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ABSTRACT 

Non-anguimorph Lizards of the Late Oligocene and Early Miocene of Florida and  

Implications for the Reorganization of the North American Herpetofauna 

by 

Kevin R. Chovanec 

 

Paleokarst deposits from the Oligo-Miocene of northern Florida preserve undescribed 

herpetofaunal remains that fill important temporal and geographic gaps in our 

understanding of Cenozoic lizard evolution. Here I describe and discuss the non-

anguimorph lizard diversity of the Brooksville 2 (Ar2) and Miller (He1) local faunas to 

test for patterns of regional and latitudinal provincialism in the contemporary North 

American record. Collectively, the sites are significant for documenting 1) extralimital 

occurrences of the tropical clades Anolis and Corytophaninae, 2) a substantial temporal 

range extension of the modern southeastern endemic Rhineuridae, 3) the earliest record 

of eublepharid gekkotans from North America, and 4) the early Miocene arrival of 

“cnemidophorine” teiids from South America. This work complements recent studies of 

older, Eocene lizards by others and lends paleontological support to aspects of the 

tropical conservatism hypothesis: lineages now confined to the tropics were present at 

higher latitudes when megathermal climates were more extensive. 
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CHAPTER 1 

INTRODUCTION 

It has long been hypothesized that the late Oligocene and early Miocene represent 

an important time for the modernization of the North American lizard fauna (Tihen 1964; 

Estes 1970), but geographic, temporal, collection, and taxonomic biases have so far 

precluded a thorough characterization of this transition. The snake fauna changed 

demonstrably at this time, and the gradual (and near-total) supersession of henophidians 

by an invading caenophidian radiation beginning in the Arikareean Land Mammal Age 

(LMA) and ending in the Hemphillian LMA is well documented (Parmley and Holman 

1995; Williams 2009). Tihen (1964) suggested the replacement of “archaic” lizards 

known from the early Tertiary (e.g., anguids, xenosaurids, and varanids) by modern 

groups (e.g., teiids, scincids, and iguanids) was relatively abrupt and argued such a 

change would be better explained by the geographic redistribution of existing lineages in 

response to climatic changes than by the sudden proliferation of novel clades. Estes 

(1970; 1976; 1983b) advocated a similar idea; taxa that vanished from the record in the 

latter half of the Cenozoic either went extinct or else sought asylum at lower latitudes 

after climate cooled in the Oligocene. Importantly, both authors conceded the inadequacy 

of the record from tropical Central America and the southern and southeastern United 

States for elaborating their models any further.  

 In his study of early Eocene lizards from Wyoming, Gauthier (1982) contrasted 

the dominance of (presumably) mesic anguimorphs in the Paleogene with the increased 

abundance and diversity of xeric iguanids in the Neogene. His observation, however, 
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pertained to the western portion of the continent where the fossil record is more complete 

and where living lineages are necessarily adapted to drier environments. While lizard 

communities in arid and semiarid regions of the western United States today are certainly 

dominated by iguanid species (Pianka 1967), they belong to a few subclades 

(phrynosomatines, iguanines, and crotaphytines) that represent only a fraction of the 

taxonomic and ecological diversity of the family as a whole (Smith 2006). Gauthier 

(1982) did not systematically describe the iguanid remains from his sample but estimated 

that they accounted for roughly one-fifth of the total number of lizard species recovered. 

Although ultimately their relationships to modern, extant taxa remained obscure, 

Gauthier’s study was significant for highlighting the presence of iguanians at all at a time 

when published Paleogene accounts of them remained scarce.  

 Only recently has a better understanding of North American Paleogene iguanids 

begun to emerge. A number of studies by Smith from the early Eocene of Wyoming 

(2009a; 2011a) and the late Eocene of North Dakota (2006; 2011b) showed that not only 

were iguanids more abundant and diverse by that time than was previously appreciated, 

but that they were represented by lineages that are associated almost exclusively with the 

New World tropics today. More recently, Smith and Gauthier (2013) revisited the 

undescribed portion of Gauthier’s (1982) original study and confirmed a similar pattern: 

relatives of mid-latitude Eocene iguanids persist in the modern biota and have merely 

been displaced toward the equator.  

Many of Smith’s (2006; 2009a; 2011a; 2011b) lizards came from well-known 

fossil localities that had, in some cases, been explored for more than a century. He was 

able to demonstrate the value of a rich fraction of the record that had been overlooked, 
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but the taxonomic resolution afforded by his sample would not have been possible 

without 1) screenwashing, 2) the careful study of disarticulated modern skeletons, and 3) 

the association of isolated elements that traditionally have rarely been considered in fossil 

analyses. Although screenwashing has become increasingly common since Hibbard 

(1949) originally outlined its utility and execution, microvertebrate fossil recovery is 

subject to biases introduced by pickers and sorters whose taxonomic interests (and 

anatomical expertise) typically lie among the mammalian branches of the vertebrate tree 

(Hutchison 1992; Bell and Mead 2014). Isolated cranial elements of lizards are 

demonstrably phylogenetically informative (Smith 2009b; Bhullar 2011), but the fossil 

remains of many such bones can easily go unrecognized (Bell and Mead 2014). Smith’s 

efforts addressed these problems and helped to clarify our understanding of saurian 

evolution and biogeography in the Eocene.  

