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ABSTRACT

Analyses of 2002-2013 China’s Stock Market Using the Shared Frailty Model

by

Chao Tang

This thesis adopts a survival model to analyze China’s stock market. The data used

are the capitalization-weighted stock market index (CSI 300) and the 300 stocks

for creating the index. We define the recurrent events using the daily return of

the selected stocks and the index. A shared frailty model which incorporates the

random effects is then used for analyses since the survival times of individual stocks

are correlated. Maximization of penalized likelihood is presented to estimate the

parameters in the model. The covariates are selected using the Akaike information

criterion (AIC) and the variance inflation factor (VIF) to avoid multicollinearity. The

result of analyses show that the general capital, total amount of a stock traded in a

day, turnover rate and price book ratio are significant in the shared frailty model for

daily stock data.
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1 INTRODUCTION

Survival analysis is widely used in many different fields such as medical studies,

biological studies, clinical studies, etc. It deals with the survival data which have one

or more events. In recent years, economists have started applying this statistic method

to the stock market, currency market, and macro and micro economics phenomena.

Using a survival model, economists are able to study the behaviors of the derivate

and market and finally provides investment advice. With the growth of interest in

the stock market, a right investment decision is the priority for the investor. This

thesis analyzes the stock market using a survival model and provides the investment

suggestions.

In the stock market, the composite index of stock market is calculated based on

the prices of the selected stocks. The stock market index provides an overall view of

the market. Investors usually use the index as a tool to observe the stock market.

Most of the time, investors not only observe the composite index, but also focus on

the stocks with good performance. There are a variety of measurements to assess the

stock’s performance. The most popular one is the stock price. However, the price of

stock is a measurement for an individual stock. The rising and falling of stock prices

could not represent the relationships between the behaviors of the individual stocks

and the stock market. Indeed, the behaviors of an individual stock are affected by

the operating of a company and the stock market. Instead of using the stock prices as

a measurement, comparing the daily return of an individual stock and the composite

index interprets the performance of the stock well. Another aspect affecting the

performance of a stock is the company’s operation. Some covariates, such as the
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price earning ratio, free cash flow and asset-liability ratio, are important covariates

in an analysis. It is necessary to obtain the effects of the influence covariates for

evaluating a company’s operation. Within a proper time period, the behaviors of the

stocks are therefore predictable using survival models and investment advice could

be concluded.

Some remarkable works have been done. In 2006, Yuanlin used a survival model

to analyze the trend of the Shenzhen stock market composite index under different

transaction systems [9]. The different transaction systems have distinct restrictions

on the behaviors of the composite index. The study of the composite index provides

an overall view of the stock market for investors. To investigate the good performing

stock in the market, investors use different measures in the analyses. Another ap-

plication of survival analysis evaluated the commercial bank stocks using the ability

of loan repaying as a measurement [8]. Using an appropriate measure, the behaviors

of the stocks can be presented well. The covariates of the stocks are important in

analysis, and they reveal the operation of company. The certain covariates may lead

the company to going bankrupt, being acquired or going private [3].

The data used in this thesis were collected from Shanghai and Shenzhen Stock

Exchanges. The CSI 300 (SHA:000300) and a total of 219 stocks from different

industries are used as the stock data. The information of each selected stock was

collected from the day it was listed. This thesis presents a survival analysis of the

stock data.

The thesis is organized as follows. In section 2, a summary of undergraduate

research related to the analysis of the stock market is presented. Section 3 provides

8



the details of the data. Section 4 defines the recurrent event and correlated survival

times using the daily return of the selected stock and their market index, CSI 300.

The shared frailty model and the estimation of parameters based on the penalized

log-likelihood are described in section 5. The results of data analyses are presented

in section 6. Finally, a discussion of conclusions and future work end the thesis.
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2 UNDERGRADUATE RESEARCH

We have presented a preliminary survival analysis of China’s stock market in

2011 as an undergraduate research project [2]. Using the data of 298 stocks which

are traded in Shanghai and Shenzhen Stock Exchanges of China, the Kaplan-Meier

(KM) and the Cox’s proportional hazards models were adopted for analyses. The

survival time we defined was the number of days between the date that the stock

price reached its peak and the date that the stock has a loss of specific percentages

from its peak in 2011. In the analysis, each stock experienced only one survival

event, so the survival times are assumed to be independent in the Cox proportional

hazards model. As a result, the profit, asset liability ratio, market capitalization, and

industry category were significant covariates when the loss is 15% or 20% in the Cox

proportional hazards model. In the current research, we compare the daily return of

the individual stocks and CSI 300 to define the survival times. The Kaplan-Meier

and the shared frailty model are used in the data analyses.
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3 DATA DESCRIPTION

The CSI 300 (SHA:000300) data from January 4th 2002 to March 5th 2013 are

used as the market index in this thesis. The index is complied by the China Securities

Index Company, which reflects the price performance of China A share market [1].

The index includes 300 stocks traded in Shanghai and Shenzhen Stock Exchanges. In

our data, there are a total of 219 stocks with 27 different industries. Table 1 presents

the number of stocks in each industry. The metal mining industry has 42 stocks, the

most among all industries.

