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ABSTRACT 

 

A Comprehensive Study of the Effects of Neurotoxins on Noradrenergic Phenotypes, Neuronal 

Responses and Potential Intervention by Antidepressants in Noradrenergic Cells 

by 

Yan Wang 

It has been reported that locus coeruleus (LC) degeneration precedes the degeneration of other 

neurons in the brain in some neurodegenerative diseases like Alzheimer’s disease (AD) and 

Parkinson’s disease (PD). However, the precise mechanisms of neurodegeneration remain to be 

elucidated. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) has been widely used as a 

noradrenergic neurotoxin in the development of AD and PD animal models for specific LC 

degeneration. However, the precise mechanism of action of DSP4 remains unclear. An 

increased systemic DNA damage caused by neurotoxin or oxidative stress has been found to be 

related to the pathogenic development of neurodegeneration. The process of neurodegeneration 

is not well understood, so current therapeutic approaches are limited to disease management 

and symptoms relief, such as using antidepressants for depression symptoms, which often 

accompany neurodegenerative disorders. To date, few studies have explained why different 

groups of antidepressants have similar clinical effects on relieving depression. Our data 

demonstrate that DSP4 induces the DNA damage response (DDR) and results in down-

regulation of dopamine β-hydroxylase (DBH) and the norepinephrine transporter (NET), which 

are 2 noradrenergic phenotypes. DSP4 results in cell cycle arrest in S and G2/M phases, which 

is reversible. The comet assays verify that DSP4 induces single-strand DNA breaks (SSBs). 
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Furthermore, the neurotoxins camptothecin (CPT) and DSP4 were used to induce the DDR in 

SH-SY5Y cells, fibroblast cells, and primary cultured neurons. Data show that both CPT and 

DSP4 induce the DDR in SH-SY5Y cells and primary cultured LC neurons. Compared to 

fibroblast cells, SH-SY5Y cells and LC neurons are more sensitive to the accumulation of 

DNA damage when treated with CPT or DSP4.  Persistent phosphorylated H2AX (γH2AX) 

and p53 (p-p53
ser15

) levels indicate a deficient repair in noradrenergic SH-SY5Y cells and LC 

neurons.  In addition, the current study demonstrates that some antidepressants reduce the DDR 

induced by DSP4 or CPT in SH-SY5Y cells. Flow cytometry data show that selective 

antidepressants protect cells from being arrested in S-phase. Together, these effects suggest 

that blocking DNA damage is one important pharmacologic characteristic of antidepressants, 

which may explain why different antidepressants could alleviate depression symptoms in 

neurodegenerative patients.  

 

 

 

 

 

 

 

 

 



 4 

DEDICATION 

 

I dedicate this manuscript to my families whose support and solace has made this 

achievement possible. Without the love, encouragement, and understanding of my lovely 

husband Meijian, my adorable son Greyson, my parents Zhe and Sheying, my brother Weiguo, 

and my parents-in-law Wanming and Changfeng, I would not have been able to achieve this 

goal. 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor, Dr. Meng-Yang Zhu, for offering me the opportunity 

to work in this lab, and providing extensive mentorship. I appreciate your great support to 

many subjects including running projects, experimental skills, and manuscript preparation.  To 

my coadvisor, Dr. Phillip Musich, I appreciate your unique insights on those projects and the 

great collaboration opportunity you offered. I would not be the graduate student I am today 

without your patience and encouragement. I also would like to thank the members of my 

graduate committee Dr. Gregory Ordway, Dr. Antonio Rusiñol, and Dr. Yue Zou for their 

support. Thanks to Drs. Dennis Defoe and Alok Argwaral for their advice and encouragement. 

Thanks to Dr. Brian Rowe for improving my English.  

Thanks to Chen Lu, Laura Daniel, Moises Serrano, and Benjamin Hilton for friendships 

and constant help and the lab members for their invaluable contributions during my graduate 

career. 

This work was supported by National Institutes of Health grants MH080323 (MYZ) 

and CA86927 (YZ). 

Thanks to Drs. Laurent Rivory, Alex Zambon, Richard Klabunde, Eishi Noguchi for 

the permissions to use their figures and figure legends in my dissertation. 

 

 

 



 6 

TABLE OF CONTENTS 

 

  Page 

ABSTRACT ...................................................................................................................................    2 

DEDICATION ...............................................................................................................................    4 

AKNOLEGEMENT ......................................................................................................................    5 

LIST OF TABLES .........................................................................................................................  10 

LIST OF FIGURES .......................................................................................................................  11 

Chapters 

1. INTRODUCTON  ....................................................................................................................  14 

Neurodegenerative Diseases. ...........................................................................................  14 

Norepinephrine System ....................................................................................................  15 

LC-Norepinephrine System in Neurodegenerative Diseases ...........................................  16  

DSP4 ................................................................................................................................  17 

Mechanism of CPT ..........................................................................................................  18 

DNA Damage and Repair in Neurodegenerative Diseases..............................................  19 

DNA Damage Response Markers  ...................................................................................  21 

Cell Cycle and Checkpoints .............................................................................................  21 

Aberrant Cell Cycle Activity in Neurons.........................................................................  22 

Antidepressants in Neurodegenerative Diseases .............................................................  24 

Questions to be Answered in These Studies  ...................................................................  27 

2. EFFECTS OF DSP4 ON THE NORADRENERGIC PHENOTYPES AND ITS 

  POTENTIAL MOLECULAR MECHANISMS IN SH-SY5Y CELLS ....................................  29 



 7 

            Abstract ............................................................................................................................  29 

Introduction ......................................................................................................................  30 

Materials and Methods  ....................................................................................................  33 

Cell Culture and Drug Exposure ..........................................................................  33 

RNA Isolation, RT-PCR, and Relative Quantitative qPCR Analysis ..................  33 

Western Blotting Analysis ...................................................................................  35 

Flow Cytometry .....................................................................................................36   

Immunofluorescence Assay (IFA) .......................................................................  36 

Comet Assay ........................................................................................................  37 

Statistics ...............................................................................................................  37 

Results ..............................................................................................................................  38 

DSP4 Treatment Down-Regulates the Expression of DBH and NET in a  

Time- and Concentration-Dependent Manner .....................................................  38 

DSP4 Treatment Leads to Cell Cycle Arrest .......................................................  40 

DSP4 Treatment Induces DDRs ........................................................................... 44  

DSP4 Induces Activation of ATM Pathway ........................................................  50 

DSP4 Induces Single-Strand Breaks ....................................................................  52 

Discussion ........................................................................................................................  54 

References ........................................................................................................................  60 

3. NEUROTOXIN-INDUCED DNA DAMAGE IS PERSISTENT IN SH-SY5Y  CELLS  

AND LC NEURONS ...................................................................................................................  71  

Abstract ............................................................................................................................  71 

Introduction ......................................................................................................................  72 



 8 

Materials and Methods  ....................................................................................................  74 

Cell Culture and Drug Exposure ..........................................................................  74 

Western Blotting Analysis ...................................................................................  76 

Immunofluorescence Assay (IFA) .......................................................................  77 

Comet Assay ........................................................................................................  78 

Statistics ...............................................................................................................  78 

Results ..............................................................................................................................  78 

SH-SY5Y Cells are Sensitive to CPT-induced DNA Damage ............................  78 

SH-SY5Y Cells are Deficient in Repairing CPT-induced DNA damage ............  83 

CPT-induced DDR in Cultured LC and Raphe Neurons .....................................  88 

LC Neurons Accumulate DSP4-induced DNA Damage .....................................  90 

Discussion ........................................................................................................................  91 

References ........................................................................................................................  97 

4. THE EFFECTS OF ANTIDEPRESSANTS ON DSP4-/CPT-INDUCED DNA DAMAGE 

 RESPONSE IN NEUROBLASTOMA SH-SY5Y CELLS  .................................................  103 

Abstract ..........................................................................................................................  103 

Introduction ....................................................................................................................  104 

Materials and Methods  ..................................................................................................  106 

Cell Culture and Drug Exposure ........................................................................  106 

Western Blotting Analysis .................................................................................  107 

Flow Cytometry .................................................................................................  108 

Statistics .............................................................................................................  109 

Results ............................................................................................................................  109 



 9 

DSP4-induced DNA Damage Response Can be reduced by Some  

Antidepressants ..................................................................................................  109 

Selective Antidepressants Reduce CPT-induced DNA Damage .......................  116 

Effects of Selective Antidepressants on Protecting Cells from Arresting in S 

Phase ..................................................................................................................   116 

Discussion ......................................................................................................................  122 

References ......................................................................................................................  126 

5. SUMMARY AND CONCLUSIONS ....................................................................................  133 

REFERENCES ..............................................................................................................  141 

APPENDICES ...............................................................................................................  164 

APPENDIX A: SUPPLEMENTAL FIGURES .................................................  164 

APPENDIX B: ABBREVIATIONS ..................................................................  165 

APPENDIX C: AUTHOR AFFILIATIONS .....................................................  168 

VITA ..............................................................................................................................  169 

  

 

 

 

 

 

 

 

 



 10 

LIST OF TABLES 

 

Tables                                                                                                                                      Page 

1-1.   Four Classes of Antidepressants and Their Principal Actions ...........................................  26 

4-1.   Summary of the Effects of Some Antidepressants on Reducing ãH2AX and p-p53
ser15

  

         Levels ................................................................................................................................. 115  

4-2.   Summary of the Effects of Some Antidepressants on Cell Cycle in SH-SY5Y Cells with 

or   without DSP4 Co-treatment ........................................................................................ 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

LIST OF FIGURES 

 

Figures                                                                                                                                     Page 

1-1.   Norepinephrine Synthesis and Release..............................................................................   16 

1-2.   Mechanism of Action of Topoisomerase I Poisons ............................................................  19   

1-3.   Cell Cycle and Checkpoints ...............................................................................................  23 

2-1.   Time-dependent Effects of DSP4 Treatment on Protein Levels of DBH and NET in SH- 

SY5Y cells ..........................................................................................................................  39 

2-2.   Concentration-dependent Effects of DSP4 Treatment on mRNA and Protein Levels of 

DBH in SH-SY5Y cells ......................................................................................................  41  

2-3.   Concentration-dependent Effects of DSP4 Treatment on mRNA and Protein Levels of 

NET in SH-SY5Y Cells .....................................................................................................  42  

2-4.   Up-regulation of DBH/NET Protein Levels from Inhibition by DSP4 ..............................  43 

2-5.   Effects of DSP4 Treatment on Cell Proliferation and Cell Cycle Arrest in SH-SY5Y 

Cells ....................................................................................................................................  45 

2-6.   The DSP4-induced Cell Cycle Arrest is Reversible ...........................................................  46 

2-7.   The Time-course Analysis of DSP4-induced DNA Damage as Demonstrated by 

Increased ãH2AX and P-p53
ser15

 ........................................................................................  48 

2-8.   DSP4 Treatment Induces DNA Damage Response in SH-SY5Y Cells .............................  49 

2-9.   DSP4 Treatment Induces the Formation of Nuclear ãH2AX Foci and Increased p-p53
ser15 

Levels in Nuclei ..................................................................................................................  51 

2-10. The DSP4-induced DDR is Dependent on ATM Activation .............................................  53 

2-11. DSP4 Induces Single-strand DNA Breaks as Determined by the Comet Assay ................  54 



 12 

3-1.   Expression Levels of DBH and NET in SH-SY5Y and Normal Fibroblast Cells .............  79      

3-2.   γH2AX foci are Detected in Normal Fibroblast and SH-SY5Y Cells after CPT 

Treatment ............................................................................................................................  80 

3-3.   P-p53
ser15 

 Levels increase in Nuclei of Fibroblast and SH-SY5Y Cells after CPT  

  Treatment ............................................................................................................................  81 

3-4.   The Levels of γH2AX and P-p53
ser15

 Increase after CPT Treatment .................................  82 

3-5.   The Number of γH2AX- or p-p53
ser15

-positive Cells is Reduced within 24 h in  

   Fibroblast Cells ..................................................................................................................  84 

3-6.   The Number of γH2AX- and p-p53
ser15

-positive Cells is Reduced within 72 h in 

  SH-SY5Y cells ....................................................................................................................  85 

3-7.   The Levels of γH2AX and p-p53
ser15

 are Decreased within 72 h in SH-SY5Y Cells after 

Washing out of CPT...........................................................................................................  86 

3-8.   CPT-induced DNA Damage Can Be Reversed ..................................................................  87 

3-9.   CPT induces DDR in DBH-positive Cultured Neurons .....................................................  89 

3-10. γH2AX Foci are not Detected in SERT-positive Cultured Neurons ..................................  90 

3-11. γH2AX Foci are Detected in DBH- but not SERT-positive Cultured Neurons after DSP4 

Treatment ...........................................................................................................................  92 

4-1.   TCAs Antidepressants Desipramine, Imipramine, and Amitriptyline Reduce  

 DSP4-induced DDR in SH-SY5Y Cells............................................................................ 111 

4-2.   SSRIs Antidepressants Fluoxetine and Paroxetine Reduce DSP4-induced DDR in SH-

SY5Y cells ......................................................................................................................... 112 

4-3.   NRI Antidepressant Reboxetine Reduces DSP4-induced DDR in SH-SY5Y Cells ......... 113 

4-4.   MAOI Antidepressant Deprenyl Reduces DSP4-induced DDR in SH-SY5Y Cells......... 114 



 13 

4-5.   CPT-induced DDR is Reduced by Imipramine, Amitriptyline, and Paroxetine ............... 117  

4-6.   Effects of Some Antidepressants on Cell Cycle in SH-SY5Y Cells ................................. 119 

4-7.   Effects of Some Antidepressants on Cell Cycle in SH-SY5Y Cells with DSP4  

         Co-treatment ...................................................................................................................... 120 

5-1.   Enzymes Involved in Norepinephrine Synthesis ............................................................... 137 

5-2.   Proposed Mechanisms of Neurotoxins-induced DNA Damage Response ........................ 140 

S-1.   Representative Flow-cytometric Histograms Show Effects of Antidepressants on Cell 

Cycle with or without DSP4 Cotreatment ......................................................................... 164 

  

 

 

 

 

 

 

 

 

 

 



 14 

CHAPTER 1 

 

INTRODUCTION 

 

Neurodegenerative Diseases 

Neurodegenerative diseases are a group of incurable and debilitating diseases that result 

in progressive loss of neuronal structure and function, eventually neuronal death. Population 

statistical data show that there are currently about 5 million Alzheimer’s disease (AD), 1 

million Parkinson’s disease (PD), and 30,000 Huntington’s disease (HD) patients in the United 

State of America. Because neurodegenerative diseases primarily affect in middle to late stage 

of life, the incidence increases as the population ages. It is estimated that more than 12 million 

Americans will suffer from neurodegenerative diseases by the year 2030. However, there are 

no known cures or treatments for neurodegenerative diseases, so current therapeutic 

approaches are limited to disease management and symptoms relief. Therefore, it is urgent to 

find potential treatments and cures for neurodegenerative diseases. 

The nervous system is built with neurons, including the brain, spinal cord and nerves. 

The body cannot replace damaged or dead neurons because they are known not to reproduce or 

replace themselves. These particular conditions lead to progressive brain damage and 

neurodegeneration. Although neurodegenerative disorders manifest with different clinical 

features, the disease processes appear to be similar at the cellular level, such as the risk of 

oxidative stress-induced DNA damage or DNA mutation increases with aging (Uttara et al. 

2009). It may benefit patients if research explorations focus on these similarities in 

http://www.news-medical.net/health/The-Human-Brain.aspx
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neurodegeneration that occur in the neurodegenerative diseases. Therefore, identification of 

new drug targets and therapeutic approaches are now reaching an important turning point.  

 

Norepinephrine System 

Dopamine β-hydroxylase (DBH, EC 1.14.17.1) and the norepinephrine transporter 

(NET) are 2 important proteins of the noradrenergic neurons for their specific functional 

characteristics in these neurons (Kaufman et al. 1965, Chan-Palay et al. 1989). DBH catalyzes 

dopamine to norepinephrine and is expressed exclusively in the noradrenergic neurons in the 

brain (Figure 1-1). Although, DBH is not the rate-limiting enzyme for norepinephrine 

synthesis, it was reported that the amount of DBH available is a key factor in determining the 

rate of norepinephrine synthesis (Kobayashi et al. 1994, Kim et al. 2002). The NET is located 

on presynaptic terminals of noradrenergic neurons in the central and peripheral nervous system 

(Iversen 1971), and functions to reuptake more than 90 % of released norepinephrine back into 

the presynaptic terminals (Axelrod et al. 1969) (Figure 1-1). As this reuptake is the main 

mechanism for inactivation of norepinephrine transmission, alterations of NET expression 

would affect norepinephrine levels in the synapses or synapse clefts to influence its 

transmission. As such, changes in the expression of DBH and NET not only affect 

norepinephrine levels in vitro and in vivo but also reflect alterations in activity and function of 

these neurons in the brain. Therefore, measurement of their expression can yield important 

information regarding the functional status of neuronal cells and underlying mechanisms of 

neurotransmission (Zigmond et al. 1989).  
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Tyr=tyrosin TH=tyrosine hydroxylase   DD=DOPA decarboxylase 

DA=dopamine   DBH=dopamine β-hydroxylase  

NE=norepinephrine   NET=norepinephrine transporter 

Figure 1-1. Norepinephrine synthesis and release. Norepinephrine is the primary 

neurotransmitter for postganglionic sympathetic adrenergic nerves. It is synthesized inside the 

nerve axon, stored within vesicles, and then released by the nerve when an action potential 

travels down the nerve. Figure 1-1 is cited and modified from 

http://www.cvpharmacology.com/norepinephrine.htm, and used with the permission from Dr. 

Richard Klabunde (Klabunde 2012).  

 

LC-norepinephrine System in Neurodegenerative Diseases 

The locus coeruleus (LC) is a small nucleus located in the pons. It is the main source of 

brain norepinephrine, especially for the hippocampus and forebrain (Maeda 2000). The activity 

of LC neurons has been considered to be involved in numerous important functions, for 

example, response to stress (Usher et al. 1999). It is reported that LC cell numbers are reduced 

during normal aging and in aging-related diseases, as are brain norepinephrine levels (Marien 

et al. 2004). Damage and loss of LC noradrenergic neurons is accelerated in certain progressive 

neurodegenerative diseases including AD (Mann et al. 1983, Bondareff et al. 1987, German et 

al. 1992, Weinshenker 2008) and PD (Mann et al. 1983, Rommelfanger et al. 2007), 
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representing an early pathological indicator of disease progress. The greatest neuronal loss was 

observed in the LC (83% loss in AD; 68% loss in PD) compared with other subcortical nuclei 

(Lyness et al. 2003, Zarow et al. 2003). Patients with AD have reduced levels of 

norepinephrine compared with controls (Adolfsson et al. 1979, Palmer et al. 1993). However, it 

remains unclear how and why LC cell death influences the pathogenesis of AD or PD. 

Therefore, exploring the pathologic characteristics of LC noradrenergic neuronal loss during 

neurodegeneration is important for elucidating the mechanisms underlying AD and PD. 

 

DSP4 

The effects of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on 

norepinephrine levels in the peripheral and central noradrenergic system were first reported 

several decades ago (Ross 1976). DSP4 can cross the blood–brain barrier and accumulate 

intraneuronally. It was hypothesized that DSP4 selectively damages noradrenergic projections 

originating from the LC by interacting with the norepinephrine reuptake system and depleting 

intracellular norepinephrine, finally inducing degeneration of noradrenergic terminals (Winkler 

1976, Ransom et al. 1985, Dooley et al. 1987, Howard et al. 1990, Prieto et al. 2001). In 

addition, little data have been reported from in vitro studies on the mechanism of DSP4-

induced neuronal degeneration. Although DSP4 has been widely used as a noradrenergic 

neurotoxin as a tool to construct AD or PD animal models with LC degeneration (Heneka et al. 

