site on the CRP promoter for 
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Oct-1-mediated regulation of CRP gene expression 

 We published the findings, and these are reproduced in Chapter 2 

 

2. To generate modified CRP which can bind to ox-LDL at physiological pH  

a. To use site-directed mutagenesis and construct a CRP mutant that binds to ox-

LDL at physiological pH 

 We published the findings, and these are reproduced in Chapter 3 

b. To determine whether the molecules characteristic of the sites of inflammation 

can react with CRP and generate modified CRP that binds to ox-LDL at 

physiological pH  

 Results of preliminary experiments carried out are presented in Chapter 4 

 
 

3. To determine whether modified CRP (from aim 2) can prevent formation of ox-LDL-

induced macrophage foam cells 

 Results are not presented as we were yet to establish a technique to measure 

ox-LDL-induced foam cell formation 
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CHAPTER 2 

Oct-1 acts as a transcriptional repressor on the C-reactive protein promoter 
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Abstract 

 

C-reactive protein (CRP), a plasma protein of the innate immune system, is produced by 

hepatocytes. A critical regulatory region (−42 to −57) on the CRP promoter contains binding site 

for the IL-6-activated transcription factor C/EBPβ. The IL-1β-activated transcription factor NF-

κB binds to a κB site located nearby (−63 to −74). The κB site overlaps an octamer motif (−59 to 

−66) which is the binding site for the constitutively active transcription factor Oct-1. Oct-1 is 

known to function both as a transcriptional repressor and as an activator depending upon the 

promoter context. Also, Oct-1 can regulate gene expression either by binding directly to the 

promoter or by interacting with other transcription factors bound to the promoter. The aim of this 

study was to investigate the functions of Oct-1 in regulating CRP expression. In luciferase 

transactivation assays, overexpressed Oct-1 inhibited (IL-6+IL-1β)-induced CRP expression in 

Hep3B cells. Deletion of the Oct-1 site from the promoter drastically reduced the cytokine 

response because the κB site was altered as a consequence of deleting the Oct-1 site. 

Surprisingly, overexpressed Oct-1 inhibited the residual (IL-6+IL-1β)-induced CRP expression 

through the promoter lacking the Oct-1 site. Similarly, deletion of the Oct-1 site reduced the 

induction of CRP expression in response to overexpressed C/EBPβ, and overexpressed Oct-1 

inhibited C/EBPβ-induced CRP expression through the promoter lacking the Oct-1 site. We 

conclude that Oct-1 acts as a transcriptional repressor of CRP expression and it does so by 

occupying its cognate site on the promoter and also via other transcription factors by an as yet 

undefined mechanism. 
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Introduction 

C-reactive protein (CRP) is defined as an acute phase protein whose serum concentration 

increases in inflammatory conditions, such as rheumatoid arthritis, and in some non-

inflammatory conditions, such as stress and cellular injury (Agrawal et al., 2009; Kushner et al., 

2006). CRP is primarily produced by hepatocytes in response to IL-6 and IL-1β and its synthesis 

is regulated at the transcriptional level (Castell et al., 1990; Eklund, 2005; Goldberger et al., 

1987; Toniatti et al., 1990a; Voleti and Agrawal, 2006; Yoshida et al., 2006; Zhang et al., 1995). 

In human hepatoma Hep3B cells, IL-6 induces CRP expression by activating transcription 

factors C/EBPβand STAT3 (Ochrietor et al., 2000; Poli and Cortese, 1989; Ramji et al., 1993; 

Turkson et al., 1998; Wang et al., 1999; Young et al., 2008; Zhang et al., 1996). IL-1β, which 

alone does not induce CRP expression in Hep3B cells, synergistically enhances the effects of IL-

6 by activating transcription factor NF-κB (Agrawal et al., 2003a; Darlington et al., 1986; 

Ganapathi et al., 1988; Kramer et al., 2008; Zhang et al., 1995). The proximal 157 bp of the CRP 

promoter are sufficient for the synergy between IL-6 and IL-1β (Zhang et al., 1995). 

Transcription factor c-Rel participates in regulating CRP expression, without binding to the 

promoter, via interactions with C/EBPβ (Agrawal et al., 2003b; Cha-Molstad et al., 2007). Five 

constitutively active transcription factors (C/EBPδ, RBP-Jκ, HNF-1, HNF-3, and Oct-1) are also 

involved in regulating CRP expression (Blaschke et al., 2006; Grimm et al., 2011; Nishikawa et 

al., 2008; Reiner et al., 2008; Toniatti et al., 1990b; Voleti and Agrawal, 2005). 

The binding sites of various transcription factors on the CRP promoter are shown in Fig. 

2.1A. C/EBPβbinds to two sites centered at positions −52 and −219 (Li and Goldman, 1996). 

The STAT3-binding site is located at −108 (Zhang et al., 1996). There are five NF-κB proteins, 

p50, p52, p65, c-Rel and Rel B, which form homodimers or heterodimers and bind to κB sites on 
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the promoters to regulate gene expression (Ghosh and Hayden, 2012). On the CRP promoter, 

NF-κB p50-p50 binds to a non-consensus κB site located at −47, overlapping the proximal 

C/EBP site, and NF-κB p50-p65 binds to a κB site located at −69 (Agrawal et al., 2001; Cha-

Molstad et al., 2000; Voleti and Agrawal, 2005). C/EBPδ binds to the same proximal C/EBP site 

where C/EBPβbinds (Singh et al., 2007). RBP-Jκ binds to the same site where NF-κB p50-p50 

binds (Singh et al., 2007). The binding sites for HNF-1 and HNF-3 are located at positions −67 

and −62, respectively (Li and Goldman, 1996). Oct-1 binds to a site centered at position −63 

(Arcone et al., 1988; Li and Goldman, 1996).  

 

Figure 2.1: CRP promoter and oligos used to study the role of Oct-1 in CRP gene regulation. (A) 

The −300 to +3 region of the CRP gene is shown. The binding sites of various transcription 

factors on the promoter are boxed. (B) Sequences of the oligos derived from the CRP promoter 

and used as probes in EMSA. (C) Sequences of the mutagenic oligos used for mutagenesis of the 

CRP promoter to construct the m-Oct promoter. 

 

 

Oct-1 is a ubiquitous and constitutively active transcription factor (Singh et al., 1986; 

Sturm et al., 1988). Generally, Oct-1 functions as an activator of transcription (Dong et al., 2009; 
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Inamoto et al., 1997; Shakya et al., 2011; Zhou and Yen, 1991). However, Oct-1 also represses 

transcription of some genes (Bhat et al., 1996; Shakya et al., 2011). Oct-1 binds specifically to an 

octamer motif (ATGCAAAT) and related sequences on promoters to regulate gene expression 

(Bhat et al., 1996; Singh et al., 1986). Oct-1 also functions by associating with basal transcription 

factors and other tissue-specific transcription factors and cofactors (Nakshatri et al., 1995; 

Préfontaine et al., 1999; Shakya et al., 2011; Ström et al., 1996; Voss et al., 1991; Wysocka and 

Herr, 2003; Zwilling et al., 1994). 

It is not known how Oct-1 acts on the CRP promoter to regulate CRP gene expression. 

Previously, we reported that Oct-1 competes with NF-κB for binding to its cognate site which 

overlaps the κB site on the CRP promoter (Voleti and Agrawal, 2005). The aim of this study was 

to determine whether Oct-1 acts as a repressor or as an activator of CRP expression. Another aim 

of this study was to determine the requirement of the Oct-1-binding site on the CRP promoter for 

Oct-1 to regulate CRP expression. 
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Materials and Methods 

Electrophoretic mobility shift assays (EMSA) 

Hep3B cells were cultured in 100 mm dish. Cells were subjected to serum starvation 

overnight and then treated with IL-1βfor 15 min, as described previously (Voleti and Agrawal, 

2005). The confluency of cells was approximately 60% at the time of IL-1β-treatment. IL-

β(R&D) was used at a concentration of 200 U/ml. Nuclear extracts were prepared by using NE-

PER nuclear and cytoplasmic kit (Pierce), as described previously (Singh et al., 2007). The 

sequences of the oligonucleotides (oligo) used in EMSA are shown in Fig. 1B. Oligos were 

obtained from Integrated DNA Technologies. To prepare the probes, complementary oligos were 

annealed and labeled with [γ-32 P] ATP. The probe-nuclear extract reaction buffer contained 16 

mM HEPES (pH 7.9), 40 mM KCl, 1 mM EDTA, 2.5 mM DTT, 0.15% Nonidet P-40, 8% 

Histopaque, and 1 μ-g of poly dI-dC. In super shift experiments, antibodies (2 μg) were added to 

the reaction mixture and incubated on ice for 15 min before addition of the probe. In oligo 

competition experiments, 150 ng of unlabeled oligos was added to the reaction mixture before 

addition of the antibody and probe. The antibodies to p50 (H119), p65 (H286), HNF-1 (H205), 

HNF-3 (C20) and Oct-1 (C20) were purchased from Santa Cruz Biotechnologies. DNA-protein 

complexes were resolved in native 5% polyacrylamide gels containing 2.5% glycerol and 

visualized in a phosphorimager using Image-Quant software (GE Healthcare). 

 

Construction of CRP promoter-luciferase (Luc) reporter vectors 

The construction of wild-type (WT) CRP promoter constructs, Luc-157 WT (−157/+3 of 

CRP gene) and Luc-300 WT (−300/−1 of CRP promoter), has been reported previously 

(Agrawal et al., 2001; Kleemann et al., 2003; Voleti and Agrawal, 2005). These two WT 
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constructs were used as templates for mutagenesis (deletion of all 8 bp of the Oct-1 site) of 

the CRP promoter by using QuickChange site-directed mutagenesis kit (Stratagene). The 

mutagenic primers are shown in Fig. 1C. Mutations were verified by DNA sequencing. 

Plasmids were purified using maxi prep plasmid isolation kit (Eppendorf).  

 

Luciferase transactivation assays (Luc assays) 

Hep3B cells were cultured in 6-well plates. Transfections were performed using TransIT-

LT1 (Mirus) according to manufacturer's instructions. CRP promoter-Luc reporter constructs 

were used at 1 μg plasmid per well and the transcription factor expression vectors were used as 

mentioned in the figure legends. The confluency of cells was approximately 60% at the time of 

transfection. After transfection, cells were left in serum-free medium. After 16 h of transfection 

and serum starvation, the transfected cells were either treated with IL-6 and IL-1βfor 24 h or left 

untreated. IL-6 (R&D) was used at a concentration of 1100 U/ml and IL-1βwas used at a 

concentration of 200 U/ml. After 40 h of transfection, Luc assays were performed following the 

protocol supplied by the manufacturer (Promega). Luc activity was measured in a luminometer 

(Molecular Devices), as described previously (Singh et al., 2007). 
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Results 

Oct-1 binds to its site on the CRP promoter and competes with the binding of NF-κB to 

the overlapping κB site 

To demonstrate that Oct-1 binds to its cognate site on the CRP promoter, we performed 

EMSA using a 45 bp oligo (WT oligo; Fig. 2.1B) which contained the overlapping Oct-1 and κB 

sites and the adjacent C/EBP site (Fig. 2.2). We used nuclear extract from IL-1β-treated Hep3B 

cells as the source of NF-κB. Four specific complexes were formed on the probe (lanes 1 and 2). 

The fastest migrating complex was NF-κB (p50–p65) because the antibodies to p50 and p65 

reduced the intensity of the complex (lanes 3 and 4). By using antibodies to HNF-1 and Oct-1, 

the top two complexes were found to contain HNF-1 and Oct-1 (lanes 5 and 6). Another specific 

complex contained HNF-3 (confirmation using antibodies to HNF-3 is shown in Fig. 2.3). When 

the Oct-1-containing complex was abolished (and, in part, super shifted) by treatment of the 

nuclear extract with anti-Oct-1 antibodies, the intensity of the NF-κB complex increased 

(compare lanes 1 and 6). These results suggest that Oct-1 binds to its site on the CRP promoter 

and competes with the binding of NF-κB to the overlapping κB site. 