Table 1: The industry categories and the number of the 219 stocks in each industry

Industry Number of Stocks Industry Number of Stocks
Aviation 4 Auto Spare Part 4

Building Material 4 Capital Market 9
Chemistry 12 Commercial Bank 14

Comprehensive Finance 3 Computer 4
Construction 8 Drink 9

Electric 4 Family 6
Foodstuff 8 Highway and Railway 2
Insurance 3 Machinery 12

Media 6 Metal Mining 42
Multiple Retail 4 National Defense 4
Ocean Carriage 4 Oil Gas Coal 20

Pharmacy 9 Specialty Retail 5
Spinning Clothing 3 Traffic 14

Water Affairs 2
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A total of 10 covariates are considered in the stock data: turnover rate (TR),

price-earning ratio (PER), price-book ratio (PBR), price-to-sales ratio (PSR), price-

cash-flow ratio (PCFR), the total amount of a stock traded per day (AMO), A share

or B share circulation market value (Stock CMV), aggregate market value (AMV), A

share or B share circulation of capital (Stock CC), and general capital (GenC). The

turnover rate (TR) represents the ratio of the number of times stock is sold associated

with the stock held by company, as known inventory turnover ratio. The price-

earning ratio (PER) is a valuation ratio corresponding to share price of a company

and its earnings on each share. The price-book ratio (PBR) is a ratio of closing price

of a stock and its book value from last quarter. The price-to-sales ratio (PSR) is

calculated by dividing the market capitalization of a company by its overall sales in

annual. The price-cash-flow ratio (PCFR) represents the ratio of a company’s market

capitalization and its annual cash flow. The stock circulation market (Stock CMV)

value is the amount of a stock value in the market, and the aggregate market value

(AMV) is the total value of the stock of a company. The stock circulation of capital

(Stock CC) is the amount of capitalization in the market, and the general capital

(GenC) is the total capitalization of a company.

Some of the covariates have very large values, i.e., general capital. To avoid

different scales, we have standardized each covariate, so the coefficients of covariates

will not have an extremely small value in analysis.
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4 DEFINITION OF SURVIVAL TIME

4.1 Survival Time in the Undergraduate Research

In previous work [2], the stock data were collected from January 4th, 2011 to

October 28th, 2011. The accumulative return was the measure to define survival

time. The event occurs when a stock plunged certain percentages (-15%, -20% and

-31.9% to be specific). Therefore, the survival time is the number of trading days

from the date of its highest price of a stock to the date with a certain loss. Right

censoring occurs when the stock price never dropped by the specified percentage.

The event for individual stock can only occur once within the entire study period.

Meanwhile, under the independence assumption, the cox proportional hazards model

is an appropriate approach for the data.

4.2 Recurrent Event

In this thesis, the data started at the day when each stock was listed. In contrast

to prior work [2], the daily return, which is calculated by dividing the current stock

price by its price of the previous trading day, is the measure used to define the event.

Considering CSI 300 data, the study period is from January 4th, 2002 to March 5th,

2013. During a time period, the survival time begins with the date of an individual

stock with a daily return higher than CSI 300, and the end of this survival period is

the date of its daily return lower than the index. The duration time of the individual

stock with higher daily return than the index is the survival time for a single time

period. In the entire study period, the event occurs more than once for an individual

13



stock and the survival times are correlated for each stock. This leads to correlated

recurrent survival times. For the last recurrent event of an individual stock, the cen-

soring occurs when the daily return of an individual stock is still higher than CSI 300

at the last day of the study period (March 5th, 2013).

Figure 1: Plot of Aviation Stock 600115.SH vs. CSI 300

To illustrate the construction of the recurrent survival data, Figure 1 is produced

using the performance of a stock (600115.SH) in aviation industry and CSI 300 during

a short time period. The black line represents the daily return of stock (600115.SH)

and red line represents the daily return of the index. When the black line is above

the red line, the stock’s daily return is higher than the index. The number of days

under this condition is defined as one of the survival times. Corresponding to Figure

1, Table 2 provides a brief example of the list of recurrent event with survival times.
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Table 2: Table of Recurrent Event of Aviation Stock 600115.SH

Date begin Time begin Time end Survival time (days)
07JAN2002 2 5 3
14JAN2002 7 9 2
17JAN2002 10 11 1
23JAN2002 14 16 2
28JAN2002 17 19 2

The aviation stock (600115.SH) has 5 survival time periods in the first 19 days of the

study. The survival times are 3, 2, 1, 2 and 2 days respectively. The first survival

period started at January 7th, 2002, which is the second day in the entire study

period, and it lasted for three trading days. Therefore, the survival time of this

period is three. Similar interpretation is suitable for the other four survival periods

listed in Table 2.

A total of 219 stocks in 27 industries are involved in this study. Because of

the occurrence of censoring and correlated recurrent survival times of an individual

stock, the shared frailty model is appropriate and will be adopted for data analysis.

In section 5, we discuss the survival models and the estimation methods used in this

thesis.
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5 SURVIVAL MODELS

The survival distribution can be presented through the survival and hazard func-

tions. In this section, we first review the basic survival concepts, the Kaplan-Meier

(KM) model [7] and the Cox proportional survival model [7].

5.1 Survival and Hazard Functions

This thesis only considers right censored data. Right censoring occurs when a sub-

ject drops off before an event occurs, or the study ends before the event has occurred.