2006, Rey et al. 2012), the precise mechanism of action of DSP4 remains unclear. Thus, 

elucidating the molecular mechanism by which DSP4 induces its neurodegenerative effect may 

facilitate finding novel therapeutic strategies for treatment of degenerative diseases. 
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Mechanism of CPT 

DNA topoisomerase I (topo I) relaxes supercoils by creating a SSB (nick) in the DNA 

duplex, which allows the broken strand to rotate and remove local supercoils during 

transcription and DNA replication (Wang 1996). CPT is a cytotoxic quinoline alkaloid and a S-

phase-specific anticancer agent, which binds to the topo I-DNA complex and inhibits topo I 

(Liu et al. 2000). During replication, the replication fork meets the topo I-DNA complex, 

which results in late S and early G2 phases arrest with conversion of SSBs to double-strand 

breaks (DSBs) and ultimately cell death (Hsiang et al. 1985, Li et al. 2001, Pommier et al. 

2003) (Figure 1-2).  

Generally, administration of CPT produced irreversible DNA DSBs during DNA 

replication, suggesting that this agent should not have toxic effects on nondividing cells such as 

neurons. However, it was reported that CPT could lead to death of postmitotic rat cortical 

neurons in vitro in a significant dose-dependent manner. And this effect was not mediated by 

topo I but dependent upon DNA transcription (Morris et al. 1996). Additionally, neurotoxic 

activity of CPT also was found in cultured cerebellar granule neurons, which inhibited both 

protein synthesis and the neuritic outgrowth of primary cultured cerebellar granule neurons 

(Uday Bhanu et al. 2010). Taken together, these observations indicate that CPT exhibits 

significant toxicity toward neuronal cells in vitro, which are not dependent on topo I.  

http://en.wikipedia.org/wiki/Cytotoxic
http://en.wikipedia.org/wiki/Quinoline
http://en.wikipedia.org/wiki/Alkaloid
http://en.wikipedia.org/wiki/Enzyme_inhibitor
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Figure 1-2. Mechanism of action of topoisomerase I poisons. (Ａ) Normally, 

topoisomerase I introduces a nick in the DNA backbone allowing the rotation of one strand 

around the other. This releases the torsional strain that otherwise accumulates in front of the 

advancing replication fork (large arrow). The DNA break is extremely transient and is religated 

almost immediately at the same time that the topoisomerase I releases the other strand. (Ｂ) 

When a drug such as irinotecan is present (black oval with C), it binds to the topoisomerase I-

nicked DNA complex. This prevents the religation of the nicked strand and the release of the 

enzyme. Eventually, the replication fork collides with the complex, causing the formation of a 

double-strand break. Figure 1-2 is used with permission from (Rivory 2002).  

 

DNA Damage and Repair in Neurodegenerative Disease 

Brain volume and function decline with aging, which in neurodegenerative diseases 

might be caused by the permanent loss of neurons (Brazel et al. 2004). The “free radical theory 

of aging hypothesis” indicates that oxidative damage accumulation leads to the cellular decline 

and aging-associated deterioration (Harman 1981). Imbalanced metabolism and excess reactive 

oxygen species (ROS) generation lead to various disorders such as AD, PD, aging, and many 

other neural disorders. Oxidative stress may cause DNA damage because DNA is perhaps one 
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of the major targets for oxyradicals. It was reported that DNA DSBs in neuronal cells occur 

during normal brain functions such as learning (Suberbielle et al. 2013). Many researchers 

have established that there is accumulated oxidative DNA damage in the cells of patients with 

AD (Kadioglu et al. 2004) and PD (Zhang et al. 1999). Many other studies have shown that 

there is both increased DNA damage and decreased DNA repair in patients with AD (Fishel et 

al. 2007). Oxidative stress and DNA damage also are studied in PD (Dias et al. 2013, Hwang 

2013). Dopaminergic neurons in the substantia nigra are severely affected by the 

neurodegenerative process that occurs in PD. Increased levels of oxidative stress have been 

detected in the substantia nigra region of the brain in PD patients (Fukae et al. 2005).  

Evidence shows that oxidative damage plays critical roles in the aging process (Golden 

et al. 2002, Bokov et al. 2004, Balaban et al. 2005), as well as neurons have very high rates of 

oxygen metabolism. It has been suggested that deficiencies in the repair of oxidative DNA 

damage with aging (Weissman et al. 2009). It is known that increased exposure to damaging 

agents and/or deficiency of DNA repair lead to higher levels of DNA damage (Subba Rao 

2007). It was reported that aging-related diseases are mainly caused by accumulation of 

nuclear DNA (nDNA) damage in neurons due to insufficient nDNA damage repair. The brain 

consists of large number of nonproliferative neuronal cells that are vulnerable to defective 

DNA repair. Deficiency of repairing DNA usually leads to “accumulation” of unrepaired DNA 

lesions that might be considered as the cause of the neuropathology in several 

neurodegenerative disorders. 
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DNA Damage Response Markers 

As a very early step in the cellular response to DNA damage, histone H2AX is 

phosphorylated at the C-terminal serine residues Ser136 and Ser139 (Rogakou et al. 1998). 

Phosphorylated H2AX, called γH2AX, and γH2AX-enriched foci can be detected within 

minutes post-DNA damage (Kang et al. 2005). H2AX phosphorylation has an important role in 

the initiation of DNA repair (Downs et al. 2000) including the recruitment of DNA repair or 

damage-signaling factors, maintenance of the integrity of the DNA damage response, and 

bringing the broken DNA ends closer together (Bassing et al. 2004, Thiriet et al. 2005).  

Known as a classic “gatekeeper” of cellular fate, p53 tumor suppressor protein is 

activated in response to genotoxic stress-induced DNA damage (May et al. 1999). 

Phosphorylation of serine15 (p-p53
ser15

) is one of the major responses (Hammond et al. 2002). 

P-p53
ser15

 levels can be rapidly increased several folds after DNA damage is detected. Also, 

phosphorylated p53 has been linked to DNA repair processes such as activation of DNA repair 

pathways and stalling the cell cycles (Offer et al. 1999, Okorokov 2003, Ford 2005). Therefore, 

γH2AX and p-p53
ser15

 were measured as the DDR markers to evaluate the appearance as well 

as the repair rate for CPT- or DSP4-induece DNA damage. 

 

Cell Cycle and Checkpoints 

The cell cycle is a well-ordered event, which contains 4 phases. The G1 phase is 

required for cell growth and preparation of the chromosomes for replication. DNA is 

synthesized in S phase. The G2 phase is needed for cell growth and preparation for mitosis. 

The last phase is M (Mitosis). Cells divide into 2 daughter cells in this phase.  
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Flow cytometry is a method in cell biology to distinguish cells in different phases of the 

cell cycle (Figure 1-2A). Cells are constantly under the stress of intrinsic and extrinsic agents 

that cause DNA damage or interference with DNA replication. Cell cycle checkpoints are set at 

various stages of the cell cycle to arrest cell cycle transit and facilitate DNA repair pathways. 

When cells have DNA damage that has to be repaired, cells activate DNA damage checkpoints, 

which arrest cell cycle transit to repair the damage. Based on the cell cycle stages, DNA 

damage checkpoints are classified into at least 3 checkpoints: G1/S checkpoint, intra-S phase 

checkpoint, and G2/M checkpoint (Figure 1-2B). G1/S checkpoint ensures that everything is 

ready for DNA synthesis. Intra-S phase checkpoint stops or slows DNA replication. G2/M 

checkpoint is to determine if the cells are ready to enter M phase and divide into daughter cells. 

If the damage is so severe that it cannot be repaired, the cell self-destructs by apoptosis (Figure 

1-2C).  

 

Aberrant Cell Cycle Activity in Neurons 

As in other cell types, the cell cycle in the central nerve system is tightly regulated. 

However, aberrant cell cycle activity has been detected during the progression of 

neurodegenerative conditions. Specifically, key components of the cell cycle proteins, like 

cyclins and cyclin-dependent kinases (CDKs), have been found to be up-regulated after 

exposure to severe conditions such as oxidative stress (Busser et al. 1998, Kruman et al. 2004, 

Murray 2004, Currais et al. 2009). Oxidative stress can lead to both DNA mutation and the 

formation of damaged proteins; therefore, it is considered as an important risk factor for 

neurodegenerative diseases. Cell cycle activity in neurons can also be induced by neurotoxic  
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Figure 1-3. Cell cycle and the checkpoints. (A) Cytometry-based DNA content analyzed 

by flow cytometry. Populations in the G0/G1, S, and G2/M phases are shaded in pink, yellow, 

and green, respectively. Figure 1-3A is used with permission from Dr. Alex Zambon from 

Department of Pharmacology at University of California at San Diego (Henderson et al. 2013). 

(B) The checkpoints are indicated by red arrows. C. Genome maintenance mechanisms. Figure 

1-3B and 1-3C are cited from http://eishinoguchi.com/checkpoint.htm, and used with the 

permission of Dr. Eishi Noguchi from Department of Biochemistry and Molecular Biology at 

Drexel University (Noguchi 2004-2006). 

 

insults (Klein et al. 2003). For example, up-regulated cell cycle proteins CDK2, cyclin E, and 

E2F-1 were found in kainic acid–treated cerebellar granule cells (Verdaguer et al. 2002). 

Similarly, when rat embryonic cortical neurons were cultured with toxic concentrations of Aβ 

peptides, aberrant cell cycle activity and neuron death were found (Copani et al. 1999). These 

neurons showed abnormal increased cell cycle proteins expression, like cyclin D1, cyclin E, 

cyclin A, and phosphorylated retinoblastoma protein. In addition, oxidative DNA damage is 

correlated with cell cycle arrest (Migliore et al. 2002). For example, human H2O2-treated 

fibroblasts undergo either cell cycle arrest or apoptosis (Chen et al. 2000). The majority of the 

apoptotic fibroblasts were found in the S phase, whereas growth-arrested cells were 
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predominantly accumulated in the G1 or the G2/M phase (Chen et al. 2000). This apoptotic 

death of fibroblasts in the S phase is consistent with the death of neurons that have aberrant cell 

cycle activity and express S-phase proteins. Dorsal root ganglion neurons go to apoptosis in the 

S phase (ElShamy et al. 1998), and the apoptotic neurons express S-phase proteins (Folch et al. 

2012). Hippocampal pyramidal and basal forebrain neurons from AD brains show 

chromosomal duplication and die before mitosis. These are consistent with cell death in the S 

or G2 phase of the cell cycle (Nagy et al. 1997b). In addition, DNA damage in apoptotic 

neurons is dependent on ATM activation, which suggests that neurons are affected by the same 

cell cycle checkpoints that regulate apoptosis in other cell types (Kruman 2004). Taken 

together, all these findings indicate that differentiated neurons may have aberrant cell cycle 

activity, which is a critical element of the DDR of postmitotic neurons leading to cell death. 

 

Antidepressants in Neurodegenerative Diseases 

The earliest main biochemical theory of depression is the “monoamine hypothesis” 

(Schildkraut 1965), which states that depression is caused by dysregulation of monoaminergic 

neurotransmitters at certain sites in the brain. Serotonin and norepinephrine are 2 

neurotransmitters primarily to regulate mood and emotions (Butler et al. 2008). This theory is 

based on early clinical observations that monoamine oxidase inhibitors (MAOIs) and tricyclic 

antidepressants (TCAs) were able to ameliorate depression syptoms by increasing levels of 

serotonin or norepinephrine (Crane 1956, Kuhn 1958). Although the “monoamine hypothesis” 

of depression has been proposed for a long time, the pathologies and mechanisms for 

depression disorders are still partially understood. A number of new proposed mechanisms for 

depression are brought into light such as diminishing neurotrophic factors (Czeh et al. 2007) 
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and neuroinflammation (Muller et al. 2007). There is also evidence shown that oxidative and 

nitrosative stress are involved in the pathophysiology of depression (Maes et al. 2009, Maes et 

al. 2011). Therefore, it is important to elucidate potential mechanisms of depression for finding 

new antidepressants targets and candidates to treat depression. 

The process of neurodegeneration is not well understood, so there are no known cures 

and treatments for this group of diseases. Current therapeutic approaches are limited to disease 

management and symptoms relief. Depression symptoms often accompany neurodegenerative 

disorders that can be relieved by using antidepressants (Table. 1-1) (Briley et al. 1993, Martin 

2008). For example, depression in patients with PD can be alleviated by the selective 

norepinephrine reuptake inhibitor (NRI) reboxetine (McNamara et al. 2006). The most 

important classes of antidepressants are the selective serotonin reuptake inhibitors (SSRIs) 

(Geddes et al. 2004), NRIs, TCAs and MAOIs. SSRIs and NRIs are considered to increase the 

exracellular levels of serotonin and norepinephrine by blocking the serotonin transporter 

(SERT) and NET. Most TCAs primarily act by inhibiting serotonin and norepinephrine 

reuptake into the cell; this results in an elevation of the synaptic concentrations of these 

neurotransmitters (Tatsumi et al. 1997, Gillman 2007).  
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Table 1-1. Four Classes of Antidepressants and Their Principal Actions 
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Questions to be Answered in These Studies 

First, in the study published in Neurotoxicity Research (2014, 25(2): p193-207) and 

presented here in Chapter 2 (Wang et al. 2014), we reveal a detailed neurotoxic function of 

DSP4. It is known that in vivo DSP4 treatment induces degeneration of noradrenergic terminals 

by interacting with NET and depleting intracellular norepinephrine. It has been reported that 

DSP4 induced LC axon lesions in LC cell bodies (Fritschy et al. 1991a). However, DSP4’s 

precise mechanism of action remains unclear. We hypothesize that DSP4 down-regulates the 

noradrenergic phenotypes, which may be mediated by its actions on DNA replication, leading 

to replication stress and cell cycle arrest. We used SH-SY5Y, an immortal neuroblastoma cell 

line that expresses the noradrenergic markers DBH and NET, to test the hypothesis that DSP4 

down-regulates their expression. Further efforts have been focused on the exploration of 

possible mechanisms underlying DSP4-induced down-regulation of these noradrenergic 

phenotypes and for DSP4 toxicity associated with DDR marker proteins. 

Second, it has been reported that degeneration of the noradrenergic neurons proceeds to 

other neurons in the brain in some neurodegenerative diseases like AD and PD. However, their 

pathologic characteristics during degenerative course and certain mechanisms remain to be 

elucidated. DSP4 is considered as a useful tool in studies of the mechanisms of LC neuron 

degeneration. CPT also exhibits significant toxicity toward neuronal cells in vitro (Morris et al. 

1996, Uday Bhanu et al. 2010). We hypothesize that noradrenergic SH-SY5Y cells and LC 

neurons are sensitive to CPT- or DSP4-induced DNA damage and they are deficient to repair 

the damage. This may be part of the mechanism for LC degeneration. In Chapter 3, we treated 

noradrenergic SH-SY5Y cells and primary LC cultures and nonnoradrenergic fibroblast cells 

and raphe neurons with CPT or DSP4.  Western blots and immunofluorescence assays (IFAs) 
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were used to test the appearance of 2 DDR markers. Comet assays were employed to test the 

DNA damage repair.  

Finally, depression symptoms that could be relieved by using antidepressants often 

accompany neurodegenerative disorders. To date, few studies have elucidated why different 

groups of antidepressants have the similar effects on relieving depression. There is evidence 

showing that DNA damage by oxidative stress is involved in the pathophysiology of 

depression (Maes et al. 2009, Maes et al. 2011). Therefore, we hypothesize that certain 

antidepressants can reduce the DDR in noradrenergic SH-SY5Y cells induced by DSP4 or 

CPT. In Chapter 4, four groups of antidepressants, TCAs, SSRIs, NRI, and MAOIs, were used 

to treat SH-SY5% cells. We demonstrate that several antidepressants reduce the DDR induced 

by neurotoxins DSP4 or CPT in SH-SY5Y cells. Flow cytometry data show that selective 

antidepressants protect cells from being arrested in S phase.  
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CHAPTER 2 

 

EFFECTS OF DSP4 ON THE NORADRENERGIC PHENOTYPES AND ITS POTENTIAL 

MOLECULAR MECHANISMS IN SH-SY5Y CELLS 

 

Yan Wang, Phillip R. Musich, Moises A. Serrano, Yue Zou, Jia Zhang, Meng-Yang Zhu 

 

Abstract 

 

DBH and NET are the noradrenergic phenotypes for their functional importance to 

noradrenergic neurons. It is known that in vivo DSP4 treatment induces degeneration of 

noradrenergic terminals by interacting with NET and depleting intracellular norepinephrine. 

However, DSP4’s precise mechanism of action remains unclear. In this study various 

biochemical approaches were employed to test the hypothesis that DSP4 down-regulates the 

expression of DBH and NET, and to determine the molecular mechanisms that may be 

involved. The results showed that treatment of SH-SY5Y neuroblastoma cells with DSP4 

significantly decreased mRNA and protein levels of DBH and NET. DSP4-induced reduction 

of DBH mRNA and protein levels, as well as NET protein levels showed a time- and 

concentration-dependent manner. Flow cytometric analysis demonstrated that DSP4-treated 

cells were arrested predominantly in the S-phase, which was reversible. The arrest was 

confirmed by several DNA damage response markers (phosphorylation of H2AX and p53), 
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suggesting that DSP4 causes replication stress which triggers cell cycle arrest via the S-phase 

checkpoints. Moreover, the comet assay verified that DSP4 induced single-strand DNA breaks. 

In summary, the present study demonstrated that DSP4 down-regulates the noradrenergic 

phenotypes, which may be mediated by its actions on DNA replication, leading to replication 

stress and cell cycle arrest. These action mechanisms of DSP4 may account for its degenerative 

consequence after systematic administration for animal models. 

 

Introduction 

 

DBH and NET are the important proteins of the noradrenergic neurons for their specific 

functional characteristics in these neurons  (Kaufman and Friedman 1965, Chan-Palay and 

Asan 1989, Barker E 1995). DBH catalyzes the oxidation of dopamine to norepinephrine and is 

expressed exclusively in the noradrenergic and adrenergic neurons in the brain. DBH is not the 

rate-limiting enzyme for norepinephrine synthesis. However, it was reported that the amount of 

DBH available is also a key factor in determining the rate of norepinephrine synthesis 

(Kobayashi et al. 1994, Kim et al. 2002). The NET is located on presynaptic terminals of 

noradrenergic neurons in the central and peripheral nervous system (Iversen 1971), and 

functions to reuptake more than 90 % of released norepinephrine into the presynaptic terminals 

(Axelrod and Kopin 1969). As this reuptake is the main mechanism for inactivation of 

norepinephrine transmission, alterations of NET expression remarkably would affect 

norepinephrine levels in the synapses and, in turn, highly influence noradrenergic transmission. 

As such, changes in the expression of these proteins not only affect NE levels in vitro and in 
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vivo, but also reflect alteration in activity and function of these neurons in the brain. Therefore, 

measurement of their expression can yield important information regarding the functional 

status of neuronal cells and underlying mechanisms of neurotransmission (Zigmond et al. 

1989).  

The effects of DSP4 on norepinephrine levels in the peripheral and central 

noradrenergic system were first reported several decades ago (Ross 1976). DSP4 can cross the 

blood–brain barrier and accumulate intraneuronally. In vivo DSP4 selectively damages 

noradrenergic projections originating from the LC by interacting with the NE reuptake system 

and depleting intracellular norepinephrine, finally inducing degeneration of noradrenergic 

terminals (Winkler 1976, Ransom et al. 1985, Dooley et al. 1987, Howard et al. 1990, Prieto 

and Giralt 2001). Thus, DSP4 has widely been used as a noradrenergic neurotoxin. However, 

the precise mechanism of action of DSP4 remains unclear. In addition, little data have been 

reported from in vitro studies on the mechanism of DSP4-induced neuronal degeneration. 

Thus, elucidating the molecular mechanism by which DSP4 evokes its neurodegenerative 

effect may promote the effort to find novel therapeutic strategies for treatment of degenerative 

diseases. 

Aberrant cell cycle activity and DNA damage have been observed during the 

progression of neurodegenerative conditions. Many cytotoxic and genotoxic agents including 

neurotoxins arrest the cell cycle at the different phases (Sontag et al. 2008). Also, neurons are 

continuously exposed to endogenous and environmental DNA-damaging insults, inducing 

DNA strand breaks and base adducts, eventually leading to neurodegeneration. Whether these 

events are involved in DSP4’s toxicity to the noradrenergic neurons is an important but 

unresolved issue. Genotoxic damage can occur in any of the four phases of the cell cycle, G1, 
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S, G2, or M. Neurons are terminally differentiated cells and no longer progress through the cell 

cycle. However, neurons require continuous gene expression to maintain their high metabolism 

and machinery for neurotransmission and genome integrity is essential for such an expression 

program. Thus, like cycling cells the LC and other neurons remain susceptible to DNA damage 

and would be expected to have active DNA damage response (DDR) mechanisms and cell 

cycle checkpoints to remedy such damage. Ataxia-telangiectasia mutated (ATM) and ATM 

and Rad3-related (ATR) protein kinases are early damage-sensing components of DDR 

pathways, especially in response to double- and single-strand DNA breaks (Abraham 2001). 

