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ABSTRACT  

Probiotic Potential of Bacterial Isolates From ‘Amabere amaruranu’ Cultured Milk 
 

by  

Blaise Baalayel Boyiri  

Probiotics are viable nonpathogenic microbes that positively affect host health. 

Probiotics inhibit infection, activate immunity, and promote mucosal-barrier 

development. Many microbes have probiotic activity. Nonetheless, the selection of 

stable strains and their specific mechanism(s) of action are not fully elucidated. Bacteria 

from ‘Amabere amaruranu’ cultured milk from Kenya were isolated and identified by 

PCR sequence analysis of the 16S rRNA gene. Isolates were examined for stability to 

acid and bile, antimicrobial activity, mucin production, and degradation and sensitivity to 

antibiotics, hence their potential for probiotics. Lactobacillus isolates were acid unstable, 

bile-stable, nonmucinolytic, and presented antibacterial activity.  L. rhamnosus cell 

fractions increased MUC4 and MUC3 expression in colon cells. Bacillus isolates were 

acid and bile stable, nonmucinolytic and lacked antimicrobial activity.  In conclusion, 

Lactobacillus isolates that were nonmucinolytic, stable in bile, demonstrated 

antibacterial activity, sensitive to antibiotics, and stimulated increase MUC4 and MUC3 

levels in colon cells could be potential probiotics. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Definition and History of Probiotics 

 The concept of ingesting live microbes for their potential health benefits evolved 

around the early 20th century (Metchnikoff, 1907). This idea came from observations 

that were made by Ilya Ilyich Metchnikoff (1845-1916) that the longevity of native 

Bulgarians could be attributable to their consumption of cultured dairy products (Bibel, 

1988). Bacterial cultures have long been used in dairy products to develop a distinctive 

flavor and increase shelf life (Bruhn et al., 2002). The practice of adding selected viable 

microbes to food is now referred to as ‘probiotics’ (O’Sullivan, 2001). Probiotics are 

viable nonpathogenic microbes that have the potential to confer health benefits on their 

host when ingested in sufficient amounts (FAO/WHO Joint Working Group, 2002; Fuller, 

1991; Shanahan, 2005). Interestingly, both live and dead probiotic cells are efficacious 

in function, and their cell components can effectively act as biological response 

modifiers (Adams, 2010).  Probiotic activities are not limited to only the gastrointestinal 

tract but seem to demonstrate significant biological effects on distant organs and tissues 

as recently reviewed by Adams (2010).  A wide variety of bacterial species could 

provide probiotic activity, but the most common strains in commercial use are the 

lactobacilli and bifidobacteria groups (Reid, Anukam, & Koyama, 2008; Shah, 2007). 

Lactic acid bacteria in particular have been consumed safely by all human generations 

in various fermented dairy foods (Fuller, 1992; van der Kamp, 1996). Fuller (1987) 

reported an increase interest in the use of live microbial agents for health maintenance 
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and disease prevention. This report was supported by Brady, Gallaher, and Busta 

(2000) and Isolauri (2000) that several scientific and medical communities have 

developed interest in exploring the functionality and application of probiotics in human 

health. 

  

Sources of Probiotic Bacteria 

 Collins, Thornton, and Sullivan (1998) pointed out the imperativeness to always 

establish the source of probiotic bacteria in order to substantiate their health claims. 

Bacterial strains among human gut commensal microbiota and milk microflora that 

demonstrate substantial stability and beneficial properties are potential sources of 

probiotics (Isolauri, Kirjaviainen, & Salminen, 2002a). Many microorganisms including 

lactobacilli, bifidobacteria, streptococci, and Saccharomyces are commonly considered 

for probiotic preparations (Goldin & Gorbach, 1992).  

 

Cultured-milk as Source of Probiotic Strains 

The high nutritional value and water content of milk makes it one of the foods that 

harbor complex microbial communities (Quigley et al., 2011). The understanding of the 

microbial communities in milk and other dairy products is important. The microbes 

determine the quality of the milk products. These microbes may include spoilage 

bacteria or potential pathogens as well as beneficial micro-organisms (Cousin, 1982).  

The diversity of microbial communities of raw milk for instance may be influenced by the 

location of the animal and the season of milking it (Bonizzi, Boffoni, Feligini, & Enne, 

2009; Randazzo, Pitino, Ribbera, & Caggia, 2010). Other factors that affect the 
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microbial composition include handling and the storage procedures.  Most commonly 

studied microbial communities in milk are the culturable microbes. These include the 

Lactobacillus, Streptococcus, Enterococcus, Lactococcus, Leuconostoc, Weisella, and 

Pediocococus strains. Strains of other genera such as Staphylococcus, 

Propionibacterium, Corynebacterium, and Brevibacterium as well as Saccharomyces 

may also be present (Coppola, Blaiotta, & Ercolini, 2008). It is however apparent that 

the culture-based method of studying the microbial composition of milk does not usually 

account for all strains. This is because the method relies on isolation and cultivation of 

the strains for identification and as a result may fail to isolate some species that are 

represented in low numbers. Hugenholtz, Goebel, and Pace (1998) reported that 

minority species may be out-competed in laboratory media by numerically more 

abundant microbial species. 

 

Selection Criteria for Probiotics 

The selection of probiotic strains has been in large part based on historical 

recognition of safe consumption of cultures. It is essentially based on reports of many 

years of consuming a particular culture without obvious harmful side effects (Kopp-

Hoolihan, 2001). Most probiotic strains are similar to the natural gut commensal 

microflora. Preferable probiotics strains are those of human origin (Collins et al., 1998). 

The definition of probiotics requires adequate verification of the efficacy and safety of 

selected strains, thus, assessment of these factors constitutes an important part of the 

characterization of probiotics for human use (Isolauri, Salminen, & Ouwehand, 2004). 

Among the prerequisites for selecting probiotic bacteria is their ability to show high 
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capacity to adhere to and colonize the gut (Huis in’t Veld, Havenaar, & Marteau, 1994). 

Additional considerations for selecting suitable probiotics are that the strains should not 

have the capacity to degrade mucins. This is to avoid possible degradation of the 

protective mucus layer of the digestive tract (Zhou, Gospal, & Gill, 2001). Furthermore, 

suitable probiotic strains should be nonpathogenic even in immunocompromised hosts 

(Collins et al., 1998) and should demonstrate appreciable ability to exert beneficial 

effects on their host (Kopp-Hoolihan, 2001). The selected strains should show stability 

to stress, especially that of digestive tract conditions including tolerance to low pH and 

high concentration of bile acids. This establishes the ability of the strain to survive and 

proliferate in the in vivo conditions of the digestive tract (Collins et al., 1998). Saarela, 

Alakomi, Puhakka, and Matto (2009) reported that the probiotic isolates usually 

encounter various stressful conditions during isolation, formulation into food or 

supplements, storage, and transit along the gastrointestinal tract. Some of the common 

stress conditions as noted by Antione (2011) included refrigeration storage at 4 oC, 

transit along mouth and gastrointestinal tract temperatures of about 25 oC and 37 oC 

respectively, chemical challenges including hyper-acidic gastric environment of about 

pH1 to 2, and neutralization or detergent effects of bile in the small intestines. However, 

Saarela et al. (2005) reported that tolerance of cells to stress is strain specific and that 

cells at stationary phase of growth seemed to be more tolerant to stressful conditions 

than actively growing cultures (Saarela et al., 2009).   Furthermore, desirable probiotic 

strains should not provoke the host immune responses against themselves or their 

products (Pouwels, Leer, & Posno, 1992). Probiotic strains are also required to 

demonstrate appropriate antibiogram profiles including sensitivity to antibiotics and 
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resistance to metronidazole and that to some extend prevents the used of strains that 

may transfer antibiotic resistance trait to other gastrointestinal tract dwellers. They are 

also required to possess effective immunostimulatory effects on the mucosal immune 

system especially in the activation of cytokines (Collins et al., 1998).  

 

Probiotics in Food Synthesis 

Microorganisms have been involved in the preparation of cultured foods by many 

communities around the world. These organisms have demonstrated appreciable 

potential to improve the quantity, availability, and digestibility of some dietary nutrients 

(Kopp-Hooligan, 2001). There are reports of increase concentration of folic acid in 

yogurt and ‘bifidus milk’ (commercial milk preparation that contains Bifidobacterium 

bifium) through fermentation with lactic acid bacteria (Alm, 1982). Fermentation of food 

with lactic acid bacteria also increases the content of vitamin B complexes and 

promotes the production of short-chain fatty acids and the hydrolysis of amino acids 

(Friend & Shanahan, 1984). 

 

Therapeutic Effects of Probiotics 

A growing body of scientific evidence supporting probiotic contributions to human 

health is available. Modification of gut microbial communities by probiotic therapy has 

demonstrated therapeutic potentials in clinical conditions associated with barrier 

dysfunction and inflamed mucosa (Isolauri, 2001). Probiotics aid digestion, inhibit 

pathogenic infections, promote development of intestinal integrity, reduce pH of the 

large bowel, activate mucosal immunity, and suppress tumorigenesis and cancer.  
16 

 



Probiotics in Aiding digestion and Improving Bowel Movement 

Lactose intolerance is a common complaint for some people when they consume 

milk or dairy products. It involves the difficulty for people with this condition to digest the 

lactose component in milk. There are several reports about the ability of some cultures 

to provide a remedy to this condition through the production of lactase for the hydrolysis 

of lactose during fermentation and digestion (Savaiano & Levitt, 1987). Probiotics also 

contribute to improvement of bowel movement especially among the elderly. Significant 

laxative effect from the consumption of Bifidobacterium cultured milk was reviewed by 

Yaeshima (1996). 

 

Probiotics in Mucosal Barrier Development and Reduction of Inflammation 

The mucosal barrier consists of a single cell layer epithelium and an aggregate of 

other secretory cells and gut immune cells and their products. The epithelial cell layer of 

the gastrointestinal tract is strategically located between the many microbes and 

antigens of the intestinal lumen and the inflammatory and immune effector cells of the 

lamina propria (Mack, Michail, Wei, McDougall, & Hollingsworth, 1999). It is capable of 

regulating the production of selected chemokines in response to invasive bacteria 

(Yang, Eckmann, Panja, & Kagnoff, 1997) and as a result may be an important 

component in the development of the host innate and adaptive immune responses. The 

interaction of the gut epithelium with resident microbiota also contributes to the 

development and the function of the mucosal barrier. Isolauri (2001) illustrated the 

importance of gut microflora in the intestinal defense barrier. She demonstrated in the 

study that the absence of intestinal microflora resulted in an increase in antigen 
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transport that led to increased inflammation. Inflammation is mediated by the increased 

production of proinflammatory tumor necrosis factor (TNF) that contributes to the 

recruitment and activation of immune cells, the release of cytolytic enzymes and 

reactive oxygen species (ROS), and the consequent exacerbation of tissue damage at 

sites of inflammation (Ganesan, Travis, Ahmad, & Jazrawi, 2002; Van Deventer, 1997).  

This is demonstrated in the rise in levels of proinflammatory cytokines including TNF at 

the local sites of inflammation and in the peripheral circulation of patients with Crohn’s 

Disease (Borruel et al., 2002; Grip, Janciauskiene, & Lindgren, 2004; MacDermott, 

Sanderson & Reinecker, 1998; Present et al., 1999). Emerging clinical evidence is 

reported about the specific beneficial impacts of probiotics in the development of the 

mucosal barrier and the possible prevention and/or treatment of gastrointestinal 

inflammatory diseases. The anti-inflammatory action of Lactobacillus reuteri has been 

demonstrated in previous studies with findings supporting its ability to inhibit 

experimental colitis in transgenic interleukin-10- deficient mice (Madsen, Doyle, Jewell, 

Tavernini, & Fedorak, 1999). Furthermore, Pena et al. (2004) reported the ability of L.  

reuteri to reduce  the levels of proinflammatory cytokines including TNF-alpha in mice 

with colitis. Probiotics involvement in managing the condition of necrotizing enterocolitis 

has been reported by Bin-Nun et al. (2005), Hoyos (1999), Lin et al. (2008), and 

Ruemmele et al. (2000). In premature infants, for instance, probiotics are thought to 

transiently improve the balance of colonizing bacteria that facilitate the development of 

mucosal immunity to prevent excessive inflammation associated with necrotising 

enterocolitis (NEC) (Nanthakumar, Fusunyan, Sanderson, & Walker, 2000).  Khailova et 

al. (2009) recently provided evidence for the protection against NEC in neonatal rat 
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model through oral administration of Bifidobacterium bifidum and suggested that the 

protection was associated with reduction of ileal inflammation, regulation of mucus layer 

formation, and improvement of intestinal integrity.  