 

Oct-1 does not bind to CRP promoter in the absence of the Oct-1 site 

The purpose of the next EMSA was to characterize the m-Oct promoter (promoter with the 8 bp 

Oct-1 site deleted; Fig. 2.1B) that we used in the Luc assays. We performed EMSA using WT 

oligo and m-Oct oligo as probes and nuclear extracts from untreated Hep3B cells (Fig. 2.3). 

Three specific complexes containing HNF-1, Oct-1 and HNF-3 were formed on the WT 
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Figure 2.2. Oct-1 binds to its site on the CRP promoter and competes with the binding of NF-κB 

to the overlapping κB site. A representative of three EMSA is shown. Radiolabelled WT oligo 

(−38 to −78) was used as the probe and nuclear extract from IL-β-treated Hep3B cells was used 

as the source of NF-βB. Self oligo competitor (unlabeled WT oligo) and antibodies were added 

to nuclear extract before the addition of the probe. DNA probe-protein complexes were 

visualized by using a phosphorimager. Arrows point to the complexes formed on the probe. The 

mobility of the free probe is not shown. 

 

 

Figure 2.3. Oct-1 does not bind to CRP promoter in the absence of the Oct-1 site. A 

representative of two EMSA is shown. Radiolabelled WT oligo (lanes 1–5) and m-Oct oligo (8 

bp Oct-1 site deleted, lanes 6–10) were used as probes. Nuclear extract from untreated Hep3B 

cells was used as the source of constitutively active transcription factors. Self oligo competitors 

(unlabeled WT and m-Oct oligos) and antibodies were added to nuclear extract before the 

addition of the probe. DNA probe-protein complexes were visualized by using a 

phosphorimager. Arrows point to the complexes formed on the WT probe. The mobility of the 

free probe is not shown. 
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probe (lanes 1–5), whereas deletion of the Oct-1 site abolished the binding of not only Oct-1 but 

also HNF-1 and HNF-3 to the probe (lanes 6–10). These results suggested that Oct-1 would not 

bind directly to the m-Oct CRP promoter that we used in the Luc assays. 

 

Oct-1 inhibits (IL-6+IL-1β)-induced CRP expression 

To investigate the role of Oct-1 in regulating CRP expression, we conducted Luc assays 

using Luc 157-WT and Luc 300-WT promoter constructs and determined the effects of 

overexpressed Oct-1 on (IL-6+IL-1β)-induced CRP promoter-driven Luc activity. As shown 

in Fig. 2.4, Oct-1 inhibited (IL-6+IL-1β)-induced CRP promoter-driven Luc activity in a dose 

dependent manner, irrespective of the size of the CRP promoter, that is, irrespective of the 

presence of one or both of the C/EBP sites (located at positions −52 and −219). From these 

results we conclude that Oct-1 acts as a transcriptional repressor of CRP expression. 

 

Figure 2.4. Oct-1 inhibits (IL-6+IL-1β)-induced CRP promoter-driven Luc activity. Luc-157 WT 

and Luc-300 WT CRP promoter constructs were transfected into Hep3B cells along with 

increasing amounts of the expression vector encoding Oct-1. After 16 h, cells were treated 

with IL-6 and IL-1β for 24 h. CRP expression was measured as Luc activity. Percent inhibition 

of Luc activity is plotted on the y-axis. Average ± S.E.M. of three experiments are shown. For 

some data points, error bars are not visible because the S.E.M. was low. 
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Effects of deleting the Oct-1 site on basal and (IL-6+IL-1β)-induced CRP expression 

To explore the mechanism of Oct-1-mediated repression of CRP expression, our 

approach was to delete the Oct-1-site (−59 to −66) from the promoter and use the m-Oct 

promoter construct, which does not bind Oct-1, in the Luc assays. We determined the 

contribution of the Oct-1 site, which overlaps the HNF-1, HNF-3 and κB sites, to the basal and 

(IL-6+IL-1β)-induced CRP expression. Deletion of the Oct-1 site from the promoter did not 

affect basal CRP expression (Fig. 2.5A). However, (IL-6+IL-1β)-induced CRP expression was 

drastically reduced when the Oct-1 site was deleted, irrespective of the size of the CRP promoter 

used in the assay (Fig. 2.5B). CRP expression was reduced by about 87% (from 14-fold to 2-

fold) when Luc-157 m-Oct promoter was used and by about 91% (from 113-fold to 11-fold) 

when Luc-300 m-Oct promoter was used, compared to their respective WT constructs. These 

results suggest that the −59 to −66 region of the CRP promoter is required for full (IL-6+IL-1β)-

induced CRP expression. 

 

Oct-1 inhibits (IL-6+IL-1β)-induced CRP expression even if the Oct-1 site is deleted 

from the promoter 

Because some residual (IL-6+IL-1β)-induced CRP transcription activity was present even 

if the Oct-1 site was deleted, we next determined whether overexpressed Oct-1 would have an 

effect on the residual (IL-6+IL-1β)-induced CRP expression. Surprisingly, overexpressed Oct-1 

inhibited the (IL-6+IL-1β)-induced CRP expression through the m-Oct promoters of both size; 

the inhibition was about 55%, 71%, 83% and 64% on Luc-157 WT, Luc-157 mOct, Luc-300 WT 

and Luc-300 m-Oct promoters, respectively (Fig. 2.6). The Oct-1-mediated inhibition of CRP 

expression on the m-Oct promoters was not significantly different from that on the WT  
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Figure 2.5. Effects of deleting the Oct-1 site on basal and (IL-6+IL-1β)-induced CRP promoter-

driven luciferase activity. (A) Hep3B cells were transfected with Luc-157 WT, Luc-157 m-Oct, 

Luc-300 WT and Luc-300 m-Oct CRP promoter constructs. After 40 h, CRP transcription was 

measured as Luc activity and plotted on the y-axis. Average ± S.E.M. of four experiments are 

shown. Unpaired two-tailed Students t-test was used to calculate p values. (B) Hep3B cells were 

transfected with Luc-157 WT, Luc-157 m-Oct, Luc-300 WT and Luc-300 m-Oct CRP promoter 

constructs. After 16 h, cells were either treated with IL-6 and IL-1β or left untreated for 24 h. 

CRP expression was measured as Luc activity. Basal Luc activity was taken as 1 and (IL-6+IL-

1β)-induced Luc activity was plotted on the y-axis as fold over basal Luc activity. Average ± 

S.E.M. of five experiments are shown. Unpaired two-tailed Students t-test was used to calculate 

p values. 
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promoters. These results suggest that the inhibitory effect of Oct-1 on CRP expression is not 

mediated solely through the Oct-1 site and that Oct-1 represses CRP expression even when Oct-1 

is not bound directly to the promoter. 

 

Figure 2.6. Oct-1 inhibits (IL-6+IL-1β)-induced CRP expression even if the Oct-1 site is deleted 

from the promoter. Hep3B cells were transfected with Luc-157 WT, Luc-157 m-Oct, Luc-300 

WT and Luc-300 m-Oct CRP promoter constructs. One set of cells were co-transfected with 

the expression vector encoding Oct-1 (1 μg). After 16 h, cells were either treated with IL-6 

and IL-1β or left untreated for 24 h. CRP expression was measured as Luc activity. Luc 

activity in the absence of Oct-1 was taken as 100%. Average ± S.E.M. of four experiments 

are shown. The p values for the difference between (IL-6+IL-1β) and (IL-6+IL-1β+Oct-1) 

groups were calculated by using paired two-tailed Students t-test (*p< 0.05, **p< 0.005). 

The p values for the difference between WT and corresponding m-Oct groups were 

calculated by using unpaired two-tailed Students t-test. 

 

Oct-1 inhibits C/EBPβ-induced CRP expression regardless of the Oct-1 site 

To further explore the mechanism of repressive action of Oct-1 on the CRP promoter, we 

investigated the effects of overexpressed Oct-1 on overexpressed C/EBPβ-induced CRP 

expression, in the presence and absence of the Oct-1 site. We first determined the effects of 
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deleting the Oct-1 site on C/EBPβ-induced CRP expression. C/EBPβ-induced CRP expression 

was reduced when the Oct-1 site was deleted, irrespective of the size of the CRP promoter used 

in the assay (Fig. 2.7A). CRP expression was reduced by about 53% (from 40-fold to 19-fold) 

when Luc-157 m-Oct promoter was used and by about 38% (from 59-fold to 37-fold) when Luc-

300 m-Oct promoter was used, compared to their respective WT constructs. These results 

suggest that the −59 to −66 region of the CRP promoter is also required for full C/EBPβ-induced 

CRP expression. We next investigated whether overexpressed Oct-1 would have an effect on 

C/EBPβ-induced CRP expression. Surprisingly, overexpressed Oct-1 inhibited C/EBPβ-induced 

CRP expression through the m-Oct promoters of both size; the inhibition was about 71%, 78%, 

57% and 79% on Luc-157 WT, Luc-157 m-Oct, Luc-300 WT and Luc-300 m-Oct promoters, 

respectively (Fig. 2.7B). These results further suggest that the inhibitory effect of Oct-1 on CRP 

expression is also mediated via interactions with other transcription factors bound to the CRP 

promoter. 
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Figure 2.7. Oct-1 inhibits C/EBPβ-induced CRP expression regardless of the Oct-1 site. (A) 

Hep3B cells were transfected with Luc-157 WT, Luc-157 m-Oct, Luc-300 WT and Luc-300 m-

Oct CRP promoter constructs. One set of cells were co-transfected with the expression vector 

encoding C/EBPβ (50 ng). After 40 h, CRP expression was measured as luciferase activity. 

Basal Luc activity was taken as 1 and C/EBPβ-induced Luc activity was plotted on the y-axis as 

fold over basal Luc activity. Average ± S.E.M. of four experiments are shown. Unpaired two-

tailed Students t-test was used to calculate p values. (B) Hep3B cells were transfected with Luc-

157 WT, Luc-157 m-Oct, Luc-300 WT and Luc-300 m-Oct CRP promoter constructs. One set of 

cells were co-transfected with the expression vector encoding C/EBPβ (50 ng). Another set of 

cells were co-transfected with the expression vectors encoding C/EBPβ (50 ng) and Oct-1 (1 μg). 

After 40 h, CRP expression was measured as Luc activity. Luc activity in the absence of Oct-1 

was taken as 100%. Average ± S.E.M. of four experiments are shown. The p values for the 

difference between C/EBPβ and (C/EBPβ+ Oct-1) groups were calculated by using paired two-

tailed Students t-test. (**p< 0.005). The p values for the difference between WT and 

corresponding m-Oct groups were calculated by using unpaired two-tailed Students t-test. 

was reduced when the Oct-1 site was deleted, irrespective of the size of the CRP promoter used.   
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Discussion 

The aim of this study was to determine whether Oct-1 acts as a transcriptional repressor 

or as an activator of CRP expression. Our approach included overexpressing Oct-1 in (IL-6+IL-

1β)-treated Hep3B cells transfected with CRP promoter linked to Luc reporter. We used a 157 bp 

promoter which contained only one C/EBP-site and a 300 bp promoter which contained both 

C/EBP-sites. Our major findings were: 1. Overexpressed Oct-1 inhibited (IL-6+IL-1β)-induced 

CRP promoter-driven Luc expression. 2. The inhibition of 157 bp CRP promoter-driven Luc 

expression was not different from that of 300 bp CRP promoter driven Luc expression. These 

findings suggest that Oct-1 acts as a transcriptional repressor of CRP expression and that the 

proximal 157 bp of the CRP promoter is sufficient for the repressive action of Oct-1. 