Protein substrates of the activated ATM and ATR kinases include histone H2AX, which is 

phosphorylated at serine 139 (γH2AX) (Burma et al. 2001, Ward and Chen 2001) and the 

tumor suppressor protein p53 is phosphorylated at serine 15 (p-p53
ser15

) (Hammond et al. 

2002). γH2AX tags the chromatin sites of DNA damage to initiate the recruitment of DNA 

repair factors (Zarei and Stephenson 2002, Sontag et al. 2008) while the p-p53
ser15

 enhances 

transcription of DDR genes and modifies the interaction of DNA metabolism proteins (Serrano 

et al. 2012). In cycling cells responses to DNA damage arrest cell cycle progression to allow 

DNA repair; however, the sequence of events for the DDR in highly differentiated, non-

dividing cells have not been addressed in this part because of the experimental limitations in 

performing such studies. 

In this study, we used SH-SY5Y, an immortal neuroblastoma cell line which expresses 

the noradrenergic markers DBH and NET, to test the hypothesis that DSP4 down-regulates 

their expression. Further efforts have been focused on the exploration of possible mechanisms 

underlying DSP4-induced down-regulation of these noradrenergic phenotypes and for DSP4 

toxicity associated with DDR marker proteins. 
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Materials and Methods 

 

Cell Culture and Drug Exposure 

The human neuroblastoma cell line SH-SY5Y was used in these experiments (Biedler 

et al. 1978). SH-SY5Y cells were maintained in a 1:1 mix of RPMI 1640 and F12 media, 

which was supplemented with 10 % heat-inactivated fetal bovine serum (FBS), penicillin (100 

U/mL), and streptomycin (100 μg/mL) at 37 
o
C in humidified air containing 5 % CO2. Culture 

medium and supplements were obtained from Gibco-Invitrogen (Carlsbad, CA, USA). Cells 

were seeded into 6-well or 100-mm plates. Drug exposures were started after 24 h of each 

subculture. DSP4 (Sigma, St Louis, MO, USA) dissolved in distilled water at 50 mM was 

diluted with culture media and added to cells to a final concentration of 5, 10, or 50 μM, alone 

or in combination with the ATM inhibitor KU55933 (10 μM, Selleckchem, USA), and/or the 

ATR inhibitor Nu6027 (10 μM, Santa Cruz, CA, USA) for the times as indicated in the text. 

The selection of the concentration of DSP4 was based on the reports about its IC50 in the 

literature (Boksa et al. 1989, Tieu et al. 1999, Wenge and Bonisch 2009) and our preliminary 

experiments. Only SH-SY5Y cells prior to passage 15 were used. Cell viability was determined 

by exclusion of trypan blue dye; cell viability was 90–95 % in the untreated cells. 

 

RNA Isolation, RT-PCR, and Relative Quantitative qPCR Analysis 

SH-SY5Y cells with or without DSP4 treatment were collected from 6-well plates 

(Sigma, St Louis, MO, USA) and isolation of total RNA was carried out using RNeasy Mini 

Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions. Quality and 



 34 

quantity of total RNAs were measured at 260 and 280 nm using a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies LLC, Wilmington, Delaware, CA, USA). Equal 

amounts of total RNA (1 μg) from each sample were primed with random primers and reverse 

transcribed to cDNAs using the Superscript First-strand Synthesis Kit (Invitrogen, Grand 

Island, NY, USA) following the manufacturer’s recommendation. Aliquots of first strand 

cDNA (1µl for DBH, NET, or GAPDH) were amplified by PCR in a 25 µL reaction mix 

containing Platinum PCR Supermix (Invitrogen, Grand Island, NY, USA) and primers at 

appropriate concentrations in an Eppendorf Thermal Cycler (Eppendorf, Hamburg, Germany). 

Primers were synthesized by Invitrogen or Integrated DNA Technologies (Coralville, IA, 

USA). qPCR was run on the Mx 3000P QPCR system (Agilent Technologies, La Jolla, CA, 

USA) using the SYBR green Platinum Quantitative PCR supermix (Invitrogen, Grand Island, 

NY, USA). The primers were designed as follows: DBH, forward: 50-

CCTCACTGGCTACTGCACGGACAAG-30 and reverse: 50-

GTGGAGCTGAGAGGCGAAGATGTGG-30; NET, forward: 50-

CGGTGCCTTCTTGATCCCG-30 and reverse: 50-CCGGTTGTACTGTCCCAGAG-30; and 

GAPDH (as a control): forward: 50-TGCACCACCAACTGCTTAGC-30 and reverse: 50-

GGCATGGACTGTGGTCATGAG-30. All reactions were performed according to the 

following protocol: 2 minutes (min) at 50 
o
C, 2 min at 95 

o
C, followed by 45 cycles of 18 s at 

95 
o
C and 45 s at annealing temperature (NET 60 

o
C, DBH 56 

o
C, GAPDH 56 

o
C), then 

continued with the melting curve analysis (55–90 
o
C) to verify the product specificity. 

Annealing temperature of each gene was determined by running gradient qPCR with a range of 

annealing temperatures starting from 55 to 66 
o
C. Comparative cross threshold (Ct) method 

was used to measure gene expression in response to DSP4 treatments. 



 35 

Western Blotting Analysis 

Whole cell extracts for western blot analysis were prepared by lysing cells in ice-cold 

Nonidet P-40 (NP-40; Sigma, St Louis, MO, USA) buffer (0.5 % NP-40, 50 mM Tris–HCl pH 

8.0, 150 mM NaCl, 2 mM EDTA) for 30 min, after which nuclei and cell debris were removed 

by centrifugation at 12,000 rpm for 10 min at 4 
o
C. An equal volume of 29 sodium dodecyl 

sulfate (SDS) gel-loading buffer then was added to the supernatant and the samples were 

denatured at 70 
o
C for 5 min. Protein concentrations in cell extracts were quantified prior to 

addition of the loading buffer with the Micro BCA Protein Assay Kit (Thermo Science, 

Rockford, IL USA). Proteins (40 μg) were electrophoretically separated on a 10 % or a 15 % 

SDS–polyacrylamide gel and electro-blotted onto a nitrocellulose membrane (Amersham Life 

Sciences, Buckinghamshire, UK). For protein detection, the blots were, respectively, probed 

with a mouse monoclonal anti-NET antibody (1:1,000 dilution; Mab Technology Inc., Stone 

Mountain, GA, USA, or 1:1,000; Alpha Diagnostic Intl. Inc., San Antonio, Texas USA), anti-

DBH antibody (1:500 dilution; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), anti-

replication protein A (RPA) antibody (1:1,000 dilution, R3280, Sigma-Aldrich, St Louis, Mo, 

USA), anti-γH2AX antibody (1:1,000 dilution, Bethyl Laboratories, Inc., Montgomery, TX 

USA), or an anti-p-p53
ser15

 antibody (1:1,000 dilution, Cell Signaling Technology, Inc., 

Danvers, MA, USA). A horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody 

(1:5,000 dilution; Amersham Life Sciences, Buckinghamshire, UK) was used as the secondary 

antibody. The membranes were subjected to enhanced chemiluminescence (Amersham Life 

Sciences, Buckinghamshire, UK) or super enhanced ECL (Sigma Chemical Co., St Louis, MO, 

USA) and autoradiography. To check for equal loading and transfer, the membranes were 

reprobed with a mouse IgG monoclonal anti-b-actin antibody (1:5,000 dilution, Amersham 



 36 

Life Sciences, Buckinghamshire, UK). 

Flow Cytometry 

Cells, sub-cultured in a 6-well plate at 2×10
4
 cells/well, were exposed to DSP4 (5 and 

50 μM) for 24 h. After washing with 37 
o
C phosphate buffered saline (PBS), 200 μL of 0.25 % 

trypsin–EDTA (Gibco, Carlsbad, CA, USA) was added per well and the plate was incubated at 

37 
o
C for 1 min. The trypsin was aspirated off and the cells were suspended with 1 mL ice-cold 

PBS containing 0.5 mM EDTA (PBSE). The cells were collected by centrifugation at 3,000 

rpm for 10 min at 4 
o
C and fixed by slowly adding 1 mL ice-cold 70 % ethanol to resuspend 

the cells. The cells were stored at -20 
o
C for 12–24 h, and then collected at 3,000 rpm for 10 

min at 4 
o
C. The cells were washed once with ice-cold PBSE, then recentrifuged and 

resuspended in 300 μL of freshly prepared PBSE containing 20 μg /mL propidium iodide 

(Sigma, St Louis, MO, USA) and 20 μg /mL DNase-free RNase A (Invitrogen, Grand Island, 

NY, USA). After incubation at 37 
o
C for 30 min, the cells were analyzed on an Accuri C6 flow 

cytometer. The population of G0/G1, S, and G2/M was determined using C6 Flow Cytometer 

Software. The results are expressed as percentage of the attached cells in each phase. 

Immunofluorescence  Assay (IFA) 

2×10
4
 cells were grown on coverslips in 24-well plates (Sigma, St Louis, MO, USA) 

and treated with or without DSP4 (5, 10, or 50 μM) for 24 h. The cells were fixed with 4 % 

paraformaldehyde for 15 min and permeabilized with 0.2 % Triton X-100 in PBS for 10 min. 

Coverslips were then blocked with 5 % goat serum in PBS for 1 h, and incubated overnight 

with primary antibodies (anti-γH2AX: 1:200 dilution, GeneTex Inc., Irvine, CA, USA), and an 

anti-p-p53ser15 (1:400 dilution, Cell Signaling Technology, Inc., Danvers, MA, USA). After 
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three 10-min washes with PBS, the coverslips were incubated with the secondary antibodies 

[Alexa Fluor
®
488 Goat Anti-Rabbit IgG (H+L); Alexa Fluor

®
568 Goat Anti-Mouse IgG 

(H+L), EMD Millipore Corporation, Billerica, MA, USA] diluted in PBS with 5 % goat serum. 

Coverslips were mounted onto microscope slides using Fluoromount-G mounting medium 

(Invitrogen, Grand Island, NY, USA). Slides were viewed and photographed at 100× 

magnification using an EVOS inverted fluorescent microscope (Advanced Microscopy Group) 

with attached CCD camera. 

Comet Assay 

SH-SY5Y cells were treated with different concentrations of DSP4 (5, 10, or 50 μM) or 

camptothecin (CPT, 10 μM) for 24 h. Then, neutral or alkaline comet assays were carried out 

using the Comet Assay System (Trevigen Inc., Gaithersburg, MD, USA) according to the 

manufacturer’s instructions. Fluorescence images were captured at 10× magnification. At least 

50 cells were assessed per treatment. In parallel with the comet assay, cell cultures with the 

same treatments were harvested for the protein analysis by western blotting. 

Statistics 

All experimental data are presented in the text and graph as the mean ± SEM. The 

number of replicates is enumerated in the figure legends. Data were analyzed using one-way 

analysis of variance (ANOVA), which was followed by a post hoc Newman–Keuls test for 

planned comparisons. 
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Results 

 

DSP4 Treatment Down-Regulates the Expression of DBH and NET in a Time- and 

Concentration-Dependent Manner 

Effects of DSP4 treatment on mRNA and protein levels of noradrenergic phenotypes in 

human SH-SY5Y cells were examined. As shown in Figure 2-1, exposure of cells to 50 μM 

DSP4 (this concentration was selected based on preliminary experiments and the literature) for 

different times resulted in a significant reduction of DBH (F4,45=34, p<0.0001) and NET 

(F4,34=30.8, p<0.0001) proteins. Post hoc tests revealed that compared to the control (0 time), 

DSP4-induced reduction of DBH/NET protein levels was time dependent. For the 

concentration course, cells were exposed to DSP4 at concentrations of 5, 10, and 50 µM for 24 

h. qPCR analyses showed that DSP4 significantly decreased mRNA levels of DBH 

(F3,48=85.2, p<0.0001) and NET (F3,44=17.97, p<0.001) (Figs. 2-2A, 3A). Consistently, 

protein levels of DBH (F3,27 = 56.2, p<0.0001) and NET (F3,36 = 69.3, p<0.0001) also were 

significantly reduced as analyzed by western blotting (Figs. 2-2B,2-2C,2-3B,2-3C). Post hoc 

tests demonstrated that DSP4-induced reduction in mRNA and protein levels of DBH, as well 

as NET protein levels showed in a concentration-dependent manner. It was reported that the 

effects of DSP4 on NE levels in vivo are reversible (Jaim-Etcheverry and Zieher 1980, 

Hallman et al. 1984, Wolfman et al. 1994, Srinivasan and Schmidt 2004, Szot et al. 2010). The 

recovery of DBH/NET protein levels from inhibition by DSP4 was tested further. Cells were 

exposed to 50 µM for 24 h, then after brief washing with PBS, cells were then maintained in 

fresh medium in the absence of DSP4 for 24, 48, 72, and 96 h. Western blotting analysis 
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showed that washing-out of DSP4 significantly affected DBH and NET protein levels 

(F5,42=7.56, p<0.01 for DBH; F5,42=30.48, p<0.0001 for NET). While DBH levels were fully 

recovered within 24 h, it took 48 h for full recovery of NET protein levels (p<0.01). 

Nevertheless, these results indicated that DSP4-induced inhibition of DBH and NET 

expression in SH-SY5Y cells is reversible (Figure 2-4). 

 

Figure 2-1. Time-dependent effects of DSP4 (50 µM) treatment on protein levels of 

DBH and NET in SH-SY5Y cells. (A) Autoradiograph obtained by western blotting. (B) and 

(C) The quantitative analysis of band densities in western blotting of DBH/NET. Values of 

protein levels of DBH/NET were normalized to those of β-actin in the same measurement. The 

graphic data represent averages obtained from 7 to 9 separate experiments. 
***

p<0.001, 

compared to the control group (0 h); 
###

p<0.001, compared to the 6 h group; 
&&&

p<0.001, 

compared to the 12 h group; 
$$$

p<0.001, compared to the 24 h group. 
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DSP4 Treatment Leads to Cell Cycle Arrest 

To further study the action mechanisms of DSP4, SHSY5Y cells were exposed to 5 or 

50 μM DSP4 for 24 h and the effects of these single-dose treatments on cell growth and 

viability were studied by trypan blue staining. At 5 µM, DSP4 inhibited cell proliferation by 25 

% (p<0.05), whereas 50 µM DSP4 inhibited proliferation by 50 % (p<0.001), compared to the 

control group after 24 h (Figure 2-5A). This result suggests that the cell cycle was arrested. S-

phase checkpoint monitors the integrity of the genome and halts DNA synthesis, arresting cells 

in S phase, following DNA damage  (Bartek and Lukas 2001). Flow cytometry was used to 

determine whether cell cycle transit was altered by DSP4 (Figure 1-2). The DNA profile 

clearly demonstrates that DSP4 profoundly affects the SH-SY5Y cell cycle. In an untreated 

cell population 52.63, 18.73, and 27.17% of the cells were distributed among the G1-, S-, and 

G2/M-phases, respectively (Fig 2-5B, 5C). After a 24-h treatment with 5 or 50 µM DSP4 the 

percentage of SHSY5Y cells in S-phase increased to 28.77 and 32.83%, respectively, 

compared to 18.73% in untreated control cells. These cytometric results demonstrate that 

DSP4-treated SH-SY5Y cells accumulated predominantly in S-phase due to cell cycle arrest. 
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Figure 2-2. Concentration-dependent effects of DSP4 h on mRNA and protein levels of 

DBH in SH-SY5Y cells. (A) measured by qPCR, (B) measured by western blotting and (C) 

showed the quantitative analysis of band densities in western blotting. Values of mRNA and 

protein levels of DBH were normalized to those of GAPDH or β-actin in the same 

measurement. The graphic data represent averages obtained from 8 to 12 separate experiments. 
***

p<0.001, compared to the control group (0 μM); 
#
p<0.05, 

###
p<0.001, compared to the 5 μM 

group; 
&&

p<0.01, compared to the 10 μM group. 
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Figure 2-3. Concentration-dependent effects of DSP4 on mRNA and protein levels of 

NET in SH-SY5Y cells. (A) measured by qPCR, (B) measured by western blotting and (C) 

showed the quantitative analysis of band densities in western blotting.  Values of mRNA and 

protein levels of NET were normalized to those of GAPDH or β-actin in the same 

measurement. The graphic data represent averages obtained from 9 to 11 separate experiments. 
***

p<0.001, compared to the control group (0 μM); 
###

p<0.001, compared to the 5 μM group; 
&&&

p<0.001, compared to the 10 μM group. 
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Figure 2-4. Up-regulation of DBH/NET protein levels from inhibition by DSP4. SH-

SY5Y cells were exposed to 50 μM DSP4 for 24 h (DSP4) and then incubated in fresh media 

in the absence of DSP4 for 24 h (R24 h), 48 h (R48 h), 72 h (R72 h), and 96 h (R96 h) after 

brief washing by PBS. The control cells were exposed to the vehicle (Con). (A) 

Autoradiograph obtained by western blotting. (B) and (C) The quantitative analysis of band 

densities in western blotting of DBH/NET. Values of protein levels of DBH/NET were 

normalized to those of β-actin in the same measurement. The graphic data represent averages 

obtained from seven separate experiments. 
***

p<0.001, compared to the control group (Con); 
###

p<0.001, compared to the DSP4 group; 
&&&

p<0.001, compared to the R24 h group. 
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Next, we examined whether S-phase-arrested cells could resume cell cycle transit after 

removal of DSP4. Cells were treated with 50 µM DSP4 for 24 h, then rinsed with PBS and 

maintained in fresh medium without DSP4 for another 12 or 24 h before analysis by flow 

cytometry. As shown in Fig 2-6, arrested cells resumed cycle transit within 12 or 24 h after 

DSP4 removal. Although more cells were in S-phase compared with the control, the proportion 

of cells in G1-phase returned to normal. Interestingly, after removal of DSP4 for 24 h, fewer 

cells were in G2-phase compared to the control group (p<0.05). These data indicate that DSP4-

arrested cells were able to resume cell cycle transit after removal of DSP4. 

DSP4 Treatment Induces DDRs 

How does DSP4 treatment lead to cell cycle arrest with an accumulation of cells in S 

phase? To address this question, SH-SY5Y cells were treated with 50 µM DSP4 for different 

times. As a positive control, one group of cells was treated for 2 h before cell harvest with CPT 

alone, a cytotoxic drug which inhibits topoisomerase I, thus inducing DNA double-strand 

breaks (DSBs) in the subsequent S-phase (Del Bino et al. 1992, Kurose et al. 2006). The 

harvested cell samples were analyzed by western blotting for the DDR markers γH2AX, p-

p53
ser15

, and hyperphosphorylation of RPA. As shown by Figure 2-7, γH2AX and p-p53
ser15

 

levels were significantly increased at 2 or 4 h, respectively, after DSP4 exposure (F6,42 = 46.6, 

p<0.001 for γH2AX; F6,42 = 85.5, p<0.001 for p-p53
ser15

), indicating that DNA damage 

appeared earlier than reduction of DBH/NET expression. 
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Figure 2-5.  Effects of DSP4 treatment on cell proliferation and cell cycle arrest in 

SHSY5Y cells. (A) The viable number of SH-SY5Y cells decreased significantly after cells 

were exposed to 5 and 50 μM DSP4 for 24 h. Representative flow-cytometric histograms (B) 

and quantitative evaluation of DSP4 effects (C) showed DSP4-induced cell cycle arrest. Each 

bar from a and c represents data obtained from 6 to 7 separate experiments. 
**

p<0.01, 

compared to 0 μM group (A) or compared to 0 μM group in G1-phase. 
##

p<0.01, compared to 0 

μM group in S-phase. In figure B, black-control, red-5 μM DSP4; blue-50 μM DSP4. 
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Figure 2-6. The DSP4-induced cell cycle arrest is reversible. Representative flow-

cytometric histograms (A) and quantitative evaluation of DSP4 effects (B) showed that the 

DSP4-induced cell cycle arrest is reversible. In figure (A), black-control, red-DSP4 for 24 h, 

blue-removing DSP4 for 12 h, green-removing DSP4 for 24 h. Each bar from b represents data 

obtained from seven separate experiments. 
**

p<0.01, 
***

p<0.001, compared to 0 μM group in 

G1-phase. 
##

p<0.01, 
###

p<0.001, compared to 0 μM group in S phase. 
&&&

p<0.001, compared 

to 0 μM group in G2/M-phase. 