 

Role of Probiotics in Production of Mucins and the Importance of Mucins 

One important structural component that protects the mucosal surface is the 

mucus layer overlying the mucosal membrane.  The mucus layer is a result of the 

interaction of various mucosal secretions including water, mucin glycoproteins, trefoil 

peptides, surfactant phosphates, electrolytes, and antibodies (Macfarlane, 

Woodmansey, & Marfarlane, 2005). Large carbohydrate-rich mucin glycoproteins form 

the predominant constituents of mucus (Aksoy, Thornton, Corfield, & Sheehan, 1999). 

The mucins are synthesized, stored, and secreted from cells on the epithelial surface of 

ducts and lumens and from enterocytes and goblet cells in the underlying mucosa 

(Aksoy, Corfield, & Sheehan, 2000).  Mucins are particularly secreted in the respiratory, 

gastrointestinal, and genital tracts and in other accessory organs such as the pancreatic 

glands and gallbladder (Reid & Harris, 1998).  The mucus layer provides residence and 

source of nutrients to the gut microflora (Derrien, Vaughan, Plugge, & Vos, 2004). It 

however limits the access of these microbes in the lumen from direct interaction with the 

epithelium through simple steric hindrance (Dai, Nanthkumar, Newberg, & Walker, 

2000). These barriers inhibit epithelial cell adherence and, thus, interrupt colonization 

and possible invasion of pathogens. Mucus also provides hydrophobic properties to the 

mucosal surface and therefore prevents the delivery and influx of water soluble bacterial 

product and toxins (Lugea, Salas, Casalot, Gaurner, & Malagelada, 2000; Mack, Ahrne, 
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Hyde, Wei, & Hollingsworth, 2003). Furthermore, the mucus layer lubricates and 

physically protects the mucosa against dehydration and mechanical injuries 

(Lichtenberger, 2000; Matsuo, Ota, Akamatsu, Sugiyama, & Katsuyama, 1997). 

Transmembrane mucins remain anchored to the epithelial cell membranes. They 

perform functions including trophic, signaling, and adhesive roles in various epithelial 

cell processes (Andrianifahanana, Moniaux, & Batra, 2006). Moniaux, Escande, 

Porchet, Aubert, and Batra (2001) previously reported some major roles of mucins in 

growth, improvement of epithelial integrity, suppression of carcinogenesis and 

metastasis, as well as in the promotion of fetal development. There are several reports 

in favor of probiotics involvement in the production of various types of mucins and the 

specific contributions of each mucin to gastrointestinal health. Fyderek et al. (2009) 

reported that mucus constituted an integral part of the mucosal barrier and plays 

important roles in hindering the penetration of the mucosa by luminal bacteria. It also 

prevents the interaction between bacterial products and host cell receptors, thus 

preventing the tendency to trigger inflammatory processes.  This was supported by 

McAuley et al. (2007) earlier report that surface mucins play the role of targets to 

invading pathogens by limiting the interaction of the pathogens with the gut epithelium. 

It also supported the suggestion of Gork et al. (1999) that secretory mucin glycoproteins 

in the gut seemed to reduce the possibility of bacterial attachment. These findings 

further supported a previous study by Pullan et al. (1994) in which they suggested that 

reduction in the mucus layer thickness among adult inflammatory bowel disease (IBD) 

patients caused an increased exposure of microbes to the gut immune system that led 

to sustained inflammation.  Mack et al. (1999) reported the role of a specific 
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Lactobacillus plantarum (strain 299v) to enhance the production and secretion of 

mucins (MUC2 and MUC3) from human intestinal (HT-29) epithelial cells. Follow-up 

studies on the role of secreted mucin-3 (MUC3A and MUC3B) by Mack et al. (2003) 

provided evidence to the effect that MUC3 seemed to inhibit the attachment of 

enteropathogenic Escherichia coli to the epithelium of the gastrointestinal tract. Similar 

effect of probiotic mixtures in increasing muc2 gene expression and muc2 glycoprotein 

secretion in rat colon was reported by Caballero-Franco, Keller, De Simone, and 

Chadee (2007). Therefore, during selection of probiotic strains, it is important to test and 

confirm that the strain does not degrade mucins. This is to avoid possible disruption of 

the protective mucus layer by the strains after ingestion (Fernandez, Boris, & Barbes, 

2005; Zhou et al., 2001). However, the ability of potential probiotic strains to stimulate 

the production of mucin glycoproteins production in the gut epithelium is considered as 

a positive trait. 

 

Probiotics in Improving Gut Microflora and Intestinal Health 

The gastrointestinal tract of a newborn infant is devoid of the resident gut 

microbiota and the colonization of premature infant’s gut with the characteristic 

microflora generally takes longer to establish. As a result of the slow colonization 

process, premature infants at this stage are susceptible to intestinal infections including 

ulceronecrotic colitis (Pinegin, Korzhunov, Ivanova, Volodin, & Goncharova, 1983). A 

rapid establishment of representative intestinal microflora in premature infants was 

demonstrated by Akiyama et al. (1994) through the administration of a Bifidobacterium 

breve strain. 
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Probiotics in Inhibition of Infections 

Although the human gastrointestinal tract is sterile at birth, it is rapidly colonized 

by a dynamic mixture of microbes soon after birth (Tappenden & Deutsch, 2007). The 

colonization of the gut that begins promptly after birth is affected by the mode of 

delivery, early feeding strategies, and the hygiene and related conditions around the 

child (http://chp.sagepub.com/content). Hence the lumen ultimately presents a major 

entry route to many food and water borne infections as a result of the constant exposure 

of the gut epithelium to gastrointestinal content (Hansson, 2012). Despite this enormous 

challenge the gut is hardly overwhelmed by pathogenic infections due to the presence 

of effective microbial barriers (Kim & Khan, 2013). Several approaches by which the 

resident microbiota and probiotics impede pathogenic infection have been proposed. 

Lewus, Kaiser, & Montville (1991) reported the ability of lactic acid bacteria to directly 

inhibit the growth of pathogens through production of bacteriocins.  In vitro studies 

suggested that probiotics potentially act favorably in the host through modification of the 

resident microbial flora to promote effective competition against pathogens for adhesion 

to the intestinal epithelium or compete against pathogens for necessary nutrients and 

growth factors. Others produce antitoxin effects and reverse some of the consequences 

of infection on the epithelium, such as secretory changes and neutrophil migration 

(Michail & Abernathy, 2002, 2003). Probiotics are also thought to inhibit infections 

through reduction of the local gut pH by stimulating the activities of lactic acid producing 

microflora (Langhendries et al., 1995). Lactobacillus derived probiotics for instance may 

influence the reduction of the pH of the microenvironment of the gut to the detriment of 

pathogenic microbes (Fayol-Messaoudi et al., 2005). Lactobacillus rhamnosus GG in 
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particular secretes an antimicrobial substance distinct from lactic acid that has inhibitory 

activity against other bacteria in the pH range of 3 to 5 (Silva, Jacobus, & Gorbach, 

1987). This is demonstrated in the impaired growth of virulent microbes in a pH-

dependent manner in coculture experiment with Lactobacillus species (Fayol-

Messaoudi et al., 2005). Talarico and Dobrogosz (1999) reported that Lactobacillus 

reuteri residing in the gut inhibited a wide spectrum of microorganisms with the 

antibacterial compound reuterin. There are preliminary evidence that probiotic bacteria 

may inhibit the gastric colonization and activity of Helicobacter pylori, which is 

associated with gastritis, peptic ulcers, and gastric cancers (Kopp-Hoolihan, 2001).  

Aiba, Suzuki, Kabir, Takagi, and Koga (1998) and Kabir et al. (1997) reported the ability 

of Lactobacillus salivarius to inhibit Helicobacter pylori colonization in in vitro studies as 

well as in mice. Probiotic secretions have the potential to inhibit growth and attenuate 

virulence of some enteric bacterial pathogens (Sherman, Ossa, & Johnson-Henry, 

2009). 

 

Probiotics in the Prevention of Diarrhea in Infants and Adults 

Diarrheal conditions are caused by pathogenic bacterial and viral overgrowth in 

either the small intestines or colon. Regardless of the mechanisms leading to the 

diarrheal condition, the end result is always accumulation and expulsion of fluids and 

electrolytes (Bezkorovainy, 2001). The most extensively studied gastrointestinal 

condition treatable by the administration of probiotics is acute infantile diarrhea (Isolauri 

et al., 2002a). In patients hospitalized for acute rotavirus diarrhea, Lactobacillus strain 

GG (ATCC 53103) as fermented milk or as freeze-dried powder significantly reduced 
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the duration of the diarrhea compared to a placebo group given pasteurized yogurt 

(Isolauri et al., 1991).   This was supported by Saxelin’s (1997) report that Lactobacillus 

rhamnosus GG mediated the prevention of Escherichia coli enterotoxin traveler’s 

diarrhea. 

 

Probiotics in the Treatment of Antibiotic-associated Diarrhea 

Antibiotics are microbial metabolites that can inhibit the growth of other 

microorganisms. Antibiotic-associated gastrointestinal disorders are well recognized 

and Lactobacillus rhamnosus GG has demonstrated effective prophylactic effect against 

antibiotic-associated diarrhea (Akiyama et al., 1994). Black, Einarsson, Lidbeck, 

Orrhage, and Nord (1991) reported the reduction in incidence and recolonization time of 

ampicillin-associated diarrhea through the delivery of Bifidobacterium longum and 

Lactobacillus acidophilus probiotic mixture. Similar effect for erythromycin-associated 

diarrhea through the administration of yogurt containing Bifidobacterium longum has 

also been reported by Colombel, Cortot, Neut, and Romond (1991). 

 

Probiotics in the Activation of Mucosal Immunity 

The gut associated lymphoid tissue makes the gastrointestinal tract the largest 

lymphoid or immune organ in the human body (Targan & Shanahan, 1994). Animal 

models and human studies have found that probiotic bacteria are able to enhance 

nonspecific and specific immune responses by activating macrophages, increasing 

levels of cytokines, elevating natural killer activity, and increasing levels of 

immunoglobulins (Sanders, 1999). Mallin, Suomalainen, Saaxelin, and Isolauri (1996) 
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reported increase in secretory IgA levels through the ingestion of certain strains of 

Lactobacillus. This report agreed with the findings by Arunachalam, Gill, and Chandra 

(2000) in which a doubled-blind, placebo-controlled study of 12 human subjects were 

found to have increased immunity due to ingestion of Bifidobacterium lactis strains. 

 

Probiotics in Autoimmune Disorders and Allergies 

Information provided by Cabana, McKean, Wong, Chao, and Caughey (2007) 

highlighted the importance of infant exposure to environmental microbes for appropriate 

development of the immune system. This emphasizes the new version of the “hygiene 

hypothesis” that proposes reduced exposure to environmental and/or enteric stimuli, 

including microbes, underlies the rising incidence of childhood atopic and autoimmune 

diseases (http://chp.sagepub.com/content). Preliminary studies are pointing to the 

potential for probiotics to modulate allergic reactions through improvement of the 

mucosal barrier function (Naidu, Bidlack, & Clemens, 1999). The rationale in probiotics 

capacity to alleviate allergy by modulating the intestinal microbiota is supported by 

observations in which allergic children were found to have demonstrated a different 

microbiota composition than healthy infants. Kalliomaki et al. (2001) reported that the 

main changes associated with the allergic trait were less frequent colonization with 

lactobacilli and lower counts of bifidobacteria. 
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Efficacy and Safety of Probiotic Therapy 

Although it has been proposed that inactivated microbes and probiotic cell 

components can significantly act as biological response modifiers on various processes 

in tissues and organs (Adams, 2010; Isolauri et al., 2002b; Zhang, Nan, Ricardo, & Neu, 

2005), probiotics are generally reported to elicit their beneficial effects when the strains 

were ingested alive and in sufficient quantities (FAO/WHO Joint Working Group, 2002). 