Let Ti denote a positive random variable which represents the real survival time with

probability density function (p.d.f), f(t), and cumulative distribution function (c.d.f),

F (t) = P (T ≤ t). Then, the survival function at time t is

S(t) = P (T > t) =

∫ ∞

t

f(u) du = 1− F (t) (1)

which gives the probability that the event of interest has not occurred by time t. The

hazard function of T is

λ(t) = lim
dt→0

P (t < T ≤ t + dt|T > t)

dt
. (2)

It represents the instantaneous failure rate at time t. The relationship among the

hazard function, density function, and survival function is

λ(t) =
1

S(t)
lim
dt→0

1

dt

∫ t+dt

t

f(u) du =
f(t)

S(t)
. (3)

It follows that

S(t) = exp

{
−

∫ t

0

λ(u) du

}
= exp(−Λ(t)) (4)
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and

f(t) = λ(t) exp(−Λ(t)) (5)

where Λ(t) =
∫ t

0
λ(u) du is the cumulative hazard function. The results show that

the density, survival, and hazard function provide the distribution of T alternatively

and equivalently.

5.2 Kaplan-Meier Model

The Kaplan-Meier model [7] is a non-parametric method and it provides an overall

view of the data. Assume the ordered survival times are t1 < t2 < ... < ti < ... < tr

where r represent the number of the distinct failure times. Let nj be the number

of individuals at risk and dj be the number of death at time tj. If the censoring

observations occur at the same time tj as the failures occur, then nj includes the

censored observations. For ti ≤ t < ti+1, the Kaplan-Meier estimator is

Ŝ(t) =
i∏

j=1

nj − dj

nj

(6)

The Kaplan-Meier model estimates an overall survival function S(t) with product

of conditional probabilities. It incorporates both censored and uncensored individuals,

however, it does not include any covariates in the model.

5.3 Cox Proportional Hazard Model

The Cox proportional hazard model [7] is a common used model for right censored

data with covariates in survival analysis. The model specifies the hazard function for

the ith individual as

λi(t) = λ0(t) exp {β′Xi} (7)
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where Xi is the covariates vector, and β is a vector of regression parameters associated

with the covariates. The baseline hazard function λ0(t) represents the risk when all

covariates are zero. The Cox model is a semi-parametric method because there is

no assumption for the distribution of baseline survival time, i.e., it allows that the

baseline hazard function λ0(t) takes any positive form. The hazards ratio for the ith

and the jth individuals is

HRi,j =
λi(t)

λj(t)
= exp{β′(Xi −Xi)} (8)

The likelihood function of the Cox proportional hazard function is used to estimate

the parameters, β, in the model. Let Ci be the right-censoring times. Define Yi =

min(Ti, Ci) which is the observed survival data. The censoring indicator is δi =

I(Ti≤Ci). The likelihood function is

L =
n∏

i=1

{
λ0(ti)e

β′Xi

}δi

exp

{
−

∫ ti

0

λ0(u)eβ′Xi du

}
. (9)

However, the baseline hazard function λo(t) is hard to be estimated. The partial like-

lihood function is therefore proposed for estimation. The partial likelihood function

is

PL(β) =
n∏

i=1

[
exp {β′Xi}∑

l∈R(ti)
exp {β′Xl}

]δi

, (10)

where R(ti) = {j : tj ≥ ti} is the risk set at ti, i.e., the set of subjects who have

not had an event by time ti. In the Cox proportion hazards model, the parameter,

β, is estimated using the Newton-Raphson procedure [6]. The iteration of Newton-

Raphson step continues until convergence is obtained. In software R, the Breslow

method is used to estimate the baseline hazard function, λ0(t). Between the distinct
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failure times, the baseline hazard function is assumed to be the same. The estimator

is

λ̃0(t) =
di

(ti+1 − ti)
∑

l∈R(ti)
exp

{
β̂′Xl

} , (11)

where ti < t < ti+1.

5.4 Shared Frailty Model and Estimation

In resent years, the shared frailty model is commonly used to deal with recurrent

event times [6]. The model considers an unobserved random effect within the subject

and right-censored data in the recurrent event. In this thesis, we will apply this model

to the stock data.

5.4.1 The Shared Frailty Model

For the jth(j = 1, ..., ni) individual of the ith group, define Tij as the recurrent

event times and Cij as the right-censoring times in the study. The observed survival

time, Yij, is min(Tij, Cij) and the censoring indicators are δij = I(Yij=Tij). The hazard

function for a shared frailty model can be written as

λij(t) = viλ0(t) exp(βXij) (12)

where λ0(t) is the baseline hazard function, β is the vector of regression parameters,

Xij denotes the covariate vector, and vi is the random effect associated with the

ith group. In addition, the v′is have an independent and identical distribution. A

common distribution for vi is a gamma distribution with E(vi) = 1 and Var(vi) = θ,
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i.e., vi ∼ Γ(1
θ
, 1

θ
) [7]. The marginal log-likelihood function is

l(Φ) =
G∑

i=1

{[
ni∑

j=1

δij ln λij(Yij)

]
− (

1

θ
+ mi) ln

[
1 + θ

ni∑
j=1

Λij(Yij)

]

+I{mi 6=0}

mi∑
k=1

ln(1 + θ(mi − k))

}
, (13)

where mi =

ni∑
j=1

I(δij=1) which denotes the number of recurrent events, Λij is the cumu-

lative hazards function for the jth individual in the ith group, and Φ = (λ0(·), β, θ)T .