 

In a separate experiment, cells were exposed to DSP4 (5, 10, or 50 μM) for 24 h. 

Increased γH2AX levels were proportional to DSP4 concentrations (Figure 2-8A, 2-8B), 

suggesting that DNA strand breaks were induced by DSP4. Also, nuclear γH2AX foci were 

observed by immunofluorescence with the number of foci increasing proportionally with DSP4 

concentrations or exposure time (Figure 2-9A). Tumor suppressor protein p53 also is 

phosphorylated at serine 15 in response to DNA damage or replication stress (Prieto and Giralt 
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2001). The level of p-p53
ser15

 also is increased in response to DSP4 treatment; this increase in 

p-p53
ser15

 is proportional to DSP4 concentration as determined by western blots (Figure 2-8C, 

2-8D) and by immunofluorescence (Figure 2-9B).  

Human RPA is a single-strand DNA-binding protein that is involved in many aspects of 

DNA metabolism (Zou et al. 2006). The 32 kDa subunit of RPA (RPA32) is 

hyperphosphorylated in response to DNA DSBs and to some other types of DNA damage (Zou 

et al. 2006). Also, CPT induces DNA DSBs and RPA hyperphosphorylation (Murren et al. 

1996, Liu and Martin 2001), which appears as a slower migrating band on SDS-

polyacrylamide gels. To determine if RPA becomes hyperphosphorylated in response to DSP4 

treatment in SH-SY5Y cells were treated with DSP4 (5, 10, or 50 µM) for 24 h. As a positive 

control other cells were treated with CPT for 2 h before cell harvest. Interestingly, the 

hyperphosphorylated-RPA32 (hyp-RPA32) band was detected only in the CPT-treated cells 

(Figure 2-8E). 
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Figure 2-7. The time-course analysis of DSP4-induced DNA damage as demonstrated 

by increased γH2AX and p-p53
ser15

. Cells were exposed to 50 μM DSP4 for 0.5–6 h. (A) 

Autoradiograph obtained by western blotting. (B) and (C) showed the quantitative analysis of 

band densities in western blotting of γH2AX or p-p53
ser15

. Each bar from (B) and (C) 

represents data obtained from six separate experiments. 
***

p<0.001, compared to the control (0 

h). 
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Figure 2-8. DSP4 treatment induced a DNA damage response in SHSY5Y cells. (A) 

and (B) Western blotting and quantitative analysis revealed an increase in γH2AX after DSP4 

treatment for 24 h. (C) and (D) Western blotting and quantitative analysis showed an increase 

of p-p53
ser15

 after DSP4 treatment for 24 h. (E) No phosphorylated RPA32 was observed after 

exposing cells to 50 μM DSP4. Each bar from (B) and (D) represents data obtained from seven 

separate experiments. CPT results in phosphorylation of H2AX, p53, and RPA32. 
**

p<0.01, 
***

p<0.001, compared to 0 μM group. 
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DSP4 Induces Activation of  ATM Pathway 

Cell cycle checkpoints are regulatory pathways that govern the order and timing of cell 

cycle transitions to insure completion of one cellular event prior to commencement of the next 

cell cycle phase (Hatip-Al-Khatib and Bolukbasi 1999). The key regulators of the checkpoint 

pathways in the mammalian DDR are the ATM and ATR protein kinases, members of the 

serine–threonine PIKK kinases family (Abraham 2001, Shiloh 2001). Although ATM and ATR 

appear to phosphorylate many of the same cellular substrates (Kim et al. 1999), they generally 

respond to distinct types of DNA damage. ATM and ATR inhibitors were used to elucidate the 

role of these kinases in the DSP4-induced DDR. SH-SY5Y cells were treated with ATM or 

ATR inhibitors, alone or in combination, for 1 h before continuous exposure to 50 µM DSP4 

for 24 h. Western blotting revealed that ATM inhibition significantly decreased the level of 

DSP4-induced γH2AX, compared to that of cells treated with DSP4 alone. In contrast, ATR 

inhibition increased the level of DSP4-induced γH2AX over that of cells treated with DSP4 

alone. Treatment with both ATM and ATR inhibitors resulted in no net change of γH2AX 

levels compared to that of the group treated with DSP4 alone (Figure 2-10A, 10B).  

These results indicate that ATM is involved in γH2AX formation after DSP4 treatment. 

This is consistent with the significant reduction in DSP4-dependent p-p53
ser15

 by ATM 

inhibition and increased levels by ATR inhibition. Similarly, treatment with both kinase 

inhibitors did not show a net reduction in phospho-p53
ser15

 levels below compared to DSP4 

treatment alone (Figure 2-10C, 2-10D). These results indicate that γH2AX and p-p53
ser15

 

formation are downstream product primarily of ATM after DSP4 treatment. 
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Figure 2-9. DSP4 treatment induced the formation of nuclear γH2AX foci and p-

p53
ser15

. (A) Immunofluorescence staining showed foci of γH2AX in the nuclei of cells treated 

with 50 μM DSP4 for 24 h. (B) Immunofluorescence staining showed p-p53
ser15

 in the nuclei 

of cells treated with 50 μM DSP4 for 24 h. N = 5 for each group. DAPI, 4',6-diamidino-2-

phenylindole, a fluorescent dye that strongly binds to DNA as a nuclear counterstain. 

 

DSP4 Induces Single-Strand DNA Breaks  

To further explore the type of DNA damage induced by DSP4 treatment, SH-SY5Y 

cells treated with DSP4 (5, 10, or 50 μM) for 24 h were analyzed by neutral or alkaline comet 

assays. These assays detect DNA double- versus single- strand breaks, respectively, by 

measuring the formation of the nuclear DNA tail (comet) after single-cell gel electrophoresis. 

As shown in Figure 2-11, no obvious nuclear tails were observed in the neutral comet assay 

after DSP4 treatment, indicating that DSP4 did not lead to detectable DNA DSBs. However, 

exposure of SH-SY5Y cells to DSP4 resulted in extensive SSBs as reflected in the significant 

tail lengths observed in the alkaline comet assay (Figure 2-11, bottom). 
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Figure 2-10. The DSP4-induced DDR is dependent on ATM activation. (A) and (B) 

Western blotting and quantitative analysis show reduction in DSP4-induced γH2AX formation 

in cells treated with ATM or ATR inhibitor. (C) and (D) Western blotting and quantitative 

analysis show a reduction in the DSP4-induced p-p53
ser15

 formation in cells treated with ATM 

or ATR inhibitor. The cells were pretreated with the inhibitors for 1 h and continued for 24 h 

with DSP4 treatment. Each bar from both pictures (B) and (D) represents data obtained from 
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six separate experiments. 
*
p<0.05, 

**
p<0.01, 

***
p<0.001, compared to the DSP4-only group; 

#
p<0.05, 

##
p<0.01, 

###
p<0.001, compared to the DSP4 plus ATR inhibitor group; 

&
p<0.05, 

compared to the DSP4 plus both inhibitors group. 

 

 

 

Figure 2-11. DSP4 induces single-strand DNA breaks as determined by the comet 

assay. SH-SY5Y cells were exposed to DSP4 in a dose dependent manner for 24 h. The cells 

were processed for comet assays run under neutral and alkaline conditions to identify DNA 

DSBs versus SSBs, respectively. N = 5 for each group. 

 

Discussion 

 

DSP4 is a well-known neurotoxin that selectively damages the noradrenergic projection 

originating from the LC (Jonsson et al. 1981, Fritschy et al. 1990). In the present study, SH-

SY5Y neuroblastoma cell line, which naturally expressing DBH and NET (Richards and Sadee 

1986) but neither the serotonin nor dopamine transporters (Lode et al. 1995), was used to 

examine the potential molecular mechanisms underlying DSP4 action on noradrenergic 

phenotypes. The main findings are: (1) DBH and NET expression in SHSY5Y cell line was 

down-regulated by DSP4 and DSP4-induced reduction of their protein levels and DBH mRNA 
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level exhibited a concentration and time-dependent course. (2) DSP4 treatment resulted in cell 

cycle arrest predominantly in S phase. (3) Removal of DSP4 allowed the arrested cells to 

resume the cell cycle and to replenish the reduced DBH and NET protein. (4) DSP4-induced 

cell cycle arrest possibly was caused by DNA damage as DSP4 treatment significantly 

increased the DDR markers γH2AX and p-p53
ser15

. (5) DSP4 treatment activated the ATM 

pathway as part of the DDR. (6) DSP4 treatment of SH-SY5Y cells induced DNA SSBs but 

not DSBs. Thus, these results suggest that down-regulation of the noradrenergic phenotypes 

caused by DSP4 may stem from the DSP4-induced DNA damage, which activated the ATM 

pathway and eventually resulted in cell cycle disruption.  

Previously, most studies of DSP4 neurotoxicity were carried out under in vivo 

conditions. DSP4 has been considered to interact at high affinity with the norepinephrine 

reuptake sites on the noradrenergic terminals, which were degenerated due to the alkylation of 

diverse vital neuronal structures (Lee et al. 1982, Hallman et al. 1984, Dudley et al. 1990). 

Furthermore, a reduced immunoreactivity of DBH and tyrosine hydroxylase in the LC and 

other brain regions caused by administration of DSP4 revealed an inhibition of noradrenergic 

phenotypes (Ross 1976, Gordon et al. 1999, Prieto and Giralt 2001, Kalinin et al. 2006, 

Waterman and Harding 2008, Engler et al. 2010). In the present study DSP4 treatment was 

found to drastically down-regulate expression of the DBH and NET in SH-SY5Y cells, which 

is consistent with those observations in vivo. These results confirm that the neurotoxicity of 

DSP4 is primarily mediated through inhibition or reduced expression of the noradrenergic 

phenotypes: reduced expression of DBH/NET diminishes the synthesis/reuptake of 

norepinephrine, finally leads to lower levels of norepinephrine in the brain (Figure 1-1). 

Reduced expression of DBH/NET could be the end result rather than the cause of the 
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neurodegeneration. DNA is vulnerable to damage throughout the cell cycle due to diverse 

types of pathological insults including oxidative stress and cytotoxins that upset DNA 

metabolism. Though neurons are non-cycling cells neurotoxicity may be mediated by similar 

metabolic upsets. One consequence is DNA damage induced by active metabolites which cause 

DNA base adducts or strand breaks (Katyal and McKinnon 2008). In response to DNA 

damage, checkpoint surveillance mechanisms initiate signaling cascades, which coordinate cell 

cycle arrest and facilitate DNA repair (Shiloh 2003, Bakkenist and Kastan 2004, McGowan 

and Russell 2004). If these checkpoint surveillance mechanisms fail in neurons, 

neurodegeneration eventually occurs (Lavin 1999, Cho and Liang 2011). There has been a 

slow but steady accumulation of evidence of DNA damage in various neurodegenerative 

diseases (Robison and Bradley 1984). For example, an increase of DNA strand breaks in 

neurons has been reported in AD (Adamec et al. 1999) and HD (Anne et al. 2007). Damage to 

mitochondrial DNA also has been found in PD (Zhang et al. 1999). Therefore, DNA damage 

with alteration of cell cycle is likely involved in DSP4-induced degeneration of noradrenergic 

neurons. The present study demonstrated that exposure of cells to 50 μM DSP4 for 24 h 

induced about 50 % cell proliferation inhibition. The flow cytometric analysis showed that 

DSP4 treatment for only 24 h induced cell cycle arrest in S phase. DDR measurements 

confirmed a significant increase in γH2AX and p-p53
ser15

, as well as increased frequencies of 

nuclear γH2AX foci; such foci normally represent formation of protein complexes at sites of 

DNA damage (Sontag et al. 2008). All these observations indicated that DSP4-induced cell 

cycle arrest occurred primarily in S-phase and was mediated through DNA damage signaling. 

DNA damage and replication stress responses are a cascade signal transduction process. 

The DDR consists of multiple interconnected pathways, which impact the cell cycle, DNA 
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replication and repair, transcriptional regulation, chromatin remodeling, and other cellular 

metabolic processes (Zhou and Elledge 2000, Rouse and Jackson 2002). Actually, the 

activation of DNA damage-induced signaling pathways serves to arrest the cell cycle while 

DNA repair occurs. In response to DNA strand breaks and during replication stress, ATM and 

ATR kinases are considered as major physiological mediators for the phosphorylation of 

H2AX and p53 (Rogakou et al. 1998, Kastan and Lim 2000, Bakkenist and Kastan 2003). 

γH2AX and p-p-p53
ser15

 function as downstream mediators in this signaling pathway. The 

present study demonstrated that these signal pathways are involved in the DSP4-induced 

down-regulation of the noradrenergic phenotypes. After exposure of cells to DSP4, increased 

levels of γH2AX foci and nuclear p-p53
ser15

 were proportional to DSP4 concentrations (Figure 

2-9). Furthermore, the ATM inhibitor significantly blocked the DSP4-induced enhancement of 

γH2AX and p-p53
ser15

 levels (Figure 2-10). Thus, ATM signaling pathways play a significant 

role in the DDR to DSP4’s toxic effects. 

DNA strand breaks can occur as either SSBs or DSBs. Compared to DSBs, SSBs are 

the more common lesion induced by exogenous genotoxins such as ionizing radiation and 

alkylating agents (Jeppesen et al. 2011). Also, SSBs can collapse a replication fork and be 

converted into DSBs, a threat to genetic stability if not dealt with properly (Caldecott 2004). 

DNA SSBs were reported to be the source of much of the DNA damage in the brain and are 

associated with neurodegenerative diseases (Rass et al. 2007). The comet assay in the present 

study demonstrates that DSP4 exposure induced SSBs, rather than DSBs (Figure 11). 

Interestingly, earlier studies hypothesized that DSP4 is an alkylating compound and its 

neurotoxic effects might derive from uptake by NET, then alkylation of norepinephrine uptake 

sites by covalently binding to these sites in neurons (Ross 1976). It was reported that the 
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nervous system has a lower tolerance for DNA strand breaks than other tissues. For example, 

exposure of adult motor neurons in suspension to oxidizing agents induced SSBs followed by 

neuronal degeneration (Liu and Martin 2001). Also, SSBs in neuronal DNA can physically 

block transcription, thereby triggering loss of cell function due to the absence of one or more 

essential gene products; such damage eventually leads to apoptosis. Thus, the current 

observations are consistent with the hypothesis that DSP4-induced SSBs trigger the down-

regulation of noradrenergic phenotypes and lead to the neuronal degeneration.  

Noradrenergic neuronal loss is an important pathogenic characteristic of 

neurodegenerative diseases. For example, in PD the greatest loss of neurons was found in the 

LC (83.2 %) rather than in the substantia nigra (77.8 %) (German et al. 1992). In AD, LC 

neurons were reduced by 67.9 %, compared to 41.1 % in the nucleus basalis (Zarow et al. 

2003). Furthermore, the loss of LC neurons in PD and AD is best correlated with the duration 

and severity of illness (Bondareff et al. 1982, Gesi et al. 2000). These data not only indicate 

that LC neuron loss is possibly due to a primary involvement of the LC itself in the early 

pathogenesis of PD and AD (Mann et al. 1982, Gesi et al. 2000), but also that it might 

influence the onset and progression of PD and AD. Although the original hypothesis was that 

DSP4 affected only LC terminals (Fritschy and Grzanna 1991b), studies in recent years 

revealed that DSP4 also caused neuronal degeneration in the LC regions (Yu et al. 1994). 

However, this action may depend on the dose and treatment period, as well as the species of 

animals. For example, a single dose (50 mg/kg) of DSP4 did not significantly affect neuronal 

number in the LC of rats (Lyons et al. 1989, Matsukawa et al. 2003, Szot et al. 2010) or rabbit 

(Robinson et al. 1993), but treatment with two or more 50 mg/kg doses resulted in LC cell loss 

as revealed by tyrosine hydroxylase staining in rats (Heneka et al. 2002) and mice (Heneka et 
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al. 2006, Pugh et al. 2007, Jardanhazi-Kurutz et al. 2010, Rey et al. 2012). It has been 

suggested that mice may exhibit more sensitivity to DSP4 (Fornai et al. 1996). Accordingly, 

now DSP4 is used mostly in vivo studies as a selective neurotoxin to mimic in animal models 

the pathology of human PD and AD in terms of degeneration of LC neurons and subsequent 

NE depletion in the brain (Heneka et al. 2002, Srinivasan and Schmidt 2004). Since little is 

known about how DSP4 induces neurodegeneration in vivo, it remains uncertain whether 

systematic administration of DSP4 would induce DNA damage in the brain similar to that 

observed in the present study. Nevertheless, this study provides fundamental information 

regarding the potential action mechanisms of DSP4 in vivo. That is, administration of DSP4 in 

these animal models can result in DNA SSBs which in turn activate ATM signaling pathways 

including formation of γH2AX and p-p53
ser15

, as well as other checkpoint factors and DDR 

processes. Therefore, therapies to minimize DNA damage may be beneficial in the future 

treatments of neurodegenerative diseases. 

Collectively, the present studies demonstrate that DSP4 treatment significantly 

decreased expression of DBH/NET in a concentration-dependent manner. These alterations 

may be mediated through DSP4-induced SSBs, which in turn activated ATM signaling 

pathways to phosphorylate several DDR markers, resulting in cell cycle arrest in S phase. 

These action mechanisms of DSP4 may account for its degenerative consequence after 

systematic administration for animal models. Further elucidation of the molecular mechanisms 

underlying the DSP4-induced DDR process and the genetic interactions between different 

DDR pathways are underway since they are of critical importance in the development of new 

therapeutic strategies for the treatment of many degenerative diseases. 
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Abstract 

 

Degeneration of the noradrenergic neurons has been reported in the brain of neurodegenerative 

disease patients. However, their pathological characteristics in neurodegenerative course and 

certain mechanisms remain to be elucidated. In the present study, we used neurotoxins CPT 

and DSP4 to induce the DDR in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and 

primary cultured LC and raphe neurons. Our studies first show that noradrenergic SH-SY5Y 

cells are more sensitive to CPT-induced DNA damage and they are deficient to repair it, as 

compared to fibroblast cells. In order to confirm the findings of SH-SY5Y cells in in vivo 

studies, primary LC and raphe neuron cultures were used.  Similar to SH-SY5Y cells, LC 

neurons are more sensitive to CPT- or DSP4-induced DNA damage and show a deficiency in 
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repairing CPT-induced DNA damage. Moreover, neurotoxins CPT and DSP4 do not induce 

DNA damage in neuronal cultures from raphe. Taken together, noradrenergic SH-SY5Y cells 

and LC neurons are sensitive to CPT-/DSP4-induced DNA damage and they show a repair 

deficiency. Therefore, these data might be used to explain the pathological characteristics of 

LC degeneration. 

 

Introduction 

 

 The LC is a small nucleus located in the pons. It is the main source of brain 

norepinephrine, especially for the hippocampus and forebrain (Maeda 2000). The activity of 

LC neurons has been considered to be involved in numerous important functions, for example, 

response to stress (Usher et al. 1999). It is reported that the number of LC cells is reduced 

during normal aging and in aging-related diseases, as are brain norepinephrine levels (Marien 

et al. 2004). Patients with AD have reduced levels of norepinephrine compared with controls 

(Adolfsson et al. 1979, Palmer and DeKosky 1993). Damage and loss of LC noradrenergic 

neurons are accelerated in certain progressive neurodegenerative diseases (Mann and Yates 

1983, Mann et al. 1983, Bondareff et al. 1987, German et al. 1992, Rommelfanger and 

Weinshenker 2007, Weinshenker 2008), which are early pathological indicators of AD and PD. 