The maintenance of probiotic shelf life has always been an issue of concern during 

preparation of probiotic foods and supplements. Moreover, considerable differences 

exist in the bioavailability, biological activities, doses, and microfloral composition 

among probiotic preparations (http://journals.lww.com/jpgn 2006). These disparities 

raise the question of reliability in taking probiotics for their therapeutic effects. In 

addition to concerns regarding the efficacy of probiotics is also the issue of safety 

(Champagne, Roy & Roy, 2005; Philips, Kaliasapathy, & Tran, 2006; Vinderola, 

Prosello, Ghiberto, & Reinheimer, 2000). Snydman (2008) stated three theoretical 

safety concerns in taking probiotics, including the danger of probiotic sepsis, metabolic 

effect on the gastrointestinal tract, and possible horizontal transfer of antibiotic 

resistance to potential pathogenic gastrointestinal dwellers. Regardless of the several 

promising findings on the safety of probiotics from studies involving immune-

compromised patients with HIV (Apostolou et al., 2001) and transplant populations 

(Rayes et al., 2005), the concerns regarding probiotic safety are still not entirely 

addressed.  There are several reports of bacteremia and fungemia with lactobacilli and 

saccharomyces organisms, especially in patients with immunocompromised status or 
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indwelling central venous catheters (Enache-Angoulvant & Hennequin, 2005; Land et 

al., 2005). These concerns raised the necessity for broader investigation into not only 

the beneficial effects of probiotics but also the safety of the products in human health 

(Abe, 2010). 

Motivation and Scope of Current Study 

Several new findings keep trickling in about novel probiotic strains and their role in 

various aspects of human health. So far many different bacterial and fungal strains with 

probiotic activities have been reported. Nonetheless, the identification and selection of 

probiotic strains, their specific effects, mechanism(s) of actions, and efficacious dosage 

are not fully elucidated yet.  Motivated by the diverse potential sources of novel probiotic 

strains and the interesting emerging benefits of several strains, I seek to investigate the 

following questions: 

1. Are bacterial isolates from ‘Amabere amaruranu’ cultured-milk, a traditional 

cultured-milk preparation of the Kisii people of Southwest Kenya, stable to 

digestive tract conditions? 

2. Do the cultured milk isolates show sensitivity to antibiotics? 

3. Do the bacterial isolates show capacity to degrade mucin? 

4. Do the bacterial isolates have the potential to stimulate mucin glycoproteins 

(MUC3 and MUC4) production in human enterocytes? 

Hypothesis 

Because no deleterious effects from the consumption of ‘Amabere amaruranu’ 

cultured-milk (a traditional cultured-milk preparation by the Kisii people of Southwest 

27 

 



Kenya) has been reported, the bacterial isolates in the preparation could be stable to 

digestive tract conditions and could have probiotic benefits. 

 

Objectives 

1. To isolate, identify, and determine the stability of cultured-milk bacterial 

isolates to digestive tract conditions. 

2. To examine the isolates for antimicrobial activity, sensitivity to antibiotics, and 

mucin degradation activity. 

3. To examine the isolates for their effect on human normal colon cells regarding 

the production of mucin glycoproteins (MUC3 and MUC4). 
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CHAPTER 2 

MATERIALS AND METHODS 

Experimental Materials 

‘Amabere amaruranu’ Cultured-milk 

The cultured milk was obtained from a native of Kenya in Johnson City, Tennessee. 

The pH of the milk was measured and isolation of bacteria from it begun immediately 

after it was received. 

 

Acid Buffer 

The pH of 1X Phosphate buffered saline pH7.4 (Gibco Invitrogen, Grand Island, NY 

14072) was adjusted with drops of 1M HCl to pH2.0 with the aid of Ultra Basic –10 

pH/mV meter (Denver Instrument, Thermo Scientific, Cat number 02-2283). 

  

Culture Media for Milk Isolates 

MRS Media: This medium so-named after its inventors; de Man, Rogosa and 

Sharpe; is an enriched medium that was developed in 1960 for the growth of 

Lactobacillus species. MRS agar plates were prepared by suspending 31 g of Thermo 

Scientific Oxoid MRS agar (Cat. number CM0361B) in 500mL of dH2O in a sterile 1000 

Pyrex bottle. The suspension was autoclaved for 20 minutes at 121 ᵒC. The medium 

was then put in 55 ᵒC water bath to cool before pouring it into sterile Petri dishes. The 

dishes were covered immediately to avoid contamination and allowed to solidify at room 

temperature. The plates were then stored at 4 ᵒC for later use. The MRS broth was 
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prepared by suspending 26 g of Thermo Scientific Oxoid MRS broth (Cat. number 

CM0359B) in 500 mL of dH2O in a sterile 1000 mL Pyrex bottle and autoclaving it for 20 

minutes at 121 ᵒC. The broth was cooled and stored at room temperature for later use. 

M17 media: This medium is an enriched medium for isolation and study of bacteria 

from milk in the laboratory. It was developed in 1975 by Terzaghi, and Sardine. The 

M17 broth was prepared by suspending 18.63 g of Thermo Scientific Oxoid M17 broth 

(Cat. number CM0817B) in 500 mL of dH2O in a sterile 1000 mL Pyrex bottle and 

autoclaving it for 20 minutes at 121 ᵒC. It was cooled and stored at room temperature 

for later use. 

 M17 agar plates were made by suspending 18.63 g of Thermo Scientific Oxoid M17 

broth (Cat. number CM0817B) and 7.5 g of Bacto agar in 500 mL of dH2O in a 1000 mL 

Pyrex bottle and autoclaving it for 20 minutes at 121 ᵒC. The medium was then put in 55 

ᵒC water bath to cool before pouring it into sterile Petri dishes. The dishes were covered 

immediately to avoid contamination and allowed to solidify at room temperature. The 

plates were then stored at 4 ᵒC for later use. 

 

Bovine Bile Conditioned Medium 

Three percent bovine bile (Sigma Aldrich Co. 3060 Spruce Street, St. Louis, MO 

63103 USA, Cat. number B-3883) was prepared by dissolving 1.5 g of dried bovine bile 

in 50 mL of 1X Phosphate buffered Saline pH7.4 (Gibco Invitrogen, Grand Island, 

NY14072). The suspension was filter sterilized using PVDF membrane; Millipore Millex 

– GV 0.22µm pore size (Fisher scientific, Cat. number SLGVR04NK). 0.5mL of the 3% 
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bovine bile solution was then added to 4.5 mL of M17 and MRS sterile broth to prepare 

0.3% bovine bile conditioned media. 

 

Mucinized Agarose Medium B 

Point-five percent mucinized agarose medium B was prepared with partially purified 

porcine gastric mucin type III (Sigma Aldrich Co. 3060 Spruce Street, St. Louis, MO 

63103 USA, Cat. number M1778) by dissolving 0.5% (w/v) mucin into 1.5 % (w/v) 

medium B (with composition 7.5 g Trypton, 7.5 g Casitone, 3.0 g Yeast extract, 5.0 g 

Meat extract, 5.0 g NaCl, 3.0 g KH2PO4.H2O, 0.5 g KH2PO4, 0.5 g MgSO4.7H2O, 0.5 g 

Cysteine HCl, 0.02 g Rasarurin, 5 g mucin, 15 g agarose ) with or without 0.3% D-(+)- 

glucose). 

 

 Human Colon CCD 841 CoN Cell Line 

Human colon CCD 841 CoN cell line was obtained from American Typed Culture 

Collections® (Cat. number CRL-1790). Cells were cultured in Dulbecoco’s modified 

Eagle’s medium (DMEM) containing 10% fetal calf serum (FCS) and 5% Penicillin-

streptomycin (Corning cellgro®, Mediatech, Inc, Manassas, VA 20109) until the cells 

reached 70% confluence. The cells were passaged two times and stored in aliquots in 

complete DMEM storage media in liquid nitrogen. 

 

Cultured-milk Bacterial Extracts 

Lactobacillus rhamnosus isolated and identified from ‘Amabere amaruranu’ cultured 

milk was cultured in MRS broth in a 250 mL flask with sterile gauze stopper. The flask 
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was incubated at 37 ᵒC on shaker in aerobic condition until the culture reached 

stationary phase of growth (OD600 nm of 1.0). One milliliter of culture broth was 

transferred into a clean microfuge tube and centrifuged at 8000 rpm for 5 minutes at 4 

ᵒC. The cell pellets were washed with sterile PBS 1X pH7.4 and resuspended in 1mL 

PBS 1X pH7.4. The suspension was then sonicated on ice using a sonicator (Fisher 

Scientific Co., Toronto, ON, Canada) at 40% amplitude for 18 seconds followed by 2 

minutes intervals of rest and repeated 5 times to avoid heating and denaturation of 

proteins. The suspension of sonicated cells was then centrifuged at 125 x g for 5 

minutes and the collected supernatant was filter-sterilized using PVDF membrane; 

Millipore Millex – GV 0.22 µm pore size (Fisher scientific, Cat. number SLGVR04NK) 

and used as the sample for L. rhamnosus cytoplasmic fractions (BCF) for the testing 

effect of bacterial extracts for MUC4 and MUC3 production in normal colon cells. The 

bacterial cell extracts were stored at -20 ᵒC and used in testing with the CCD 841 CoN 

cells at 70% confluence for effect in mucins production.  

 

Experimental Methods 

Preparation of ‘Amabere amaruranu’ Cultured-milk 

Cultured-milk preparations are widely eaten in many communities in Kenya and 

other parts of the world. A sample of cultured-milk from the Kisii region in Southwest 

Kenya (Figure 1), (Nationsonline.org, 2014) is the source of the bacterial isolates in this 

study. The milk sample is called ‘Amabere amaruranu’ (Figure 2). Fresh milk is usually 

pasteurized and poured into clean gourds (Figure 2), containing a stock culture of 

‘Amabere amaruranu’ cultured milk usually once in about 24-48 hours. The source of 
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the original stock culture is not known. It is believed to constitute part of the rich heritage 

of the Kisii people that has been handed down from many generations and it is 

preserved in the community through continuous use by households. Because the milk is 

prepared this way, it of necessity contains bacteria. The composition of the bacteria in 

this preparation has not been reported, but the bacterial isolates could be potentially 

beneficial because no harmful effect from its consumption has ever been reported.  
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Figure 1. Map of Kenya showing Kisii Region in the Southwest of Kenya. 
nationsonline.org. (2014) Political Map of Kenya.  One World - Nations Online (OWNO).  
Accessed May 2014:  www.nationsonline.org/oneworld/map/kenya_map2.htm 
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Figure 2. Sample of ‘Amabere amaruranu’ Cultured-milk and Gourd  

 

Isolation of Bacteria from ‘Amabere amaruranu’ Cultured-milk 

One millimeter of a sample of ‘Amabere amaruranu’ cultured milk preparation was 

first homogenized with 9 mL of 1X sterile phosphate buffer saline (PBS) at pH 7.4. The 

homogenate was serially diluted by 10-fold using 1X sterile PBS at pH 7.4. Then 0.25 

mL aliquots of the final dilution were inoculated on MRS agar at pH 6.2 (Thermo Fisher 

Scientific, Pittsburgh 15275, Cat number CM0361B; De Man, Rogosa, and Sharpe, 

1960) and M17 agar at pH 6.2 (Thermo Fisher Scientific, Pittsburgh 15275, Cat number 

CM0785B; Terzaghi and Sandine, 1975). A set of the plates were incubated in 

anaerobic conditions (using a standard anaerobic jar chamber (Thermo Fisher scientific, 
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cat number B-260671) with the anaerobe container system sachet (Fisher scientific, cat 

number B-260678). A second set of plates was incubated in aerobic condition.  

However, both sets of plates were incubated at 37 ᵒC for 48 h.  Individual colonies on 

the M17, and MRS agar plates were randomly picked from representatives of all 

morphologically distinct colonies for five other successive subcultures on fresh plates to 

purify the colonies (Leisner et al., 1997).  Samples of each pure isolate were stored at -

80ᵒC in a microbankTM bacterial and fungal preservation system (Pro-Lab Diagnostic, 20 

Mural St., Unit 4, Richmond Hill, OH; Fisher Scientific, Cat number 22286-154). Working 

cultures were kept on MRS or M17 agar slants at 4 ᵒC and streaked every 4 weeks on 

agar plates (Herrero, Gonzalez, & Suarez, 1996; Samelis, Maurogenakis, & 

Metaxopoulos, 1994). 

 

Selection of Bacterial Isolates by Colony Morphology 

Colonies of bacterial isolates were selected on agar plates based on distinction in 

colony morphology. Colonies with distinction in morphology including pigmentation, 

elevation, margin features, and size were randomly selected and further streaked for 

purification. The colonies were then gram stained and the slides were examined by 

microscopy using a compound light microscope. 