Unfortunately, the subsequent Oligocene epoch remains somewhat of a black hole 

for lizard data; very little is known from North America at this time (Smith 2006). 

Sullivan and Holman (1996) summarized the scattered literature on Orellan-aged lizards 

(all from the Great Plains and Rocky Mountains regions), but otherwise published 

accounts of Oligocene taxa come primarily in the form of cursory descriptions of 

fragmentary specimens as part of broader faunal surveys (e.g., Setoguchi 1978) or are 

only mentioned in preliminary taxonomic lists (Patton 1969; Hayes 2000). Global climate 

cooled significantly at the beginning of the Oligocene before warming again towards the 

end (Zachos et al. 2001), and contemporary herpetofaunas from Europe show a marked 

decrease in diversity across the Eocene/Oligocene boundary that never fully recovered 

(Rage 2012). Synthetic attempts to test for analogous patterns for North American 
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reptiles (Hutchison 1982; Hutchison 1992; Sullivan and Holman 1996; Smith 2006) 

suffer from a lack of data, but preliminary evidence suggests the consequences were not 

so catastrophic or immediate on this continent.  

Still, by the late Neogene a familiar cast of characters had already appeared. What 

defines a “typical Neogene suite of lizard fossils” (Norell 1989: 27) in the Plio-

Pleistocene varies with geography, but fossil assemblages tend to be exclusive to 

subfamilies and genera still living in the immediate vicinity of their respective deposits 

today. While most species-level designations have probably suffered from some degree 

of overinterpretation (Norell 1989; Bell et al. 2010), known regional fossil herpetofaunas 

are almost uniformly modern in composition at broader taxonomic levels (Norell 1989). 

Extinct groups and biogeographic anomalies from the Paleogene are gone, and some of 

the most ubiquitous and common elements of Pliocene-Recent lizard communities (e.g., 

Plestiodon and Aspidoscelis) are intercontinental immigrants (Macey et al. 2006) 

unknown from early Cenozoic sediments and whose arrival remains poorly constrained 

by the fossil record. Even if lizards in North America were not as severely impacted by 

the initial Eocene/Oligocene transition as they were in Europe, a drastic transformation 

took place sometime in the intervening Oligo-Miocene that is incompletely understood.  

Early Neogene (here including also the beginning of the Arikareean) fossil lizards 

are not uncommon, but the record remains, as observed by Estes and Tihen (1964:465), 

“perhaps more tantalizing than informative.” Published lacertofaunas describing multiple 

taxa are known primarily from Nebraska (Estes and Tihen 1964; Robinson and Van 

Devender 1973; Yatkola 1976; Holman 1981; Wellstead 1982), with only the Thomas 

Farm locality (Estes 1963) from Florida as a notable regional outlier. Much of what has 
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been described is based on fragmentary material, so a number of species with uncertain 

relationships have received informal morphotypic designations in lieu of formal 

taxonomic assignments (Estes 1963; Estes and Tihen 1964; Yatkola 1976). In other cases 

identifications may have been taken too far; purported continental occurrences of the 

West Indian genus Leiocephalus in the Miocene (Estes 1963; Estes and Tihen 1964; 

Wellstead 1982), for example, are probably unreliable (Norell 1989; Pregill 1992). In 

spite of geographic and taxonomic sampling issues, however, an emerging picture 

suggests Arikareean through Barstovian LMA lizard communities were still in many 

ways unlike those observed today.  

Paleokarst deposits from the medial Arikareean (the Brooksville 2 LF) and early 

Hemingfordian (the Miller LF) of northern Florida preserve undescribed herpetofaunal 

remains that collectively span the Oligocene/Miocene transition. This thesis characterizes 

the taxonomic diversity of non-anguimorph lizards from both sites in an effort to gain a 

better understanding of lacertofaunal succession and evolution from a poorly understood 

time and from a poorly sampled part of the continent.  

By outlining exactly which lacertilian groups inhabited Florida in the late 

Oligocene and early Miocene, I seek to address two main problems. Broadly, I revisit the 

concept of “modernization” originally explored by Tihen (1964) and Estes (1970) as it 

pertains to North American lizards. Their ideas remain inadequately tested by the fossil 

record, and this new material fills specific temporal and geographic gaps acknowledged 

by both. Anguimorphs will be covered elsewhere, but lineages identified here have 

important implications for their early observations as well as those discussed later by 

Smith (2006; 2009a; 2011b).  
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An ancillary motivation for this study is to test for patterns of regional and 

latitudinal provincialism already demonstrated for other contemporaneous vertebrate 

clades. Albright (1998) argued that the Gulf Coast was biogeographically distinct (at least 

for mammals) from more northern latitudes during the Arikareean and Hemingfordian 

and that these differences were the result of more “tropical” habitats. More recently 

Rincón et al. (2012) provided evidence suggesting this provincialism extended south to 

Panama. As temperature-sensitive ectotherms, it would be surprising if squamates did not 

exhibit a similar trend. The addition of new lizards from Florida invites comparison, 

however tentative, with those already known from the Great Plains.  