The greatest neuronal loss was observed in the LC (83% loss in AD; 68% loss in PD) 

compared with other subcortical nuclei (Lyness et al. 2003, Zarow et al. 2003).  

It was reported that aging-related diseases are mainly caused by accumulation of 

nuclear DNA (nDNA) damage in neurons due to insufficient nDNA damage repair. The brain 
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consists large number of non-proliferative neuronal cells, which are vulnerable to defective 

DNA repair. Deficiency of repairing DNA damage usually leads to “accumulation” of 

unrepaired DNA lesions, which might be considered as the cause of the neuropathology in 

several neurodegenerative disorders. Certain neurons with a high amount of nDNA damage, 

like Purkije cells in the rodent brain, would be removed during physiological aging, while 

those with lower amount of nDNA damage will remain there in the brain (Brasnjevic et al. 

2008). The molecular and cellular mechanisms of the selective neuronal death during aging are 

currently not clarified. Therefore, exploring the pathological characteristics of LC 

noradrenergic neuronal loss in neurodegenerative process is important for elucidating the 

pathological mechanisms underlying AD and PD.  

CPT is a cytotoxic quinoline alkaloid and a S-phase-specific anticancer agent which 

inhibits DNA topo I (Figure 1-2) (Liu et al. 2000). Generally, administration of CPT produces 

irreversible DNA DSBs during DNA replication, suggesting that this agent should not have 

toxic effects on non-dividing cells, such as neurons. However, it was reported that CPT could 

lead to death of post-mitotic rat cortical neurons in vitro in a significant dose-dependent 

manner. Additionally, neurotoxic activity of CPT also was found in cultured cerebellar granule 

neurons, which inhibited both protein synthesis and the neuritic outgrowth of primary 

cerebellar granule neurons (Uday Bhanu and Kondapi 2010). These observations indicate that 

CPT also exhibits significant toxicity toward neuronal cells in vitro.  

 The effects of DSP4 on norepinephrine levels in the peripheral and central 

noradrenergic system were first reported several decades ago (Ross 1976). It was reported that 

in vivo DSP4 selectively damages noradrenergic projections originating from the LC by 

interacting with the norepinephrine reuptake system and depleting intracellular norepinephrine, 

http://en.wikipedia.org/wiki/Cytotoxic
http://en.wikipedia.org/wiki/Quinoline
http://en.wikipedia.org/wiki/Alkaloid
http://en.wikipedia.org/wiki/Enzyme_inhibitor
http://en.wikipedia.org/wiki/DNA
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finally inducing degeneration of noradrenergic terminals (Winkler 1976, Ransom et al. 1985, 

Dooley et al. 1987, Prieto and Giralt 2001). DSP4 has been used as a noradrenergic neurotoxin 

to construct AD or PD animal models. Our previous study showed that DSP4 induces the DDR 

in neuroblastoma SH-SY5Y cells in a time- and dose-dependent manner (Wang et al. 2014).  

However, whether DSP4 can induce the DDR in primary cultured neurons remains unclear. To 

date, there are limited studies about the effects of neurotoxins on primary cultured neurons; 

therefore, it is essential to conduct this experiment to elucidate their pathophysiological 

characteristics. 

 In the present study, we exposed SH-SY5Y cells, which are considered as a 

noradrenergic cell line, and primary-cultured LC and raphe neurons to CPT or DSP4. Two 

DDR markers were measured. The results show that noradrenergic SH-SY5Y cells or primary 

LC neurons are severely affected by these neurotoxins. They are sensitive to CPT- or DSP4-

induced DNA damage and they are deficient in repairing it, as compared to fibroblast cells or 

raphe neurons. 

 

Materials and Methods 

 

Cell Culture and Drug Exposure 

 Cell lines: The human neuroblastoma cell line SH-SY5Y and human normal fibroblast 

cells (AG08498) were used in these experiments. SH-SY5Y cells were maintained in a 1:1 mix 

of RPMI 1640 and F12 media. Normal fibroblast cells were maintained in DMEM. Both cell 

lines were supplemented with 10% heat-inactivated fetal bovine serum (FBS), penicillin (100 
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U/mL), and streptomycin (100 µg/mL) at 37 
o
C in humidified air containing 5 % CO2. Culture 

media and supplements were obtained from Gibco-Invitrogen (Carlsbad, CA, USA). Cells 

were seeded into 6-well or 100-mm plates. Drugs exposures were started after 24 h of each 

subculture. Only SH-SY5Y cells prior to passage 10 were used. Cell viability was determined 

by exclusion of trypan blue dye; cell viability was 90–95 % in the untreated cells. 

 Primary tissue cultures: Timed pregnant Sprague Dawley rats at day 12-15 of gestation 

(ED 12-15; the day following nocturnal mating being considered as ED 1) were anaesthetized 

with ketamine/xylazine (100mg/10mg/kg. i.p.). After laparotomy and hysterectomy, the 

embryos were removed and their brains dissected under a stereomicroscope based on the 

published paper (Dunnett and Bjorklund 1992). Mesencephalic tissue pieces containing the 

raphe or LC were collected in ice-cold Hank’s balanced salt solution (HBSS) (Gibco-

Invitrogen, Carlsbad, CA, USA) and incubated for 15 min at 37
o
C in a 15 mL-centrifuge tube 

containing 4.5 mL HBSS, 0.5 mL 0.25% trypsin-EDTA (Gibco-Invitrogen, Carlsbad, CA, 

USA) and 25 µL RQ1 DNase (0.1 mg/mL deoxyribonuclease). The trypsinization was stopped 

by addition of 5 mL HBSS containing 1 mM of pyruvate, 10 mM HEPES and 1 mL of FBS. 

Subsequently, the cells were dissociated by gentle trituration using a fire-polished Pasteur 

pipette. The suspension was centrifuged at 3000 rpm for 5 min and the pellet was suspended in 

culture medium, which contains neurobasal medium (Gibco-Invitrogen, Carlsbad, CA, USA) 

supplemented with B-27 (Gibco-Invitrogen, Carlsbad, CA, USA), 0.5 mM glutamine, 25 µM 

glutamate and penicillin (100 U/mL), and streptomycin (100 μg/mL). The cells were counted 

before plating.  1×10
5
 cells were transferred into 24-well plate (Sigma, St Louis, MO, USA) 

coated with poly-L-lysine (Sigma, St Louis, MO, USA). At 4 day in vitro (DIV), the medium 

was replaced by new medium, which is similar to the original one but without glutamate. For 
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maintaining cell cultures, half of the medium was changed every 3 days. Cells were used for 

drug treatment at 12 DIV. 

 DSP4 (Sigma, St Louis, MO, USA) was dissolved in distilled water at 50 mM, then was 

diluted with culture media and added to cells to a final concentration of 50 µM. CPT (Cat. No. 

C9911, Sigma, St Louis, MO, USA) was dissolved in DMSO at 10 mM, then was diluted with 

culture media and added to cells to a final concentration of 10 µM. The selection of the 

concentration of DSP4 was based on our previous data (Wang et al. 2014). The concentration 

of CPT was based on a published paper (Uday Bhanu and Kondapi 2010).   

Western blotting analysis 

 Whole cell extracts for western blot analysis were prepared by lysing cells in ice-cold 

Nonidet P-40 (NP-40; Sigma, St Louis, MO, USA) buffer (0.5 % NP-40, 50 mM Tris–HCl pH 

8.0, 150 mM NaCl, 2 mM EDTA) for 30 min, after which nuclei and cell debris were removed 

by centrifugation at 12,000 rpm for 10 min at 4 
o
C. 5× SDS gel-loading buffer then was added 

to the supernatant and the samples were denatured at 70 
o
C for 5 min. Protein concentrations in 

cell extracts were quantified prior to addition of the loading buffer with the Micro BCA Protein 

Assay Kit (Thermo Science, Rockford, IL USA). Proteins (40 µg) were electrophoretically 

separated on a 10 % or 15 % SDS–polyacrylamide gel and electro-blotted onto a nitrocellulose 

membrane (Amersham Life Sciences, Buckinghamshire, UK). For protein detection, the blots 

were probed with anti-γH2AX antibody (1:1,000 dilution, Bethyl Laboratories, Inc., 

Montgomery TX USA), or an anti-p-p53
ser15

 antibody (1:1,000 dilution, Cell Signaling 

Technology, Inc., Danvers, MA, USA). A horseradish peroxidase-conjugated anti-mouse or 

anti-rabbit antibody (1:5,000 dilution; Amersham Life Sciences, Buckinghamshire, UK) was 
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used as the secondary antibody. The membranes were subjected to enhanced 

chemiluminescence (Amersham Life Sciences, Buckinghamshire, UK) or super enhanced ECL 

(Sigma Chemical Co., St Louis, MO, USA) and autoradiography. To check for equal loading 

and transfer, the membranes were reprobed with a mouse IgG monoclonal anti-β-actin 

antibody (1:5,000 dilution, Amersham Life Sciences, Buckinghamshire, UK). 

Immunofluorescence Assay (IFA) 

 2 ×10
4
 cells were grown on coverslips in 24-well plates and treated with CPT (10 µM, 

for 15, 30, 60, 90 or 120 min) or DSP4 (50 µM, for 24 h), or vehicle. The cells were fixed with 

4 % paraformaldehyde for 15 min and permeabilized with 0.2 % TritonX-100 in PBS for 10 

min. Coverslips were blocked with 5 % goat serum in PBS for 1 h, and incubated overnight 

with anti-γH2AX (1:200 dilution, GeneTex Inc., Irvine, CA, USA), anti-p-p53
ser15

 (1:400 

dilution, Cell Signaling Technology, Inc., Danvers, MA, USA), anti-DBH (1:200 dilution, 

Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) and anti-SERT (1:200, Calbiochem, 

EMD Millipore Corporation, Billerica, MA, USA). After 3×5-min washes with PBS, the 

coverslips were incubated with the secondary antibodies [Alexa Fluor
® 

488 Goat Anti-Rabbit 

IgG (H+L); Alexa Fluor
®

568 Goat Anti-Mouse IgG (H+L), EMD Millipore Corporation, 

Billerica, MA, USA] diluted in PBS with 5 % goat serum. Coverslips were mounted onto 

microscope slides using Fluoromount-G mounting medium (Invitrogen, Grand Island, NY, 

USA). Slides were viewed and photographed at 20 or 60× magnification using an EVOS 

inverted fluorescent microscope (Advanced Microscopy Group, Washington, USA). We 

counted cells with at least two γH2AX foci for γH2AX-positive cells and increased p-p53
ser15 

expression in nuclei as p-p53
ser15

-postitive cells.  
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Comet assay 

 SH-SY5Y cells were treated with CPT (10 µM) for 2 h, then CPT was washed out, cells 

continued to grow for 24, 48 and 72 h. Then neutral and alkaline comet assays were carried out 

using the Comet Assay System (Trevigen Inc., Gaithersburg, MD, USA) according to the 

manufacturer’s instructions. Fluorescence images were captured at 10× magnification. The 

overall shape resembles a comet with a circular head corresponding to the undamaged DNA 

and a tail of damaged DNA. The level of damage can be measured by length of the tail. At 

least 50 cells were assessed per treatment. In parallel with the comet assay, cell cultures with 

the same treatments were harvested for the protein analysis by western blotting.  

Statistics 

 All experimental data are presented in the text and graphs as the mean ± SEM. The 

number of replicates is enumerated in the figure legends. Data were analyzed by using one-way 

analysis of variance (ANOVA) in GraphPad Prism.  

 

Results 

 

SH-SY5Y cells are sensitive to CPT-induced DNA damage  

 In this study, noradrenergic SH-SY5Y cells, which richly express the noradrenergic hall 

markers DBH and NET, were used. Normal human fibroblast cells with neither DBH nor NET 

expression were used as non-noradrenergic control cells (Figure 3-1). First, we used CPT to 

induce the DDR in SH-SY5Y cells, which was determined by two DDR makers γH2AX and p-

http://en.wikipedia.org/wiki/Comet
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p53
ser15

. We wanted to examine whether noradrenergic SH-SY5Y cells were sensitive to CPT-

induced DNA damage. SH-SY5Y or fibroblast cells were exposed to 10 µM CPT for 15, 30, 

60, 90 or 120 min, followed by western blot analysis and IFAs. As shown in Figure 3-2A and 

3-2C, the percent of γH2AX-positive cells was 14.7% after 90 min exposure and 100% after 

120 min exposure (F5,12=377.5, p<0.0001). In contrast, γH2AX foci were found in about 

1.3%, 29.3%, 51.2%, 74.0% and 77.7% in SH-SY5Y cells after CPT exposure for 15, 30, 60, 

90 or 120 min (F5,12=171.3, p<0.0001), respectively (Figure 3-2B and 3-2D). The percent of 

p-p53
ser15

-positive fibroblast cells was 37.9% after 120 min exposure (Figure 3-3A and 3-3C, 

F5,12=45.47, p<0.0001). However, a significant amount of p-p53
ser15

-positive cells was 36.6%, 

47.2% and 49.5% in SH-SY5Y cells after 60, 90 and 120 min CPT treatment, respectively 

(Figure 3-3B and 3-3D, F5,12=1816, p<0.0001). Western blot results showed that the levels of 

γH2AX (Figure 3-4E and 3-4G, F5,12=83.02, p<0.0001) and p-p53
ser15  

(Figure 3-4F and 3-4H, 

F5,18=168.5, p<0.0001) were dramatically increased after 60 min CPT exposure in SH-SY5Y 

cells, but after 120 min in fibroblast cells (Figure 3-4A and 3-4C, F5,18=78, p<0.0001; Figure 

3-4B and 3-4D, F5,18=868.9, p<0.0001). These results indicate that SH-SY5Y cells are 

sensitive to CPT-induced DNA damage, compared to that in fibroblast cells.  

 

Figure 3-1. Expression levels of DBH and NET in SH-SY5Y and normal fibroblast 

cells. SH-SY5Ycells are rich in NET and DBH expression; however, normal fibroblast cells 

express neither NET nor DBH. 
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Figure 3-2. γH2AX foci are detected in normal fibroblast and SH-SY5Y cells after CPT 

treatment. Cells were treated with CPT (10 μM) for 15, 30, 60, 90 and 120 min, then IFAs 

were performed. (A) 100% of fibroblast cells are found with more than two γH2AX foci in 

nuclei within 120 min CPT treatment. (B) Significant γH2AX foci are found in nuclei after 

CPT treatment in SH-SY5Y cells. Images were taken with 60× magnification. Data of percent 

of γH2AX-positive cells are shown in (C) and (D). At least 200 cells were counted from three 

random chosen views. *p<0.01, **p<0.0001, compared to the 0 min.     
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Figure 3-3. P-p53
ser15 

 levels increase in nuclei of fibroblast and SH-SY5Y cells after 

CPT treatment. Cells were treated with CPT (10 μM) for 15, 30, 60, 90 and 120 min, then IFAs 

were performed. (A) Significant increased number of p-p53
ser15

-positive cells is detected within 

120 min CPT treatment in fibroblast cells. (B) Number of p-p53
ser15

-positive cells is 

dramatically increased after 60 min CPT treatment in SH-SY5Y cells. Images were taken with 

60× magnification. Percent of p-p53
ser15 

positive cells is shown in (C) and (D). At least 200 

cells were counted from three random chosen views. *p<0.0001, compared to 0 min.  
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Figure 3-4. The levels of γH2AX and p-p53
ser15

 increase after CPT treatment. 

Fibroblast and SH-SY5Y cells were treated with CPT (10 μM) for 15, 30, 60, 90 and 120 min, 

then western blots were performed. (A) γH2AX and (B) p-p53
ser15

 levels were dramatically 

increased after 120 min CPT treatment in fibroblast cells. (E) γH2AX and (F) p-p53
ser15

 levels 

were dramatically increased after 60 min CPT treatment in SH-SY5Y cells. The graphic data, 

shown in (C), (D), (G) and H, represent quantitative analysis of protein levels of γH2AX and p-

p53
ser15

, which were normalized to β-actin. Compared to 0 min, 
*
p<0.01, 

**
 p<0.0001; 

compared to 120 min, 
#
 p<0.05, 

##
 p<0.0001.  

 

 



 83 

SH-SY5Y Cells are deficient in repairing CPT-induced DNA Damage 

 In order to examine whether DNA damage caused by CPT in SH-SY5Y cells was 

resistant to repair, we treated SH-SY5Y and fibroblast cells with CPT (10 µM) for 2 hours, 

then cells were briefly washed with PBS. Cells continued to grow in fresh medium in the 

absence of CPT for 24, 48, 72 and 96 h. In normal fibroblast cells, number of γH2AX foci and 

the level of p-p53
ser15

 significantly reduced within 24 h after removal of CPT (Figure 3-5). 

However, in SH-SY5Y cells, the number of γH2AX-positive cells was gradually reduced over 

72 h (Figure 3-6A, F5,12=453.9, p<0.0001). Unexpectedly, the number of γH2AX-positive 

SH-SY5Y cells dramatically decreased from 76.9% to 41.0% within 24 h, but increased from 

41.0% to 52.3% from R24 h to R 48 h. The level of p-p53
ser15 

in SH-SY5Y nuclei decreased 

gradually over 72 h (Figure 3-6B, F5,12=203.0, p<0.0001). Western blotting analysis also 

showed in SH-SY5Y cells, reduced γH2AX (F4,20=43.23, p<0.0001) and p-p53
ser15  

(F4,10=205.3, p<0.0001) protein levels over 72 h after washing-out of CPT (Figure 3-7). 

To further explore the repair efficiency, CPT-treated cells were analyzed by comet 

assays. We treated both fibroblast and SH-SY5Y cells with CPT, and then neutral and alkaline 

comet assays were performed. Interestingly, tails in fibroblast cells were detected under both 

neutral and alkaline conditions, which suggest that CPT induces both DSBs and SSBs in 

fibroblast cells.  However, tails were only detected under alkaline condition in SH-SY5Y cells, 

which indicated SSBs. Tails gradually shorted or disappeared over 72 h in SH-SY5Y cells, 

while began to short and disappeared at 24 h in normal fibroblast cells (Figure 3-10).  

In sum, compared to fibroblast cells, CPT-treated SH-SY5Y cells exhibited a delay in 

reducing levels of two DDR markers γH2AX and p-p53
ser15

.
 
In addition, comet assays showed 



 84 

that CPT-induced DNA damage were persistent in SH-SY5Y cells. These data indicated that 

SH-SY5Y cells were deficient to repair CPT-induced DNA damage. 

 

 

Figure 3-5. The number of γH2AX- or p-p53
ser15

-positive cells is reduced within 24 h in 

fibroblast cells. Cells were treated with CPT (10 μM) for 2 h, then CPT was washed away. 

Cells continued to grow in fresh prepared media without CPT for 24 or 48 h. After 2 h CPT 

treatment, significant γH2AX foci were found in nuclei (A), and the level of p-p53
ser15

 (B) was 

increased in nuclei.  The numbers of γH2AX- or p-p53
ser15

-positive fibroblast cells were 

reduced within 24 h. The Images were taken with 60× magnification. Blue: DAPI, Red: 

γH2AX.  
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Figure 3-6. The number of γH2AX- and p-p53
ser15

-positive cells is reduced within 72 h 

in SH-SY5Y cells. Cells were treated with CPT (10 μM) for 2 h. After CPT was washed away, 

cells continued to grow in media without CPT for 24, 48, 72 or 96 h. (A) The number of 

γH2AX-positive cells decreased within 72 h. (B) The level of p-p53
ser15 

was gradually 

decreased within 72 h. Analytical data of percent of γH2AX- or p-p53
ser15

-positive cells are 

shown in (C) and (D). At least 200 cells were counted from three random chosen views. 
*
p<0.0001, compared to the control; 

#
p<0.05, 

##
p<0.0001, compared to CPT, 

&
p<0.05, 

&&
p<0.001, 

&&&
p<0.0001, compared to R24 h.  
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Figure 3-7. The levels of γH2AX and p-p53
ser15

 are decreased within 72 h in SH-SY5Y 

cells after washing out of CPT. SH-SY5Y cells were treated with CPT (10 μM) for 2 h, then 

CPT was washed away, cells continued to grow in media without CPT for 24 h , 48 h and 72 h. 