 

Identification of Cultured-milk Isolates by PCR   

Cultured-milk isolates were identified by amplifying and comparing the 16S rRNA 

gene with that of known bacteria as described by Ralitsa, Sheuerman, Chakraborty, and 

Lampson (2012). The 16S rRNA gene is a preferred target of identification because it 
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possesses both highly conserved and highly variable domains. The conserved regions 

provide the site for amplification of the gene with universal PCR primers, while the 

hypervariable region facilitates the identification of the corresponding micro-organisms 

(Delbes & Montel, 2005). Bacterial isolates that were identified as pure were grown on 

MRS or M17 agar plates for 24 hours, after which, for each isolate, a single isolated 

colony was picked from the plate and suspended in a 1.5 mL Eppendorf tube containing 

1µL of dH2O. The cells were dispersed by forcefully spinning the loop against the 

bottom of the tube to produce a homogeneous suspension. This suspension was used 

as a DNA template to perform polymerase chain reaction (PCR). This reaction is used 

to isolate and amplify the 16S rRNA gene from bacterial cells. The sequence of this 

gene is commonly used to identify unknown bacterial genera. The following PCR 

reagents were mixed with the bacterial samples to undergo DNA amplification: dH2O 22 

µL, 10x PCR Buffer (Go Taq Flexi, Promega) 10 µL, Dimethyl sulfoxide (Corning 

cellgro) 5 µL, 25 mM MgCl2 (Promega) 3 µL, 10 mM Deoxyribonucleotide Triphosphate 

Mix (Promega) 1 µL, 20 µM Forward Primer (63f) 1.25 µL, 20 µM Reverse Primer 

(1387) 1.25 µL, single bacterial colony (DNA) template 1 µL and Taq Polymerase (Go 

Taq Flexi, Promega) 0.5 µL. 

The sequence of the forward primer, 63f, used in this reaction is 5’-CAG GCC 

TAA CAC ATG CAA GTC-3’ and the sequence of the reverse primer, 1387r, used  is 5’-

GGG CGG WGT GTA CAA GGC-3’ where ‘W’ is a code for A or T 

(http://www.basic.northwest.edu/biotools/oligocalc.html). Fifty microliters of this mixture 

of reagents was transferred into a 250 µL microfuge tube for each bacterial isolate and 

placed in a thermocycler in which they were exposed to the following cyclic temperature 
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changes: 95 ᵒC for 3 minutes, 95 ᵒC for 1 minute (repeated for 29 cycles), 55 ᵒC for 1 

minute, 72 ᵒC for 2 minutes (repeated for 29 cycles), 72 ᵒC for 5 minutes, and hold at 4 

ᵒC. The samples were then checked after completion of the thermocycle program on a 

0.75% agarose gel to determine if DNA was successfully amplified by using gel 

electrophoresis. The amplified DNA was then purified using GeneClean Turbo kit. The 

purified samples were sent to the DNA Sequence Service at the University of 

Tennessee to obtain the whole sequence of the 16S rRNA gene using primers 63f and 

1387r. The polygraph of the sequences were then processed using the program 

Chromas that visualizes the quality of a sequence and allow for the selection of only the 

best segment of the sequence to be used for identification. The best sequence was then 

submitted to an online database, Ribosomal Database Project (RDP) 

(http://rdp.cme.msu.edu) that compares it to a number of bacterial DNA sequences. The 

program then identifies the genus of the unknown bacterium based on sequence 

similarity to known 16S rRNA segments and estimates the 20 closest species matches 

and their percentage similarities. The identified isolates were stored at -80 ᵒC. 

 

 Identification of Cultured-milk Isolates by API 50 System 

The milk isolates were further identified to the species level by carbohydrate 

metabolism using the API 50 system (bioMerieux  sa 69280 Marcy l’Etoile - France) 

Colonies on overnight anaerobic culture plates were suspended in 2 mL of distilled 

water to prepare a heavy suspension. Two milliliters of bacterial suspension of isolates 

with turbidity equivalent to number 2 McFarland standard was prepared by adding drops 

of the bacterial suspension to distilled water. An ampule of API 50 medium for 
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Staphylococcus and Lactobacillus was then opened and twice the number of drops that 

prepared the 2 McFarland suspension were transferred into it and mixed by vortexing. 

The reference numbers of the isolates were then recorded on the API 50 strips and the 

tubes filled with the inoculum. The tubes were covered with sterile mineral oil and 

incubated anaerobically for a period as stipulated on the manufacturer’s manual. 

Positive and negative tests were indicated by yellow and blue colorations respectively. 

 

Stability of Bacterial Isolates to Digestive Tract Conditions in vitro 

 

Effect of Acid Buffer on Viability of Milk Bacterial Isolates 

The test in this study was done in vitro in pH2 1M HCl buffer over a period of 3 

hours. This was to determine if the cells will survive in the acidic stomach condition 

because gastric content is reported to measure at pH of about 1.0 to 2.0 (Antione, 

2011), with transit period of about 3 to 4 hours  (Smith & Morton, 2010). Five milliliters of 

a 24-hour MRS or M17 broth cultures were centrifuged at 65 x g for 5 minutes.  Cell 

pellets were washed with sterile 1X PBS at pH7.4 and resuspended in 5 mL of 1X PBS.  

  The suspension of washed cells was divided into aliquots of 1 mL in microfuge 

tubes and centrifuged at 65 x g for 5 minutes. The supernatant was decanted and the 

pellet was resuspended in 1 mL of 1X PBS at pH2.0 and mixed by vortexing for 30 

seconds. The suspension was then incubated at 37 ᵒC in the oxygen condition similar to 

which the isolate was originally isolated.  One microfuge tube containing 1 mL aliquot of 

acidified cell suspension was taken at 5 s, 1 h, 2 h, and 3 h intervals and centrifuged at 

65 x g for 5 minutes. The cell pellet was washed with 1 mL 1X PBS at pH7.4. The 
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acidified cell pellet was then resuspended in 1mL of 1X PBS at pH7.4 and serially 

diluted with 1X PBS at pH7.4 by 6-fold.  Then 250 µL of the final dilution was inoculated 

on agar plates of the medium on which the isolate was grown and incubated at 37 ᵒC for 

24 hours to examine effect of low pH on viable cell count. 

 

Effect of Acid Buffer and/or Bovine Bile on Growth of Milk Isolates  

This test was conducted in vitro with surviving cells after incubation in pH2 buffer 

for 3 hours.  Cells in 1 mL aliquots of a 3-hour preacidified suspension were spun at 65 

x g for 5 minutes and the pellets were then washed once with 1X PBS at pH7.4 and 

then resuspended in 5 mL of fresh MRS or M17 broths that had been conditioned with 

or without 0.3% dried unfractionated bile bovine (Sigma Aldrich Co. St. Louis, MO 

63103 USA, Cat number B-3883). The broth cultures were then incubated in conditions 

that were similar to those under which cells were isolated. Cells in similar volumes of 

untreated culture broths were also washed with 1X PBS at pH7.4 and resuspended in 

fresh broth as control or in 0.3% bile bovine conditioned broth to test the effect of bile 

only on their growth. One milliliter of incubating culture of each test was drawn at 0, 1, 3, 

6, and 9 hour intervals for determining the optical densities of the culture broth at 600 

nm wave lengths with Gene Sys-10uv spectrophotometer (Thermo Electron corporation, 

Madison, WI 53711, USA) (Gilliland & Walker, 1990; Toit et al., 1998). 

 

Mucin Degradation Activity on Agarose Petri Dish 

Mucin provides protection to the epithelium and therefore its degradation is 

undesirable of probiotic bacteria. Failure to degrade mucin is considered a prerequisite 
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for selection of probiotics strains (Zhou et al., 2001). The capacity of the isolates to 

degrade mucin was assayed with partially purified porcine gastric mucin type III (Sigma 

Aldrich Co. 3060 Spruce Street, St. Louis, MO 63103 USA, Sigma Cat. # M1778). The 

medium was prepared by adding 0.5% (w/v) mucin to 1.5 % (w/v) medium B (7.5 g 

Trypton, 7.5 g Casitone, 3.0 g Yeast extract, 5.0 g Meat extract, 5.0 g NaCl, 3.0 g 

KH2PO4.H2O, 0.5 g KH2PO4, 0.5 g MgSO4.7H2O, 0.5 g Cysteine HCl, 0.02 g 

Rasarurin, 0.5% mucin, 1.5% agarose and  with or without  0.3% D-(+)- glucose). Five 

microliters of a 24-hour viable bacterial culture was inoculated on agarose medium in a 

petri dish and incubated at 37 ᵒC anaerobically for 72 hours. The plates were then 

stained with 1% Amido black 10 B (Fair Lawn, New Jersey 07410) in 3.5 M acetic acid 

for 30 minutes. The plates were then decolorized with 1.2 M acetic acid for 1 minute for 

the mucin lysis zone (discolored halo) around the colony of positive test and positive 

control (fecal flora) to appear. Negative control used in this study was Lactobacillus 

casei (ATCC collection, Manassas, VA 20110 USA). The mucin degradation activity 

was defined as the size of the mucinolytic zone around the colony (Zhou et al., 2001). 

 

Antimicrobial Activity of Cultured-milk Isolates 

  The capacity of the strains to inhibit growth of representative intestinal pathogens 

was determined. The culture broths of bacterial isolates at the exponential phase 

(OD600 of 0.5) were pelleted at 10,000 g for 30 minutes at 4 ᵒC. The supernatant fluid 

was filtered using PVDF membrane; Millipore Millex –GV 0.22µm pore size (Fisher 

scientific, Cat number SLGVR04NK) to remove any remaining bacterial cells in it. 

Bacterial test strains including Escherichia coli, Klebsialla pneumonia, Enterococcus 
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faecalis, Pseudomonas aeruginosa, and Enterobacter cloacae (ATCC collection, 

Manassas, VA 20110 USA) were then cultured overnight in Thermo Scientific LB broth ( 

Fisher Scientific, Cat number BP 9722-500) and samples were inoculated on Thermo 

scientific LB agar (Fisher Scientific, Cat R453632)  plates using sterile cotton buds. A 

sterile paper disc with diameter 8 mm was infused with 50 µL of the filter-sterilized spent 

broth of each milk isolate and placed on the surface of agar plates that had been 

inoculated with test strains. A disc infused with 50µl of fresh sterile broth was used as 

control. The plates were then incubated at 37 ᵒC in aerobic condition for 48 hours and 

inspected for zones of inhibition of growth of test strains around the disc. The diameter 

of the halo around the disc was measured in millimeters as the amount of antimicrobial 

activity of the bacterial isolates. 

 

Sensitivity of Cultured Milk isolates to Antibiotics 

The sensitivity of isolates to antibiotics was determined on MRS or M17 agar 

plates using eight different antibiotic discs in a sensi-disc dispenser (BBL, Cockeysville, 

Maryland 21030, USA). Antibiotics assayed included ampicillin (10 µg), bacitracin (10 

IU/IE/UI), chloramphenicol (30 µg), erythromycin (15 µg), kanamycin (30 µg), penicillin 

(10 IU/IE/UI), streptomycin (30 µg), and tetracycline (30 µg). The averages of two 

readings of the zone of inhibition of growth around the disc were measured in 

millimeters as the antibiotic sensitivity of isolates (Delgado, O’Sullivan, Fitzgerald, & 

Mayo, 2007). Bacterial strains that harbor antibiotic resistance plasmids are considered 

unsuitable for use as human or animal probiotics (Morelli & Wright, 1997; Saarela, 

Mogensen, Fonden, Matto, & Mattila-Sandholm, 2000; Salminen et al., 1998).  
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Effect of Bacterial Extracts on Mucin-3 and Mucin-4 Production in CCD 841 CoN Cells 

 

Human Colon CCD 841CoN Cell Culture 

Human colon 841 CoN cell line was purchased from the American Typed Culture 

Collections and grown in DMEM complete medium with 10% FCS and 5% antibiotics 

(100 U/mL penicillin G, 100 mg/mL streptomycin sulfate). The culture was seeded in a 

biological safety II cabinet in sterile T75 flasks and incubated at 37 ᵒC in a humidified 

atmosphere with 5% CO2. Culture media were changed after every 72 h until cells 

reached 70% confluence. The cells were then detached and harvested following 

trypsinization with 3mL of 1X trypsin-EDTA (Gibco, Grand Island, NY) at 37 ᵒC in about 

4 minutes. Fresh complete DMEM medium was added to the detached cells to 

deactivate the effect of trypsin-EDTA. The cell suspension was then transferred into a 

50 mL centrifuge tube and centrifuged at 125 x g for 5 minutes. Cell pellets were rinsed 

with PBS 1X pH7.4 and resuspended in 5 mL DMEM storage medium containing 40% 

FCS and 10% DMSO. Cells were counted with haemocytometer and dispensed into 

aliquots in 1 mL microfuge tubes for storage in liquid nitrogen. 