5.4.2 Maximization of the Penalized Likelihood

We now introduce the steps of estimation methods of the shared frailty model.

First, the maximization of penalized likelihood function estimates the parameters in

the model. Then, the spline-based method approximates the baseline hazard function

λ0(t). Last, the smoothing parameter used in the model is estimated.

The parameters, β, are estimated using the maximization of the penalized log-

likelihood. The penalized log-likelihood function for the shared frailty model is

pl(Φ) = l(Φ)− κ

∫ ∞

0

λ′′0(t)
2 dt (14)

where l(Φ) and λ0(t) were defined in section 5.4.1 and κ is a positive smoothing

parameter associated with the smoothness of the functions. The term, λ′′0(t), is the

second derivate of the baseline hazard function and it is approximated by a sum of

polynomial functions of first order. A flexible shape of the hazard function is allowed

in this approximation.

The maximization of the penalized likelihood estimates the parameter using the

robust Marquardt algorithm. This algorithm combine the Newton-Raphson algorithm
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and the steepest descent algorithm [4]. By using a squared transformation, the vari-

ance of frailties and the spline coefficients are restricted to be positive. This assures

that the hazard functions are positive at all stage of the algorithm. The iteration is

Φ(r+1) = Φ(r) − ζ(H̃(r))−1∆(pl(Φ(r))) (15)

The ζ equals to 1 by default, but it can be modified for improving the likelihood at

each iteration. The H̃ denotes a diagonal-inflated Hessian matrix(a square matrix of

second-order partial derivatives of a function). The penalized log-likelihood gradient

at the rth iteration is explained by the term ∆(pl(Φ(r))). When the difference between

two consecutive log-likelihoods is smaller than 10−4, the iteration will stop. In this

case, the coefficients are stable and the gradient is smaller than 10−6. The inverse of

the final Hessian matrix provides the standard errors of the estimates.

5.4.3 Spline-Based Approximation

After estimating the covariate coefficients in the shared frailty model, we approxi-

mate the baseline hazard function λ0(t). Notes it may not have an analytical solution.

Using the spline method, the baseline hazard function can be approximated, i.e.,

λ̃0 =
m∑

i=1

ηiMi (16)

where m = Q + 2, Q is the number of knots, ηi’s are the control points and Mi

represents cubic M-splines [5]. The spline-based approximation allows arbitrary haz-

ard function. The number of knots is suggested to be between 4 and 20. In the

approximation, the more knots are used, the closer to the true hazard function.
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5.4.4 Smoothing Parameter

The maximization of a likelihood cross-validation criterion is used for estimat-

ing the smoothing parameter, κ [4]. The parameter is obtained by minimizing the

function

V̄ (κ) =
1

Q
[tr(Ĥ−1

pl Ĥl − pl(Φ̂κ))]

where Q is the number of knots, Ĥpl is the converged Hessian matrix of the penalized

log-likelihood, Ĥl is the converged Hessian matrix of the log-likelihood, and pl(Φ̂κ)

represents the maximum penalized log-likelihood at the final.
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6 DATA ANALYSIS

Statistical package software, R, is used to perform the analyses. Considering an

overall survival function (without any covariate involved), the Kaplan-Meier model

displays an overall view of the stock data.

Figure 2: Survival Function of Kaplan-Meier Model

Figure 2 presents the results from the Kaplan-Meier estimation. Regardless of corre-

lation among survival times of each stock, the survival rate drops rapidly in 5 days,

which means the hazard rates increase fast when the stock has survived a week or

longer. There are only few stocks whose survival times sustain longer than 10 days.

The Kaplan-Meier model only provides an overall view of the data, however, the ef-
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fects of covariates provides reliable information for a company’s operation. Therefore,

it is necessary to analyze the data using a model which incorporates the covariates.

Before analyzing the stock data with the covariates, the multicollinearity of these

covariates is necessarily to be checked. Figure 3 is the scatter plot of the covariates.

Figure 3: Scatter Plot of Covariates Matrix
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Table 3: Table of Correlation of Covariates

Variable AMO AMV GenC StockCMV StockCC PER PCFR PBR PSR TR
AMO 1.000
AMV 0.329 1.000
GenC 0.177 0.815 1.000

StockCMV 0.206 0.569 0.581 1.000
StockCC 0.072 0.496 0.695 0.862 1.000

PER 0.033 -0.001 -0.005 -0.005 -0.005 1.000
PCFR -0.018 0.0002 0.003 -0.007 0.002 0.002 1.000
PBR 0.210 0.0194 -0.059 -0.013 -0.065 0.029 -0.022 1.000
PSR 0.091 0.0235 -0.001 0.0003 -0.017 -0.023 0.005 0.231 1.000
TR 0.377 -0.030 -0.046 -0.096 -0.084 0.015 0.007 0.150 0.033 1.000
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Table 3 provides the correlations between each pair of the covariates. According

to Table 3, there are three pairs of highly correlated covariates, which are the stock

circulation market value (Stock CMV) and share circulation of capital (Stock CC), the

aggregate market value (AMV) and general capital (GenC), and the stock circulation

of capital (Stock CC) and general capital (GenC).