Then western blot analyses were performed. (A) and (B) show western blots results. Quantity 

analysis data are shown in (C) and (D) (N=5). 
#
p<0.001, 

##
p<0.0001, compared to the control; 

*
p<0. 0001, compared to CPT group; 

&
p<0.05, 

&&
p<0.001, 

&&&
p<0.0001, compared to R24 h 

group.  
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Figure 3-8. CPT-induced DNA damage can be reduced. Fibroblast and SH-SY5Ycells 

were exposed to CPT (10 μM) for 2 h, then CPT was washed away, cells continued to grow in 

media without CPT for 24 h (R24 h), 48 h (R48 h) and 72 h (R72 h). The cells were processed 

for neutral or alkaline comet assays. Images were taken with 10× magnification. (A) After CPT 

treatment, both neutral and alkaline comet assay detected comet tails in fibroblast cells. Comet 

tails were shorted or disappeared at 24 h. (B) After CPT treatment, only alkaline comet assay 

detected comet tails in SH-SY5Y cells. Comet tails were shorted or disappeared within 72 h.  
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CPT-induced the DDR in cultured LC and raphe neurons 

           Previous data (Figure 3-2, 3-3, 3-4, 3-5, 3-6, 3-7 and 3-8) showed that noradrenergic 

SH-SY5Y cells were sensitive to CPT-induced DNA damage and showed deficiency of 

repairing the damage, compared to fibroblast cells. In order to confirm that SH-SY5Y cells can 

be used as an appropriate in vitro noradrenergic cell model for in vivo studies, primary LC and 

raphe neuronal cultures were used. Primary neuronal cultures derived from rodents are very 

useful tool to study basic physiological properties of neurons and the potential neurotoxicins 

effects in vitro. To develop a cell culture system of the LC and raphe, which would facilitate 

the investigation of various properties of these noradrenergic and non-noradrenergic neurons 

under well-controlled conditions (Masuko et al. 1986). LC is the main source of noradrenergic 

neurons while raphe is a key center for serotonin expressing neurons. Thus, primary cultured 

LC and raphe neurons were used to examine whether these neurons respond to DNA damage 

differently from each other. LC and raphe tissues were separated from 15 to 18 days rat 

embryos, then cultured for 12 days. Since we did not get enough neurons to do western blots, 

therefore in this part we mainly focused on IFAs.  LC neurons are DBH positive and raphe 

neurons are SERT positive. These primary cultures were treated with CPT (10 µM) for 2 h, and 

then after brief wash, cells continued to grow in the media without CPT for another 24, 48 or 

72 h. As shown in Figure 3-9, significant γH2AX foci were found in LC neurons after CPT 

treatment (F4,11=558.3, p<0.0001). The number of γH2AX-positive cells were gradually 

reduced over 72 h after CPT wash-out. However, we could barely detect γH2AX foci in raphe 

neurons after CPT treatment (Figure 3-10). Together, primary cultured LC neurons are 

sensitive to CPT-induced DNA damage and deficient to repair the damage.  
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Figure 3-9. CPT induces the DDR in DBH-positive cultured neurons. Cultured LC 

neurons were treated with CPT (10 μM) for 2 h, then continued to grow in the media without 

CPT for 24 h, 48 h and 72 h. Only DBH-positive cells were counted. (A) Significant γH2AX 

foci were found in nuclei after CPT treatment. The number of γH2AX-positive cells was 

reduced gradually within 72 h. Images were taken with 60× magnification. Percent of γH2AX 

positive cells were shown in (B). At least 100 cells from three random chosen views were 

counted. (C) γH2AX foci in DBH-positive cells. Enlarged images from yellow boxes in (A), 

yellow arrows indicated γH2AX foci in nuclei. Blue: DAPI, Green: DBH, Red: γH2AX. 
*
p<0.05, 

**
p<0.001, 

***
p<0.0001, compared to the control. 

#
p<0.0001, compared to CPT.  

 

 

Figure 3-10. γH2AX foci are not detected in SERT-positive cultured neurons. Raphe 

neurons were treated with CPT (10 μM) for 2 h, then IFAs were performed. Only SERT-

positive cells were counted. No significant γH2AX foci were found in nucleus after CPT 

treatment. Images were taken with 60× magnification. Blue: DAPI, Red: SERT, Green: 

γH2AX. 

 

LC Neurons Accumulate DSP4-induced DNA Damage 

 DSP4 has been thought to damage the nerve terminals originating from the LC. Most of 

the cell bodies of the LC neurons were intact for weeks despite substantial loss of NE nerve 

terminals in the projection field. The reason for such different effects is unknown. Our 

previous study showed that DSP4 could induce the DDR in SY5Y cells (Wang et al. 2014). To 
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test the effect of DSP4 on primary cultured LC and raphe neurons, cells were treated with 

DSP4 (50 µM) for 24 h, and IFAs were performed. As shown in Figure 3-11B, γH2AX foci 

were detected in DSP4-treated primary cultured LC neurons after DSP4 treatment. However, 

no significant γH2AX foci were found in primary cultured raphe neurons after DSP4 treatment 

(Figure 3-11A).  

 

Discussion 

 

Our data showed that SH-SY5Y cells are sensitive to accumulate CPT-induced DNA 

damage (Figure 3-2, 3-3, 3-4, 3-5, 3-6) and deficient to repair the damage (Figure 3-7, 3-8, 3-9, 

3-10), compared to that in fibroblast cells. γH2AX and p-p53
ser15

 were measured as the DDR 

markers to evaluate CPT-induced DNA damage and repair rate. In order to conform these in 

vitro findings in in vivo conditions, we used primary LC and raphe neuronal cultures, which 

would facilitate the investigation of various properties of these noradrenergic and non-

noradrenergic neurons under well-controlled conditions and mimicked the in vivo conditions. 

Our data show that LC neurons are more sensitive to DNA damage induced by CPT or DSP4 

than raphe neurons (Figure 3-11, 3-12, 3-13). These pathological characteristics are consistent 

with the in vivo observation, which demonstrate that degeneration of noradrenergic neurons 

occurs in an early stage in the brain of neurodegenerative disease patients (Bondareff et al. 

1982, Mann and Yates 1983, Mann et al. 1983, Bondareff et al. 1987, German et al. 1992, 

Weinshenker 2008).  
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Figure 3-11. γH2AX foci were detected in DBH- but not SERT-positive cultured 

neurons after DSP4 treatment. Cultured neurons were treated with DSP4 (50 μM) for 24 h, and 

then IFAs were performed. Only DBH- or SERT-positive cells were counted. Images were 

taken with 60× magnification. (A) No γH2AX foci were detected in SERT-positive cultured 

raphe neurons after DSP4 treatment. (B) γH2AX foci were detected in DBH-positive cultured 

LC neurons after DSP4 treatment. (C) Quantity analysis data for percent of in γH2AX-positive 

cells in (B). At least 100 cells from three random chosen views were counted. (D) γH2AX foci 

in DBH-positive cells. Enlarged images from yellow boxes from B, yellow arrows indicated 

γH2AX foci in nuclei.  In Figure 3-11A, Blue: DAPI, Red: SERT, Green: γH2AX. In Figure 3-

11B and 3-11D, Blue: DAPI, Green: DBH, Red: γH2AX.  
*
p<0.0001, compared to control. 

 

γH2AX and p-p53
ser15

 were measured as DDR markers to evaluate the response to 

DNA damage, as well as the repair rate for CPT- or DSP4-induced DNA damage. As a very 

earlier step in the cellular response to DNA damage, histone H2AX is phosphorylated at C-

terminal serine residues (Ser136 and Ser139) (Rogakou et al. 1998). This phosphorylated 

H2AX, called γH2AX, and γH2AX foci can be detected within minutes after the introduction 

of DNA damages (Kang et al. 2005). H2AX phosphorylation has an important role in the 

initiation of DNA repair (Downs et al. 2000), including the recruitment of DNA repair or 

damage-signaling factors to the damage site, maintenance of the integrity of the DDR, and 

bringing the broken DNA ends closer (Bassing and Alt 2004, Thiriet and Hayes 2005). Known 

as a classic “gatekeeper” of cellular fate, p53 tumor suppressor protein is activated in response 

to genotoxic stress-induced DNA damage (May and May 1999), among which phosphorylation 

of serine-15 is one of the key responses (Hammond et al. 2002). P-p53
ser15

 levels can be rapidly 

increased several folds after DNA damage. Phosphorylated p53 has been linked to DNA repair 

processes, such as activation of DNA repair and stalling the cell cycle (Offer et al. 1999, 

Okorokov 2003, Ford 2005). Therefore, the formation and disappearance of γH2AX and p-

p53
ser15

 can be used to represent a relative time process in CPT-induced DDR and repair rate.  
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LC is important to regulate the amount of norepinephrine in the brain. A deficiency in 

the noradrenergic system of the brain originating from LC cell loss is an early pathological 

indicator in the progression of several neurodegenerative diseases, including PD and AD 

(Marien et al. 2004). Aging-related cognitive decline is associated with accumulation of nDNA 

damage in neurons (Rutten et al. 2003, Rutten et al. 2007), and this effect is due to insufficient 

nDNA repair. Our data shows that noradrenergic SH-SY5Y cells and LC neurons are sensitive 

to CPT-treatment, which results in accumulation of DNA damage (Figure 3-2, 3-3, 3-4). 

Deficiency in DNA repair could be one possible explanation of SH-SY5Y cell and LC neuron 

CPT sensitivity. The repair of DNA damage is depend on functional repair system (Hickson et 

al. 1990).  For example, it has been reported that cells without some DNA repair genes or DNA 

repair enzymes are hypersensitive to CPT and cannot repair CPT-induced DSBs (Nitiss and 

Wang 1988, Chatterjee et al. 1989). Therefore, noradrenergic SH-SY5Y cells and LC neurons 

may be relatively deficient in DNA repair system and consequently sensitive to DNA damage 

produced by CPT. This explanation is consistent with our data that SH-SY5Y cells and LC 

neurons are deficient in repairing CPT-induced DNA damage (Figure 3-5, 3-6, 3-7, 3-8, 3-9).   

Additionally, the literature on oxidative stress induced DNA damage lead to cell cycle 

arrest (Migliore and Coppede 2002). For example, human H2O2-treated fibroblasts undergo 

either cell cycle arrest or apoptosis (Chen et al. 2000). The majority of the apoptotic fibroblasts 

were found in the S phase, whereas growth-arrested cells were predominantly accumulated in 

the G1 or the G2/M phase (Chen et al. 2000). This apoptotic death of fibroblasts in the S phase 

is consistent with the death of neurons that have aberrant cell cycle activity and express S-

phase proteins. Dorsal root ganglion neurons go to apoptosis in the S phase (ElShamy et al. 

1998), and the apoptotic neurons express S-phase proteins (Folch et al. 2012). Hippocampal 
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pyramidal and basal forebrain neurons from AD brains show chromosomal duplication and die 

before mitosis, these are consistent with cell death in the S or G2 phase of the cell cycle (Nagy 

et al. 1997b). It was reported that insufficient nDNA repair system leads to accumulation of 

nDNA in neurons. So if SH-SY5Y cells were in S or G2/M phase when CPT was added, these 

cells might respond severely with much more γH2AX foci in nuclei. This hypothesis also can 

be used to explain our data in Figure 3-6A. The number of γH2AX-positive cells decreased at 

R24 h then increased at R48 h compared to R24 h. This effect might be explained as at R24 h, 

the number of γH2AX-positive cells dramatically decreased due to cells with high amounts of 

DNA damage went to apoptosis. At R48 h, the number of γH2AX-positive cells still decreased 

but higher than that at R24 h, this indicated that cells with lower amount of DNA damage 

recruited γH2AX to repair the damage. To measure the number of survived cells at each time 

point and test if cells with more γH2AX are in S or G2/M phase, these further experiments will 

help to explain why a dramatically decreased expression of γH2AX after wash-out CPT at 24 

h.  

In Figure 3-10, under neutral condition, CPT-induced DNA damage was detected in 

fibroblast cells not in SH-SY5Y cells, which indicates that CPT does not induce DSBs in SH-

SY5Y cells. However, CPT induced-DNA damage could be detected in both SH-SY5Y and 

fibroblast cells under alkaline condition, which suggests that CPT induces SSBs in both cell 

lines. Toxicity of CPT is primarily a result of conversion of SSBs into DSBs during the S 

phase when the replication fork collides with the cleavage complexes formed by DNA and 

Topo I-CPT complex. Therefore, our data suggest that SH-SY5Y probably has special repair 

system, which blocks CPT-induced DSB formation.  

CPT induces DNA DSBs during DNA synthesis (S phase), suggesting that this agent 
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should not be toxic to non-dividing cells, such as neurons. However, CPT induces significant 

and dose-dependent cell death of post-mitotic rat cortical neurons and its neurotoxic activity 

also was found in cultured cerebellar granule neurons (Morris and Geller 1996, Uday Bhanu 

and Kondapi 2010). Taken together, these observations indicate that CPT also exhibits 

significant toxicity toward neuronal cells in vitro. This could explain the results in Figure 3-9 

and 3-11B, which CPT induces DDR in LC neurons.  In the present study, exposure of the 

primary cultures from rat raphe to CPT (Figure 3-10) and DSP4 (Figure 3-11A) did not cause 

obvious DDR. Although to date there is no report about the effects of CPT on serotonergic 

neurons in vitro or in vivo, the result of DSP4 is in agreement with previous studies in that 

DSP4 did not change the amount of 5-hydroxytryptamine and its metabolite 5-

hydroxyindoleacetic acid in the hippocampus (Jackisch et al. 2008) and dorsal raphe nucleus 

(Cassano et al. 2009). Also, previous studies have demonstrated that DSP4 treatment of Fischer 

344 rats affects only noradrenergic neurons, leaving serotonergic and dopaminergic neurons 

intact (Chrobak et al. 1985, Martin and Elgin 1988).  

 In summary, in the present study, SH-SY5Y cells and primary cultures from rat LC are 

sensitive to neurotoxins CPT- or DSP4-induced DNA damage, and deficient in repairing the 

damage, compared to fibroblast cells and raphe neurons, respectively. These pathological 

characteristics may be consistent with the in vivo observation that degeneration of 

noradrenergic neurons occurs earlier than other neuronal systems in the brain of 

neurodegenerative diseases. The present study may serve as an initial effort to explore the 

molecular mechanisms underlying pathophysiological alterations of LC neurons in PD and 

AD.     
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Abstract 

 

DNA damage is a form of cell stress and injury. An increased systemic DNA damage is related 

to the pathogenic development of neurodegenerative diseases. Also, depression occurs in a 

relatively high percentage of patients suffered from degenerative diseases, for whom 

antidepressants are often used to relieve depression symptoms. To date, however, few studies 

have elucidated why different groups of antidepressants have the similar effects on relieving 

depression. Previously, we demonstrate that neurotoxins DSP4 and CPT induce the DDR in 

SH-SY5Y cells. SH-SY5Y cells are predominately arrested in S and G2/M phases with DSP4 

treatment. The current study shows that some antidepressants reduce the DDR, which is 

induced by DSP4 or CPT in SH-SY5Y cells. Flow cytometry data demonstrate that selective 
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antidepressants protect cells from being arrested in S phase. These effects suggest that blocking 

DNA damage may be the common pharmacologic characteristic of antidepressants, which may 

explain why different antidepressants could alleviate depression symptoms in 

neurodegenerative patients.  

 

Introduction 

 

 DNA damage is a form of cell stress and injury. An increased systemic DNA damage 

caused by neurotoxins, psychological and oxidative stress has been found to be related to the 

pathogenic development of neurodegenerative and psychiatric diseases (Martin 2008). 

Progressive neuronal DNA damage in aging brains has been closely linked with the onset of 

neurodegenerative disorders (Lindahl 1993). Brain is one of the most important organs, but 

studies of DNA transactions were neglected for a long time. This is because adult brain cells 

are considered in low levels of DNA synthesis and repair (Subba Rao 2007). However, 

increased evidence shows that oxidative stress in the brain affects the brain's DNA repair 

pathways and genomic stability.  Deficiency in DNA repair system has been linked to 

cognitive decline with aging-related diseases, but the mechanisms that protect neurons from 

genotoxic stress remain unclear (Dobbin et al. 2013).  

 DSP4 has widely been used as a noradrenergic neurotoxin to construct AD and PD 

animal models. Ross first reported the effects of DSP4 on norepinephrine levels in the 

peripheral and central noradrenergic system several decades ago (Ross 1976). It was 

hypothesized that DSP4 selectively damages noradrenergic projections originating from the LC 
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by interacting with the norepinephrine reuptake system and depleting intracellular 

norepinephrine, finally inducing degeneration of noradrenergic terminals (Winkler 1976, 

Ransom et al. 1985, Dooley et al. 1987, Howard et al. 1990, Prieto and Giralt 2001).  

Aberrant cell cycle activity also has been detected during the progression of 

neurodegenerative conditions. Oxidative DNA damage is correlated with cell cycle arrest 

(Migliore and Coppede 2002). For example, human H2O2-treated fibroblasts undergo either 

cell cycle arrest or apoptosis (Chen et al. 2000). The majority of the apoptotic fibroblasts were 

found in the S phase, whereas growth-arrested cells were predominantly accumulated in the G1 

or the G2/M phase (Chen et al. 2000). This apoptotic death of fibroblasts in the S phase is 

consistent with the death of neurons that have aberrant cell cycle activity and express S-phase 

proteins. Dorsal root ganglion neurons go to apoptosis in the S phase (ElShamy et al. 1998), 

and the apoptotic neurons express S-phase proteins (Folch et al. 2012). Hippocampal 

pyramidal and basal forebrain neurons from AD brains show chromosomal duplication and die 

before mitosis, these are consistent with cell death in the S or the G2 phase of the cell cycle 

(Nagy et al. 1997b). Some neurotoxins can arrest the cell cycle in different phases (Klein and 

Ackerman 2003). We demonstrate that DSP4 induces the DDR in SH-SY5Y cells and DSP4 

treatment results in cell cycle arrest predominantly in the S (Wang et al. 2014) and the G2/M 

phase. CPT is found to induce cell death of post-mitotic rat cortical neurons in vitro (Morris 

and Geller 1996) and neurotoxic activity of CPT also was found in cultured cerebellar granule 

neurons (Uday Bhanu and Kondapi 2010). We demonstrated in Chapter 3 that CPT-induced 

DDR occurred in primary cultured LC and raphe neurons in vitro (Wang et al. 2014).  

The common behavioral symptoms of neurodegenerative disorders include depression, 

mood swings, and social withdrawal. The process of neurodegeneration is not well understood, 
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so there is no known cure for this group of diseases. Current therapeutic approaches are limited 

to disease managements and symptomatic relief. Depression symptoms often accompany 

neurodegenerative disorders, which could be relieved by using antidepressants. 

Antidepressants are drugs used for the treatment of major depression disorder and other 

conditions (Briley and Moret 1993, Martin 2008). They can be used alone or in combination 

with other medications. For example, depression in patients with PD can be alleviated by the 

NRI reboxetine (McNamara and Durso 2006).  

The most important classes of antidepressants are the SSRIs (Geddes and Cipriani 

2004), SNRIs, TCAs and MAOIs (Table 1-1). Antidepressants are often used to treat patients 

suffering from depression, however, few studies have shown why these drugs or combination 

of drugs help to alleviate depression symptoms. Furthermore, neurodegenerative diseases 

always accompany depression symptoms for which antidepressants are often prescribed. On 

the other side, DNA damage is associated with the pathophysiological process of 

neurodegenerative diseases and some psychiatric diseases. Therefore, in the present study, we 

tried to examine whether antidepressants influence neurotoxins DSP4- and CPT-induced DNA 

damage. The present results demonstrated that most tested antidepressants could reduce the 

DDR induced by DSP4 or CPT.   

 

Materials and Methods 

 

Cell Culture and Drug Exposure 

The human neuroblastoma SH-SY5Y cells were used in these experiments. Cells were 

maintained in a 1:1 mix of RPMI 1640 and F12 media, which was supplemented with 10 % 



 107 

heat-inactivated fetal bovine serum (FBS), penicillin (100 U/ml) and streptomycin (100 µg/ml) 

at 37°C in humidified air containing 5% CO2. Culture medium and supplements were obtained 

from Gibco-Invitrogen (Carlsbad, CA, USA). Cells were seeded into 6-well or 100-mm plates. 