Because Oct-1 is also known to regulate expression of certain genes by associating with 

other transcription factors and cofactors (Nakshatri et al., 1995; Préfontaine et al., 1999; Shakya 

et al., 2011; Ström et al., 1996; Voss et al., 1991; Wysocka and Herr, 2003; Zwilling et al., 

1994), we determined whether Oct-1 can regulate CRP expression without binding to its cognate 

site on the CRP promoter. Our approach included overexpressing Oct-1 in (IL-6+IL-1β)-treated 

Hep3B cells transfected with either WT CRP promoter or m-Oct CRP promoter linked to Luc 

reporter. Another approach was to investigate the effects of overexpressed Oct-1 on 

overexpressed C/EBPβ-induced CRP expression in Hep3B cells transfected with either WT CRP 

promoter or m-Oct CRP promoter linked to Luc reporter. Our major findings were: 1. (IL-6+IL-

1β)-induced CRP expression was drastically reduced when the Oct-1 site was deleted, indicating 

that the −59 to −66 region of the CRP promoter was required for full (IL-6+IL-1β)-induced CRP 

expression. This finding was expected because the −59 to −66 region overlaps the binding site 

for the IL-1β-activated transcription factor NF-κB. 2. Overexpressed Oct-1 inhibited the residual 
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(IL-6+IL-1β)-induced CRP expression through the m-Oct promoter, indicating that the 

repressive effect of Oct-1 on CRP expression was not mediated solely via the binding of Oct-1 to 

the Oct-1 site. 3. C/EBPβ-induced CRP expression was reduced when the Oct-1 site was deleted, 

indicating that the −59 to −66 region of the CRP promoter was also required for full C/EBPβ-

induced CRP expression. This finding was unexpected because the −59 to −66 region does not 

overlap the C/EBP-site and, therefore, the deletion of this region should not have affected 

C/EBPβ-induced CRP expression. This finding therefore suggests that C/EBPβcooperates with 

one or more transcription factors bound to the −59 to −66 region. 4. Overexpressed Oct-1 

inhibited the residual C/EBPβ-induced CRP expression through the m-Oct promoter, further 

indicating that the repressive effect of Oct-1 on CRP expression was not mediated solely via 

the binding of Oct-1 to the Oct-1 site. 

We have previously shown that Oct-1 binds to a 25 bp oligo containing the overlapping 

Oct-1 and κB sites derived from the CRP promoter and that Oct-1 and NF-κB compete with 

each other for binding to their overlapping binding sites (Voleti and Agrawal, 2005). In this 

study, we found similar results using the 45 bp oligo derived from the CRP promoter which 

contained the overlapping Oct-1 and κB sites and the adjacent C/EBP-site. Deleting the Oct-1 

site from the oligo abolished the binding of not only Oct-1 to the oligo but also abolished the 

binding of HNF-1 and HNF-3 and perhaps also of NF-κB. This result was expected because the 

binding sites for these four transcription factors overlap. Our attempts to specifically abolish the 

binding of only Oct-1 to the CRP promoter, without disrupting the binding of HNF-1, HNF-3 

and NF-κB to their binding sites on the promoter, have been unsuccessful; mutating either the 

last 2 bp or 4 bp of the Oct-1 site did not abolish the binding of Oct-1 to its site (data not shown). 

It has been reported previously that the −42 to −57 region of the CRP promoter, where 
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NF-κB p50-p50, C/EBPβ, C/EBPξ, RBP-Jκ, and c-Rel form complexes with the promoter, is a 

critical regulatory region participating in CRP expression (Agrawal et al., 2001, 2003a, 2003b; 

Cha-Molstad et al., 2000, 2007; Singh et al., 2007; Voleti and Agrawal, 2005; Young et al., 

2008). Our current data suggest that the −57 to −74 region, where Oct-1, HNF-1, HNF-3, and 

NF-κB form complexes with the promoter, is also a critical regulatory region on the CRP 

promoter, that Oct-1 works through both regulatory regions, and that the two regulatory regions 

on the CRP promoter regulate CRP expression cooperatively. 

Combined data suggest that Oct-1 acts as a transcriptional repressor of CRP gene 

expression and that it does so through two mechanisms. The first mechanism involves the 

binding of Oct-1 to its site; the competition between Oct-1 and NF-κB for binding to their 

overlapping sites contributes to the regulation of CRP expression, as we have proposed 

previously (Voleti and Agrawal, 2005). Competition between Oct-1 and NF-κB, between Oct-1 

and C/EBPβ, and between Oct-1 and NF-Y, and subsequent repression of the promoter activity, 

has been shown for several other genes (dela Paz et al., 2007; Osborne et al., 2004; Wu et al., 

1997). It is possible that when Oct-1 binds to an overlapping site of a transcriptional activator, 

then Oct-1 usually acts as a transcriptional repressor. The second mechanism of Oct-1-mediated 

repression of CRP expression, as yet undefined, involves possible interactions with other 

transcription factors bound to the CRP promoter. 
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CHAPTER 3 

Exposing a Hidden Functional Site of C-reactive protein by Site-directed Mutagenesis 
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Abstract 

 

C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at 

physiological pH, is for substances bearing exposed phosphocholine moieties. Another 

pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL 

(ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by 

acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose 

the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP 

mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu
42

, an 

amino acid that participates in inter-subunit interactions in the CRP pentamer and is buried, to 

Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at 

physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic 

than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-

type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic 

pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other 

deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to 

investigate the functions of CRP in defined animal models of inflammatory diseases including 

atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally 

altered proteins, including ox-LDL, and available animal models may not have sufficient 

acidosis or other possible modifiers of the pentameric structure of CRP at the sites of 

inflammation. 
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Introduction 

C-reactive protein (CRP) is a pentameric protein comprised of five identical, non-

covalently joined subunits (reviewed in Ref.1). Each CRP subunit binds two calcium ions (2). At 

physiological pH, CRP binds to molecules and cells bearing exposed phosphocholine (PCh) 

moieties, such as pneumococcal C-polysaccharide (PnC), in a Ca
2+

-dependent manner (3, 4). We 

have shown previously that pH regulates the ligand-binding function of CRP. Acidic pH 

transforms native pentameric CRP into another pentameric configuration that recognizes 

immobilized ligands made up of conformationally altered proteins (5,6).  

CRP is a plasma protein that is also found in the extracellular matrix at the sites of 

inflammation, such as atherosclerotic lesions (7–10, reviewed in Ref. 11). Atherosclerosis is an 

inflammatory disease (12), and generation of an acidic extracellular milieu is a hallmark of 

inflammatory processes. It has been suggested that at the sites of inflammation, the pH may 

become acidic because of activated macrophages, hypoxia, lactate generation, and proton 

generation (13–20, reviewed in Ref. 21). Naghavi and co-workers (20) measured the pH of both 

human and rabbit atherosclerotic plaques and found the plaques to contain areas in which the pH 

was decreased to 5.5. The functions of CRP in the development of atherosclerosis are not known. 

The binding of CRP to two atherogenic forms of LDL, oxidized LDL (ox-LDL) and 

enzymatically modified LDL (E-LDL), has been investigated previously (8, 9, 22–26). We found 

that CRP did not bind to ox-LDL at physiological pH but gained the ability to bind to ox-LDL at 

acidic pH (6). Similarly, CRP bound to E-LDL at physiological pH, but the binding was 

dramatically enhanced at acidic pH (5). In addition, using E-LDL, we showed that CRP-bound 

E-LDL did not cause formation of macrophage foam cells (27). These in vitro data suggested 

that CRP should be able to bind to atherogenic LDL in vivo because of acidosis at the sites of 
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inflammation and prevent foam cell formation. 

However, CRP is neither proatherogenic nor atheroprotective in murine and rabbit 

models of atherosclerosis (28 –35). The reason for the unresponsiveness of human CRP in 

animal models of atherosclerosis is not clear. Because atherogenic LDL can be efficiently bound 

by CRP only when CRP is present in its acidic pH-modified structural form and because the 

animal models of atherosclerosis may lack an inflammatory environment (12, 36), a CRP mutant 

that can bind to atherogenic LDL at physiological pH is needed to investigate the possible 

atheroprotective role of CRP using available animal models. 

The aim of this study was to generate a CRP mutant that can bind to ox-LDL without the 

requirement of acidic pH. Because the ox-LDL-binding site in pentameric CRP is formed at 

acidic pH, our choice of amino acids in CRP for mutagenesis was on the basis of the hypothesis 

that acidic pH loosens the CRP pentamer to expose amino acids that are otherwise hidden at 

physiological pH, and it may be possible to mimic the effect of acidic pH on CRP by mutating 

certain amino acids. Accordingly, we focused on the amino acids participating in the inter-

subunit 

interactions in the CRP pentamer. The following amino acid pairs have been implicated in inter-

subunit interactions (37–39): Val
10

-Ile
104

, that is, Val
10

 of one subunit interacts with Ile
104

 of 

adjacent subunit; Pro
12

-Ser
118

; Tyr
40

-Pro
115

; Tyr
40

-Val
117

; Glu
42

-Glu
85

; Ser
46

-Glu
85

; Glu
42

-Lys
119

; 

Ser
44

-Lys
69

; Val
90

-Pro
87

; Gly
101

-Lys
201

; Ser
120

-Tyr
197

; Pro
115

-Trp
205

; and Arg
118

-Asp
155

. In this 

study, we mutated two amino acids,Glu
42

(to Gln) and Pro
115

(to Ala), from the inter-subunit 

contact region, and one amino acid, Tyr
175

(to Ala), which is not a part of the inter-subunit 

contact region (Fig. 3.1), and evaluated the effect of these mutations on the binding of CRP to 

several immobilized proteins, including ox-LDL. 
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Figure 3.1. The structure of CRP. A, Discovery Studio Visualizer 3.0 software (Accelrys 

Software, Inc.) was used to generate a ribbon diagram of the crystal structure of pentameric CRP 

obtained from RCSB Protein Data Bank (PDB ID 1B09). B, two of the five subunits are shown. 

The side chains of Tyr
40

, Glu
42

,Pro
115

, Lys
119

, and Tyr
175

, relevant for this work, are highlighted. 

Calcium ions are shown as green balls. 
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Experimental Procedures 

Construction and expression of CRP mutants 

The construction of the CRP mutants E42Q (substitution of Glu
42

 with Gln), P115A 

substitution of Pro
115

 with Ala), and Y175A (substitution of Tyr
175 

with Ala) has been reported 

previously (6, 40, 41). All three mutants were stably expressed in CHO cells as described 

previously (41). CHO cell lines expressing each CRP mutant were isolated by a series of 

subcloning steps. 

 

Purification of CRP 

Native WT CRP was purified from discarded human pleural fluid as described previously 

(6) and stored frozen. Purification of CRP mutants from the CHO cell culture supernatants 

involved two steps: a Ca
2+

-dependent affinity chromatography on a PCh-Sepharose column 

(Pierce) followed by gel filtration on a Superose12 column (GE Healthcare) as described 

previously (6) and stored frozen. On the day of the experiments, CRP was repurified by gel 

filtration on a Superose12 column to remove any form of modified CRP that might have been 

generated because of storage of CRP. Repurified CRP was stored in 10 mM TBS (pH 7.2), 

containing 2 mM CaCl2 at 4 °C, and was used within a week. 

 

Preparation of Ox-LDL 

Native LDL was isolated from human plasma by sequential ultracentrifugation 

(1.019<d>1.063 g/ml), as described previously (42). Ox-LDL was prepared by treating LDL 

with 20µM CuCl2 in PBS for 12 h at 37 °C (43). The Cu
2+

-mediated oxidation was terminated by 

adding EDTA to the reaction at a final concentration of 0.5 mM. Following dialysis against PBS, 
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ox-LDL was passed through chelex-100 resin (Bio-Rad) to remove any traces of Cu
2+

, filter 

sterilized, and stored in the dark at 4 °C. The degree of oxidation of LDL was evaluated by 

agarose gel electrophoresis. Ox-LDL had 3.2- to 3.5-fold higher RF values than native LDL. The 

degree of oxidation was also determined by TBARS assay (Cayman Chemical Co.), a 

colorimetric assay using malondialdehyde as a standard. Ox-LDL used in this study resulted in 

30.5 nmoles malondialdehyde/mg of protein. Protein concentrations of the ox-LDL preparations 

were measured using the microBCA protein assay kit (Pierce). 