Among squamates only snakes and anguimorph lizards are not treated here. 

Whether one favors the classic iguanian/scleroglossan dichotomy of morphological 

analyses (Estes et al. 1988; Gauthier et al. 2012) or the novel rearrangement suggested by 

nuclear genes (Vidal and Hedges 2004; Townsend et al. 2004; Wiens et al. 2010; Pyron 

et al. 2013), the exclusion of those 2 clades is more a reflection of historical 

considerations than of biological reality. “Non-anguimorph lizards” is a decidedly 

paraphyletic group under either scheme but one that bears strongly on the notion of 

modernization given their past underrepresentation in older sediments.  

The taxonomy employed here draws primarily from that of Estes et al. (1988). As 

in Smith (2006; 2009a; 2011a; 2011b) and Smith and Gauthier (2013), however, iguanian 

relationships follow Schulte et al. (2003). Pleurodont iguanians have historically been 

treated as a singular Iguanidae, but Frost and Etheridge (1989) failed to recover them as a 

monophyletic group and subsequently divided them into 8 families. Schulte et al. (2003) 

later provided strong evidence for pleurodont monophyly and resurrected the traditional 
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hierarchy with a few modifications. Their classification recognizes 8 subfamilies: 

Corytophaninae, Crotaphytinae, Hoplocercinae, Iguaninae, Oplurinae, Phrynosomatinae, 

Polychrotinae*, and Tropidurinae*. In their analysis the latter 2 are metataxa designated 

with an asterisk (*) to denote their questionable monophyly. I have made an effort to 

discuss such caveats wherever alternative relationships proposed in the literature are 

relevant to my results.   

The relationships of fossil taxa described here are inferred on the basis of 

disarticulated material recovered from screenwashing. Some are represented by a single 

element (often tooth-bearing), but wherever possible I have assembled a composite of as 

many elements as possible. To do so, I follow the association criteria (size, relative 

abundance, complementary articulations, and apomorphies) established by Smith 

(2009a); the reader is directed there for a more articulate consideration of the merits of 

each. Some associations are necessarily more tenuous than others, and I do my best to 

indicate them as such. In other instances, the rarity or fragmentary nature of individual 

bones frustrated attempts to assign them to any particular taxon. Identifications were 

aided by the extensive osteological collection at ETSU; a list of modern specimens 

examined for this study is on file in the Department of Geosciences. Anatomical 

terminology follows Evans (2008) unless otherwise indicated.  
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CHAPTER 2 

NON-ANGUIMORPH LIZARDS OF THE BROOKSVILLE 2 LOCAL FAUNA 

Introduction 

The Brooksville 2 Local Fauna (LF) comprises the most diverse mammalian 

assemblage known from the Arikareean of Florida (Hayes 2000), but its reptilian 

component has received considerably less attention. Bourque (2013) described the 

kinosternid turtle Xenochelys floridensis, and Mead (2013) reported the occurrence of an 

indeterminate scolecophidian snake. A preliminary faunal list provided by Hayes (2000) 

included 3 indeterminate species of lizards (an iguanian, a helodermatid, and an anguid); 

none have been described in detail, and an in-depth survey of lacertofaunal remains from 

Brooksville 2 is lacking. This chapter remedies this, in part, by detailing the non-

anguimorph lizards from the site. Anguimorphs are currently under study by myself and 

others at ETSU.  

 Fossils from Brooksville 2, recovered from karst fissure-fillings in the Suwannee 

Limestone near Brooksville, Florida (Hernando County), were originally dated to the 

“medial” Arikareean between 26 and 28 Ma (Hayes 2000). Tedford et al. (2004) later 

suggested the fauna was slightly younger (between 25 and 26 Ma), but a more recent 

study of the chiropteran fauna corroborates an older age assignment (26 to 28 Ma; 

Morgan and Czaplewski 2012). Hayes (2000) discussed the geology and taphonomy of 

the Brooksville 2 deposits; the abundance of lizard remains reported here is consistent 

with his interpretation of the presence of cave-like karstic features serving as small 

carnivore dens.  
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Anolis sp. 

Morphotype A 

(Figures 1-9) 

Referred Material 

UF 274039 (partial dentary), 274041 (partial dentary), 274061 (frontal), 274073 

(partial dentary), 274074 (partial dentary), 275606 (partial maxilla), 275608 (partial 

dentary), 275611 (partial dentary), 275620 (partial dentary), 275627 (left postorbital), 

275629 (partial dentary), 275645-275647 (partial dentaries), 275649-650 (partial 

dentaries), 275653 (partial left maxilla), 275667 (braincase), 275677-275681 (frontals), 

275682-275684 (left quadrates), 275685-275686 (frontals), 275693-275694 (partial 

maxillae), 275697 (partial dentary), 275699-275701 (partial dentaries), 278727 (left 

prefrontal), 278745 (left prefrontal) 