 

 Treatment of Human Colon CCD 841 CoN Cells with Bacterial Extracts  

Human colon CCD 841 CoN cells were seeded at cell density of 1X105 per well 

T75 flask containing 10 mL of complete DMEM media and allowed for 8 days to grow to 

about 70% confluence.  The media were aspirated and the cells were treated with 

complete DMEM media containing either 10% vehicle (1X PBS pH7.4) or 10% bacterial 

extracts; (bacterial cytoplasmic fractions (BCF), bacterial cytoplasmic fractions and 
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culture spent broth mixture (BCM), bacterial spent broth (BSB); for 24 h at 37 ᵒC in 5% 

CO2.  The cells were trypsin harvested following microcentrifugation at 125x g for 8 

minutes and 4 ᵒC and washed twice with 1X PBS7.4 and used for extraction of proteins.  

 

Human Colon CCD 841 CoN Whole Cell Extract 

To prepare the colon whole cell extract, the treated cells were detached by 

trypsinization and transferred into microfuge tube and washed twice with 1X PBS pH7.4. 

The cells were then suspended in a 50 mL 5% protease inhibitor cocktail lysis buffer 

(Calbiochem, EMD Chemicals, Inc. San Diego, CA 92121, Cat. number 539134) and 

incubated on ice for 3 h to lyse the cells. The protein concentration of the lysed whole 

cell extract determined using BCATM protein assay kit (Pierce, Lot number HG104261). 

The concentration of all the protein extracts were standardized to 2.0 µg/µL and stored 

at -20ᵒC.  

 

Western Blot Analysis 

Aliquots (15 µg) of equal quantities of homogenized protein extracts were 

solubilized in equal volumes of loading buffer (3.55 mL of deionized water, 1.25 mL of 

0.5 M Tris-HCl, pH6.8, 2.5 glycerol, 2 mL 10% (w/v) SDS, 0.2 mL 0.5% (w/v) 

bromophenol blue, for the stock sample and 50 µL of 2- beta mercaptoethanol added to 

950 µL of stock sample to prepare loading buffer each time ready to use it). The 

proteins were then loaded into 4 – 20% Mini-protean® TGCTM gel (Bio-Rad, Cat 

number 456-1096) and separated by sodium dodecyl sulfate -polyacrylamide gel 

electrophoresis in 1X Tris-glycine SDS-PAGE running buffer (30.0 g tris base, 144 g 
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glycine, 10 g sodium dodecyl sulfate, in 1 liter of double distilled water) using Mini 

Protean® Tetra cell electrophoresis tank (Bio-Rad  laboratories, Inc.,  Cat number 165-

8035) and power was supplied from Max Power 100VA (Fisher Scientific, 2555 Keeper 

Boulevard Dubuque, Iowa 52001).  After 1 h of electrophoresis at 200mV, 40mA, the 

protein on the gel was transferred onto immobilon transfer membrane, pore size 0.45 

µm (Millipore Corporation, Billerica, MA 01821, Cat. number IPVH00010) in 1X western 

blot transfer buffer (30.0 g tris base, 144 g glycine  in 1 liter of double distilled water). 

The membrane was removed from the assembly and quenched with 5% non-fat dry milk 

in 1X Tris-buffered saline tween-20 pH7.4 (88 g NaCl, 2 g KCl, 30 g tris base, 5 mL 

tween-20 in 1 liter of double distilled water with pH adjusted to 7.4). The membrane was 

then incubated with primary antibodies against Muc-3 (rabbit anti-muc3, Jackson 

Immunoresearch lab; www.jacksonimmuno.com) and Muc4 (mouse anti-muc4, Jackson 

Immunoresearch laboratory; www.jacksonimmuno.com) at 4 ᵒC on shaker for 6 h. The 

membrane was washed three times for 15 minutes each with 1X TBST (10 mM Tris-Cl, 

pH 7.4, 150 mM NaCl, 0.05% Tween-20) and immunoblotted with corresponding 

secondary antibodies. Donkey antirabbit IgG conjugate was incubate with Muc3 and 

donkey antimouse IgG conjugate was used for Muc4. The membranes were incubated 

on shaker for 1h at room temperature. The membrane were further washed three times 

for 15 minutes each with 1x TBST and prepared for film development.  A 1:1 ratio of 

Supersignal West Femto reagents were pipetted into microfuge tube and mixed by 

hand. The mixture was added to the immobilon transfer membrane on a transparency 

and covered by another transparency and then exposed to a radiogragh 
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(chemiluminescent signals) to develop using Proteinsimple Flour chem M (3040 

Oakmead Village Drive, Santa Clara, CA 95051) (Mattar et al., 2002). 
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CHAPTER 3 

RESULTS 

Identification of Cultured-milk Isolates by PCR 

Fourteen isolates were identified from the PCR sequences of the 16S rRNA 

gene. They included 4 Lactobacillus sp., 4 Bacillus sp., 4 Staphylococcus sp., and 2 

Acetobacter sp (Table 1). 

Table 1 

 Identification of Cultured-milk Isolates by PCR 

Plate 
Identification 
Number 

Suggested name for 
bacterial isolate 

Percentage 
similarity 

Number of unique 
oligos submitted  for 
query 

MRS-4AN Lactobacillus rhamnosus 1a 0.998 1054 
MRS-6AN Lactobacillus rhamnosus 2 0.994 993 
M17-3AN Lactobacillus paracasei  0.994 993 
M17-4AN Lactobacillus rhamnosus 3 0.935 553 
M17-1AE Bacillus pumilus 1 1.0 1135 
M17-2AE Bacillus pumilus 2 1.0 1098 
M17-3AE Bacillus safensis 1 0.998 986 
M17-4AE Bacillus safensis 2 1.0 1201 
M17-1AN Staphylococcus caprae 0.996 956 
M17-2AN Uncultured bacterium b 0.994 1197 
MRS-4AE Staphylococcus 

epidermidis 1 
0.995 1002 

MRS-5AE Staphylococcus 
epidermidis 2 

1.0 1193 

MRS-1AE Acetobacter tropicalis 1  1.0 986 
MRS-2AE Acetobacter tropicalis 2  0.993 993 
Cultured milk isolates identified from PCR sequence match for 16S rRNA gene.   a 
Numbers represent Isolates that differ in colony morphology but were suggested to 
have the same genus or species identity. b The isolate was identified to the genus level 
as Staphylococcus but no name was suggested for it by the system. 
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Identification of Cultured-milk Isolates by API 50 System 

Eight isolates were identified from the API assay. They included 2 Lactobacillus 

rhamnnosus, 2 Lactobacillus paracasei, 1 Staphylococcus aureus, 1Staphylococcus 

sciuri, and 2 Staphylococcus epidermidis (Table 2). 

  

Table 2 

 Identification of Cultured-milk Isolates by API System 

Plate identification 
number 

Suggested name for bacterial 
isolate a 

Percentage similarity 

MRS-4AN Lactobacillus rhamnosus 1b 99.6 

MRS-6AN Lactobacillus rhamnosus 2 99.8 

M17-3AN Lactobacillus paracasei 1 99.3 

M17-4AN Lactobacillus paracasei 2 95.7 

M17-1AN Staphylococcus aureus 100 

M17-2AN Staphylococcus sciuri 99.8 

MRS-4AE Staphylococcus epidermidis 1 99.7 

MRS-5AE Staphylococcus epidermidis 2 99.6 

 a Only Lactobacillus and Staphylococcus isolates were identified by the API assay. 

b Isolates differ in colony morphology but were suggested to have the same species 
identity. 

pH of Cultured-milk Isolates Broth Culture 

When the pH of broth cultures of the bacterial isolates was measured at 12 h and 

24 h after incubation, the pH of the Lactobacillus rhamnosus isolates was in the range 
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of 3.9 to 4.2.  Lactobacillus paracasei isolates maintain a slightly acidic pH around 

pH6.7 to 6.9.  Bacillus spp maintained almost neutral pH condition of about pH7.0 to 

7.1. Staphylococcus aureus maintained slightly acidic pH of ranging 6.7 to 6.8. 

Staphylococcus sciuri maintained its culture pH around 6.8 to 6.9. Staphylococcus 

epidermidis 1 had its pH ranging from 4.9 to 5.9. Staphylococcus epidermidis 2 had its 

pH ranging from 5.7 to 5.9 and the Acetobacter isolates had their pH ranging from 5.6 to 

6.2 (Table 3). 

Table 3 

pH of Broth Culture of Bacterial Isolates 

Bacterial isolates a pH of broth culture after 

12 h incubation 

pH of broth culture after 

24 h incubation 

Lactobacillus rhamnosus 1 4.2 3.9 

Lactobacillus rhamnosus 2 4.2 4.0 

Lactobacillus paracasei 1 6.8 6.9 

Lactobacillus paracasei 2 6.7 6.9 

Bacillus pumilus 1 7.1 b 

Bacillus pumilus 2 7.0 7.1 

Bacillus safensis 1 7.1 7.1 
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Table 3 (continued) 

Bacillus safensis 2 7.0 7.1 

Staphylococcus aureus 6.8 6.7 

Staphylococcus sciuri 6.8 6.9 

Staphylococcus epidermidis 1 5.9 4.9 

Staphylococcus epidermidis 2 5.9 5.7 

Acetobacter sp 1 6.2 5.8 

Acetobacter sp 2 6.2 5.6 

 

a Two milliliters of broth culture was taken for measurement of pH at each time.  

b pH of the isolate was not measured at 24 h because the flask containing the culture 

got broken.  

 

Effect of Acid Buffer on Viability of Bacterial Isolates 

The viability of Lactobacillus, Staphylococcus, and Acetobacter isolates greatly 

diminished when the cultures were exposed to pH2 acid buffer and grown on Petri dish. 

Bacillus isolates were stable when the cells were exposed to pH2 acid buffer. Viability 

was examined by inoculating sample of the treated culture at 1 hour interval on Petri 

dishes. The plates were incubated for 24h and the colonies that form on the plates were 

counted as viable colony forming units (cfu). All colonies that seemed to have 

overlapped in space were counted as one colony (Table 4). 

 

50 

 



Table 4 

Effect of Acid Buffer on Viability of Bacterial Isolates 

Bacterial isolates Viability of cells (x106 cfu/mL) 

0 h 1h 2 h 3 h 

Lactobacillus rhamnosus 1a 478 13 12 0 

Lactobacillus rhamnosus 2 598 16 10 0 

Lactobacillus paracasei 1 786 2 0 0 

Lactobacillus paracasei 2 688 6 0 0 

Bacillus pumilus 1 978 914 918 908 

Bacillus pumilus 2 721 691 701 614 

Bacillus safensis 1 488 394 379 408 

Bacillus safensis 2 892 789 778 698 

Staphylococcus aureus 456 38 0 0 

Staphylococcus sciuri 374 12 0 0 

Staphylococcus epidermidis 1 152 14 8 0 

Staphylococcus epidermidis 2 116 20 11 0 

Acetobacter sp 1 764 0 0 0 

Acetobacter sp 2 144 0 0 0 

 

a Isolates differ in colony morphology but were suggested to have the same species 

identity. 
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Effect of Acid Buffer and/or Bovine Bile on Growth of Lactobacillus Isolates 

The growth of Lactobacillus paracasei isolate 1 that had been exposed to pH2 acid 

buffer for 3h then grown in fresh media declined greatly (Figure 3). The growth of the 

isolate also declined when it was exposed to pH2 acid buffer for 3 h and then grown in 

0.3% bile-conditioned media. However, when the untreated culture of Lactobacillus 

paracasei isolate 1 was grown in 0.3% bile-conditioned media, the growth of the isolate 

gently increased through the 9 h period.  

Similarly, the growth of Lactobacillus paracasei isolate 2 that had been exposed to 

pH2 acid buffer for 3 h and then grown in 0.3% bile-conditioned media declined through 

the 9 h period (Figure 4). The growth of the isolate remained static when the cells were 

exposed to pH2 acid buffer for 3 h and then grown in fresh broth. However, when the 

untreated Lactobacillus paracasei isolate 2 was grown in 0.3% bile-conditioned media, 

the growth of the isolate increased gently through the 9 h period.  

The growth of Lactobacillus rhamnosus isolate 1 and 2 that had been exposed to 

pH2 acid buffer for 3 h and then grown in fresh media remained static (Figure 5 and 6 

respectively). However, the growths of the isolates declined when they were exposed to 

pH2 acid buffer for 3 h and then grown in 0.3% bile-conditioned media. When the 

untreated Lactobacillus rhamnosus isolates 1 and 2 were grown in 0.3% bile-

conditioned media, their growths remained static through the 9 h period. However, the 

growth of untreated control Lactobacillus paracasei and Lactobacillus rhamnosus 

isolates increased rapidly when the isolates were cultured in fresh broth. 
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Figure 3. Effect of Acid Buffer and/or Bovine Bile on Growth of L. paracasei Isolate 1.  