 

Ox-LDL-binding assay 

Microtiter wells were coated with 10 µg/ml ox-LDL diluted in TBS (350 µl/well) 

overnight at 4 °C. Purified CRP (WT and mutants), diluted in TBS (pH 7.2), containing 0.1% 

gelatin, 0.02% Tween 20, and 2 mM CaCl2 (TBS-Ca), was added in duplicate wells (100 µl/well) 

and incubated for 2 h at37°C, unless otherwise mentioned in the figure legends. After the CRP 

incubation step, the wells were washed with TBS-Ca. Rabbit anti-CRP antibody (Sigma), diluted 

1/1000 in TBS-Ca, was used (100 µl/well, 1 h at37°C) to detect bound CRP. HRP-conjugated 

donkey anti-rabbit IgG (GE Healthcare), diluted in TBS-Ca, was used (100 µl/well, 1 h at 37 °C) 

as the secondary antibody. Color was developed, and the absorbance was read at 405 nm in a 

microtiter plate reader (Molecular Devices). 

 

PnC-binding assay 

Binding activity of CRP for PCh was evaluated by using PnC (Statens Serum Institut) as 

the ligand. Microtiter wells were coated (350 µl/well) with 10 µg/ml PnC in TBS overnight at 4 

°C. CRP diluted in TBS-Ca (various pH, various Ca
2+ 

concentrations) was added (100 µl/well) in 
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duplicate wells. After incubating the plates for 2 h at 37°C, the wells were washed with 

appropriate TBS-Ca. The anti-CRP monoclonal antibody HD2.4 (0.5 µg/ml), diluted in TBS-Ca, 

was used (100 µl/well, 1 h at 37°C) to detect bound CRP. HRP-conjugated goat anti-mouse IgG, 

diluted in TBS-Ca, were used (100 µl/well, 1 h at 37°C) as the secondary antibody. Color was 

developed, and the absorbance was read at 405 nm in a microtiter plate reader. 

 

Protein ligand-binding assay 

This assay was used to determine the binding of CRP to proteins other than ox-LDL and 

was performed as described for the ox-LDL-binding assay, except that the microtiter wells were 

coated with 10 µg/ml complement factor H (purified from normal human plasma) (44), amyloid 

β (fragment 1–38, catalog no. A0189, Sigma-Aldrich), BSA (catalog no. A0281, Sigma-

Aldrich), or gelatin (catalog no. G9382, Sigma-Aldrich) diluted in TBS (350 µl/well) overnight 

at 4°C.  

 

Molecular modeling of CRP 

Molecular modeling was on the basis of the x-ray crystal structure of the WT CRP-PCh 

complex (39). The PDB file 1BO9.pdb was imported into SwissPdbViewer (also known as 

DeepView) (45) and used to substitute Glu
42

 with Gln. The in silico mutated structure was saved 

as a PDB file and opened in the free version of Discovery Studio Visualizer 3.0 (Accelrys) for 

measuring distances and for creating figures. On-screen images were captured with Snagit 10 

(TechSmith) and saved as portable network graphic files. Salt bridges were analyzed by inputting 

the atomic coordinates for the α and β subunits from each PDB file using web-based software 

(46, 47). 
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CD spectroscopy 

The CD spectra of CRP (100 µg/ml) were recorded at 25°C using a J-815 CD 

spectrometer equipped with a Peltier-type temperature control system (JASCO model PTC-

423S/15) and interfaced to a personal computer. The instrument was calibrated with (1S)-(+)-10-

camphorsulfonic acid. The CD spectra were measured from 200 nm to 250 nm every 0.5 nm with 

4-s averaging per point and a 2-nm bandwidth. A 0.1-cm path length cell was used for obtaining 

the spectra. The CD spectra were signal-averaged by adding four scans and base line-corrected. 

 

Gel filtration 

Gel filtration analysis of CRP at pH 5.6 was carried out on a Superose12 column. The 

column was equilibrated and eluted with TBS (pH 5.6) containing 2 mMCaCl2 at a flow rate of 

0.3 ml/min. Fractions (60 fractions, 0.25 ml each) were collected, and absorbance at 280 nm was 

measured to locate the elution volume of CRP from the column.  

 

1-Anilinonaphthalene-8-sulfonic acid (ANS)-binding fluorescence assay 

The hydrophobic fluorescent probe ANS was purchased from AnaSpec, Inc. The ANS-

binding fluorescence assays were performed as described previously (6) to investigate the 

structural changes in CRP at pH 5.6. CRP (50 µg/ml) in TBS containing 2 mM CaCl2, at various 

pH levels, was mixed with ANS at a final concentration of 100 µM. The fluorescence intensity 

of the binding of ANS to CRP was measured by using the excitation and emission wavelengths 

of 390 nm and 460 nm respectively, in a spectrofluorometer (Fluostar Galaxy, BMG Lab 

Technologies). 
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Results 

E42Q CRP binds to ox-LDL more efficiently than WT CRP 

The construction, expression, purification and some characterization of E42Q, P115A, 

and Y175A CRP mutants have been reported previously, and their overall structure was found 

not to be different from WT native and WT recombinant CRP (6, 40, 41). The elution profile of 

each CRP mutant from the gel filtration column was identical to that of WT CRP, suggesting that 

all CRP mutants were pentameric (Fig. 3.2A). The purity of CRP preparations was confirmed by 

denaturing SDS-PAGE (Fig. 3.2B). The PCh-binding activity of all CRP mutants was also 

identical to that of WT CRP (Fig. 3.2, C and D). 

The binding of CRP mutants to ox-LDL was first determined at pH 7.0, a pH at which 

WT CRP does not bind to ox-LDL (6). To show maximum possible binding of CRP to ox-LDL 

that can be measured by this assay, pH 5.0 was used, a pH at which WT CRP binds efficiently to 

ox-LDL (6). At pH 7.0, the binding of E42Q CRP to ox-LDL was significantly higher than the 

negligible binding of either WT or P115A and Y175A CRP mutants to ox-LDL (Fig. 3.3A). The 

minimal binding of WT and mutants P115A and Y175A to ox-LDL seen at pH 7.0 may be due to 

the exposure of a few PCh groups in some ox-LDL molecules (22). As expected, at pH 5.0, the 

binding of the CRP mutants to ox-LDL was not different from that of WT CRP. These data 

indicated that E42Q CRP gained the ability to bind to ox-LDL at physiological pH. However, 

further structural change was required for maximal binding. Therefore, the binding of each CRP 

species to ox-LDL was evaluated from pH 7.0 down to pH 5.0, where maximal binding for all 

species occurred (Fig. 3.3B). The binding of mutants P115A and Y175A to ox-LDL, as a 

function of pH, was not different from that of WT CRP. However, the binding of E42Q CRP to 

ox-LDL was enhanced between pH 6.5 and 5.5, as demonstrated by the shift in the binding curve  
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Figure 3.2. E42Q, P115A and Y175A mutant CRPs retain their pentameric structure and 

phosphocholine binding ability A, Elution profiles of WT and mutant CRP from the Superose12 

gel filtration column. CRP in TBS, pH 7.2, containing 2 mM CaCl2 (TBS-Ca) was applied to the 

column equilibrated with TBS-Ca, as follows: WT CRP (1.6 mg), E42Q CRP (1.0 mg), P115A 

CRP (1.7 mg) and Y175A CRP (0.9 mg). CRP was eluted with TBS-Ca at the flow rate of 0.3 

ml/min. Sixty fractions (0.25 ml) were collected and protein measured to locate the elution 

volume of CRP from the column. B, Denaturing SDS-PAGE (4%-20% gel) of CRP. 5 µg of each 

CRP was applied to the gel; the gel was stained with Coomassie brilliant blue. M, BioRad‟s 

broad range molecular weight marker; Lane 1, WT CRP; Lane 2, E42Q CRP; Lane 3, P115A 

CRP, and Lane 4, Y175A CRP. C, Binding of WT and mutant CRP to PCh-substituted BSA 

(PCh-BSA). D, Binding of WT and mutant CRP to PnC. Binding activity of CRP for PCh-

containing ligands was evaluated by two assays using PCh-BSA and PnC in the solid phase. 

Wells were coated with either PCh-BSA or PnC at 10 µg/ml in TBS (350 µl/well), overnight at 4 

ºC. CRP diluted in TBS-Ca was added (100 µl/well) in duplicate wells. After incubating the 

plates for 2 h at 37 ºC, the wells were washed with TBS-Ca. The anti-CRP mAb HD2.4 (0.5 

µg/ml), diluted in TBS-Ca, was used (100 µl/well; 1 h at 37 ºC) to detect bound CRP. HRP-

conjugated goat anti-mouse IgG, diluted in TBS-Ca, were used (100 µl/well; 1 h at 37 ºC) as the 

secondary antibody. Color was developed and the absorbance was read at 405 nm in a microtiter 

plate reader. 
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of the E42Q mutant relative to the other forms. Consequently, pH 5.6 was chosen for performing 

a CRP dose response assay to compare the efficiency of binding of various CRP species to ox-

LDL (Fig. 3.3C). The resulting curves indicate that E42Q CRP was ~4-fold more efficient than 

WT CRP in binding to ox-LDL. These data indicate that E42Q CRP is more potent than WT 

CRP. E42Q CRP binds to ox-LDL at physiological pH (Fig. 3.3A), E42Q CRP requires less 

acidic pH for maximal binding to ox-LDL (Fig. 3.3B), and more E42Q CRP binds to ox-LDL at 

any pH (Fig. 3.3C). 

 

Figure 3.3. Binding of CRP to ox-LDL.A, CRP (10 µg/ml), diluted in TBS-Ca (pH 7.0 and 5.0) 

containing 2 mMCaCl2, was added to ox-LDL-coated wells. Bound CRP was detected using a 

rabbit anti-CRP antibody and HRP-conjugated donkey anti-rabbit IgG. The absorbance of the 

color was read at 405 nm. Results are shown as mean±S.D. of five assays. *,p<0.005 between 

WT and E42Q CRP.B, CRP (10 µg/ml), diluted in TBS-Ca (pH 7.0 to 5.0), containing 2 mM 

CaCl2, was added to ox-LDL-coated wells. Bound CRP was detected as in A. C, Increasing 

concentrations of CRP, diluted in TBS-Ca (pH 5.6) containing 2 mM CaCl2, was added to ox-

LDL-coated wells. Bound CRP was detected as in A. A representative of four experiments is 

shown for B and C. 

 

 

E42Q CRP Is neither monomerized nor aggregated at any pH 

Gel filtration, ox-LDL-binding reversibility assays, ANS binding fluorescence assays, 

and CD spectra were used to investigate the possibility that the mutation and acidic pH might 

have caused monomerization and/or aggregation of CRP and that the observed binding of CRP to 
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ox-LDL might be due to monomerized and aggregated forms of CRP. 

Gel filtration was used to determine whether E42Q CRP remained pentameric at pH 5.6 

after incubation for 2 h at 37°C, the conditions used in the ox-LDL-binding assays. The elution 

profiles of E42Q CRP at pH 7.2 and 5.6 were identical (Fig. 3.4A). These data indicated that 

E42Q CRP remained pentameric at pH 5.6. It was neither monomerized nor aggregated. 

Next, the effect of pH neutralization on the ox-LDL-binding activity of CRP was 

evaluated (Fig. 3.4B). Only E42Q CRP showed significant binding to ox-LDL at pH 7.0. At pH 

5.6, each CRP species efficiently bound to ox-LDL. When a CRP solution, which had been 

incubated at pH 5.6 for 2 h at 37°C, was neutralized and the binding assay was performed at pH 

7.0, no CRP bound to ox-LDL. Because it is known that monomerized CRP binds to ox-LDL at 

pH 7.0 (25) and that monomers of CRP cannot form pentamers in vitro, these data suggested that 

CRP was not monomerized at acidic pH and that any structural change in CRP at pH 5.6 was 

reversible at pH 7.0.  

ANS-binding fluorescence assays were used to evaluate hydrophobic changes in the 

structure of CRP at pH 5.6 (Fig.3.4C). Incubation of ANS with all forms for CRP at pH 7.0 

resulted in a negligible increase in fluorescence. In contrast, ANS binding to CRP at pH 5.6 

resulted in significantly increased fluorescence compared with that at pH 7.0. Neutralization of 

the pH 5.6 CRP solutions, which had been incubated for 2 h at 37°C to pH 7.0, followed by the 

addition of ANS resulted in no increase in fluorescence consistent with no binding of ANS. 