Description 

Dentary. Seventeen dentary specimens are associated with this taxon, far more 

than for any other at the site. None preserve the bone in its entirety, but well-preserved 

posterior and anterior fragments provide for a satisfactory reconstruction of its 

morphology when considered together. UF 275620 (Fig. 1) is a posterior fragment of a 

left dentary. It preserves 10 teeth spaced among 11 loci; all are tricuspid and taper 

towards the crown. The Meckelian groove is closed and fused for most of its length but is 

perforated posteriorly by a small, incompletely encircled foramen extending below the 
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last 3 teeth in the tooth row. Presumably, this opening represents the combined alveolar-

mylohyoid foramen (hereafter, CAMF) of Castañeda and de Queiroz (2013). Looking 

through the foramen in lingual view, the terminus of an elongate intramandibular septum 

(IMS) is visible below the penultimate tooth. The septum is tall and nearly vertical 

(viewed posteriorly), with a dorsal limb that is continuous with a weakly developed 

intramandibular lamella (IML; see Smith 2009a) behind it. Posterior (and somewhat 

ventral) to the tooth row, an extension of the supra-Meckelian lip (sML; see Bhullar and 

Smith 2008) bears an elongate, external facet for the anteromedial process of the 

coronoid. Viewed labially, the surface of the bone immediately surrounding the dental 

parapet is notably wrinkled. There is a facet for an anterolateral extension of the coronoid 

posteriorly, but it does not appear to have extended below the tooth row.  

 UF 275645 (Fig. 1) is the anterior portion of a right dentary. There are spaces for 

22 teeth, with complete teeth occupying positions 8, 9, 10, 12, 21, and 22. The first 4 

preserved teeth are unicuspid and gently recurved, but the last 2 are tricuspid and taper 

apically. The bone is long and slender; it does not increase in height significantly 

posteriorly. The Meckelian groove is smoothly fused for its entire length, with an anterior 

opening at the symphysis in the form of a small, pinhole foramen. Posteriorly, the fused 

subdental face bears a weak depression extending anteriorly from where the bone is 

fractured. Comparison with associated posterior fossil fragments and modern Anolis 

suggests this impression emanated from an opening (interpreted here as the CAMF) that 

would have immediately followed. Assuming the succeeding CAMF occupied a space 

under the last 3 teeth (see above), this species probably had around 25 teeth. Viewed 

dorsally, a shallow subdental gutter is developed anteriorly. It begins to fade around the 
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12th tooth position and is absent posteriorly. Towards the symphysis, the dentary curves 

abruptly medially. Ventrally, a genioglossus scar (Wellstead, 1982) extends to about the 

12th tooth that gives the bone a “stepped” appearance in labial view. A nearly vertical 

IMS, as in UF 275620 above, is visible posteriorly.  

 Taken together, these and other specimens suggest a shallow dentary with a high 

(~25) tooth count, an extensively fused Meckelian groove, and an elongate IMS. The 

anterior half of the tooth row is never well preserved, but collectively the available 

material suggests the transition to tricuspid tooth crowns took place between the 10th and 

14th tooth positions. A facet for an anterolateral expansion of the coronoid is always 

present on specimens that are intact far enough posteriorly to record one, but its extent 

varies. In some specimens (e.g., UF 275620) it does not reach the end of the tooth row. In 

others (e.g., UF 275697) it extends as far as below the last 2 teeth. The CAMF never 

reaches further anteriorly than the last 4 teeth, but in some specimens (as in UF 275697) 

it is bordered dorsally by a lingually projecting ridge of bone that continues for several 

additional tooth spaces.  
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Figure 1. Dentaries of Anolis sp. morphotype A. A, B, Left dentary of Anolis sp. 

morphotype A, UF 275620, in labial and lingual views, respectively. C, Right dentary of 

Anolis sp. morphotype A, UF 275645, in lingual view. D, Dentary of Anolis carolinensis 

ETVP 2893 in lingual view. Abbreviations: CAMF, combined alveolar-mylohyoid 

foramen; Co.ft, coronoid facet; IMS, intramandibular septum. Scale bar equals 1 mm.  
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Maxilla. Maxillary specimens are associated here based on size, relative 

abundance, similarity in tooth form, and Anolis characters. The most complete specimen, 

UF 275653 (Fig. 2), is a left maxilla with spaces for 20 teeth. The end of the tooth row is 

preserved, but the bone is damaged anteriorly. A few tooth spaces may be missing where 

part of the premaxillary process has broken away. Fully developed mesial and distal 

accessory cusps do not appear until the ninth preserved tooth position; even without a 

precise tooth count, this transition evidently did not take place until relatively late in the 

tooth row. The palatine process is weak but inflected dorsally. This inflection gives the 

palatal shelf somewhat of a “folded” appearance. The superior alveolar foramen (SAF) is 

roofed (Smith 2006) but opens into a deep groove that is continuous posteriorly with a 

facet for the jugal. This morphology is more exaggerated in UF 275606 (Fig. 2), and both 

specimens retain only a small articular surface posteromedially for the ectopterygoid that 

is dwarfed by the space for the jugal. Viewed labially, the facial process has a wrinkled, 

irregular surface. It is not rugose per se but lacks the smooth exterior observed for many 

other iguanids. Anteriorly the facial process bends medially to form a low-angle canthal 

crest (Smith 2011a) that imparts an elongate appearance to the preorbital portion of the 

bone. There is only a single foramen at its base where it rises from the premaxillary 

process. Immediately posterior to the facial process, an additional foramen pierces the 

dorsal surface of the palatal shelf.  