Bacteria were exposed to different treatments (pH2 acid buffer then untreated broth; 

pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile conditioned 

broth; unconditioned broth for control) and grown for 9 h in conditions similar to which 

the isolate had been isolated. 
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Figure 4.  Effect of Acid Buffer and/or Bovine Bile on Growth of Lactobacillus paracasei 

Isolate 2.  Bacteria were exposed to different treatments (pH2 acid buffer then untreated 

broth; pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile 

conditioned broth; unconditioned broth for control) and grown for 9 h in conditions 

similar to which the isolate had been isolated. 
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Figure 5. Effect of Acid buffer and/or Bovine Bile on Growth of Lactobacillus rhamnosus 

Isolate 1.  Bacteria were exposed to different treatments (pH2 acid buffer then untreated 

broth; pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile 

conditioned broth; unconditioned broth for control) and grown for 9 h in conditions 

similar to which the isolate had been isolated. 
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Figure 6. Effect of Acid Buffer and/or Bovine Bile on Growth of Lactobacillus rhamnosus 

Isolate 2.  Bacteria were exposed to different treatments (pH2 acid buffer then untreated 

broth; pH2 acid buffer then 0.3% bile  conditioned broth; 0.3% bile conditioned broth; 

unconditioned broth for control) and grown for 9h in conditions similar to which the 

isolate had been isolated. 

Effect of Acid Buffer and/or Bovine Bile on Growth of Bacillus Isolates 

The growth of Bacillus pumilus isolate 1 that had been exposed to pH2 acid buffer 

for 3 h and then grown in 0.3% bovine bile-conditioned media declined rapidly in the first 

1 h and increased gently through the next 8 h period (Figure 7). When the isolate was 

exposed to pH2 acid buffer for 3h and then grown in fresh broth, its growth increased 

gently through the 9h period.  The growth of untreated Bacillus pumilus isolate 1 
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declined gently in the first 1 h and increased gently through the next 8 h when the 

isolate was grown in 0.3% bovine bile-conditioned media.  

The growth of Bacillus pumilus isolate 2 that had been exposed to pH2 acid buffer 

for 3 h and then grown in 0.3% bovine  bile-conditioned media declined gently in the first 

1 h and then increased gently through the next 8 h period (Figure 8). When the isolate 

was exposed to pH2 acid buffer for 3 h and then grown in fresh broth, its growth 

increased gently through the 9 h period. However, the growth of untreated Bacillus 

pumilus isolate 2 declined gently in the first 1 h and increased gently through the next 8 

h period when the isolate was grown in 0.3% bovine bile-conditioned media.  

The growth of Bacillus safensis isolate 1 that had been exposed to pH2 acid buffer 

for 3 h and then grown in 0.3% bovine bile-conditioned media remained static through 

the 9 h period (Figure 9). When the isolate was exposed to pH2 acid buffer for 3h and 

then grown in fresh broth, its growth increased gently in the first 1 h and declined gently 

through the next 8 h period.  The growth of the untreated Bacillus safensis isolate 1 

remained static when it was grown in 0.3% bovine bile-conditioned media.  

The growth of Bacillus safensis isolate 2 that had been exposed to pH2 acid buffer 

for 3 h and then grown in 0.3% bovine bile-conditioned media decreased gently in the 

first 1 h and then remained static through the next 2 h and begun to increase gently 

through the next  6 h period (Figure 10). When the isolate was exposed to pH2 acid 

buffer for 3 h and then grown in fresh broth, the growth of the isolate increased gently 

through the 9 h period.  The growth of the untreated Bacillus safensis isolate 2 also 
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decreased gently in the first 1 h and begun to increase in the following hours when it 

was grown in 0.3% bovine bile-conditioned media. The growth of untreated control 

Bacillus pumilus and Bacillus safensis isolates increased rapidly when the isolates were 

cultured in fresh media. 

 

Figure 7. Effect of Acid Buffer and/or Bovine Bile on Growth of Bacillus pumilus Isolate 

1.  Bacteria were exposed to different treatments (pH2 acid buffer then untreated broth; 

pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile conditioned 

broth; unconditioned broth for control) and grown for 9h in conditions similar to which 

the isolate had been isolated. 
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Figure 8.  Effect of Acid Buffer and/or Bovine Bile on Growth of Bacillus pumilus Isolate 

2.  Bacteria were exposed to different treatments (pH2 acid buffer then untreated broth; 

pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile conditioned 

broth; unconditioned broth for control) and grown for 9 h in conditions similar to which 

the isolate had been isolated. 
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Figure 9. Effect of Bile acid Buffer and/or Bovine Bile on Growth of Bacillus safensis 

Isolates 1.  Bacteria were exposed to different treatments (pH2 acid buffer then 

untreated broth; pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine 

bile conditioned broth; unconditioned broth for control) and grown for 9 h in conditions 

similar to which the isolate had been isolated. 
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Figure10. Effect of Acid Buffer and/or Bovine Bile on Growth of Bacillus safensis Isolate 

2.  Bacteria were exposed to different treatments (pH2 acid buffer then untreated broth; 

pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile conditioned 

broth; unconditioned broth for control) and grown for 9 h in conditions similar to which 

the isolate had been isolated. 

Effect of Bcid Buffer and/or Bovine Bile on Growth of Staphylococcus Isolates 

The growth of Staphylococcus aureus that had been exposed to pH2 acid buffer for 

3 h and then grown in 0.3% bovine bile-conditioned media remained static over the first 

3 h and decreased gently through the next 6 h period (Figure 11). When the isolate was 
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exposed to pH2 acidic buffer for 3 h and then grown in fresh broth, the growth remained 

static through the 9 h period.  The growth of untreated Staphylococcus aureus 

increased rapidly when the isolate was cultured in 0.3% bovine bile-conditioned media. 

 The growth of Staphylococcus sciuri isolate that had been exposed to pH2 acid 

buffer for 3 h and then cultured in 0.3% bovine bile-conditioned media remained static 

for the first 3 h and begun to decrease gently through the next 6 h period (Figure 12). 

When the Staphylococcus sciuri isolate was exposed to pH2 acid buffer for 3 h and then 

cultured in fresh broth, its growth remained static through the 9 h period whereas the 

growth of its untreated culture increased rapidly when it was grown in 0.3% bovine bile-

conditioned media.  

The growth of Staphylococcus epidermidis isolates 1 and 2  that had been exposed 

to pH2 acid buffer for 3 h then cultured in 0.3% bile-conditioned media increased rapidly 

through the 9 h period (Figure 13 and 14 respectively). When the isolates were exposed 

to pH2 acidic buffer for 3h and then cultured in fresh broth, their growth also increased 

rapidly through the 9-h period and the growth of untreated Staphylococcus epidermidis 

isolate 1 and 2 also increased rapidly when they were grown in 0.3% bile-conditioned 

media. The growths of untreated control Staphylococcus aureus, Staphylococcus sciuri 

and Staphylococcus epidermidis isolates 1 and 2 all increased rapidly when the isolates 

were cultured in fresh media. 
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Figure 11. Effect of Acid Buffer and/or Bovine Bile on Growth of Staphylococcus aureus.  

Bacteria were exposed to different treatments (pH2 acid buffer then untreated broth; 

pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile conditioned 

broth; unconditioned broth for control) and grown for 9 h in conditions similar to which 

the isolate had been isolated. 
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Figure 12. Effect of Acid Buffer and/or Bovine Bile on Growth of Staphylococcus sciuri.  

Bacteria were exposed to different treatments (pH2 acid buffer then untreated broth; 

pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% bovine bile conditioned 

broth; unconditioned broth for control) and grown for 9 h in conditions similar to which 

the isolate had been isolated. 
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Figure 13. Effect of Acid Buffer and/or Bovine bile on Browth of Staphylococcus 

epidermidis Isolate 1.  Bacteria were exposed to different treatments (pH2 acid buffer 

then untreated broth; pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% 

bovine bile conditioned broth; unconditioned broth for control) and grown for 9 h in 

conditions similar to which the isolate had been isolated. 
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Figure 14. Effect of Acid Buffer and/or Bovine Bile on Growth of Staphylococcus 

epidermidis Isolate 2.  Bacteria were exposed to different treatments (pH2 acid buffer 

then untreated broth; pH2 acid buffer then 0.3% bovine bile  conditioned broth; 0.3% 

bovine bile conditioned broth; unconditioned broth for control) and grown for 9 h in 

conditions similar to which the isolate had been isolated. 

Viability of Lactobacillus Isolates After a 9 h Period of Exposure to Acid Buffer and/or 

Bovine Bile 

Lactobacillus isolates were further examined for viability after exposing the cells 

to pH2 acid buffer and/or 0.3% bovine bile over a 9 h period. Cultures of the different 

treatments were heavily inoculated on four quadrants of agar plates using sterile cotton 

swabs and incubated in conditions similar to those under which the isolates had been 

isolated. The identities of the quadrants were: culture exposed to PBS pH7.4 and grown 
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in fresh broth for control; culture exposed to PBS pH7.4 and grown in 0.3% bovine bile 

conditioned broth;  culture exposed to pH2 acid buffer and grown in fresh broth and 

culture exposed to pH2 acid buffer and then grown in 0.3% bovine bile conditioned 

broth. The Lactobacillus paracasei isolates that had been exposed to PBS pH7.4 and 

cultured in 0.3% bovine bile conditioned broth maintained their viability. However, when 

the isolates were exposed to pH2 acid buffer and then cultured in fresh broth or 0.3% 

bovine bile conditioned broth, their viabilities diminished greatly. Similarly the viability of 

Lactobacillus rhamnosus isolates that had been exposed to pH2 acid buffer and 

cultured in 0.3% bovine bile conditioned broth diminished greatly. The viability of 

untreated Lactobacillus rhamnosus isolates that had been cultured in 0.3% bovine bile 

conditioned media also diminished greatly (Figure 15).   
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Figure 15. Viability of Lactobacillus Isolates After a 9 h Period of Exposure to Acid 

Buffer and/or Bovine Bile. PBS is control. 

Viability of Acetobacter Isolates After a 9 h Period of Exposure to Acid Buffer and/or 

Bovine Bile 

Acetobacter isolates were further examined for viability after the exposure of the 

cells to pH2 acidic buffer and/or 0.3% bovine bile over a 9 h period. Cultures of the 

different treatments were heavily inoculated on four quadrants of agar plates using 

sterile cotton swabs and incubated in conditions similar to those under which the 

isolates had been isolated. The identities of the quadrants were: culture exposed to PBS 

pH7.4 and grown in fresh broth for control; culture exposed to PBS pH7.4 and grown in 

0.3% bovine bile conditioned broth; culture exposed to pH2 acid buffer and grown in 

fresh broth and culture exposed to pH2 acid buffer then grown in 0.3% bovine bile 

conditioned broth. The Acetobacter isolates that had been exposed to PBS pH7.4 and 

grown in 0.3% bovine bile conditioned broth maintained their viability. When 

Acetobacter isolates were exposed to pH2 acid buffer and then cultured in fresh broth, 

the viability of cells completely diminished.  When exposed cells were culture in 0.3% 

bovine bile conditioned broth, the viability of the cells also diminished greatly (Figure 

16). 
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Figure 16. Viability of Acetobacter Isolates After a 9 h Period of Exposure to Acid Buffer 

and/or Bovine Bile. PBS is control. 

Viability of Bacillus Isolates After a 9 h Period of Exposure to pH2 Acid Buffer and/or 

Bovine Bile 

Bacillus isolates were further examined for viability after exposing the cells to pH2 

acid buffer and/or 0.3% bovine bile over a 9 h period. Cultures of the different 

treatments were heavily inoculated on four quadrants of agar plates using sterile cotton 

swabs and incubated in conditions similar to those under which the isolates had been 

isolated. The identities of the quadrants were: culture exposed to PBS pH7.4 and grown 

in fresh broth for control; culture exposed to PBS pH7.4 and grown in 0.3% bovine bile 

conditioned broth;  culture exposed to pH2 acid buffer and grown in fresh broth and 
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culture exposed to pH2 acid buffer then grown in 0.3% bovine bile conditioned broth. 

Bacillus pumilus and Bacillus safensis isolates that had been exposed to PBS pH7.4 

and cultured in 0.3% bovine bile conditioned broth maintained their viability. The 

isolates also maintained their viability when the cells were exposed to pH2 acid buffer 

and then cultured in fresh broth or 0.3% bovine bile conditioned broth (Figure 17).   

 

Figure 17. Viability of Bacillus Isolates After a 9 h Period of Exposure to Acid Buffer 

and/or Bovine Bile. PBS is control. 