These data suggested that the hydrophobicity of CRP was increased at acidic pH but that the 

change was reversible. The reversibility of the structural changes in the various forms of CRP 

indicated that they were neither monomeric nor aggregated at acidic pH. 
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Figure 3.4. CRP is neither monomerized nor aggregated at acidic pH. A, Elution profiles of 

E42Q CRP from the Superose12 gel filtration column. CRP (250 µl of 5.6 mg/ml) in TBS (pH 

7.2) containing 2 mM CaCl2 was applied to the column equilibrated with the same buffer (black). 

CRP (250 µl of 2.2 mg/ml), after incubation for 2 h at 37°C in TBS (pH5.6) containing 2 mM 

CaCl2 was applied to the column equilibrated with the same buffer (red). CRP was eluted with 

the respective buffers. A representative of two experiments is shown. B, Reversibility of the ox-

LDL-binding activity of CRP. CRP at pH 5.6 was first incubated for 2 h at 37°C.After removing 

an aliquot, the pH was neutralized. These CRP (10 µg/ml) samples were then added to ox-LDL-

coated microtiter wells. Bound CRP was detected as in Fig. 3.3. Red bars, CRP in TBS-Ca (pH 

7.2); black bars, CRP in TBS-Ca (pH 5.6), and incubated at 37 °C for 2 h before adding 

to the wells; blue bars, as in black, except that the pH was neutralized before adding CRP to the 

wells. Results are shown as mean±S.D. of five independent assays. C, ANS-binding fluorescence 

of CRP samples used in B. Red bars, CRP at pH 7.2; black bars, CRP at pH 5.6 pre-incubated at 

37 °C for 2 h; blue bars, after incubating CRP at pH 5.6 at 37 °C for 2 h, the pH was neutralized. 

Results are shown as mean±S.D. of five experiments. D, Far UV CD spectra of WT and E42Q 

CRP in TBS-Ca at various pH are shown. 
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Finally, we used CD spectroscopy to determine global changes in the secondary structure 

of CRP because of mutation of Glu42 and acidic pH (Fig. 3.4D). The comparison of the far UV 

CD spectra of WT and E42Q CRP at pH 5.0, 5.6, and 7.2 showed minimal changes in the 

secondary structures of both CRP because of acidic pH, and the changes in the secondary 

structure of E42Q was not different from the changes in WT CRP. These data indicated that the 

overall secondary structure of WT CRP was maintained in E42Q CRP at any pH. 

Combined data suggested that, at acidic pH, CRP was not monomerized, CRP was not 

completely denatured, CRP was not aggregated, the pentameric structure of CRP was modified 

although there were no global changes in the secondary structure, and the modifications were 

reversible. 

 

Acidic pH causes localized structural changes in CRP 

Because E42Q CRP required a buffer less acidic than that required by WT CRP for 

comparable binding to ox-LDL and because there were no global changes at acidic pH in any 

CRP, we hypothesized that the structural changes in CRP in response to acidic pH and mutations 

were only subtle. Localized conformational changes in CRP were investigated by determining 

the effects of acidic pH on the Ca
2+

-binding site of CRP by measuring the Ca
2+

 requirement of 

CRP to bind to one of its Ca
2+

-dependent ligands, PnC. A change in the Ca
2+

 requirement for 

comparable PnC-binding activity at different pH would reflect a change in the Ca
2+

 affinity of 

CRP. At pH 7.2, WT CRP bound efficiently, even at 0.06 mM Ca
2+

, to PnC (Fig. 3.5A). 

However, at pH 5.0, 2 mM Ca
2+

 was required for efficient binding of CRP to PnC. The increase 

in the Ca
2+

 requirement was directly related to the decrease in pH. These results suggested that 

acidic pH modified the Ca
2+

-binding site of CRP and reduced the Ca
2+

 affinity of CRP and that 2  
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Figure 3.5. Determination of local structural changes in CRP. A, PnC-binding activity of WT 

CRP as a function of pH and Ca
2+

 concentration. WT CRP (50 ng/ml), diluted in TBS-Ca 

(various pH, various concentrations of Ca
2+

) was added to PnC-coated wells. A representative of 

three experiments is shown. B, PnC-binding activity of CRP mutants as a function of pH and 

Ca
2+

 concentration. Increasing concentrations of CRP diluted in TBS-Ca (various pH) containing 

2 mM CaCl2 was added to PnC-coated wells. In both A and B, bound CRP was detected by using 

a mouse anti-CRP antibody and HRP-conjugated goat anti-mouse IgG. The absorbance of the 

color was read at 405 nm. A representative of three experiments is shown. C, molecular 

modeling of CRP on the basis of the x-ray crystal structure of the WT CRP-PCh complex 

(1B09.pdb) is shown. 
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mM Ca
2+

 should be used to perform ligand-binding assays at acidic pH. As shown in Fig. 3.5B, 

all CRP species were similar in binding to PnC at any pH in 2 mM Ca
2+

, suggesting that the 

mutation of CRP did not reduce the Ca
2+

 affinity of CRP. 

Next, we evaluated the structural change in CRP caused by the substitution of Glu
42

 to 

Gln by using molecular modeling (Fig. 3.5C). In WT CRP, there is an ionic bond between Glu
42

 

and Lys
119

 at a distance of 3.787 Å. In E42Q CRP, this ionic bond is lost. Instead, there is the 

possibility of a weak H-bond between Gln
42

 and Lys
119

. The shortest distance between the H on 

the Lys
119

 ϵ-amino group and the O on the side chain of Gln
42

 is 2.821 Å, whereas H-bonds are 

normally about 2.0 Å. The modeling of WT and E42Q CRP further suggested that there might be 

a localized structural change in CRP caused by the substitution of Glu
42

 to Gln. 

 

Reexamination of our previously reported findings 

Recently we reported that, at pH 4.6 and in 0.1 mM Ca
2+

, CRP did not bind to PnC, that a 

temperature of 37 °C was required for the binding of CRP to ox-LDL, and that the P115A CRP 

mutant was more efficient than WT CRP in binding to ox-LDL (6). Our current finding (Fig. 

3.5A) that the affinity of CRP for Ca
2+

 was drastically reduced at pH 5.0 prompted us to 

reexamine our previously reported findings. 

As shown in Fig. 3.6, at pH 4.6, CRP did not bind to PnC, even in 2mM Ca
2+

. Just for 

this reason we did not include pH 4.6 in this investigation. As shown in Fig. 3.7, at acidic pH 

and in 2 mM Ca
2+

, 37 °C was not necessary for the binding of E42Q CRP to ox-LDL, suggesting 

that the efficiency of binding of CRP to ox-LDL depends upon all three factors: pH, temperature, 

and the extent of the structural change in CRP. As shown in Fig. 3.8, P115A CRP bound to ox-

LDL more efficiently than WT CRP in 0.1 mM Ca2+ but not in 2 mM Ca2+, whereas E42Q 
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Figure 3.6. Acidic pH reduces the affinity of CRP for Ca
2+

. As in Fig. 3.5A, PnC-binding activity 

of WT CRP as a function of pH and Ca
2+

 concentration is shown. CRP diluted in TBS-Ca (pH 

5.0 and 4.6) containing 0.1 mM or 2 mM CaCl2 was added to PnC-coated wells. After 2 h at 

37°C, the wells were washed once with respective TBS-Ca and then with TBS-Ca (pH 7.2) 

containing 2 mM CaCl2. Bound CRP was detected using a mouse anti-CRP antibody and HRP-

conjugated goat anti-mouse IgG. The absorbance of the color was read at 405 nm. A 

representative of three experiments is shown. 

 

 

Figure 3.7. Effect of temperature on the binding of WT and mutant CRP to ox-LDL. Microtiter 

wells were coated with 10 µg/ml of ox-LDL diluted in TBS (350 µl/well). CRP (10 µg/ml), 

diluted in TBS-Ca (2 mM or 0.1 mM CaCl2), pH 7.0 to 4.6, was added to the wells and incubated 

at room temperature (23 ºC) for 2 h. Bound CRP was detected by using a rabbit polyclonal anti-

CRP antibody and HRP-conjugated donkey anti-rabbit IgG. The absorbance of the developed 

color was read at 405 nm. A representative of two experiments is shown. 
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Figure 3.8. Effect of Ca
2+

 on the binding of WT and mutant CRP to ox-LDL. Left panel, CRP 

(10 µg/ml), diluted in TBS-Ca (2 mM or 0.1 mM CaCl2) (pH 7.0 to 5.0) was added to ox-LDL-

coated wells. Right panel, increasing concentrations of CRP, diluted in TBS-Ca (2 mM or 0.1 

mM CaCl2) (pH 5.6) was added to ox-LDL-coated wells. Bound CRP was detected by using a 

rabbit anti-CRP antibody and HRP-conjugated donkey anti-rabbit IgG. The absorbance of the 

color was read at 405 nm. A, comparison of WT and E42Q CRP.B, comparison of WT and 

P115A CRP.C, comparison of WT and Y175A CRP.D, comparison of E42Q and P115A CRP. A 

representative of three experiments is shown. 
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CRP bound to ox-LDL more efficiently than WT CRP at 2 mM Ca2+ also. Thus, a decrease in 

the concentration of Ca2+ is not necessary for E42Q CRP to bind to ox-LDL. 

 

E42Q CRP has higher avidity than WT CRP for binding to a variety of other immobilized 

proteins 

We reported previously that the binding of CRP to ox-LDL at acidic pH was not due to 

its specificity for binding to ox-LDL but due to its specificity for binding to immobilized, 

modified, and conformationally altered proteins, irrespective of the identity of the protein (5, 6). 

Therefore, we investigated the binding activity of E42Q CRP at acidic pH for a few immobilized 

proteins other than ox-LDL. Binding curves of WT CRP and E42Q CRP to the immobilized 

proteins, factor H, amyloid β, BSA, and gelatin, over a pH range from 7.0 down to 5.0, are 

shown in Fig. 3.9. In every case, more E42Q CRP was bound to the tested proteins, and this 

binding required less acidic pH compared with that required by WT CRP. Interestingly, E42Q 

CRP also bound to gelatin at acidic pH. However, the presence of 0.1% gelatin in the binding 

buffer used in the assays did not inhibit the binding of E42Q CRP to immobilized gelatin (data 

not shown). These results indicated that the substitution of Glu
42

 to Gln exposed a hidden ligand-

binding site in CRP for deposited and conformationally altered proteins present in an acidic pH 

environment. These findings also suggested that the protein component of ox-LDL was the CRP 

ligand. 
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Figure 3.9. Binding of CRP to immobilized proteins at acidic pH. Results of a protein ligand-

binding assay are shown. Microtiter wells were coated with complement factor H, amyloidβ, 

BSA, and gelatin. CRP (10 µg/ml), diluted in TBS-Ca (pH 7.0 to 5.0), was then added to the 

wells. Bound CRP was detected by using a rabbit anti-CRP antibody and HRP-conjugated 

donkey anti-rabbit IgG. The absorbance of the developed color was read at 405 nm. A 

representative of three experiments is shown 
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Discussion 

The goal of this investigation was to use site-directed mutagenesis to generate a CRP 

mutant capable of binding to ox-LDL without the requirement of acidic pH. Our major findings 

were: 1) Mutation of Glu
42

, an amino acid that participates in inter-subunit interactions in the 

CRP pentamer, to Gln resulted in a CRP mutant (E42Q) that showed significant binding to ox-

LDL at physiological pH. For maximal binding to ox-LDL, the E42Q CRP required a pH less 

acidic than that required by WT CRP. Also, at any given pH, the binding of E42Q CRP to ox-

LDL was more efficient than the binding of WT CRP to ox-LDL. 2) The acidic pH did not 

measurably change the secondary structures of WT or E42Q CRP and did not monomerize or 

aggregate CRP. However, the acidic pH changed the hydrophobicity of CRP and reduced affinity 

for Ca
2+

. These acidic pH-induced changes were reversible at physiological pH. 3) E42Q CRP 

had a higher avidity than WT CRP for binding to not only ox-LDL but also to other immobilized, 

and therefore conformationally altered, proteins when both CRP and immobilized proteins were 

exposed to acidic pH. 