Drug exposures were started after 24 h of each subculture. DSP4 (Sigma, St Louis, MO, USA) 

was dissolved in distilled water at 50 mM, then diluted with culture media and added to cells to 

a final concentration of 50 µM, alone or in combination with antidepressants for the times as 

indicated in the text. CPT was dissolved in 10 mM dimethyl sulfoxide , then diluted with 

culture media and added to cells to a final concentration of 10 µM, alone or in combination 

with antidepressants for the times as indicated in the text.  Different antidepressants were used 

in this study: fluoxetine (1 and 5 µM), reboxetine (1 and 5 µM), desipramine (1 and 5 µM), 

paroxetine (1 and 5 µM), imipramine (50 and 100 µM), amitricyclin (10 and 50 µM), deprenyl 

(50 and 100 µM), and pargyline (1, 5, 10, 50 µM). Antidepressants were dissolved in water. 

The selection of the concentration of DSP4 was based on our previous data (Wang et al. 2014). 

The concentration of CPT and antidepressants were based on published papers (Lai and Yu 

1997, Leskiewicz et al. 2013, Serrano et al. 2013). Only SH-SY5Y cells prior to passage 15 

were used. Cell viability was determined by exclusion of trypan blue dye; cell viability was 

90–95% in the untreated cells. 

Western Blotting Analysis 

Whole cell extracts for western blot analysis were prepared by lysing cells in ice-cold 

Nonidet P-40 (NP-40; Sigma, St Louis, MO, USA) buffer (0.5% NP-40, 50 mM Tris–HCl pH 

8.0, 150 mM NaCl, 2 mM EDTA) for 30 min, after which nuclei and cell debris were removed 

by centrifugation at 12,000 rpm for 10 min at 4
o
C. An equal volume of sodium dodecyl sulfate 

(SDS) gel-loading buffer then was added to the supernatant and the samples were denatured at 
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70
o
C for 5 min. Protein concentrations in cell extracts were quantified prior to addition of the 

loading buffer with the Micro BCA Protein Assay Kit (Thermo Science, Rockford, IL USA). 

Proteins (40 µg) were electrophoretically separated on a 10% or a 15% SDS–polyacrylamide 

gel and electro-blotted onto a nitrocellulose membrane (Amersham Life Sciences, 

Buckinghamshire, UK). For protein detection, the blots were probed with anti-γH2AX 

antibody (1:1,000 dilution, Bethyl Laboratories, Inc., Montgomery, TX, USA), or an anti-p-

p53
ser15

 antibody (1:1,000 dilution, Cell Signaling Technology, Inc., Danvers, MA, USA). A 

horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody (1:5,000 dilution; 

Amersham Life Sciences, Buckinghamshire, UK) was used as the secondary antibody. The 

membranes were subjected to enhanced chemiluminescence (Amersham Life Sciences, 

Buckinghamshire, UK) or super enhanced ECL (Sigma Chemical Co., St Louis, MO, USA) 

and autoradiography. To check for equal loading and transfer, the membranes were reprobed 

with a mouse IgG monoclonal anti-ß-actin antibody (1:5,000 dilution, Amersham Life 

Sciences, Buckinghamshire, UK). 

Flow Cytometry 

SH-SY5Y cells were sub-cultured in a 6-well plate at 2×10
4 

cells/well, then cells were 

pretreated with fluoxetine (1 and 5 µM), reboxetine (1 and 5 µM), desiprimine (DMI, 1 and 5 

µM), paroxetine (1 and 5 µM), imipramine  (50 and 100 µM), amitricyclin (10 and 50 µM), 

and deprenyl (50 and 100 µM) for 1 h, and then DSP4 (5 μM) was added for another 24 h.  

Cells were washed with 37
o
C warm phosphate buffered saline (PBS), 200 μl of 0.25 % 

trypsin–EDTA (Gibco, Carlsbad, CA, USA) was added per well, and the plate was incubated at 

37
o
C for 1 min. The trypsin was aspirated off and the cells were suspended with 1 ml ice-cold 

PBS containing 0.5 mM EDTA (PBSE). The cells were collected by centrifugation at 3,000 
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rpm for 10 min at 4
o
C and fixed by slowly adding 1 ml ice-cold 70% ethanol to resuspend the 

cells. The cells were stored at -20
o
C overnight, and then collected at 3,000 rpm for 10 min at 

4
o
C. The cells were washed once with ice-cold PBSE, then recentrifuged and resuspended in 

300 μl of freshly prepared PBSE containing 20 μg/ml propidium iodide (Sigma, St Louis, MO, 

USA) and 20 μg/ml DNase-free RNase A (Invitrogen, Grand Island, NY, USA). After 

incubation at 37
o
C for 30 min, the cells were analyzed on the BD Accuri C6 flow cytometer. 

The population of G0/G1, S, and G2/M was determined using C6 Flow Cytometer Software. 

The results are expressed as percentage of the attached cells in each phase. 

Statistics 

All experimental data are presented in the text and graphs as the mean ± SEM. The 

number of replicates is enumerated in the figure legends. Data were analyzed by using one-way 

analysis of variance (ANOVA) in GraphPad Prism.  

 

Results 

 

DSP4-induced DNA Damage Response Can be Reduced by Some Antidepressants 

Our previous study demonstrated that DSP4 as a neurotoxin induced DDR in SH-SY5Y 

cells (Wang et al. 2014). To test the effects of antidepressants on DDR induced by DSP4, in 

this study, SH-SY5Y cells were pretreated with different antidepressants for 1 h before 4 h 

DSP4 (50 µM) treatment. Antidepressants include SSRIs (fluoxetine and paroxetine), NRI 

(reboxetine), TCAs (imipramine, amitriptyline and desipramine) and MAOIs (deprenyl and 

pargyline). As shown in figures 4-1, 4-2, 4-3 and 4-4, SSRIs, NRI and TCAs when given alone 
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to SH-SY5Y cells in the absence of DSP4 did not induce any significant changes in protein 

levels of γH2AX and p-p53
ser15

, as measured by western blottings. However, most tested 

antidepressants significantly attenuated DSP4-induced DDR levels, as compared to DSP4 

alone groups (for effects on γH2AX: desipramine: F5,12=379.6, p<0.0001; imipramine: 

F5,12=46.9, p<0.0001; amitriptyline: F5,18=36.2, p<0.0001; fluoxetine: F5,24=249.6, p<0.0001; 

paroxetine:  F5,15=387.2, p<0.0001; reboxetine: F5,16=203.8, p<0.0001; deprenyl: F5,18=200.0, 

p<0.0001. For effects on p-p53
ser15

: desipramine: F5,16=111.3, p<0.0001; imipramine: 

F5,16=285.2, p<0.0001; amitriptyline: F5,12=369.4, p<0.0001; fluoxetine: F5,18=81.5, p<0.0001; 

paroxetine:  F5,12=159.1, p<0.0001; reboxetine: F5,12=119.3, p<0.0001; deprenyl: F5,12=212.9, 

p<0.0001). Further analyses revealed some specific outcomes: 1) The alleviatory effects of 

some antidepressants on DSP4-induced DDR seem to be concentration-dependent. For 

example, while both concentrations of desipramine (1 and 5 µM), imipramine (50 and 100 

µM), amitriptyline (10 and 50 µM), fluoxetine (1 and 5 µM), paroxetine (1 and 5 µM), 

reboxetin (1 and 5 µM), and deprenyl (50 and 100 μM) significantly inhibited DSP4-induced 

increases of γH2AX and p-p53
ser15

, and lower concentrations of desipramine (1 μM, Figures. 4-

1A and 4-1B), fluoxetine (1 μM, Figs. 2A and 2B) and paroxetine (50 μM, Figures. 4-2E and 

4-2F) showed more significant effects than their higher concentrations on reducing γH2AX and 

p-p53
ser15

 levels. Furthermore, the effect of amitriptyline (Figure 4-1J), reboxetine (Figure 4-

3B) and deprenyl (Figure 4-4B) also reduced the p-p53
ser15

 levels in a concentration-dependent 

manner.  2) Both deprenyl and pargyline are MAOIs to inhibit the activity of monoamine 

oxidase, thus preventing the breakdown of monoamine neurotransmitters and thereby 

increasing their availability. While pargyline (1, 5, 10 and 50 µM) did not have any effects on 

DSP4-induced DDR in SH-SY5Y cells (Figure 4-4E), deprenyl (50 and100 µM) suppressed 
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DDR (Figs. 4-4A and 4-4B). 

 

Figure 4-1. TCAs desipramine, imipramine and amitriptyline reduce DSP4-induced 

DDR in SH-SY5Y cells. Cells were pretreated with desipramine (1 and 5 µM), imipramine (50 

and 100 µM), and amitriptyline (10 and 50 µM) for 1 h, then DSP4 (50 µM) was added for 

another 4 h. γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data were shown 
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in (A), (B), (E), (F), (I) and (J). Quantified data analysis were shown in (C), (D), (G), (H), (K) 

and (L). 
##

p<0.01, 
####

p<0.0001, compared to the control; 
****

p<0.0001, compared to the DSP4 

group; 
&&

P<0.01, 
&&&&

p<0.0001, compared to desipramine (1 μM), imipramine (50 μM), or 

amitriptyline (10 μM). 

 

 

Figure 4-2. SSRIs antidepressants fluoxetine and paroxetine reduce DSP4-induced 

DDR in SH-SY5Y cells. Cells were pretreated with fluoxetine (1 and 5 µM) and paroxetine (1 

and 5 µM) for 1 h, and then DSP4 (50 µM) was added for another 4 h. γH2AX and p-p53
ser15

 

were used as DDR markers. Western blots data were shown in (A), (B), (E) and (F). Quantified 

analysis data were shown in (C), (D), (G) and (H). The graphic data represent averages 

obtained from 3-5 separate experiments. 
#
p<0.05, 

##
p<0.01, 

###
p<0.001, 

####
p<0.0001, 

compared to the control; 
****

p<0.0001, compared to the DSP4; 
&

p<0.05, 
&&

P<0.01, 
&&&

p<0.001, 
&&&&

p<0.0001, compared to groups of fluoxetine (1 μM), or paroxetine (1 μM). 
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Figure 4-3. NRI antidepressant reboxetine reduces DSP4-induced DDR in SH-SY5Y 

cells. Cells were pretreated with reboxetine (1 and 5 µM) for 1 h, and then DSP4 (50 µM) was 

added for another 4 h. γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data 

were shown in (A) and (B). Quantified analysis data were shown in (C) and (D). The graphic 

data represent averages obtained from 3-5 separate experiments. 
###

p<0.001, 
####

p<0.0001, 

compared to the control; 
****

p<0.0001, compared to the DSP4; 
&&

P<0.01, 
&&&

p<0.001, 
&&&&

p<0.0001, compared to the group of reboxetine (1 μM). 
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Figure 4-4. MAOI antidepressant deprenyl reduces DSP4-induced (DDR) in SH-SY5Y 

cells while pargyline does not. SH-SY5Y cells were pretreated with deprenyl (50 and 100 µM) 

or pargyline (1, 5, 10 and 50 µM) for 1 h, then DSP4 (50 µM) was added for another 4 h. 

γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data were shown in (A), (B) 

and (E). Quantified analysis data were shown in (C), (D), (F) and (G). The graphic data 

represent averages obtained from 3-5 separate experiments. 
##

p<0.01, 
###

p<0.001, 
####

p<0.0001, 

compared to the control; 
*
p<0.05, 

**
p<0.01, 

****
p<0.0001, compared to the DSP4. 
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Table 4-1. Summary of the effects of antidepressants on reducing γH2AX (Green) and 

p-p53
ser15

 (Blue) levels.  This table shows two concentrations for each antidepressants. The 

effects of DSP4 on levels of γH2AX and p-p53
ser15 

are considered 100%, which is shown as 

+++. The effects of antidepressants are normalized by DSP4. -: 0-25%; +: 25-50%; ++: 50-

75%; +++: 75-100%; ++++>100%.  
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Selected Antidepressants Reduce CPT-induced DNA Damage Response  

CPT is commonly used as a DNA topo I inhibitor to induce DNA DSBs (Liu et al. 

2000). CPT induces significant DDR in SH-SY5Y cells as early as 1 h (Figure 3-4, 3-6). We 

pretreated SH-SY5Y with antidepressants used above for 1 h then CPT (10 µM) was added for 

another 1 h. Interestingly, we only found that paroxetine (1 and 5 µM), imipramine (10 and 50 

µM) and amitrycycline (50 and 100 µM) could attenuate CPT-induced DDR in SH-SY5Y 

cells, as shown by reduced levels of γH2AX and p-p53
ser15 

(Figure 4-5).  

 

Effects of Selected Antidepressants on Protecting Cells from Arresting in S phase 

Previously, our study showed that DSP4 could arrest SH-SY5Y cells in S (Wang et al. 

2014) and G2 phases. Since G2/M phase was not significantly affected by antidepressants and 

DSP4, therefore we focused on discussing S phase arrest in Chapter 4. To test the effect of 

antidepressants on S phase arrest caused by DSP4, two parallel experiments were carried out. In 

the first experiment, cells were treated with different antidepressants alone for 25 h. In the 

second experiment, cells were pretreated with antidepressants for 1 h, and then DSP4 (5 µM) 

was added for another 24 h. Cells were collected and flow cytometric analyses were performed.  

As shown in Figure 4-6, control cells with neither antidepressants nor DSP4 treatment, 

distributed 51.7/52.1 in G1 phase and 17.6/17.8 % in S phase (See Con in Figures 4-6 and 4-7). 

For the groups treated with 5 µM DSP4 only, cells were distributed 40.1/41.0 in G1 phase and 

30.6/30.4% in S phase (See DSP4 in Figures 4-6 and 4-7). Compared to control cells, DSP4 

significantly decreased G1- and increased S-phase cell populations. In contrast, compared to the 

magnitude of changes in G1 and S phases caused by DSP4, effects of most tested 

antidepressants did not affect G1 and S phases (Figure 4-6).  

http://en.wikipedia.org/wiki/DNA
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Figure 4-5. CPT-induced DNA damage response is reduced by imipramine, 

amitriptyline and paroxetine. SH-SY5Y cells were pretreated with imipramine (50 and 100 

µM), amitriptyline (10 and 50 µM) or paroxetine (1 and 5 µM) for 1 h, then CPT (10 µM) was 

added for another 1 h. γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data 
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were shown in (A), (D) and (G). Quantified analysis data were shown in (B), (C), (E), (F), (H) 

and (I). The graphic data represent averages obtained from 3-5 separate experiments. 
#
p<0.05, 

##
p<0.01, 

####
p<0.0001, compared to the control; 

**
p<0.01, 

***
p<0.001, 

****
p<0.0001, compared 

to the DSP4; 
&

p<0.05, 
&&&

p<0.001, 
&&&&

p<0.0001, compared to of imipramine (50 μM), 

amitriptyline (10 μM), or paroxetine (1 μM). 

 

DSP4 actives intra-S and G2/M checkpoints, therefore cells go through G1 phase and 

accumulate in S (Wang et al. 2014) and G2 phases. Flow cytometric data show significantly 

decreased G1 phase and increased S phase population after DSP4 treatment in SH-SY5Y cells.  

Interestingly, as shown in Figure 4-7 and flow-cytometric histograms in Figure S-1, effects of 

DSP4 on changing of cells distribution partially were decreased when co-treated with some 

antidepressants. After SH-SY5Y cells co-treated with some antidepressants, the effects of 

increased G1 and decreased S phases population were detected (Figure 4-7). However, 1 μM 

fluoxetine, 50 and 100 μM deprenyl, 5 and 10 μM pargyline, they did not show significant 

effects on G1 population. In addition, co-treatment of antidepressants still showed increased S 

phase population except desipramine (1 and 5 μM) and reboxetine (1 and 5 μM), compared to 

control. However, compared to DSP4, significantly decreased S phase population except 50 μM 

deprenyl was detected with antidepressants co-treatment. A summary of antidepressants’ effects 

was shown in Table 4-2. These data suggested that some antidepressants could protect cells 

from arresting in S phase and increasing cell population in G1 phase.  
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Figure 4-6.  Effects of some antidepressants on cell cycle in SH-SY5Y cells. Cells were 

pretreated with imipramine (50 and 100 µM), amitriptyline (5 and 10 µM), desipramine (1 and 

5 µM), fluoxetine (1 and 5 µM), paroxetine (1 and 5 µM), reboxetine (1 and 5µM) and 

deprenyl (50 and 100 µM) for 25 h. The percents of cells in G1 and S phases were shown in 

(A) and (B), respectively. Each bar represents data obtained from 3 to 6 separate experiments. 
#
p<0.05, 

##
p<0.01, 

####
p<0.0001, compared to the control; 

*
p<0.0001, compared to the DSP4. 
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Figure 4-7. Effects of some antidepressants on cell cycle transitions in SH-SY5Y cells 

with DSP4 co-treatment. SH-SY5Y cells were pretreated with imipramine (50 and 100 µM), 

amitriptyline (10 and 50 µM), desipramine (1 and 5 µM), fluoxetine (1 and 5 µM), paroxetine 

(1 and 5 µM), reboxetine (1 and 5µM) and deprenyl (50 and 100 µM) for 1 h, and then DSP4 

(5 µM) was added for 24 h. The percents of cells in G1 and S phase were shown in (A) and 

(B), respectively. Each bar represents data obtained from 3 to 7 separate experiments. 
#
p<0.05, 

##
p<0.01, 

###
p<0.001, 

####
p<0.0001, compared to the control; 

*
p<0.05, 

**
p<0.01, 

***
p<0.001, 

****
p<0.0001, compared to the DSP4. 
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Table 4-2. Summary of the effects of some antidepressants on cell cycle transitions in 

SH-SY5Y cells with (B) or without (A) DSP4 co-treatment. /p<0.05, /p<0.01, 

/p<0.001, /p<0.0001, compared to the control; /p<0.05,  

/p<0.01, /p<0.001, /p<0.0001, compared to the DSP4. 

Blank boxes show no significant difference.  
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Discussion 

 

In the present study, we attempt to elucidate potential new mechanisms of 

antidepressants, SH-SY5Y cells co-treated with SSRIs, NRI and TCAs and MAOIs 

antidepressants and neurotoxins DSP4 and CPT. Our results showed that pretreatment of SH-

SY5Y cells with antidepressants resulted in protection effects on reducing DSP4-induced 

DDR. For example, exposure of cells to TCAs SSRIs, NRI and deprenyl blocked DSP4-

induced elevation of γH2AX and p-p53
ser15 

(Table 4-1). Furthermore, pretreatment of cells with 

imipramine, amitriptyline and paroxetine also showed a similar protective effect on CPT-

induced DNA damage. Moreover, flow cytometric data showed that selective antidepressants 

could reduce the effects of DSP4-induced S-phase arrest in SH-SY5Y cells. These results 

reveal that although these tested antidepressants have different pharmacologic mechanisms 

regarding their clinical use, they may have a common feature to protect cells from DNA 

damage, specifically by protecting cells from S-phase arrest. This is because the majority of 

dead neurons are in S phase (Yang et al. 2001). 

 The common behavioral symptoms of neurodegenerative disorders include depression, 

mood swings, and social withdrawal. About 30-50% of AD patients have depression symptoms 

(Brown and Jahanshahi 1995, Cummings and Masterman 1999, Lee and Lyketsos 2003). 

Several pathological events have been explained that the coborbility may be due to depletion of 

the LC neurons (Zubenko and Moossy 1988). In Chapter 2, DSP4 has been found to reduce 

expression of DBH in SH-SY5Y cells, mediated by its action of DDR (Wang et al. 2014). 

Further study in Chapter 3 shows that primary-cultured LC neurons are sensitive to DSP4- and 

CPT-induced DNA damage. Recent post-mortem study demonstrated that major depression 
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disorder was associated with oxidative stress (Shelton et al. 2011) and accumulated oxidative 

DNA damage was detected in brain cells of AD (Kadioglu et al. 2004) and PD (Zhang et al. 

1999) patients.  