Other material provides additional information and reinforces the interpretation of 

features described above. UF 275606 and 275693 both preserve a small foramen 

posterior to the facial process on the palatal shelf. In UF 275606, the portion of the 

palatal shelf between this foramen and the opening for the SAF is deeply excavated to 
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form a short groove. UF 275693 (Fig. 1) is an anterior fragment and preserves more of 

the premaxillary and vomerine processes than other specimens. The vomerine process is 

elongate, and the crista transversalis that rises from it dorsally is well developed. Just as 

in UF 275653 above, the base of the facial process bears only one foramen anteriorly 

rather than separate openings for the AIAF and SNAF. Tooth crowns taper noticeably in 

most specimens, but UF 275694 is exceptional in this regard. In it, a posterior fragment, 

the bases of the ultimate and penultimate teeth appear mesiodistally expanded.  
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Figure 2. Maxillae of Anolis sp. morphotype A. A, Right maxilla of Anolis sp. 

morphotype A, UF 275606, in dorsal view. B, Left maxilla of Anolis sp. morphotype A, 

UF 275693, in oblique labial view. C, Left maxilla of Anolis sp. morphotype A, UF 

275653 in labial view. D, Maxilla of Anolis carolinensis ETVP 2893 in labial view. 

Abbreviations: AIAF, anterior inferior alveolar foramen; ca.cr, canthal crest; J.ft, jugal 
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facet; Pa.pr, palatine process; SAF, superior alveolar foramen; V.pr, vomerine process. 

Scale bar equals 1 mm.  

Braincase. UF 275667 (Figs. 3-4), an exceptionally preserved braincase, is 

associated here based on size, relative abundance, and the presence of Anolis 

apomorphies. The sphenoid, basioccipital, supraoccipital, paired prootics, and paired 

otooccipitals are all present and intact. Most bones are imperceptibly fused, but the 

contact between the sphenoid and basioccipital maintains a distinctly visible suture. This 

suture is broadly U-shaped; the posterior border of the sphenoid is convex, and the bone 

lacks the posterolateral processes present in most other iguanids. The cristae 

ventrolaterales are confined entirely to the sphenoid, terminating at approximately the 

same transverse level as the posterior openings for the vidian canal. Anteriorly, the 

sphenoid bears a strong crista sellaris overhanging the dorsum sella. The parasphenoid 

rostrum has broken away, and only the ossified bases of the trabeculae cranii remain. The 

latter do not produce strong cristae trabeculares laterally that, when present in other 

lizards, form the dorsal roof of the anterior openings of the vidian canal. In the case of 

UF 275667 these openings lie somewhat dorsal to the horizontal level of the trabeculae 

cranii rather than ventral to it. The basipterygoid processes are short and neither ventrally 

nor laterally extensive. The dorsal margins of their distal articular surfaces curve upwards 

to approach, but not meet, ventrally directed alar processes descending from either side of 

the crista sellaris. The resulting semicircular invagination would have channeled the 

lateral head vein (Evans 2008).  

 The prootic lacks either a supratrigeminal process or an anteriorly directed alar 

process; its anterodorsal margin is instead formed by the prominent swellings of the 

anterior semicircular canals. The posterior semicircular canals are similarly distinct; their 
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visibly protruding, vasiform outline can be traced from the dorsal apex of the 

supraoccipital to a point immediately posterior to the recessus scalae tympani on the 

otooccipital. The dorsal margins of the posterior semicircular canals are pinched to form 

a dull crest as they approach each other near the sagittal midline of the bone. This crest is 

single and continuous and may or may not have been topped by an ossified processus 

ascendens. If one was present, it has broken away. Viewed posteriorly the crest lends the 

supraoccipital a superficially tall appearance; the resulting posterodorsal surface, 

bounded on either side by the semicircular canals, is divided medially by a low ridge of 

bone. Viewed dorsally the anterior and posterior semicircular canals meet to form a 

conspicuously X-shaped juncture.  

 The distal ends of the paraoccipital processes are broken, but enough is preserved 

to infer their general shape and extent. They are short and do not reach far laterally or 

posteriorly. Viewed from behind their dorsal margins evince a marked concavity. In 

dorsal view each otooccipital bears a small but deep depression between the paraoccipital 

process and the posterior semicircular canal. Both pits are pierced by a small foramen. 

The ventral bases of the paraoccipital processes produce a strong crista interfenestralis 

that passes between the fenestra ovalis and the lateral aperture of the recessus scalae 

tympani (LARST) and continues to a point near the basal tuber. The crest maintains a 

sharp edge for most of its length but lacks an angular lateral projection observed for some 

other iguanids. Posterior to the crista interfenestralis, the LARST is divided into rough 

dorsal and ventral halves by the medial aperture of the recessus scalae tympani above and 

a moderately deep occipital recess below. A weak, laterally projecting crest separates the 

two. The crista tuberalis isolating the LARST from the occiput is invaded dorsally by the 
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posterior semicircular canal. Dorsal to the fenestra ovalis, a moderately developed crista 

prootica spans the distance between the paraoccipital process and the anterior inferior 

process of the prootic. There is a small facial foramen anterior to the fenestra ovalis, but a 

prominent bulge occupies the space between them.  