Viability of Staphylococcus Isolates After a 9 h Period of Exposure to Acid Buffer and/or 

Bovine Bile 

The viability of Staphylococcus isolates were further examined after exposing the 

cells to pH2 acid buffer and/or 0.3% bovine bile over a 9-h period. Cultures of the 
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different treatments were heavily inoculated on four quadrants of agar plates using 

sterile cotton swabs and incubated in conditions similar to those under which the 

isolates had been isolated. The identities of the quadrants were: culture exposed to 

PBS pH7.4 and grown in fresh broth for control; culture exposed to PBS pH7.4 and 

grown in 0.3% bovine bile conditioned broth; culture exposed to pH2 acid buffer and 

grown in fresh broth and culture exposed to pH2 acid buffer then grown in 0.3% bovine 

bile conditioned broth. The Staphylococcus epidermidis isolates had been exposed to 

PBS pH7.4 and grown in 0.3% bovine bile conditioned broth maintained their viability. 

The isolates also maintained their viability when the cells were exposed to pH2 acid 

buffer and then cultured in fresh broth or 0.3% bovine bile conditioned broth (Figure 18).   

The viability of Staphylococcus aureus and Staphylococcus sciuri isolates remained 

stable when their cells were exposed to PBS pH7.4 and cultured in 0.3% bovine bile but 

greatly diminished when the cells were exposed to pH2 acid buffer and then cultured in 

fresh broth or in 0.3% bovine bile conditioned broth (Figure 18). 
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Figure 18. Viability of Staphylococcus Isolates After a 9 h Period of Exposure to Acid 

Buffer and/or Bovine Bile. PBS is control. 

Mucin Degradation Assay on Agarose Petri Dish 

When 5µL of a 24-hour culture of milk isolates were spotted on agarose medium 

B containing 0.5% partially purified mucin from porcine stomach and without glucose, 

only Staphylococcus sciuri isolate degraded the mucin. A clear zone around the colony 

after staining the agarose plate with 1% Amido black 10 B and washing with 2.5 M 

acetic acid for 1 minute was considered positive for mucin degradation activity (Figure 

19). The amount of mucin degraded was measured in terms of the size of the clear 

zone around the colony of positive test in millimeters. The zone of mucin degradation 
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measured was14 mm for Staphylococcus sciuri isolate compared to 13 mm for the fecal 

flora positive control. 

 

Figure 19. Mucin Degradation Activity on Agarose Medium B Petri Dish. Clear zone 

around colonies were considered positive for mucin degradation. 

Antimicrobial Activity of Filter-sterilized Spent-broth 

Lactobacillus rhamnosus isolate 1 inhibited the growth of Escherichia coli, 

Enterococcus faecalis, and Psuedomonas aeruginosa bacterial test strains. The 

Lactobacillus rhamnosus isolate 2 inhibited the growth of Enterococcus faecalis and 
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Pseudomonas aeruginosa. Lactobacillus paracasei isolate 1 did not inhibit the growth of 

any of the indicator strains and the Lactobacillus paracasei isolate 2 inhibited the growth 

of Escherichia coli and Pseudomonas aeruginosa.  Acetobacter isolates presented 

antimicrobial activity against only Enterococcus faecalis. All Bacillus spp isolates did not 

inhibit the growth of any of the bacterial indicator strains. Staphylococcus epidermidis 

isolate 1 inhibited the growth of Enterococcus faecalis and Pseudomonas aeruginosa. 

However, the zone of inhibition produced by the Staphylococcus epidermidis isolate 1 

appeared as a hazy zone around the disc indicating that some of the cells of the 

indicator strains were alive. The Staphylococcus epidermidis isolate 2 did not show sign 

of inhibiting the growth of any of the indicator strains. Staphylococcus sciuri isolate 

inhibited the growth of Escherichia coli and Staphylococcus aureus isolate did not inhibit 

the growth of any of the indicator strains (Table 5). 

Table 5 

Antimicrobial Activity of Filter-sterilized Spent-broth of Isolate 
 
Milk isolates Antimicrobial activity of milk isolates against bacterial test strains 

measured as diameter of zone of inhibition in millimeters a 
E. coli E. cloacae E. faecalis K. pneumonia P. aeruginosa 

Acetobacter 1       0     0      12       0        10c 
Acetobacter 2       0     0      10       0        10 
Staphylococcus aureus       0     0      0       9         0 
Staphylococcus sciuri       11     10      0       9         0 
Staphylococcus epidermidis1       9     0      14       0        18b 
Staphylococcus epidermidis2       0     0      0       0        0 
Bacillus pumillus 1       0     0      0       0        0 
Bacillus pumillus 2       0     0      0       0        0 
Bacillus safensis 1       0     0      0       0        0 
Bacillus safensis 2       0     0      0       0        0 
Lactobacillus rhamnosus 1      12     9      14       9        14 
Lactobacillus rhamnosus 2      10     9      12       9        12 
Lactobacillus paracasei 1      0     0      0       10       10 
Lactobacillus paracasei 2     12     10      10       0        12 
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a Inhibition of bacterial test strains (E. coli, K. pneumonia, E. faecalis, P. aeruginosa, 

and E. cloacae) measured as diameter for zone of inhibition of growth of test strain in 

millimeters around filter paper disc infused with 50µL of filter-sterilized spent broth of 

isolates. Diameter of paper disc was 8mm.b Zone of inhibition around disc appeared 

hazy due to some growth of the indicator strain. c Zone sizes of 9 or 10 mm were not 

considered significant. 

Sensitivity of Cultured-milk Isolates to Antibiotics 

Lactobacillus rhamnosus, Staphylococcus aureus and Bacillus safensis isolates 

showed susceptibility to all the eight antibiotics tested. Lactobactocillus paracasei 

showed sensitivity to only kanamycin, bacitracin and streptomycin. Bacillus pumilus and 

Staphylococcus epidermidis demonstrated resistance to all the eight antibiotics tested. 

Acetobacter sp showed susceptibility to only ampicillin, kanamycin, and streptomycin 

(Table 6). 

Table 6 

Sensitivity of Cultured-milk Isolates to Antibiotics 

Milk isolates Sensitivity of milk isolates to antibiotics measures as zone of 
inhibition of isolates around antibiotic infused disc in 
millimeters a b 
A B C E K P S T 

Acetobacter 1 0 0 0 0 20 0 10c 26 
Acetobacter 2 0 0 0 0 15 0 12 24 
Staphylococcus aureus 25 12 30 25 23 20 10 28 
Staphylococcus sciuri 20 18 21 21 0 25 0 30 
Staphylococcus epidermidis1 0 0 0 0 0 0 0 0 
Staphylococcus epidermidis2 0 0 0 0 0 0 0 0 
Bacillus pumillus 1 0 0 0 0 0 0 0 0 
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 Table 6 (continued) 

Bacillus pumillus 2 0 0 0 0 0 0 0 0 
Bacillus safensis 1 27 9 22 30 18 32 13 25 
Bacillus safensis 2 25 9 20 27 17 30 15 26 
Lactobacillus rhamnosus 1 28 15 27 32 10 28 9 32 
Lactobacillus rhamnosus 2 30 12 28 30 9 30 9 32 
Lactobacillus paracasei 1 25 0 25 15 0 20 0 20 
Lactobacillus paracasei 2 20 0 29 22 0 20 0 26 

 Sensitivity was measured as zone of inhibition of growth of the isolate around antibiotic-

infused disc in millimeters. a Diameter of disc was 8mm. b Antibiotics are represented as: 

A= ampicillin; B = Bacitracin; C = Chloramphenicol; E = Erythromycin; K = Kanamycin; 

P = Penicillin; S = Streptomycin and T = Tetracycline. c Zone sizes of 9 and 10mm are 

considered as resistant. 

Effect of Bacterial Extracts on MUC4 and MUC3 Production in CCD 841 CoN Cells 

MUC4 in human colon CCD 841 CoN cells increased when the cells were treated 

with 10% bacterial cell fractions (BCF) of a Lactobacillus rhamnosus isolated from 

cultured milk compared to the cells that were treated with control 1x PBS pH7.4. MUC4 

was expressed in two bands a 250kD and 100kD subunits. The 250kD MUC4 band was 

similar for both the control and experiment. The 100kD Muc4 band however showed 

about six-fold increased expression in the cells that were exposed to the BCF as 

compared to the cells that were exposed to control PBS. MUC 3 was expressed as a 

single 75kD band and showed increased in level of about two-fold in the CDD 841 CoN 

cells that were exposure to the 10% BCF (Figure 20).  
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Figure 20. Western Blot Analysis of MUC4 and MUC3 Expression Levels in Normal 

Colon Cells. Total proteins (15 µg/lane) from human colon CCD 841 CoN cells treated 

with 10% L. rhamnosus bacterial cytoplasmic fractions (BCF), or 10% Phosphate 

buffered saline control (PBS) were separated by SDS-PAGE and transferred onto 

immobillon transfer membrane. The membranes were immunoblotted with mouse anti-

muc4 and donkey antimouse IgG for Muc4 and rabbit anti-muc3 with donkey antirabbit 

IgG for muc3 and exposed to radiogragh (chemiluminescent signals) to develop using 

proteinsimple flour chem M. 
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CHAPTER 4 

DISCUSSION AND CONCLUSION 

Discussion 

This study was an examination of the bacterial composition of a Kenyan 

traditional ‘Amabere amaruranu’ cultured milk preparation and determined the stability 

of its isolates to digestive tract conditions, antimicrobial activity, sensitivity to antibiotics 

and capacity to degrade mucins. The effect of bacterial cell fractions of a Lactobacillus 

rhamnosus isolate that was isolated from the milk was also examined on human colon 

841 CoN cells model for the production of MUC4 and MUC3 proteins. The goal of this 

study was to determine the bacterial communities in the cultured milk and their probiotic 

potentials. Although a wide variety of bacterial species and genera could have probiotic 

effects, almost only lactobacilli belonging to Lactic acid bacterial (LAB) and 

Bifidobacterial groups are mostly found in commercial use (Reid et al, 2008; Shah, 

2007). Other bacterial communities in milk could also possibly have probiotic potentials. 

Bacteria in dairy products and gut microbiota are common sources of screening for 

probiotic strains. Because the bacterial composition of ‘Amabere amaruranu’ cultured 

milk preparation has not been reported, it was a suitable source of screening for 

potential novel probiotics strains.  

Fourteen bacteria isolates with distinct colony and cell morphology were isolated 

from the cultured milk sample. The isolates were identified by comparing the sequences 

of the 16S rRNA gene of isolates to that of known bacteria species.  The isolates 
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included 4 Lactobacillus isolates, 2 Acetobacter spp, 4 Bacillus isolates, and 4 

Staphylococcus isolates. The program used for comparing the gene sequences of 

bacterial isolates for the identification could reliably identify the organisms to only the 

genus level. In view of that, some of the isolates were further identified using a 

biochemical method through API 50 system that compared the biochemical 

characteristics of the isolates in various chemical indicators to that of known bacterial 

strains. The bacterial isolates identified by this method included 2 Lactobacillus 

rhamnosus isolates, 2 Lactobacillus paracasei isolates, 2 Staphylococcus epidermidis 

isolates, 1 Staphylococcus aureus isolate, and 1 Staphylococcus sciuri isolate. The 

Bacillus and Acetobacter isolates were not identified by the API assay due to lack of kits 

specific for identifying the two genera.  

Lactobacillus rhamnosus and Lactobacillus paracasei isolates were among the 

dominant colonies in the milk sample, and that agreed with the reports by Abriouel, 

Martin-Platero, Maqueda, Valdivia, and Martinez-Bueno (2008), Aponte, Fusco, Andolfi, 

and Coppola (2008), and Randazzo et al. (2009) that they are among the common 

bacterial strains in cheese and raw milk from cow, goat, and sheep. Other dominant 

colonies that were found in the cultured milk sample were Acetobacter sp, Bacillus 

pumilus, Bacillus safensis, and Staphylococcus epidermidis isolates. The Bacillus 

isolates were found growing on only M17 agar plates that were incubated under aerobic 

conditions. The Staphylococcus epidermidis isolates were found on only MRS agar 

plates that were incubated under aerobic conditions. Bacillus pumilus has been reported 

by Delbes et al. (2007) as a common component of cow milk and cheese and 

79 

 



Stapylococcus epidermidis was reported by Callon et al. (2007) in goat’s milk.  

Staphylococcus aureus and Staphylococcus sciuri isolates formed very few colonies on 

the plates. Aponte et al. (2008) reported the isolation of Staphylococcus aureus in cow 

milk cheese. Bacillus safensis,  Acetobacter sp, and Staphylococcus sciuri isolates were 

the bacterial populations that have not been reported in other milk or milk products but 

were found in the ‘Amabere amaruranu’ cultured milk sample. The Staphylococcus 

aureus and Staphylococcus sciuri that were found to have developed very few colonies 

could possibly be contaminant species. 