Antidepressants are used for the treatment of major depression disorder and depression 

symptoms in other diseases (Briley and Moret 1993, Martin 2008). They can be used alone or 

in combination with other medications in other diseases. Although antidepressant drugs have 

been clinically used in the treatment of depression for decades, the precise mechanism of their 

therapeutic action is still unclear. Currently, the pharmacological mechanisms of the most 

clinically used antidepressants are related to the “monoamine hypothesis” (Schildkraut 1965), 

which states that antidepressants, such as SSRIs, NRIs, TCAs and MAOIs, increase 

neurotransmitter levels, especially serotonin and norepinephrine, in the synapses. This action in 

turn restore the neurotransmission and functions of brains caused by deficiency of these 

neurotransmitters. However, this hypothesis has been challenged due to the conflict between 

rapid increases in serotonin and norepinephrine levels induced by antidepressants and the 

delayed appearance of therapeutic efficacy. Therefore, new molecular mechanisms are needed 

for antidepressant actions. In the present study, almost all tested antidepressants effectively 

ameliorate the DDR caused by neurotoxins, indicating that blocking neuronal damage, such as 

DNA damage, may be the common pharmacologic action of antidepressants.  This notion is 

supported by some new observations related to the etiology of depression. For example, 

oxidative and nitrosative stress are involved in the pathophysiology of depression (Maes et al. 

2009, Maes et al. 2011). DNA is perhaps one of the major targets for oxyradicals, therefore, 

oxidative stress may cause DNA damage. Furthermore, antidepressants may protect cells 

against neurotoxicity caused by several toxic compounds. For example, fluoxetine suppresses 
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kainic acid-induced neuronal loss in the rat hippocampus, which might be associated with its 

anti-inflammatory effects. It was reported that both R and S isomers of fluoxetine attenuated 

chronic neurodegeneration induced by a commonly used inflammogen lipopolysaccharide 

(Zhang et al. 2012). Moreover, some studies suggest that antidepressants and mood stabilizers 

may act as antioxidant mechanisms (Berk et al. 2011, Maes et al. 2011), and antioxidants have 

antidepressant properties (Berk et al. 2008, Scapagnini et al. 2012). Therefore, it is important to 

elucidate potential mechanisms of antidepressants for new drug target discovery in the 

treatment of depression. 

It is important to note that in the present study, pargyline is the only antidepressant that 

did not inhibit the formation of DSP4- or CPT-induced DNA damage and cell cycle arrest. In 

contrast, the MAOI deprenyl exhibited the similar effects on DNA damage as other 

antidepressants. Currently, we do not have a satisfactory explanation for this difference. One 

potential explanation is that at least monoamine inhibition activity of these MAOIs does not 

account for the effect of blocking DDR. Rather, it depends upon the other specific 

pharmacologic activity of these compounds.  It was reported that pretreatment with deprenyl 

prevented the effect of specific neurotoxins like DSP4. Deprenyl pretreatment prevented the 

depletion of norepinephrine induced by DSP4 in the rat hippocampus (Magyar and Haberle 

1999). This could be due to the uptake inhibitory effect of deprenyl and mainly to its 

metabolite methylamphetamine, which is a more potent inhibitor of the re-uptake than the 

parent compound. Moreover, pretreatments of SH-SY5Y cells with imipramine, amitriptyline, 

desipramine, reboxetine, paroxetine, fluoxetine, and deprenyl showed protective effects on 

DSP4-induced DNA damage. However, only imipramine, amitriptyline and paroxetine showed 

protective effects on CPT-induced DNA damage. It is difficult to explain why DSP4 and CPT 
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have different responses to these antidepressants, since the mechanisms of DSP4 and CPT to 

induce DNA damage are not totally understood.  

In Chapter 2, we showed that DSP4 decreased G1 and increased S phase cell population 

in SH-SY5Y cells. In this Chapter, our data showed that co-treatment some antidepressants 

with DSP4 increased G1 and decreased S phase cell population. Damage and loss of LC 

noradrenergic neurons is accelerated in certain progressive neurodegenerative diseases 

including AD (Mann and Yates 1983, Bondareff et al. 1987, German et al. 1992, Weinshenker 

2008) and PD (Mann et al. 1983, Rommelfanger and Weinshenker 2007), representing an early 

pathological indicator of AD and PD.  It is believed that a neuron loses its capacity to divide 

and differentiate once it is born. Differentiated neurons were considered to be irreversibly post-

mitotic, however, some cell cycle proteins were found in neuronal-programmed apoptotic cells, 

such as cyclins and CDKs have been found to be up-regulated after exposure to severe 

conditions, such as oxidative stress (Kruman et al. 2004, Murray 2004 Currais et al. 2009). 

Cyclins, CDKs, and other cell cycle proteins can be expressed in the AD brain after exposuring 

to stress (Nagy et al. 1997a, Vincent et al. 1997, Smith et al. 1999). Flow cytometric data 

revealed that a significant increased S-phase neuron population after exposure to different 

genotoxic insults (Kruman et al. 2004).  Also a significant percent of apoptotic neurons with 

incorporate BrdU indicated that neurons underwent apoptosis during S phase (Kruman et al. 

2004). Our data indicated that antidepressants might play a role in preventing cell cycle activity 

in noradrenergic LC neurons, therefore to decrease LC neurons loss in AD and PD. LC 

dysfunction plays an important role in the development of neurodegenerative diseases, so the 

present data may provide experimental evidence for reasonable use of antidepressants in the 

neurodegenerative diseases to eliminate depression symptoms and DNA damage in the LC 
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region.  

In summary, our data showed that selective antidepressants protected SH-SY5Y cells 

from DSP4- or CPT-induced DNA damage and cell cycle arrest, indicating a new potential 

mechanism of antidepressants. The effects of antidepressants against DNA damage can be used 

to explain their clinical uses to relieve depression symptoms in psychiatric and 

neurodegenerative diseases. Further exploration of underlying mechanism may shed light on 

the efforts to improve therapeutic strategies for treatment of these diseases. 
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CHAPTER 5 

 

SUMMARY AND CONCLUSIONS 

 

Neurodegenerative diseases primarily affect in middle to late life period; therefore, the 

incidence increases as the population ages. It is estimated that approximately 1 in 5 Americans 

will be over the age of 65, and more than 12 million will suffer from age-related 

neurodegenerative diseases including AD and PD by the year 2030. Neurodegenerative 

diseases are incurable and debilitating conditions that result in progressive loss of neuronal 

structure and function and neuronal death. It is reported that LC cell numbers are reduced 

during normal aging, as are brain norepinephrine levels (Marien et al. 2004). Accumulated 

oxidative DNA damage was found in brain cells of patients with AD (Kadioglu et al. 2004) and 

PD (Zhang et al. 1999). Damage and loss of LC noradrenergic neurons is accelerated in certain 

progressive neurodegenerative diseases including AD (Mann et al. 1983, Bondareff et al. 1987, 

German et al. 1992, Weinshenker 2008) and PD (Mann et al. 1983, Rommelfanger et al. 2007), 

representing an early pathological indicator of these diseases. Both increased DNA damage and 

decreased DNA repair were detected in AD patients (Fishel et al. 2007), and oxidative stress 

and DNA damage also are implicated in PD (Fukae et al. 2005). The number of LC neurons 

during aging and some neurodegenerative disorders might be reduced because of a high 

amount of nDNA damage and their deficiency in repairing the damage. 

 In Chapter 3, our data show that noradrenergic SH-SY5Y cells and LC neurons are 

sensitive to CPT-induced DNA damage. γH2AX and p-p53
ser15

 were measured as DDR 
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markers that are persistent in noradrenergic SH-SY5Y cells and LC neurons, indicating a 

deficiency in repairing the DNA damage caused by CPT. These pathological characteristics 

may be consistent with the in vivo observation that degeneration of noradrenergic neurons 

occurs earlier in the brains of patients with neurodegenerative diseases. The present study may 

serve as an initial trial to explore the molecular mechanisms underlying pathophysiological 

alterations of LC neurons in PD and AD. Also, SH-SY5Y cells should be considered as an 

ideal noradrenergic in vitro model. Further studies are preferred to elucidate whether CPT or 

DSP4 have similar effects on LC in vivo, which will provide strong supportive evidence for the 

current hypothesis.  

DSP4 has been used as a noradrenergic neurotoxin in the development of AD or PD 

animal models with LC degeneration (Heneka et al. 2006, Rey et al. 2012). It is hypothesized 

that neurotoxin DSP4 selectively damages noradrenergic projections originating from the LC 

by interacting with the norepinephrine reuptake system and depleting intracellular 

norepinephrine, finally inducing degeneration of noradrenergic terminals (Winkler 1976, 

Ransom et al. 1985, Dooley et al. 1987, Howard et al. 1990, Prieto et al. 2001).  Our data in 

Chapter 2 support this hypothesis. The expression levels of DBH and NET were down-

regulated by DSP4 in SH-SY5Y cells. However, limited data have been reported from in vitro 

studies on the mechanism of DSP4-induced neuronal degeneration. Thus, elucidating the 

molecular mechanism by which DSP4 evokes its neurodegenerative effect may promote the 

effort to find novel therapeutic strategies for treatment of degenerative diseases. The study in 

Chapter 2 of this dissertation also shows that DSP4 induces DNA SSBs and arrested cells in 

the S and the G2/M phases. According to Figure 2-5C, we primarily focused on discussing the 

S-phase arrest caused by DSP4 when we published the paper. In addition, the proportion of 
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cells remaining in the G2/M phase was relatively constant after DSP4 treatment. These 

cytometric results demonstrated that the S-phase and the G2/M-phase checkpoints were 

activated by DSP4 treatment of SH-SY5Y cells. This arrest resulted in cells transiting G1 

phase or already in S phase to be accumulated in S phase, while those cells in G2/M phases 

remained there.  In addition, as shown in Fig 2-6, arrested cells resumed cycle transit within 12 

or 24 h after DSP4 removal. Although there still are more cells in S phase compared to the 

control, the proportion of cells in G1 phase returned to normal. Interestingly, after removal of 

DSP4 for 24 h, fewer cells were in G2 phase compared to the control group. These data 

indicate that DSP4-arrested cells were able to resume cell cycle transit after removal of DSP4. 

It is important for cells to delay mitotic entry, which allows cells to repair any DNA damage 

that may have accumulated after S phase. Our data are consistent with the death of neurons that 

have aberrant cell cycle activity. Dorsal root ganglion neurons go to apoptosis in the S phase 

(ElShamy et al. 1998), and the apoptotic neurons express S-phase proteins (Folch et al. 2012). 

Hippocampal pyramidal and basal forebrain neurons from AD brains show chromosomal 

duplication and die before mitosis. These are consistent with cell death in the S or the G2 phase 

of the cell cycle (Nagy et al. 1997b). In addition, DNA damage in apoptotic neurons is 

dependent on ATM activation, which suggests that neurons are affected by the same cell cycle 

checkpoints that regulate apoptosis in other cell types (Kruman 2004). Our data showed that 

DSP4 treatment activated the ATM pathway as part of the DDR (Wang et al. 2014). Taken 

together, these results suggest that down-regulation of the noradrenergic phenotypes caused by 

DSP4 stems from the DSP4-induced DDR and replication stress, which affected the 

transcriptional rate of the DBH and NET. 

Based on our findings in Chapters 2, we demonstrate that DSP4 induces the DDR in 
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SH-SY5Y cells. How does DSP4 cause DDR? Oxygen radicals are involved in many 

biochemical activities of cells such as signaling transduction and gene transcription (Uttara et 

al. 2009). Although oxygen is imperative for life, imbalanced oxidative metabolism and excess 

production of ROS lead to several disorders such as AD and PD. Toxicity of these free radicals 

contributes to damage of proteins and DNA, inflammation, and subsequent cellular apoptosis. 

The most common cellular free radicals are hydroxyl (OH·), superoxide (O2–·), and nitric 

monoxide (NO·). One of the hypotheses indicates that DSP4 depletes intracellular 

norepinephrine to induce LC degeneration. Norepinephrine is synthesized inside the nerve 

axon and stored in vesicles (Figure 1-1). Many enzymes are involved in the process of 

norepinephrine synthesis, such as tyrosine hydroxylase, DOPA decarboxylase, and DBH. 

These processes lead to formation of some ROS. ROS are a product of processes taking place 

during the oxygen metabolism. Therefore, we might explain that DSP4 induces oxidative 

stress, which damages DNA because of excessive ROS formation due to excessive intracellular 

norepinephrine synthesis. To elucidate this explanation, we need to test if DSP4 induces 

oxidative DNA damage in SH-SY5Y cells. We could treat SH-SY5Y and fibroblast cells with 

DSP4 and measure 8-hydroxyguanosine, which is a classical marker of oxidative damage to 

DNA. We expect to see a higher level of 8-hydroxyguanosine in SH-SY5Y cells than in 

fibroblast cells, because fibroblast cells do not express noradrenergic phenotypes and no 

norepinephrine is synthesized. Moreover, it has been reported that stress hormones such as 

norepinephrine can increase DNA damage (Flint et al. 2007). It has been proposed that the 

mechanism why norepinephrine induces DNA damage is by creation of ROS (Djelic et al. 

2003). Both DSP4 hypotheses support that excessive norepinephrine is released extracellularly. 

So cells are exposed to a higher concentration of norepinephrine, which induces oxidative 
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DNA damage.  

 

Figure 5-1. Enzymes involved in norepinephrine synthesis 

 

The exact mechanisms of neurodegeneration are still unknown, so there is no cure for 

neurodegenerative diseases. Therefore, it is urgent to find treatments and cures for 

neurodegenerative diseases. Depression symptoms often accompany neurodegenerative 

disorders. Antidepressants are used to treat major depression disorder (Briley et al. 1993, 

Martin 2008) and are clinically used to relieve depression symptoms in neurodegenerative 

patients. The “monoamine theory” of depression has been proposed for a long time, but the 

pathologies and mechanisms for depression disorders remain unclear. Within the last decade, 

increasing evidence showed oxidative/antioxidant effects of antidepressants and discussed the 

relevance of intracellular oxidative pathways in the pathophysiology of depression (Michel et 

al. 2007, Maes et al. 2009, Maes et al. 2011, Behr et al. 2012, Michel et al. 2012). It has been 

reported that some antidepressants could protect cells form oxidative stress. For example, 
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fluoxetine reduces oxidative stress in brain (Omar M.E. Abdel-Salam 2011), and desipramine’s 

protective effect against ischemia/reperfusion-induced oxidative stress was found in mice 

(Gaur et al. 2010). Also, it has been reported that venlafaxine protects against stress-induced 

oxidative neuronal DNA damage (Abdel-Wahab et al. 2011), and deprenyl was found to 

protect neurons in the substantia nigra from oxidative stress (Wu et al. 1993). Considering that 

the pathophysiology of depression is not fully clarified, the present findings suggest that one 

important action of antidepressants that may contribute to therapeutic efficacy in the treatment 

of depression is protection from DNA damage. In Chapter 4, the experiments demonstrate that 

some antidepressants reduce DSP4-induced DDR in SH-SY5Y cells. These effects might be 

ascribed to the abilities of some antidepressants in scavenging hydroxyl radicals or up-

regulating the expression of antioxidant defense enzymes. In all, the present findings that some 

antidepressants could protect cells from DSP4-induced DNA damage may add a new feature to 

the neuroprotective potency of these antidepressants. To test this hypothesis, we could pretreat 

SH-SY5Y cells with these antidepressants before DSP4 treatment. 8-hydroxyguanosine also 

can be used to measure oxidative stress level. We expect to see a lower level of 8-

hydroxyguanosine after cotreatment with antidepressants. 

In addition, it is shown that DSP4 irreversibly inhibits the human NET, SERT, and 

dopamine transporter (DAT) (Wenge et al. 2009). However, this inhibition includes a 

reversible component at the DAT and SERT but not at the NET. Thus, DSP4's high-affinity 

uptake through the NET and its interaction with NET may support it to be a noradrenergic 

neurotoxin. Moreover, although SSRIs and NRIs antidepressants are clinical important, key 

aspects of their molecular mechanisms such as the binding sites of these antidepressants are 

still unclear. Recently, it has been reported many antidepressants bind to key residues in S1 
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pocket; Sorensen et al. mutated 6 S1 residues in SERT and NET to determine the potency of 

some SSRIs and NRIs antidepressants (Sorensen et al. 2012). This finding can serve as a future 

model for studying the molecular mechanisms of antidepressants at SERT and NET. Another 

explanation for the protective effects of some antidepressants on reducing DSP4-induced DDR 

in SH-SY5Y cells is that these antidepressants compete with DSP4 for binding to the 

transporters. Further experiments are needed to demonstrate this explanation. For example, we 

need to test if antidepressants bind to DSP4 or antidepressants bind to the transporters to block 

DSP4 uptake.  

In this ease, deprenyl and pargyline belong to the type B MAOIs. The enzyme in SH- 

SY5Y cells is only type A (Maruyama et al. 1997), so deprenyl and pargyline did not function 

as type B MAOIs. This is probably why deprenyl and pargyline have less effect on reducing 

DSP4-induced DDR in SH-SY5Y cells. 

In summary (Figure 5-2), our data indicate that the neurotoxin DSP4 can be used to 

cause LC degeneration, which is because of its effects on inducing the DDR. Noradrenergic 

SH-SY5Y cells and LC neuron cultures are sensitive to DNA damage and deficient in repairing 

the damage, which might be an explanation of why LC degeneration is an early indicator of 

AD and PD. The DNA damage caused by DSP4 activates the ATM pathway and arrests cells 

in S and G2/M phases. Some antidepressants partially protect cells from DDR and cell cycle 

arrested caused by DSP4, which suggests a common mechanism of antidepressants to explain 

their clinical use to ameliorate depression symptom in AD or PD.   
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Figure 5-2. Proposed mechanisms of neurotoxins-induced DNA damage response. The 

presence of neurotoxin leads to replicative stress or DNA damage, which further results in 

activation of the ataxia-telangiectasia-mutated (ATM) protein kinase or ataxia telangiectasia 

and Rad3-related (ATR) protein kinase. ATM or ATR phosphorylate downstream targets; 

including p53 and the histone H2AX. In this way, ATM/ATR can influence cell cycle 

transititions and DNA damage response, transcription, in addition to cell death through 

apoptosis. The orange bars in cell cycle transitions indicate the three main cell-cycle 

checkpoints. Selective antidepressants reduce neurotoxins-induced DNA damage response.  
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APPENDICES 

 

APPENDIX A 

 

SUPPLEMENTAL FIGURES 

 

Figure S-1. Representative flow-cytometric histograms show effects of antidepressants 

on cell cycle with or without DSP4 co-treatment. Different colors show different drugs 

treatments.  
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APPENDIX B 

 

ABBREVIATIONS 

 

AD, Alzheimer’s Disease 

ATM, Ataxia telangiectasia mutated  

ATR, Ataxia telangiectasia mutated and RAD 3-related  

CDKs, cyclin-dependent kinases  

CPT, camptothecin  132  

DAPI, 4’,6-diamidino-2-phenylindole  

DAT, dopamine transporter  

DBH, dopamine -hydroxylase  

DDR, DNA damage response  

DMEM, Dulbecco’s modified Eagle’s medium 

DMSO, dimethyl sulfoxide  

DNA, deoxyribonucleic acid 

DIV, day in vitro 

DSBs, double-strand breaks  

DSP4, N-(2-chloroethyl)-Nethyl-2-bromobenzylamine  
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EDTA, ethylenediaminetetraacetic acid  

FBS, fetal bovine serum  

HBSS, Hank’s balanced salt solution 

HD, Huntington’s Disease 

IFA, immunofluoresce assay 

LC, locus coeruleus  

MAOIs, monoamine oxidase inhibitors  

nDNA, nuclear DNA 

NE, norepinephrine 

NET, norepinephrine transporter 

NO·, nitric monoxide  

NRIs, norepinephrine reuptake inhibitors 

O2–·, superoxide  

OH·, hydroxyl  

PBS, phosphate buffered saline  

PD, Parkinson’s Disease 

ROS, reactive oxygen species  

RPA, replication protein A  

RPMI, Roswell Park Memorial Institute  
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RNA, ribonucleic acid 

SERT, serotonin transporter 

SSRIs, selective serotonin reuptake inhibitors 

SDS-PAGE, sodium docecyl sulfate-polyacrylamide gel electrophoresis  

topo I: topoisomerase I  
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