 

 

Figure 3. A, B, Braincase of Anolis sp. morphotype A, UF 275667, in dorsal and ventral 

views, respectively. Abbreviations: asc, anterior semicircular canal; Bo, basioccipital; 

Bpt.pr, basipterygoid process; b.tb, basal tuber; cr.P, crista prootica; cr.vl, crista 

ventrolateralis; ds, dorsum sellae; f.ed, foramen for endolymphatic duct; psc, posterior 

semicircular canal; So, supraoccipital; Sp, sphenoid. Scale bar equals 1 mm.  
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Figure 4. A, B, C, Braincase of Anolis sp. morphotype A, UF 275667, in posterior, right 

lateral, and anterior views, respectively. Abbreviations: a.Sp, alar process of sphenoid; 

a.vc, anterior opening of vidian canal; Bpt.pr, basipterygoid process b.tb, basal tuber; 

b.tr.cr, base of trabecular cranii; cr.if, crista interfenestralis; cr.P, crista prootica; cr.tb, 

crista tuberalis; ds, dorsum sellae; f.o, fenestra ovalis; f.6, foramen for abducens nerve 

(cranial nerve 6); f.7, foramen for facial nerve (cranial nerve 7); LARST, lateral aperture 

of recessus scalae tympani; Pocc, paroccipital process; psc, posterior semicircular canal; 

p.vc, posterior opening of vidian canal. Scale bar equals 1 mm.  
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 Frontal. Eight frontals are referred to this taxon, several of which are well 

preserved and nearly complete. They do not differ substantially in size or morphology. 

One of the best preserved specimens, UF 275679 (Fig. 5), serves here as an adequate 

representative for the rest. The bone is gently concave in transverse cross section and has 

a weakly rugose dorsal surface. This rugosity increases along the length of the bone; the 

dorsum is pocked with minute pits posteriorly, but shallow grooves and an incipiently 

pustulate texture develop anterior to the midorbital constriction. The posterior margin of 

the bone is nearly straight but with a small projection along the midline. Even if a parietal 

foramen was situated at the frontoparietal suture (a parietal is unknown for this taxon), it 

did not invade the frontal. Not all of the referred frontals display a posterior projection 

(even in UF 275679 it is weak), but none show any indication of a foramen. The 

posterolateral corners of the frontal each bear an elongate, ventrolaterally directed tab of 

bone that would have underlapped the parietal and made contact with the postorbital. 

These extensions are clearly visible when the bone is set on a flat surface. Anteriorly the 

posterolateral corners show articular surfaces for a small postfrontal.  

 Ventrally UF 275679 is flanked on either side by moderately developed 

supraorbital flanges. These flanges are always present on other specimens but only 

weakly so in UF 274061. The crista cranii are well developed and maintain a relatively 

uniform thickness for their entire length. They nearly meet where the bone is most 

strongly constricted.  
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Figure 5. Frontal of Anolis sp. morphotype A. A, B, Frontal of Anolis sp. morphotype A, 

UF 275679, in dorsal and ventral views, respectively. C, D, Frontal of Anolis carolinensis 

ETVP 2893 in dorsal and ventral views, respectively. Abbreviations: cr.cr, crista cranii; 

N.ft, nasal facet; p.f, parietal foramen; Po.ft, postorbital facet; so.fl, supraorbital flange. 

Scale bar equals 1 mm.  
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 Prefrontal. UF 278727 (Fig. 6) and UF 278745 are left prefrontals that share a 

similar size and morphology. The dorsal surface (of both) is coarsely pustulate, and the 

posterolateral corner of the bone extends laterally to form a strong canthal ridge (sensu 

Smith 2009b). Based on what is preserved of the articular surfaces, it is unclear if the 

element would have contacted the nasal anteromedially.  

 

 

Figure 6. Prefrontal of Anolis sp. morphotype A. A, Left prefrontal of Anolis sp. 

morphotype A, UF 278727, in dorsal view. B, Left prefrontal of Anolis carolinensis 

ETVP 2893 in dorsal view. Abbreviations: Fr.pr, frontal process; Mx.ft, maxillary facet. 

Scale bar equals 1 mm.  
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Postorbital. A small postorbital (UF 275627; Fig. 7) is associated with this taxon 

based on size, relative abundance, and Anolis characters. It is a triradiate bone with 

dorsal, anterior, and posterior rami. The dorsal and anterior rami are approximately equal 

in length, but the posterior ramus is elongate. The dorsal ramus bears a large, flat 

frontal/postfrontal facet anteriorly, the ventral extent of which is marked by a weak, 

laterally projecting knob of bone. The dorsal margin of the posterior ramus is convex. 

Ventrally a tongue-and-groove facet for the jugal (Oelrich 1956) extends from the tip of 

the anterior ramus to the transverse level of the posterior margin of the dorsal ramus. 