Our data suggest that CRP undergoes a pH-dependent reversible transition between two 

conformational forms without a significant disruption of its secondary structure, providing new 

insight into the functions of CRP in inflammatory diseases. The data also suggest that the 

binding of CRP to ox-LDL at acidic pH is due to the acidic pH-dependent changes in CRP, 

perhaps because of the loosening of the CRP pentamer. In CRP, the side chain of Glu
42

 in one 

subunit ionically interacts with the main chain of Glu
85

 (the distance between the Glu
42

 and the α 

amino of Glu
85

 is 6.242 Å away, which is beyond a salt bridge distance of usually only 4 Å) and 

with the side chain of Lys
119

 of the adjacent subunit. The increased binding of E42Q CRP at pH 

values closer to physiological conditions are consistent with the loss of an ionic interaction 
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between Glu
42

 and Lys
119

 and suggestive of a loosening of the pentameric structure. Partial 

exposure of the hidden ox-LDL-binding site of CRP by mutagenesis raises the possibility that 

conditions other than acidic pH may also be able to switch the structure of CRP to a more active 

configuration. 

Acidic pH is not the only characteristic of inflammatory sites. Free radicals and other 

oxidants may also be present at the sites of inflammation in arteries and may oxidize CRP in 

addition to oxidizing LDL to facilitate the binding of CRP to ox-LDL. Although acidic pH 

modifies the structure of CRP (6, 48) and is just one possible in vivo modifier of the structure of 

CRP, other modifiers of the structure of CRP have also been reported (49,50). CRP modified 

with active oxygen species has been shown to modulate the stimulus-dependent activation of 

platelets (49). A redox switch in CRP involving the reduction of its single disulfide bond has 

been shown to modulate the activation of endothelial cells by CRP (50). Also, CRP is not the 

only host defense protein that is activated by a conformational change. Other host defense 

proteins of the immune system, for example, β-defensin 1 and NPR1, have been shown recently 

to be activated by conformational changes in response to redox conditions (51, 52) and 

nitrosylation (52). We are currently investigating the effects of several other inflammation-

related protein modifiers, including redox conditions and nitrosylation, on the binding of CRP to 

deposited, conformationally altered, and amyloidogenic proteins. 

In animal models of atherosclerosis, WT CRP is neither atheroprotective nor 

proatherosclerotic (28 –35). We hypothesize that the lack of an effect of CRP in animal models 

is due to the absence of an inflammatory environment that is needed for appropriately altering 

the structure of CRP so it can capture atherogenic LDL. Indeed, atherosclerosis is not naturally 

developed in these animal models, and in humans it is developed over a period of several years 
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or decades (12, 36). The E42Q CRP might be useful in investigating the functions of CRP in 

defined animal models of atherosclerosis. E42Q CRP may provide a better molecule for testing 

the hypothesis that CRP requires a structural change to bind to ox-LDL in vivo. Our finding that 

the binding of E42Q CRP to ox-LDL was dramatically increased at physiological pH when the 

concentration of Ca
2+

 was 20-fold lower than normal (0.1 mM compared with 2 mM) is also 

significant because it suggests that E42Q CRP will remain active even at low Ca
2+

 

concentrations at the sites of inflammation. Therefore, we propose that E42Q CRP will bind 

to atherogenic LDL in vivo even if the acidic pH component of inflammation is missing or mild 

in the arterial walls of the animal models of atherosclerosis to prevent foam cell formation and 

thus reduce the development of atherosclerosis. 

The reversibility of the structural changes in the CRP pentamer and of its ligand-binding 

activities at physiological pH indicates that the functions of CRP in circulation are different from 

those at the localized sites of inflammation, where both CRP and the ligands of CRP are exposed 

to an inflammatory environment. Interestingly, E42Q CRP efficiently bound not only to ox-LDL 

but to a variety of immobilized proteins, which includes proteins that might be deposited or 

bound to structures in the body. For example, deposition of factor H has been implicated in age-

related macular degeneration and pneumococcal infection (53–58). It is of interest that chaperone 

proteins, the family of proteins recognizing misfolded proteins, are also, like CRP, ancient 

proteins (59). Overall, our findings suggest that E42Q CRP may serve as a tool to investigate the 

functions of CRP in each and every inflammatory disease involving deposition of proteins, such 

as autoimmune diseases, and in which CRP has been implicated (60 –63). Investigations using 

E42Q CRP in animal models of inflammatory diseases may also establish the therapeutic 

potential of E42Q CRP. It may also be possible to design small-molecule compounds that can 
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target and change the structure of endogenous native CRP to mimic the structures of acidic pH-

treated CRP or E42Q CRP. 
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CHAPTER 4 

Hydrogen peroxide modifies C-reactive protein structure and exposes a hidden functional site 
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Abstract 

 

C-reactive protein (CRP) is an evolutionarily conserved protein involved in the response to 

systemic inflammation. CRP is a plasma protein that is also deposited at sites of localized 

inflammation, such as atherosclerotic lesions. Atherosclerotic lesions are characterized by 

dysregulation of the redox environment due to the generation of reactive oxygen species (ROS). 

In this study, we used hydrogen peroxide (H2O2) as a prototypical ROS and investigated its 

influence on the binding specificities of CRP. In the presence of H2O2, CRP gained the ability to 

bind immobilized ox-LDL in a H2O2 dose-dependent manner. The ox-LDL binding ability was 

retained even when H2O2 was dialyzed out, indicating that H2O2-induced modification in CRP 

exposed a hidden ox-LDL binding site. H2O2-induced binding of CRP was not restricted to ox-

LDL, as H2O2-CRP bound a variety of immobilized and structurally altered proteins. H2O2-

treatment did not disrupt the phosphocholine-binding site in the CRP pentamer. HD2.4 

reactivity, gel filtration profile and 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence 

assays showed that H2O2-treatment did not alter the CRP pentamer, but only induced a local 

structural change. The exact nature and mechanism of H2O2-induced modification of CRP 

structure and function requires further study. However, our results suggest that the function of 

CRP is dependent on the environmental context, and that it might play an important role in 

inflammatory diseases that involve deposition and structural modification of proteins. 
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Introduction 

Human C-reactive protein (CRP) is a member of the evolutionarily conserved 

pentraxin family of proteins that participates in the response to systemic inflammation 

(reviewed in (1, 2)). The CRP molecule is a pentamer made up of five identical, non-

covalently associated subunits arranged symmetrically around a central pore. At physiological 

pH, CRP binds to molecules and cells that contain exposed phosphocholine (PCh) moieties in 

a Ca
2+

-dependent manner. Under certain conditions CRP can adopt a different pentameric 

configuration, which exposes a hidden binding site and enables it to bind to immobilized, 

aggregated or conformationally altered proteins(3). 

CRP is a plasma protein that is also found deposited at sites of localized inflammation, 

such as in atherosclerotic lesions(4-7). Atherosclerosis is a disease of chronic inflammation 

that is initiated by the deposition, and subsequent modification of low-density lipoproteins 

(LDL) in the artery wall. Excessive cholesterol and lipid uptake from modified LDLs by 

macrophages & monocytes converts them to pro-inflammatory foam cells – the key event in 

the pathogenesis of atherosclerosis (reviewed in (8, 9)). The functions of CRP in 

atherosclerosis are not very clear. The binding of CRP to the atherogenic forms of LDL, 

oxidized LDL (ox-LDL) and enzymatically modified LDL (E-LDL) has been studied 

previously(7, 10-15). CRP binds E-LDL in a Ca
2+

-dependent and PCh-inhibitable manner at 

pH 7.0, and this binding is increased dramatically at acidic pH(16, 17). CRP does not bind ox-

LDL at physiological pH. However, acidic pH induces a reversible conformational change 

exposing a hidden binding site and enables CRP to bind to immobilized ox-LDL(3). We have 

also shown that CRP-bound E-LDL does not induce foam-cell formation(17). However, 
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studies using animals models of atherosclerosis have shown that human CRP is neither 

atherogenic nor atheroprotective(18-25), the reasons for which are not clear. 

Atherosclerotic lesions are characterized by acidosis(26-28) and increased O2 and 

energy demand(29, 30), which result in production of reactive oxygen species (ROS), and 

subsequent deregulation of the extracellular redox environment(31-33). In addition to 

increasing inflammatory cell signaling(34), these changes enhance LDL deposition, 

modification and macrophage uptake, contributing  to the progression of atherosclerosis(35-

38). Such an inflammatory environment may not have developed in the animal models used to 

study the function of human CRP in atherosclerosis; CRP may not have undergone structural 

modification enabling it to efficiently bind atherogenic ox-LDL. To investigate the role of 

CRP in atherosclerosis using these animal models, we need a structurally altered CRP that can 

bind to atherogenic ox-LDL at physiological conditions. For this purpose we have previously 

used site-directed mutagenesis to mimic the acidic pH-induced changes in CRP, and generated 

a mutant CRP that could bind ox-LDL at physiological pH(39). In this study, we present the 

results of preliminary studies investigating the effects of redox free radicals on CRP – ox-LDL 

interactions. 
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Experimental Procedures 

 

Purification of CRP 

Native CRP was purified from pleural fluid in three steps: Ca
2+

-dependent affinity 

chromatography on a PCh-conjugated-Sepharose column(Pierce), followed by anion-exchange 

chromatography on a MonoQ column(GE Healthcare), and gel filtration on a Superose 12 

column(GE Healthcare), as described previously(16). On the day of the experiments, CRP was 

re-purified by gel filtration on a Superose 12 column(GE Healthcare) to remove any form of 

modified CRP that might have been generated due to storage of CRP. Re-purified CRP was 

stored in 10 mm Tris-HCl, pH 7.2, 150 mm NaCl(TBS) containing 2 mM CaCl2 at 4°C and was 

used within 1 week. 

 

Preparation and purification of ROS-modified CRP 

 Freshly purified CRP was treated with 1% H2O2 and the Fe
2+

-ascorbate solution as 

described before(40). Briefly, CRP (350µg/ml), 30 µM FeSO4 and 1 mM sodium ascorbate were 

dissolved in 10 mM Tris-Cl, 150 mM NaCl (pH 7.4). This mixture was incubated at 37ºC for 1 h 

with rapid shaking. The reaction was then stopped by adding 300 µM diethylenetriamine-

pentaacetic acid. The solution was dialyzed O/N against 10 mm Tris-HCl, pH 7.2, 150 mm NaCl 

(TBS) containing 2 mM CaCl2, and then used as FA-CRP. To prepare H2O2-CRP, 500 µg/ml of 

CRP was incubated with 1% H2O2 10 mM Tris-Cl, 150 mM NaCl (pH 7.2) solution containing 2 

mM CaCl2 for a minimum of 1 h at 37°C. It was then dialyzed O/N against 10 mm Tris-HCl, pH 

7.2, 150 mm NaCl (TBS) containing 2 mM CaCl2. 
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Preparation of Ox-LDL and Ac-LDL 

Native LDL was isolated from human plasma by sequential ultracentrifugation 

(1.019<d>1.063 g/ml), as described previously(41). Ox-LDL was prepared by treating LDL with 

20µM CuCl2 in PBS for 12 h at 37 °C(42). The Cu
2+

-mediated oxidation was terminated by 

adding EDTA to the reaction at a final concentration of 0.5 mM. Following dialysis against PBS, 

ox-LDL was passed through chelex-100 resin (Bio-Rad) to remove any traces of Cu
2+

, filter 

sterilized, and stored in the dark at 4 °C. Acetylated LDL (Ac-LDL) was also prepared as 

described previously(43). 0.5 mL of 0.15 M NaCl solution containing 14 mg of freshly isolated 

LDL protein was added to 0.5 mL saturated sodium acetate. The reaction mixture was placed in 

an ice-water bath, and over a period of 1 h, aliquots (2 µL) of acetate anhydride were added with 

continuous stirring. After addition of acetic anhydrate equal to 1.5 times the mass of LDL used, 

mixture was stirred for a further 30 min. After dialysis for 24 h at 4°C against 2 L of 0.15 M 

NaCl, 0.3 EDTA and pH 7.4, Ac-LDL was filter sterilized and stored in the dark at 4°C. The 

degree of LDL modification was evaluated by agarose gel electrophoresis. The degree of 

oxidation was also determined by TBARS assay (Cayman Chemical Co.), a colorimetric assay 

using malondialdehyde as a standard. Ox-LDL used in this study resulted in 30.5 nmoles 

malondialdehyde/mg of protein. Protein concentrations of the ox-LDL and Ac-LDL preparations 

were measured using the microBCA protein assay kit (Pierce). 