We assume there is an unobserved random effect within each stock. The shared

frailty model is an appropriate approach to estimate the random effect and its vari-

ance. Using the package, frailtypack and usdm, in R, several analyses are performed.

We start to identify the multicollinearity by using the Akaike information criterion

(AIC) and the variance inflation factor (VIF) of several possible models. Table 4

Table 4: Analyses Results for Possible Models

Covariates Included log-likelihood AIC Value R2 VIF value
GenC, AMV and StockCMV -74199.2 148416.4 (*) 0.4094 1.2014 (*)

GenC and StockCMV -74200.38 148416.76 0.5883 1.5293
GenC and StockCC -74200.26 148416.52 0.5758 1.4959

StockCMV -74204.93 148423.86 0.9012 5.3218

presents the log-likelihoods, the AIC and the VIF values when different covariates

are included in the models. Other covariates included in the model are the turnover

rate (TR), price-earning ratio (PER), price-book ratio (PBR), price-to-sales ratio

(PSR), price-cash-flow ratio (PCFR), and the total amount of a stock traded per

day(AMO). The VIF measures the increase of the variance of an estimated model

(coefficient) due to the collinearity. As a common rule, the survival model with the

VIF value higher than 5 has the multicollinearity. The minimum of AIC and the
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smallest VIF indicate the same model, which has the general capital (GenC), aggre-

gate market value (AMV) and stock circulation market value (Stock CMV) and all

others as the covariates. Meanwhile, all possible models identify the same significant

covariates.

Table 5: Significant Covariates in Possible Models

Models Include GenC, AMV GenC GenC StockCMV
and StockCMV (*) and StockCMV and StockCC

GenC -0.0258 -0.0167 -0.0190 NA
AMO 0.0480 0.0498 0.0499 0.0489
TR 0.0308 0.0302 0.0303 0.0305

PBR -0.0134 -0.0130 -0.0130 -0.0124
AMV 0.0116 NA NA NA

StockCMV -0.0008 -0.0011 NA -0.0057
PER -0.0001 -0.0001 -0.0002 -0.0002
PSR 0.0052 0.0053 0.0053 0.0052

PCFR -0.0025 -0.0025 -0.0026
StockCC NA NA 0.0024 -0.0025

Table 5 gives a summary of the coefficients of covariates in all possible models. All

covariate coefficients remain the same sign and their values are similar in the different

models. In addition, the VIF values presented in Table 6 are smaller than 5 for the

covariates in the optimal model after excluding the stock circulation capital (stock

CC).

The AIC and VIF values designate the same covariate, stock circulation capital

(stock CC), which should be excluded. Therefore, the shared frailty model (*) in
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Table 6: Covariates and its VIF (Excluded stock CC)

Covariates VIF
AMO 1.470366
AMV 4.000649
GenC 3.645724

StockCMV 1.627245
PER 1.005562

PCFR 1.001270
PBR 1.105222
PSR 1.044550
TR 1.234149

Table 4, including 9 covariates, the turnover rate (TR), price-earning ratio (PER),

price-book ratio (PBR), price-to-sales ratio (PSR), price-cash-flow ratio (PCFR), the

total amount of a stock traded per day (AMO), general capital (GenC), aggregate

market value (AMV) and stock circulation market value (Stock CMV), is adopted for

further analysis.

The stock data are clustered by individual stock. The shared frailty model with

the random effect corresponding to each stock involves all covariates except the ones

with multicollinearity.

Table 7 presents the results of estimation from model (*) in Table 4. The esti-

mation of the variance of the random effect, θ, is 0.00626 with a standard error of

0.0008. In the table, “SE coef (H)” is the standard error estimated by inverting the

Hessian matrix, “SE coef (HIH)” is the standard error estimated using the matrix

product H−1IH−1 where H−1 is the inverse of the Hessian matrix and I the Fisher

Information matrix, and the Z value refers to the Wald test statistic. The random
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Table 7: Estimation of Shared Frailty Model

coef exp(coef) SE coef (H) SE coef (HIH) z p
GenC -0.0258 0.9744 0.00819 0.0082 -3.1591 0.0016(*)
AMV 0.0116 1.0116 0.00751 0.0075 1.5437 0.1227

StockCMV -0.0008 0.9991 0.00403 0.0041 -0.2010 0.8407
AMO 0.0481 1.0492 0.00372 0.0037 12.9161 0.0000(*)
TR 0.0308 1.0313 0.00331 0.0033 9.3145 0.0000(*)
PER -0.0001 0.9999 0.00297 0.0030 -0.0435 0.9653
PBR -0.0134 0.9867 0.00343 0.0034 -3.9028 0.0001(*)
PSR 0.0052 1.0052 0.00354 0.0035 1.4616 0.1438

PCFR -0.0025 0.9975 0.00306 0.0030 -0.8174 0.4137

effect, an important parameter, is needed to be verified. If the random effect is not

significant, the model will become the Cox proportional hazards model. This can be

done by testing the hypothesis that θ = 0 using a modified Wald test for unobserved

heterogeneity. The test statistic is W (θ) = 0.00626/0.0008 = 7.825 > 1.64, where

1.64 is the critical value for a normal one-sided test. Therefore, heterogeneity occurs

in the data, which indicates that the random effect, vi, is necessary in the shared

frailty model. Results in Table 7 show that there are four significant(at significant

level α = 0.05) covariates: the general capital (GenC), total amount of a stock traded

per day (AMO), turnover rate (TR) and price book ratio (PBR). The general capital

and price book ratio have negative effects in the hazard function, whereas the total

amount of a stock traded per day or the turnover rate have positive effects. A stock

with higher value of the general capital and price book ratio has less hazards in sur-

vival period, when other covariates are fixed. And the stock with higher value of the

29



total amount traded per day or higher turnover rate has more hazards.