Posterior to this a facet for the squamosal is only faintly discernible laterally; it is not 

clear if the jugal and squamosal would have contacted each other.   

 

 



34 

 

Figure 7. Postorbital of Anolis sp. morphotype A. A, Right postorbital of Anolis sp. 

morphotype A, UF 275627, in lateral view. B, Right postorbital of Anolis carolinensis 

ETVP 2893 in lateral view. Abbreviations: a.ra, anterior ramus; d.ra, dorsal ramus; Fr.ft, 

frontal facet; J.ft, jugal facet; p.ra, posterior ramus. Scale bar equals 1 mm.  

 

Quadrate. Three complete quadrates are associated here based on size, relative 

abundance, and Anolis characters. The medial concha is highly reduced, and the tympanic 

crest bounding the lateral concha is formed by a thick, rounded ridge of bone. The lateral 

concha is not deep, and the posterior crest curves only weakly. Consequently, the element 

appears straight and thin in lateral view. Viewed posteriorly it is roughly rectangular. The 

posterior crest is not quite vertical but is not as strongly inclined medially as in many 

iguanids. The lateral concha extends as far dorsally as the cephalic condyle, and the 

tympanic crest is continuous medially with the ventral condyle. A small foramen 
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penetrates the boundary between the posterior crest and the reduced medial concha in the 

ventral half of the bone; it exits somewhat ventrally and laterally on the anterior side. UF 

275682 and UF 275684 both bear a small, cannular ridge on the lateral concha (the lateral 

ridge of Smith 2009b).  

 

 

Figure 8. Quadrate of Anolis sp. morphotype A. A, Left quadrate of Anolis sp. 

morphotype A, UF 275682, in posterior view. B, Left quadrate of Anolis carolinensis 

ETVP 2893 in posterior view. Abbreviations: ce.co, cephalic condyle; l.con, lateral 

concha; m.con, medial concha; p.cr, posterior crest; ty.cr, tympanic crest; v.co, ventral 

condyle. Scale bar equals 1 mm.  

Remarks  

Associated material referred to the most abundant lizard at Brooksville 2 all 

suggests a close relationship with extant Anolis. The early Eocene stem anoles 

Anolbanolis (Smith 2009a) and Paranolis (Smith 2011a) are known well enough to 
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afford some instructive evolutionary context, and a consideration of character succession 

in the lineage indicates a number of features that would place the Brooksville species 

somewhere among the exceptional crown radiation. Anolbanolis, Paranolis, and the 

Brooksville anole are known only from isolated cranial elements, and representative 

bones are not always common to all 3 taxa. Those that are shared mutually, though, 

provide a useful starting point for a discussion of the phylogenetic position of the 

Brooksville taxon.  

 Smith (2009a; 2011a) allied Anolbanolis with Anolis based on the common 

possession of a low-angle canthal crest on the maxilla, a well-developed crista 

transversalis, a transversely concave frontal with supraorbital flanges, and the 

development of a canthal ridge on the prefrontal. The Brooksville anole shares all of 

these characters with both taxa. In noting a close relationship between Anolbanolis and 

Anolis, however, Smith (2011a) highlighted a few key differences that would serve to 

exclude the former from the latter: Anolbanolis lacks the fused Meckelian groove, 

mesiodistally expanded posterior teeth, anterolateral coronoid process, continuity of the 

opening of the SAF with a deep jugal facet, and unification of the anterior inferior 

alveolar and subnarial arterial foramina that all characterize Anolis. Smith and Gauthier 

(2013) also argued that the invasion of the frontal of Anolbanolis by the parietal foramen 

(confined primarily or entirely to the parietal in Anolis) bars it from the crown of the 

clade. The dentary, maxilla, and frontal of the Brooksville anole share all of these 

features with Anolis to the exclusion of Anolbanolis.   

 Maxillary specimens are not known for Paranolis, but its dentary, postorbital, and 

frontal document novel transformations that unite it more closely with Anolis than 
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Anolbanolis. Like Anolis, it has a shallow, elongate dentary with a fused Meckelian 

groove, high tooth count (≥ 25), and tapering tooth crowns (Smith 2011a). The two also 

share a postorbital with a convex dorsal expansion of the posterior ramus and frontal that 

is not invaded significantly by the parietal foramen (Smith and Gauthier 2013). The 

Brooksville anole exhibits all of these characteristics as well, but its dentary is more 

similar to that of Anolis for having a more extensively fused Meckelian groove and for 

bearing a labial facet for an anterolateral extension of the coronoid. Even if Paranolis did 

have an anterolaterally expansive coronoid (its corresponding facet on the dentary is 

often difficult to discern even on modern disarticulated Anolis specimens when it does 

not incise deeply into the surface of the bone), the nature of its Meckelian groove is 

fundamentally different from that of observed Anolis. 