 

Ox-LDL-binding assay 

Microtiter wells were coated with 10 μg/ml ox-LDL in TBS and incubated overnight at 4 

°C. The unreacted sites in the wells were blocked with TBS containing 0.5% gelatin. Freshly 

purified CRP or modified CRP (depending on the assay) was diluted in TBS containing 0.1% 
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gelatin, 0.02% Tween 20, and 2 mM CaCl2 (TBS-Ca), added in duplicate wells and incubated for 

2 h at 37 °C. As mentioned in the figure legends, this step was performed in the presence of 

varying concentrations of H2O2. After the CRP incubation step, the wells were washed with 

TBS-Ca. Immunoaffinity purified polyclonal rabbit anti-CRP antibody (1 μg/ml), diluted in 

TBS-Ca, was used(1 h at 37°C) to detect bound CRP. Immunoaffinity purified polyclonal rabbit 

anti-CRP antibody was purified from the rabbit anti-human CRP antiserum (Sigma) by affinity 

chromatography on a CRP-conjugated agarose column prepared by using the AminoLink 

Immobilization kit(Pierce), as described previously(44). In some assays, monoclonal anti-CRP 

antibodies (mAb) were used to detect bound CRP. HRP-conjugated donkey anti-rabbit IgG(GE 

Healthcare) and HRP-conjugated goat anti-mouse IgG(Thermo Scientific), diluted in TBS-Ca, 

were used (1 h at 37°C) as secondary antibodies. Color was developed and absorbance was read 

at 405 nm in a microtiter plate reader(Molecular Devices). 

 

PnC and PCh-BSA binding assay 

Binding activity of CRP for PCh was evaluated by using PnC(Statens Serum Institut) and 

PCh-BSA(Sigma) as ligands. Microtiter wells were coated (350 µl/well) with 10 µg/ml PnC or 

10 µg/ml PCh-BSA in TBS O/N at 4°C. CRP diluted in TBS-Ca was added (100 µl/well) in 

duplicate wells. After incubating the plates for 2 h at 37°C, the wells were washed with 

appropriate TBS-Ca. The anti-CRP monoclonal antibody HD2.4 (0.5 µg/ml), diluted in TBS-Ca, 

was used (100 µl/well, 1 h at 37°C) to detect bound CRP. HRP-conjugated goat anti-mouse IgG, 

diluted in TBS-Ca, were used (100 µl/well, 1 h at 37°C) as the secondary antibody. Color was 

developed, and the absorbance was read at 405 nm in a microtiter plate reader. 
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Protein ligand-binding assay 

This assay was used to determine the binding of CRP to proteins other than ox-LDL and 

was performed as described for the ox-LDL-binding assay, except that the microtiter wells were 

coated with 10 µg/ml complement factor H (purified from normal human plasma) (45), LDL, 

acetylated LDL, or ovalbumin diluted in TBS (350 µl/well) overnight at 4°C. To test binding to 

IgG immune complexes, microtiter wells were first coated with 10 µg/ml ovalbumin in TBS and 

incubated O/N at 4°C. 100 µl/well of 1:1000 dilution of polyclonal goat α-ovalbumin antibody 

(MP Biomedicals #0855303 ) was then added and incubated for 1 h at 37°C. Wells were then 

blocked with 0.5% gelatin, and CRP samples were added as before for binding.  

 

Gel filtration 

Gel filtration analysis of CRP at pH 7.0 was carried out on a Superose12 column. The 

column was equilibrated and eluted with TBS (pH 7.0) containing 2 mMCaCl2 at a flow rate of 

0.3 ml/min. Fractions(60 fractions, 0.25 ml each) were collected, and absorbance at 280 nm was 

measured to locate the elution volume of CRP from the column.  

 

1-Anilinonaphthalene-8-sulfonic acid (ANS)-binding fluorescence assay 

The hydrophobic fluorescent probe ANS (8-Anilininaphthalene-1-sulfonic acid) was 

purchased from AnaSpec, Inc. ANS-binding fluorescence assays were performed as described 

previously(3). CRP (50 µg/ml) in TBS containing 2 mM CaCl2 was mixed with ANS at a final 

concentration of 100 µM. The fluorescence intensity of the binding of ANS to CRP was 

measured by using excitation and emission wavelengths of 390 nm and 460 nm respectively, in a 

spectrofluorometer (Fluostar Galaxy, BMG Lab Technologies).  
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Results 

 

Hydrogen peroxide induces the binding of CRP to ox-LDL 

To determine the effect of oxidizing agents on CRP – ox-LDL binding, we first 

performed ox-LDL binding assays using CRP modified by two oxidizing agents: 1% hydrogen 

peroxide (H2O2) and the Fe
2+

-ascorbate system (40). As shown in Fig 4.1A, the binding of CRP 

to ox-LDL was not changed in the presence of the Fe
2+

-ascorbate system at pH 7.0. However, 

1% H2O2-modified CRP (H2O2-CRP) strongly bound immobilized ox-LDL at physiological pH. 

The binding of CRP to ox-LDL at pH 7.0 and pH 5.0 were used as negative and positive controls 

respectively. We then tested the binding of CRP to ox-LDL in different concentrations of H2O2. 

As shown in Fig 4.1B, the binding of CRP to immobilized ox-LDL increased in the presence of 

H2O2, and this increased in a H2O2 dose-dependent manner. H2O2-induced binding to ox-LDL 

was specific to CRP, as H2O2 had no effect on the binding of BSA to ox-LDL. Dialyzed and 

freshly re-purified H2O2-CRP retained its ox-LDL binding activity at pH 7.0 

 

H2O2-CRP binds to a variety of proteins immobilized to microtiter plates 

 Similar to its interaction with immobilized ox-LDL, 1% H2O2 treatment of CRP caused it 

to bind to various immobilized proteins (Fig 4.2). H2O2-CRP bound to unmodified native LDL, 

and showed increased binding to Ac-LDL, another form of modified LDL.H2O2-CRP also bound 

to immobilized Factor H, ovalbumin and ovalbumin – goat α-ovalbumin complexes (IgG 

immune complex). This suggests that similar to acidic pH, H2O2 treatment exposed a hidden 

binding site in CRP that enabled it to bind deposited and conformationally changed proteins. 
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Figure 4.1. H2O2 induces binding of CRP to ox-LDL in a dose dependent manner. A, CRP (10 

µg/ml) diluted in TBS-Ca (pH 7.0 and 5.0), FA-CRP, and H2O2-CRP in TBS-Ca pH 7.0 buffers 

were added to ox-LDL-coated wells. Bound CRP was detected using a rabbit anti-CRP antibody 

and HRP-conjugated donkey anti-rabbit IgG. The absorbance of the color was read at 405 nm. B, 

CRP (10 µg/ml), diluted in TBS-Ca pH 7.0 buffer containing H2O2 dilutions in the range of 

(0.156 – 2.0%) was added to ox-LDL-coated wells. Bound CRP was detected as in A. 

Representative results from two experiments are shown. 

 

 

 
Figure 4.2. Binding of H2O2-CRP to immobilized protein ligands. 10 µg/ml CRP diluted in TBS-

Ca (pH 7.0 and 5.0), and H2O2-CRP in TBS-Ca pH 7.0 buffers were added to wells coated with 

Factor H, LDL, AcLDL, and ovalbumin. To test binding to IgG-immune complexes, ovalbumin 

– α-ovalbumin were added to wells as described earlier. Bound CRP was detected using a rabbit 

anti-CRP antibody and HRP-conjugated donkey anti-rabbit IgG. The absorbance of the color was 

read at 405 nm.  
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The phosphocholine binding site in CRP is not disrupted by H2O2 treatment 

We next tested whether treatment with 1% H2O2 had an effect on the PCh-binding site of 

CRP. For this, we used the PCh-containing  pneumococcal C-polysaccharide (PnC) and purified 

PCh-BSA molecules as ligands in the binding assay. Serial dilutions of native CRP and re-

purified H2O2-CRP in TBS-Ca pH 7.0 buffer were made, and added to microtiter wells coated 

with 10 µg/ml of PnC or PCh-BSA. After incubation at 37ºC for 1 h, the bound CRP was 

measured using the monoclonal HD 2.4 as per standard procedure. As shown in Fig. 4.3, pre-

treatment with 1% H2O2 had no effect on the binding of CRP to PCh-containing ligands. The 

HD2.4 monoclonal antibody binds only to pentameric CRP, and this assay also indicates that 

H2O2-CRP retains its pentameric structure. 

 

 

Figure 4.3. Binding of H2O2-CRP to PCh-containing ligands. Serial dilutions of native CRP and 

H2O2-CRP were made in TBS-Ca pH 7.0 buffers and added to wells coated with 10 µg/ml PnC 

or PCh-BSA. Bound CRP was detected using a monoclonal HD2.4 antibody and HRP-

conjugated goat anti-mouse IgG. The absorbance of the color was read at 405 nm. The 

experiment was repeated twice, and a representative result is shown. 
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H2O2-treatment does not monomerize or aggregate CRP 

Gel filtration and ANS-binding assays were used to determine whether H2O2-treatment 

caused monomerization or aggregation of CRP. Two aliquots of 1 mg/ml of freshly purified CRP 

were made. One aliquot was treated with 1% H2O2 at 37ºC for 2 h, while the other was just 

incubated at 37ºC for 2 h. After this time, the two aliquots were separately dialyzed against TBS-

Ca pH 7.0 buffer at 4ºC overnight. Following dialysis, the CRP samples were concentrated using 

a centrifuge filter, and re-purified by gel filtration. As shown in Fig. 4.4, the elution profiles of 

native CRP and 1% H2O2-treated CRP are identical, suggesting that the pentameric structure of 

the CRP molecule remained intact.  

 

Figure 4.4. Gel filtration elution profile of CRP. After treatment, native CRP and H2O2-CRP 

were dialyzed separately and concentrated using a centrifuge filter. The concentrated CRP 

samples were re-purified by gel filtration. Absorbance of fractions at 280 nm was plotted to get 

the elution profile. 
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We have previously shown that acidic pH changed the overall hydrophobicity of the CRP 

pentamer, and induced only a local structural change. To determine whether 1% H2O2 treatment 

also induced a similar change in hydrophobicity, ANS-binding fluorescence assays were 

performed. As before, CRP at pH 7.0 showed minimal ANS binding at pH 7.0, but this was 

strongly increased on a shift to acidic pH. H2O2-CRP also showed an intense ANS fluorescence, 

but not as much as that of native CRP at pH 5.0 (Fig 4.5). If CRP is monomerized or aggregated, 

it cannot bind to ANS and show increased fluorescence(3). This indicates that H2O2 increases 

hydrophobicity and causes only a local structural change in the CRP pentamer. 

 

Fig. 4.5. ANS-binding fluorescence of CRP samples: CRP at pH 7.0 (red bar), pH 5.0 (black bar) 

and 1% H2O2-treated CRP. All samples were dialyzed and re-purified by gel filtration prior to 

use in the ANS-binding assay. A representative result from two experiments is shown. 
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Discussion 

 

The aim of this study was to determine whether reactive oxygen species could modify 

CRP and thus generate a CRP molecule that binds to ox-LDL at physiological pH. The major 

results from our preliminary studies are: 

1. CRP gains the ability to bind immobilized ox-LDL in the presence of H2O2. The ox-

LDL binding ability is retained even after H2O2 has been dialyzed out, and the 

modified CRP has been re-purified. 