Figure 4 displays the baseline hazard function of the shared frailty model when

using the 9 covariates in model (*) in Table 4. The two dash lines are the confidence

bands of the baseline survival function at significant level, α = 0.05.

Figure 4: Estimated Baseline Hazard Function of the Shared Frailty Model

To compare the performance of the stocks in the market, we obtain their hazard

functions. Note that the hazard function is λij(t) = viλ0(t) exp(βXij). In the hazard

function, the variance of the random effect, vi, is very small (0.00626) and the baseline

hazard function, λ0(t), is the same for each stock. The difference in the hazard

functions also depends on the difference in the vector of covariates, Xij. For two
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stocks, we obtain the multiplications of the covariate values and their coefficients.

Note we are using the hazard functions of the stocks. The better performing stock

has a smaller value of βT Xij compared to the other.

Table 8: Illustration Example of Stock 600151.SH and Stock 600660.SH

December 31, 2012 Coefficient Covariate of 600151.SH Covariate of 600660.SH
(Standardized Value) (Standardized Value)

GenC -0.0258 1,250,179,897 (0.446) 2,002,986,332 (1.773)
AMO 0.0481 32,677,508 (-0.496) 111,857,192 (0.078)
TR 0.0308 0.6423 (-0.489) 0.652 (-0.485)

PBR -0.0134 2.5371 (-0.980) 2.8189 (-0.867)
AMV 0.0116 6,675,960,650 (-0.483) 17,566,190,132 (0.963)

StockCMV -0.0008 5,112,915,058 (-0.258) 17,217,227,885 (1.638)
PER -0.0001 451.3379 (3.597) 11.6132 (-0.623)
PSR 0.0052 2.7966 (-0.549) 1.8129 (-1.045)

PCFR -0.0025 2356 (-0.063) 4,306 (1.238)
βT X -0.305 -0.067

Table 8 presents the values of the covariates of Stock 600151.SH and Stock 600660.SH

at December 31, 2012. Based on the hazard function, the hazard ratio (ratio of

two hazards function) of two auto spare part stocks can be obtained for prediction,

exp [(−0.305)− (−0.067)] = 0.788. With the hazard ratio less than 1, the stock

600151.SH is more likely to survival after the next trading day, January 4, 2013.

Last, a prediction based on the model (*) in Table 4 is preferred for completing the

analyses. The “Frailtypack” package in R can estimate the probability of the event

of a stock at different time point (days). Table 9 and Figure 5 provide an example of

the estimated probability of the event of two auto spare part stocks at different days.
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Table 9: Estimated Probability of the Event of Stock 600151.SH and Stock 600660.SH

Survival Days Probability of 600151.SH Probability of 600660.SH
2 0.7555215 0.7561427
3 0.8708815 0.8713570
4 0.9420166 0.9423127
5 0.9736136 0.9737851
6 0.9867438 0.9868460
7 0.9938531 0.9939087
8 0.9975533 0.9975794
9 0.9989964 0.9990087
10 0.9994957 0.9995024

Figure 5: Plot of the Estimated Probability of the Event for Stock 600151.SH
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The covariate values of these two stocks (600151.SH and 600660.SH) are taken as

they were at the last event day, December 31, 2012 shown in Table 8. The standard-

ized values of these covariates are used in the prediction. The estimated probabilities

of the event of the stock 600151.SH are generally smaller than the probabilities of the

stock 600660.SH at different survival days. The hazards ratio and the estimated prob-

ability both demonstrate that the stock 600151.SH performs better than the stock

600660.SH. Note that the two selected stocks are from the same industry category.

This could explain why the estimated probabilities in Table 9 are so close. If we select

2 stocks from different industry categories, the difference might be obvious. Figure 5

illustrates the trend of the estimated probability of the event of the stock 600151.SH.

We are interested in the probability of the event after the stock survived 2 days or

more. As illustrated, the probabilities are close to 1 after the stock survived 6 days,

which means the the stock is not likely to perform better than CSI 300 more than 6

days. For short term investment in stock market, it might be a good time to sell the

stock when it has performed better than the index for one week.