It was observed that the viability of Lactobacillus paracasei and Lactobacillus 

rhamnosus isolates that were exposed to acidic buffer at pH2 greatly diminished after 

the first 1 h of exposure. However, unexposed cells of the same isolates were viable 

and very stable in 0.3% bovine bile conditioned media.  Meanwhile, the pH of 

unconditioned broth cultures of the Lactobacillus rhamnosus isolates taken at 12 and 24 

hours after incubation was observed to be in the range of 3.9 to 4.2. This observation 

suggested that Lactobacillus rhamnosus isolates could possibly withstand low pH 

conditions in spite of the diminished viability and static growth pattern we observed for 

the cells that had been exposed to pH2 conditions.  Saarela et al. (2009) reported that 

the viability of cells is growth phase dependent and that stationary phase cultures 

seemed to be more tolerant to stress than cells at log phase. It is therefore possible that 

the viability and growth of the Lactobacillus rhamnosus isolates could present a different 

pattern depending on the growth phase at which the cultures were taken for the study. 

Moreover, pH2 is an extreme pH condition of the human stomach that is usually 
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attained during fasting and starvation (Antione, 2011). Therefore, it is possible that the 

Lactobacillus rhamnosus isolates could survive the low pH conditions of the stomach 

with appreciable rise in its pH during meals.  It has also been mentioned that the 

resistance of bacteria to bile salts varies among the lactic acid bacteria species and 

strains (Xanthopoulos, 1997) and because the cultured milk isolates were not identified 

to the strain level, we could not generalize that the growth responses to bile we 

observed were representation of all Lactobacillus species.  

Filter-sterilized spent broth of Lactobacillus rhamnosus and Lactobacillus 

paracasei isolates were observed to have presented antimicrobial activity.  They 

inhibited the growth of Enterobacter faecalis, Escherichia coli, and Pseudomonas 

aeruginosa indicator strains slightly. This is a positive trait for probiotic selection. 

Because sterilized spent broths of the isolates were used for the test and not live 

cultures, it is reasonable to suggest that the inhibitory effect could be one of the 

suggestions that were proposed by Lewus et al. (1991) that resident microbiota and 

probiotics may impede infection by directly antagonizing the growth of pathogens 

through production of antimicrobial and antibacterial compounds such as bacteriocins.  

Moreover, the antimicrobial activity of the isolates in this study, particular that of the 

Lactobacillus rhamnosus isolates, could have been due to their inherent ability to lower 

the pH of the spent broth to pH around 3.9 and 4.2 as we observed in this study. This 

suggestion also agreed with the findings of Langhendries et al. (1995) that probiotics 

may inhibit infections through reduction of the gut local pH by production of lactic acid. 
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Testing and selecting bacterial strains that do not degrade mucins for probiotic 

preparation is a check to avoid the use of bacterial strains that have the capacity to 

degrade the protective mucus layer of the digestive tract (Zhou et al., 2001). 

Lactobacillus paracasei and Lactobacillus rhamnosus isolates did not degrade mucin 

and that made them suitable for probiotic preparation. We also observed that 

Lactobacillus rhamnosus isolate were sensitive to all the eight antibiotics tested and the 

Lactobacillus paracasei isolates were resistant to kanamycin, bacitracin, and 

streptomycin. It is so appropriate that the Lactobacillus isolates in the cultured milk 

demonstrated sensitivity to antibiotics. This is because the sensitivity of potential 

probiotic strains to antibiotics has always been considered a positive trait. The use of 

bacterial strains that show sensitivity to antibiotics for probiotics eliminates the 

possibility of horizontal transfer of antibiotic resistance traits to potential pathogenic 

intestinal dwellers (Collins et al., 1998).  

 The Staphylococcus aureus and Staphylococcus sciuri isolate that were 

exposed to acidic buffer at pH2 greatly diminished in viability after the first 1 h of 

exposure. However, unexposed cells of the same isolates were viable and showed 

stable growth in 0.3% bovine bile conditioned media.  The pH of culture broths of the 

isolates at 12 h and 24 h after incubation was around 6.7 to 6.9. The Staphylococcus 

aureus isolate did not show antibacterial activity and demonstrates sensitivity to all the 

antibiotics tested and also did not degrade mucin.  The Staphylococcus sciuri isolate 

however degraded mucin and demonstrated resistance against bacitracin and 

streptomycin. It also did not inhibit the growth of any of the indicator strains. Both 
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exposed and unexposed Staphylococcus epidermidis isolates to pH2 acidic buffer 

exhibited stability in fresh broth and in 0.3% bovine bile conditioned media. The pH of 

culture broths of the isolates at 12 h and 24 h after incubation was around 4.9 to 5.9. 

They showed resistance to all the 8 antibiotics tested and did not degrade mucin. One 

of the Staphylococcus epidermidis isolates inhibited the growth of Enterococcus faecalis 

and Pseudomonas aeruginosa, although the halo around the disc appeared hazy 

indicating that some growth of the indicator strains was still possible. The bacteriostatic 

effect observed could have been due to the ability of the isolate to lower its pH to 4.9.  

Although the Staphylococcus isolates were stable to digestive tract conditions and 

demonstrated some amount of antimicrobial activity against some of the indicator 

strains, the strains could not recommended for probiotic preparation due various 

reasons. For instance, the Staphylococcus sciuri isolate would be suitable for probiotic 

preparations because of its mucinolytic ability and Staphylococcus epidermidis may not 

also be recommended because its antibiotic resistance. The Acetobacter isolates that 

had not been exposed to pH2 acidic buffer showed stability in 0.3% bovine bile 

conditioned media but the growth of the exposed cells in fresh media declined greatly 

and their viability also completely diminished. Acetobacter isolates were nonmucinolytic; 

showed sensitivity to ampicillin, kanamycin, and streptomycin. One Acetobacter isolate 

inhibited the growth of Enterococcus faecalis slightly. Both exposed and unexposed 

Bacillus isolates demonstrated high viability and stability in fresh broth or in 0.3% bovine 

bile conditioned media. This observation agreed with Sanders et al.’s (2003) report that 

Bacillus sp are stable  to stressful conditions due to an inherent ability for them to 

produce metabolically inactive spores that are resistant to heat, drying, freezing, toxic 
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chemicals, and radiations.  The bacilli did not degrade mucin and did not present 

antimicrobial activity against any of the bacterial indicator strains. However, Bacillus 

pumilus demonstrated resistance against all the eight antibiotics tested but Bacillus 

safensis was susceptible to all of them. Although the bacilli were very stable to digestive 

tract conditions and maintained mucins, they may not be suitable probiotics because 

they lacked antimicrobial activity and showed resistance against antibiotics. 

  The effect of cell fractions of one of the Lactobacillus isolates was examined in 

human colon CCD 841 CoN cells for production of MUC4 and MUC3. This was done by 

western blot analysis using whole cell extracts and antibodies specific for MUC4 and 

MUC3. The treatment of CCD 841 CoN cells with10% cytoplasmic fractions of 

Lactobacillus rhamnosus isolate brought about two-fold increase in the MUC3 protein 

production in the cell models. MUC3 protein was expressed in low amount in the normal 

colon cells model and as a single protein band with molecular weight of about 75kD. 

The low amount of MUC3 protein expression as observed in the study agreed with 

reports by Ho et al. (1993) and Van Klinken et al. (1995) that MUC3 is not highly 

expressed in the colon. MUC4 protein was observed in normal colon cells model as two 

protein bands with molecular weights of 250kD and 100kD bands. This observation is 

similar to the findings of Choudhury et al. (2000) that mature forms of human MUC4 

protein may exist at the cell surface as two associated protein subunits, a large 

extracellular mucin type subunit (MUC4alpha) and a smaller, membrane-associated 

growth factor-like subunit (MUC4beta). The treatment of CCD 841 CoN cells with 10% 

cytoplasmic fraction of Lactobacillus rhamnosus resulted in an increase in the smaller 
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MUC4 protein band that has molecular weight of 100kD. It is interesting that 

cytoplasmic fraction of the Lactobacillus rhamnosus isolate could stimulate the increase 

in MUC4 protein levels in the normal colon cells. This observation agreed with Adams 

(2010) that probiotic cell components can act as biological response modifiers. In this 

regard, it might be suggestive that the administration of probiotic cytoplasmic fractions 

in place of live cells in probiotic preparations may offer a safe alternative application of 

the product and hopefully will resolve the concern for the possibility of probiotic sepsis 

that was raised by Syndman (2008). The ability of cytoplasmic fractions of Lactobacillus 

rhamnosus to up-regulate the expression of MUC4 protein in normal colon cell model 

could be an essential  therapeutic contribution of probiotic cell components to the 

reduction of colorectal cancers. This hypothesis is informed by the findings made by 

Moniaux et al. (2007) that MUC4 protein is implicated in the induction of ultrastructural 

changes in the transformation of normal epithelium. It is also in line with the report of 

Komatsu, Yee, and Carraway (2002) that MUC4 is implicated in reducing accessibility of 

tumor cell surface antigens to cytotoxic immune cells, thus aiding in the evasion of the 

host immune response. The characteristics of the bacterial isolates are summarized in 

Table 7. 
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Table 7 

 Summary of bacterial isolates characteristics  

Bacterial 
Isolates 

Characteristics of bacterial isolates 
Stability to 
acidic buffer 

Stability 
to bile 

Sensitivity to 
antibiotics 

Antimicrobial 
activity 

Non- 
mucinolytic 

Ability to 
stimulate 
mucins 
production 

L. rhamnosus 1 - + ++++++++ +++ + + 
L. rhamnosus 2 - + ++++++++ ++ + *a 
L. paracasei 1 - + +++++ - + * 
L. paracasei 2 - + +++++ ++ + * 
B. pumilus 1 + + - - + * 
B. pumilus 2 + + - - + * 
B. safensis 1 + + ++++++++ - + * 
B. Safensis 2 + + ++++++++ - + * 
S. aureus - + ++++++++ - + * 
S.sciuri - + ++++++ + - * 
S. epidermidis 1 - + - ++ + * 
S. epidermidis 2 - + - - + * 
Acetobacter sp 1 - + +++ + + * 
Acetobacter sp 2 - + +++ - + * 

a The isolates were not examined for ability to stimulate mucins production in 

normal colon cells. Lactobacillus rhamnosus isolates have the most positive 

characteristics. 

Conclusion 

The results obtained in this study identified the bacterial composition in the stock 

culture of ‘Amabere amaruranu’ cultured milk. The isolates included Lactobacillus 

rhamnosus, Lactobacillus paracasei, Bacillus pumilus, Bacillus safensis, Acetobacter 

sp, Staphylococcus aureus, Staphylococcus sciuri, and Staphylococcus epidermidis. 

Lactobacillus rhamnosus isolates did not degrade mucin and showed antimicrobial 
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effect against indicator strains. They were susceptible to eight antibiotics that are 

commonly used in human clinical therapy. They were stable to bile but unstable to 

acidic buffer at pH2. They showed some positive traits for consideration for probiotic 

food production. Lactobacillus paracasei isolates were resistant to five antibiotics and 

unstable to digestive tract conditions. Treatment of human CCD 841 CoN cells with 

filter-sterilized Lactobacillus rhamnosus cell fractions demonstrated an increase in 

MUC4 level by six-fold and MUC3 level by two-fold.  Bacillus isolates demonstrated 

stability to digestive tract conditions but demonstrate antibacterial activity. Bacillus 

pumilus isolates were found to be resistant to all of the antibiotics tested. Acetobacter 

and Staphylococcus isolates were unstable to invitro tests for stability to digestive tract 

conditions. Staphylococcus sciuri was the only isolate that degraded mucin. Therefore, 

Staphylococcus aureus, Staphylococcus sciuri, and Acetobacter isolates cannot be 

considered suitable for probiotic. We concluded that Lactobacillus rhamnosus isolates 

that did not degrade mucin and showed stability in acid and bile conditions, 

demonstrated antimicrobial activity against indicator strains, were sensitive to 

antibiotics, and showed capacity to stimulate increase in MUC4 and MUC3 levels in 

human CCD 841 CoN cell model could be potential probiotic candidates. 

Future Research 

It is our hope to examine the antimicrobial activity of the Lactobacillus isolates in 

details in order to determine the mechanism(s) by which they inhibited the growth of the 

indicator strains. We are interested in studying the optimum concentration of the 
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Lactobacillus rhamnosus extracts that gives the highest MUC4 and MUC3 levels in 

normal colon cells. 
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