2. H2O2-CRP (1% H2O2-treated CRP) binds to not only ox-LDL, but also to a variety of 

immobilized, aggregated or conformationally altered proteins.  

3. The PCh-binding site in CRP is not disrupted by H2O2 treatment. H2O2-CRP retains 

its pentameric structure, but shows an increase in hydrophobicity indicating that H2O2 

treatment induces a local structural change. 

 

Pitfalls 

Firstly, there are only preliminary results as the experiments have not been repeated a 

sufficient number of times. Unlike our studies with acidic pH-induced modification of CRP, or 

those with the E42Q CRP mutant, all required experiments to elucidate the nature of H2O2-

mediated change in CRP structure have not been performed. It is not yet clear whether the H2O2-

mediated change in CRP binding is valid, or is an experimental artifact due the presence of 

minute amounts of monomerized CRP (mCRP). Experiments on the reversibility of H2O2-

mediated changes, or whether only a partial loosening of the CRP pentamer is sufficient for ox-

LDL binding have yet to be performed. The nature of the structural changes induced by H2O2 are 
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also not completely clear. Furthermore, whether H2O2-induced binding of CRP to immobilized 

ox-LDL has any physiological relevance (i.e., on foam cell formation) is yet to be determined. 

 

Although these are only preliminary results and experiments have not been repeated a 

sufficient number of times, they provide encouraging hints into the functions of CRP during 

atherosclerosis. Atherosclerotic lesions are characterized by not just acidic pH, but also a 

dysregulated redox environment, both of which are known to cause protein modifications, 

enhance protein-protein interactions and subsequent foam cell formation(reviewed in (26, 32, 33, 

46). In a non-atherosclerosis context, changes in the redox environment have been shown 

previously to modify CRP function. ROS-mediated CRP modification regulates the stimulus-

dependent activation of platelets(40), while the reduction of the single intra-subunit disulfide 

bond in CRP has been shown to induce its pro-inflammatory functions(47). Additionally, CRP is 

also not the only innate immune system protein regulated by changes in the redox environment 

(30, 48, 49).  

In animal models of atherosclerosis, WT CRP is neither atheroprotective nor 

proatherosclerotic (reviewed in (46)). These animal models may not have a sufficiently 

inflammatory microenvironment (acidosis, ROS generation) at lesion sites like in humans. In 

such a scenario, administration of human CRP will be ineffective, as the CRP is not structurally 

modified, and cannot bind atherogenic LDLs to prevent foam cell formation. If reactive oxygen 

species can modify CRP to permanently expose the hidden ox-LDL binding site, they can be 

used as a tool to study the role of human CRP in animal models of atherosclerosis (similar to 

E42Q and mutant CRP created by site-directed mutagenesis). Our ultimate goal is to design 

small-molecule compounds that change the structure of endogenous native CRP to enable ox-
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LDL binding, and prevent the progression of atherosclerosis. 
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CHAPTER 5 

SUMMARY 

 

The major findings of our studies on determining the role of Oct-1 in regulating CRP gene 

expression were: 

1. Overexpression of Oct-1 inhibited (IL-6+IL-1)-induced CRP promoter driven 

luciferase activity. This inhibition occurred irrespective of the length of the promoter 

used, suggesting that Oct-1 acts as a transcriptional repressor of CRP expression. The 

157bp proximal promoter is sufficient for the Oct-1 mediated repressive action.  

2. The -59 to -66 region is crucial for full (IL-6+IL-1)-induced CRP expression, as 

deletion of Oct-1 site within this region drastically reduced (IL-6+IL-1)-induced CRP 

promoter driven luciferase activity. This was an expected result as the Oct-1 site 

overlaps the binding site for the IL-1 induced transcription factor NF-B. 

3. Overexpression of Oct-1 inhibited (IL-6+IL-1)-induced CRP promoter driven 

luciferase activity even in the absence of the Oct-1 binding site, indicating that Oct-1 

mediated inhibition of CRP expression was not mediated solely by the binding of Oct-1 

to its cognate site. 

4. C/EBP-induced CRP promoter driven luciferase activity was reduced when the Oct-1 

site was mutated despite the C/EBP binding site not overlapping with the Oct-1 

binding site. This suggests that for full C/EBP-induced CRP expression C/EBP has 

to interact with another transcription factor bound to the -59 to -66 region. 

5. Oct-1 overexpression inhibited the residual C/EBP-induced CRP promoter driven 

luciferase activity even in the absence of the Oct-1 binding site, further indicating that 
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the repressive effects of Oct-1 on CRP gene expression were not mediated solely by 

Oct-1 binding to its cognate site on the promoter. 

The main drawback of our experimental design was in our use of the mutated Oct-1 

promoter constructs, which were made by complete deletion of the -59 to -66 region on the 

CRP proximal promoter. This abolished the binding of Oct-1 to the CRP promoter, but also the 

binding of the transcription factors HNF-1, HNF-3 and the NF-B p50-p65 heterodimer, whose 

binding sites overlap with the Oct-1 binding site. Our efforts to specifically abolish the binding 

of Oct-1 to the CRP promoter but retain the HNF-1, HNF-3 and NF-B binding activities have 

not been successful so far. Secondly, the binding of transcription factors to the CRP promoter 

was studied using a short 45 bp fragment of the CRP proximal promoter. This does not give us 

a complete picture of transcription factor – CRP promoter interactions in vivo. It is necessary to 

use techniques like chromatin immunoprecipitation (ChIP) for a more accurate understanding 

of transcription factor – promoter interactions. 

Our studies also showed that Oct-1 mediated inhibition, and C/EBP-induced CRP 

gene expression occurred even without direct binding of these proteins to their cognate sites on 

the promoter. This suggests that both Oct-1 and C/EBP partly mediate their effects indirectly 

by interacting with other transcription factors bound to the promoter. Which transcription 

factors Oct-1 and C/EBP interact with, and what changes occur to these complexes on 

cytokine induction remain to be determined. 

 

The major results from our studies on using site-directed mutagenesis to make a mutant 

CRP that binds ox-LDL under physiological conditions can be summarized as follows: 

1. Mutation of Glu
42

  Gln resulted in a CRP mutant that showed significant binding to 
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ox-LDL at physiological pH. Furthermore, for maximal binding the E42Q mutant 

required a pH less acidic than that required by WT CRP. The E42Q mutant was also 

more efficient at binding immobilized ox-LDL at any given pH.  

2. Acidic pH does not monomerize or aggregate WT and mutant CRP. It also does not 

disrupt the global protein structure, but only induces a local structural change in 

hydrophobicity, thus reducing CRP‟s affinity to Ca
2+

. These pH-dependent changes are 

reversible and suggest that the CRP pentamer undergoes a transition between 2 

conformational forms at sites of localized inflammation. 

3. E42Q bound to not just immobilized ox-LDL with higher avidity than WT CRP but 

also to other immobilized, conformationally altered or aggregated proteins when both 

were exposed to acidic pH. 

 

The results of our studies using H2O2 as a modifier of CRP structure and function can be 

summarized as follows: 

1. CRP gains the ability to bind immobilized ox-LDL in the presence of H2O2. The ox-

LDL binding ability is retained even after H2O2 has been dialyzed out, and the 

modified CRP has been repurified. 

2. 1% H2O2-treated CRP (H2O2-CRP) binds to not only ox-LDL but also a variety of 

immobilized, aggregated, or conformationally altered proteins.  

3. The PCh-binding site in CRP is not disrupted by H2O2 treatment. H2O2-CRP retains 

its pentameric structure, but shows an increase in hydrophobicity indicating that H2O2 

treatment induces a local structural change. 
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Our results validate the approach of using site-directed mutagenesis to study in vitro the 

interactions of CRP – modified LDL as they might occur at inflammatory sites. Only one 

amino acid substitution was sufficient to significantly increase CRP – ox-LDL binding, raising 

the possibility that more such substitutions will give us a CRP pentamer permanently in an 

„active‟ confirmation. Efforts on constructing more such mutant CRPs and on making a mutant 

CRP that is more effective than E42Q in binding to ox-LDL are currently underway in our lab. 

In addition to an acidic pH, atherosclerotic lesion sites are also characterized by free 

radical induced changes in the redox environment, a known modifier of protein structure and 

function (Patel et al. 2000; Ottaviano et al. 2008; Kondo et al. 2009; Hulsmans and Holvoet 

2010; Papaharalambus and Griendling 2010). Such an environment may induce structural and 

conformational changes in CRP, enabling it to bind to deposited ox-LDL. Previous studies 

have shown that CRP can be modified by redox changes and that these changes significantly 

affect its function (Miyazawa et al. 1988; Wang et al. 2011). Such conformational changes are 

necessary not just for the function of CRP but also for the functions of other molecules 

involved in host defense (Tada et al. 2008; Schroeder et al. 2011; Dimitrov et al. 2013).  Our 

preliminary studies using H2O2 treatment of CRP indicate that ROS may induce structural 

alterations in CRP at atherosclerotic lesions. These changes appear to be similar to that induced 

by acidic pH, i.e., the CRP pentamer remains intact, but a local structural change exposes the 

hidden ox-LDL binding site. It remains to be seen if these ROS-induced changes are reversible 

or if they involve a permanent structural alteration. ROS-induced CRP binding to ox-LDL 

involves a loosening of the CRP pentamer, but whether our results are accurate, or if they are 

an experimental artifact due to the presence of trace amounts of mCRP remains to be seen. We 

are currently continuing these studies in the lab.  
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Our lab has previously shown that native CRP binds to E-LDL in a Ca
2+

-dependent 

manner at physiological pH, and that such CRP-bound E-LDL did not transform macrophages 

into foam cells (Singh et al. 2008). We could not previously extend this study to examine the 

effect of CRP on ox-LDL induced foam cell formation as CRP does not bind ox-LDL at 

physiological pH. Using modified CRPs - mutant CRP like E42Q and CRP modified by 

inflammatory mediators - we are also now extending our previous studies to determine if CRP 

can prevent ox-LDL induced foam cell formation.  

Previous studies have shown that WT CRP had no significant affect in animal models 

of atherosclerosis (reviewed in Agrawal et al. 2010; Agrawal et al. 2014). The development of 

atherosclerosis in these animal models differs in many respects from that seen in humans 

(Daugherty 2002; Libby et al. 2011). It is possible that a sufficiently inflammatory 

environment did not develop at atherosclerotic lesion sites in these animals – CRP did not 

undergo any structural change and so could not bind ox-LDL. The E42Q CRP binds ox-LDL at 

a less acidic pH than WT CRP and even when [Ca
2+

] was 20-fold lower than normal – it should 

therefore be able to bind ox-LDL in vivo in these animal models even if they lack an 

inflammatory environment at the atherosclerotic lesion site. We propose to use mutant CRP 

like E42Q CRP as a tool to test our hypothesis that CRP has to undergo a structural 

modification to bind to ox-LDL, prevent ox-LDL induced foam cell formation, and inhibit the 

progression of atherosclerosis.  

To summarize, our studies indicate that CRP has a dual function depending on the 

environmental context. In circulation CRP remains as an unchanged native pentamer and binds 

to PCh-containing molecules in a Ca
2+

-dependent manner. Ligand bound CRP activates the 

classical complement pathway and mediates clearance of pathogens and other cellular debris 
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from circulation. At sites of localized inflammation CRP undergoes a reversible structural 

modification that exposes a hidden binding site and can now bind to deposited, aggregated, and 

amyloidogenic proteins. In the case of ox-LDL the binding of such modified CRP to ox-LDL 

may prevent its uptake by macrophages and subsequent foam cell formation, thereby slowing 

or inhibiting atherogenesis. Such modified CRP may function not just during atherosclerosis 

but also in other inflammatory diseases involving deposition of proteins at sites of localized 

inflammation and in which CRP has been implicated (Szalai et al. 2003; Carlucci et al. 2010). 
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