33



7 CONCLUSIONS

This thesis is an application of correlated survival analysis in stock market. The

data used are the capitalization-weighted stock market index (CSI 300, stock ticker

symbol SHA:000300) and the 300 stocks for creating the index. In order to study

the performance of the stocks, the daily return is used as a measure for comparing

the selected stocks and CSI 300. The survival times are the duration of time when

the daily return of an individual stock is higher than the index. The shared frailty

model associated with a gamma distribution of random effect is adopted for anal-

ysis. The covariates are selected using the Akaike information criterion (AIC) and

variance inflation factor (VIF) to avoid the multicollinearity. The results show that

the random effect, general capital (GenC), total amount of a stock traded per day

(AMO), turnover rate (TR) and price book ratio (PBR) are significant at level 0.05.

The good performing stock has a smaller value of βT Xij compared to others. The

probability, that the daily returns of the stock turn out to be lower than the return

of the CSI 300, can be predicted and some investment advice can be provided.
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8 FUTURE WORK

More work will be done in the future. Based on the package, “frailtypack”, the

diagnosis of model does not have a residual analysis, but only provids the diagnosis of

the random effect in the model. Test of goodness-of-fit is needed to assess the model.

In this thesis, we use daily return in analyses. Weekly data or even monthly

data might be used to compare the difference among models and the significance of

covariates. Lastly, the categories of stock can be considered as a sub-cluster which is

appropriate in the nest frailty model.
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APPENDICES

1 DATA PROCESS IN SAS

In data process, the codes are used in SAS version 9.4 (July 10th, 2013). The

macro program in the codes splits the individual stocks from the original data and

merge with the index data.

%macro dataProcess(filename, a0);

proc import out= a1;

datafile= ‘‘Z:\&filename..xlsx"

dbms=EXCEL REPLACE;

range=‘‘ &filename.$";

gentnames=YES;

mixed=NO;

scantext=YES;

usedate=YES;

scantime=YES; run;

proc sort data=a1; by date; run;

data a1; set a1;

rename Turnover = TurnoverStock;run;

data new;

merge a1 &a0;by date; run;

data new; set new;
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If date = . then delete;

If OP = . then delete;run;

proc freq data = new;

tables code / out= CodeTable norow nocum nopercent; run;

proc sort data=codeTable; by code; run;

proc sql;

select code from codetable;

select code into : code1 - :code &sqlobs

from codetable; quit;

%let N = &sqlobs;

%do i = 1 %to &N;

%put &&code&i; %end;

%do i=1 %to &N;

data &filename&i; set new;

where code =‘‘& &code&i";run; %end;

%do i=1 %to &N;

proc export data= &filename&i

outfile= ‘‘ Z: \&filename&i..csv"

dbms=CSV REPLACE;

putnames=YES; run;

%end; quit;

data codetable; set codetable;

stock =‘‘&filename";
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index = _N_;

drop PERCENT; run;

proc append base = StockCode data = codetable force; run;

%mend dataProcess;

data Stockcode; Set Stockcode;

If Index = . then delete; run;

/*export the stockcode file*/

proc export data= Stockcode

outfile= ‘‘ Stockcode.csv"

dbms=CSV REPLACE;

putnames=YES; run;
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2 DATA ANALYSIS IN R

In data analysis, the codes are used in R version 3.0.3. The “frailtypack” is used

for modeling the data. The required packages are “reshape2”, “splines”, “survival”,

“survC1”, “MASS”, “boot”, “frailtypack” and “lattice”. All given comments are pre-

ceded by the # symbol.

#Read stockcode and combine stock‘s names

file0 = "Z:\ Stockcode.csv"

stockcode = read.csv(file0,head=TRUE,sep=‘’,")

stockcat=stockcode[,1]

index=stockcode[,3]

stockname = paste(stockcat, index, sep=‘’ ")

#Read stock files

filename = paste("Z:\ ‘’, stockname, ".csv", sep =" ")

filenameN = length(filename)

#Loop for analysis

#f <- function(i){

stockdata <- data.frame()

for (i in 1: filenameN){

#for (i in 4: 5){

#i = 4

stock <- read.csv(filename[i], header=T, sep=",")
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#define index closing price:

#stock = stock[stock$Weekday == "F", ]

C<- 0

stock = subset(stock, stock$Closing_Price >C)

CPindex = stock$Closing_Price

#calc IndexPCR

n = length(CPindex)

IndexPCR = (CPindex[-1]/CPindex[-n]-1)*100

stock$IndexPCR = c(0,IndexPCR)

#Create Count of Date

stock$nDate = (1:(length(stock$Date)))

#Record beat or not

stock$Beat = as.numeric(stock$PCR > stock$IndexPCR)

stock$Beat1 = c(NA, stock$Beat[-length(stock$Beat)])

stock$Bindex = as.numeric(stock$Beat==stock$Beat1)

#Record Survival Time

temp<-subset(stock, stock$Bindex==0)

temp$nDate1 = c(temp$nDate[-1],NA)

temp$survtime=c(temp$nDate[-1]-temp$nDate[-length(temp$nDate)],NA)

#Subset Survival Time Greater Than 1

#C <- 1

#SurvTable <- subset(temp, temp[,40] > C)

#SurvTable[1:10,]
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#Seperate Beat

C<-1

Surv0<- subset(temp, temp[,35] == C)

Surv0[1:5,]

# A stock or B stock

Stock_CMV=is.numeric(Surv0$A_Stock_CMV)*as.numeric

(Surv0$A_Stock_CMV)

Stock_CMV = Stock_CMV +is.numeric(Surv0$ B_Stock_CMV)

*as.numeric(Surv0$ B_Stock_CMV)

Stock_CC = is.numeric(Surv0$A_Stock_CC) *as.numeric

(Surv0$A_Stock_CC)

Stock_CC = Stock_CC +is.numeric(Surv0$ B_Stock_CC)

*as.numeric(Surv0$ B_Stock_CC)

tmp = cbind(rep("B", length(Stock_CMV)), rep("A",

length(Stock_CMV)))

Stock_CMV_Type = tmp[,max(is.numeric(Surv0$A_Stock_CMV)+1)]

Surv0$Stock_CMV = Stock_CMV

Surv0$Stock_CC = Stock_CC

Surv0$Stock_Type = Stock_CMV_Type

Surv0$Categ = stockcat[i]

Surv0=subset(Surv0, Surv0$TurnoverStock > 0)

CeIndicator = abs(as.numeric(stock$nDate[nrow(stock)] ==

Surv0$nDate[nrow(Surv0)])-1)
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Surv0$Censor = c(rep("1",(nrow(Surv0)-1)),CeIndicator)

Surv0$ID = rep(i, nrow(Surv0))

Surv0=Surv0[(!(is.na(Surv0$PBR))),]

Surv0=Surv0[(!(is.na(Surv0$PER))),]

Surv0=Surv0[(!(is.na(Surv0$PCFR))),]

Surv0=Surv0[(!(is.na(Surv0$PSR))),]

Surv0=Surv0[(!(is.na(Surv0$AMV))),]

Surv0=Surv0[(!(is.na(Surv0$AMO))),]

Surv0=Surv0[(!(is.na(Surv0$TR))),]

Surv0=Surv0[(!(is.na(Surv0$GenC))),]

Surv0=Surv0[(!(is.na(Surv0$Stock_CC))),]

Surv0=Surv0[(!(is.na(Surv0$Stock_CMV))),]

Surv0$Censor[nrow(Surv0)] = 0

stockdata = rbind(stockdata, Surv0)

}

stockdata$Censor = as.numeric(stockdata$Censor)

stockdata$PER = as.numeric(stockdata$PER)

stockdata$PBR = as.numeric(stockdata$PBR)

stockdata$PSR = as.numeric(stockdata$PSR)

stockdata$PCFR = as.numeric(stockdata$PCFR)

stockdata$AMOscale = scale(stockdata$AMO, center = TRUE,

scale = TRUE)

stockdata$AMVscale = scale(stockdata$AMV, center = TRUE,

44



scale = TRUE)

stockdata$GenCscale = scale(stockdata$GenC, center = TRUE,

scale = TRUE)

stockdata$Stock_CMVscale = scale(stockdata$Stock_CMV,

center = TRUE, scale = TRUE)

stockdata$Stock_CCscale = scale(stockdata$Stock_CC,

center = TRUE, scale = TRUE)

stockdata$PERscale = scale(stockdata$PER, center = TRUE,

scale = TRUE)

stockdata$PCFRscale = scale(stockdata$PCFR, center = TRUE,

scale = TRUE)

stockdata$PBRscale = scale(stockdata$PBR, center = TRUE,

scale = TRUE)

stockdata$PSRscale = scale(stockdata$PSR, center = TRUE,

scale = TRUE)

stockdata$TRscale = scale(stockdata$TR, center = TRUE,

scale = TRUE)

#Kaplan-Meier model

fitKM=survfit(Surv(survtime, Censor) ~ 1 , stockdata,

se.fit=F)

summary(fitKM)

win.graph(width=8, height=6, pointsize=14)

title= paste("KM Estimated Survival Fucntion")
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plot(fitKM, xlab = "Day", ylab = "Survival function",

cex.lab=1.3, font.lab = 7, font.axis = 7, font.main = 7, main=title)

#Covariates Scatter Plot & Matrix

covariate.mat = as.matrix(stockdata[, c(46:55)])

cor(covariate.mat, use="complete.obs")

splom(~ covariate.mat,cex=.5, pscales = 0, main = "Scatter

Plot Matrix for Covariates")

cor(covariate.mat, use="complete.obs")

#Shared Frailty Model

mod.shared<-frailtyPenal(formula = Surv(survtime, Censor) ~

cluster(ID) + GenCscale + AMVscale+ StockCMVscale + AMOscale

+ TRscale + PERscale + PBRscale + PSRscale + PCFRscale,

Frailty = TRUE, data = stockdata, n.knot = 10, kappa1 = 1,

cross.validation = TRUE)

#Summary and Plot of Shared Frailty Model

summary(mod.shared, level = 0.95)

plot(mod.shared, type.plot = "hazard", main = "Hazard Function

of Shared Frailty Model", level = 0.95, conf.bands = TRUE)

#Prediction

datapred = data.frame( AMOscale =0, AMVscale=0, GenCscale=0,

Stock_CMVscale=0, PERscale=0, PCFRscale=0, PBRscale=0, PSRscale=0,

TRscale=0)

datapred[1,] = c(-0.1837737, -0.1649021, -0.09315761,
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-0.05133359, -0.09979914, 0.02425171, -0.6805865, -0.08478979,

-0.472343)

predm = prediction(mod.shared, datapred, 1, 1, 20 )

plot(predm)
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