 In Paranolis, the Meckelian groove is open both anteriorly and posteriorly for a 

length of about 6 or 7 teeth (Smith 2011a). The posterior opening comes in the form of an 

anteriorly tapering, V-shaped space that Smith (2011a) suggested might have been filled 

by the splenial. Etheridge and de Queiroz (1988) identified two synapomorphies of 

Anolis (sensu Poe 2004; the “anoles” of their analysis) that are potentially of some 

relevance here: the possession of a reduced splenial that does not extend as far anteriorly 

as the ultimate tooth and the reduction of the angular to a splint. Although the splenial 

does actually reach the level of the last tooth in some Anolis (Poe 1998: fig. 14C), the 

extreme reduction (or in some cases, loss [Etheridge 1959]) of these two bones manifests 

itself in a way that is evident even on isolated dentaries. In Anolis the Meckelian groove 

is fused farther posteriorly (sometimes beyond the end of the tooth row) than in most 

other observed iguanids. Only tropidurines, which also have reduced angulars and 
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splenials (Etheridge and de Queiroz 1988; Frost 1992; Pregill 1992), are similar in this 

regard. A peculiarity of the Anolis mandible, though, is that the anterior inferior alveolar 

and anterior mylohyoid foramina — separate in other iguanid taxa — merge to form a 

common opening confined primarily to the dentary. This combined alveolar-mylohyoid 

foramen (Castañeda and de Queiroz 2013) typically takes shape as a small oval almost 

fully circumscribed by the supra- and infra-Meckelian lips. Its exact position can vary, 

even intraspecifically, but the presence of a comparable opening in the Brooksville 

species (as well as the fusion of its Meckelian groove anteriorly to the symphysis and the 

anterolateral extension of its coronoid) unites it with Anolis to the exclusion of Paranolis.  

Additional characteristics (either individually or in combination) of the 

Brooksville taxon ally it exclusively with Anolis among living iguanids but admittedly 

cannot yet be evaluated in Paranolis. The Anolis maxilla is derived for having only a 

single foramen anteriorly at the base of the facial process (Smith 2009a; 2009b) and a 

SAF that opens into a deep jugal groove (Smith 2011a), 2 features shared by the 

Brooksville anole but not Anolbanolis. On the dentary Smith (2009b) found an elongate 

IMS to be synapomorphic for polychrotines. An exact ratio was not obtainable for the 

Brooksville specimens, but the termination of the septum under the penultimate tooth in 

posterior fragments surely affirms its extensive nature. A wrinkled labial parapet and 

extensive external facet for the coronoid on the supra-Meckelian lip were common 

among observed Anolis but have not been analyzed exhaustively for other iguanids.  

The Anolis quadrate can generally be distinguished by its reduced medial concha, 

nearly vertical posterior crest (viewed posteriorly), roughly rectangular shape, and thick 

tympanic crest. A reduced medial concha is also known for Polychrus, some 
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corytophanines, Phymaturus, and some phrynosomatines (Lang 1989; Smith 2009b), but 

I have only observed such a thick tympanic crest for Anolis and some tropidurines. In 

tropidurines, though, the ridge of bone that forms the tympanic crest turns medially and 

terminates before reaching the ventral condyle, leaving a small notch between the two. 

This discontinuity is often marked even in taxa that lack a swollen tympanic crest. In 

most observed Anolis, as in the Brooksville taxon, the tympanic crest is smoothly 

continuous with the ventral condyle.  

 The fossil braincase shares 2 important features with Anolis, namely the raised 

semicircular canals and the lack of posterolateral processes of the sphenoid. Etheridge 

(1959) first brought attention to the conspicuous canals of some iguanids and noted their 

distribution primarily among arboreal taxa. The presence of raised canals has been coded 

as a derived character state in subsequent phylogenetic analyses of iguanids (Etheridge 

and de Queiroz 1988; Frost and Etheridge 1989; Lang 1989) but without further mention 

of any consistent ecomorphological pattern. A recent study of CT-generated endocasts of 

the vestibular system in a number of squamates found measurable differences in taxa 

capable of controlled aerial descent (Boistel et al. 2011) but did not discuss how such 

changes would be expressed skeletally on the surface of the braincase. Curiously, 

significantly raised canals are present in the “flying” non-iguanid taxa Ptychozoon (a 

gekkotan) and Draco (an agamid)(pers. obs.). Anolis is known experimentally to be 

capable of controlled aerial descent (Oliver 1951), but it is easy to imagine how a greater 

command of airborne roll, pitch, and yaw (cf. Boistel et al. 2011) would be advantageous 

to any highly mobile lizard in a tree. Besides being phylogenetically informative, then, 
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the conspicuous semicircular canals of the Brooksville anole may provide direct evidence 

for an arboreal mode of life.  

 The reduction of the posterolateral processes of the sphenoid is less common. 

Such processes are reduced in Anolis, some Polychrus, and at least some Liolaemus 

(Smith 2009b). They are also reduced in some crotaphytines (Norell 1989). Frost et al. 

(2001) suggested they are present in A. equestris, but they are absent in specimens 

available to me. In most iguanids I have observed that lack extensive processes, the 

sphenoid and basioccipital meet in a roughly straight transverse suture; only in Anolis is 

this junction normally U-shaped. Anolis is not unique for having raised semicircular 

canals or a modified sphenoid, but a derived combination of both is otherwise present (to 

my knowledge) only in some species of Polychrus (Frost et al. 2001). Observed 

Polychrus, though, have a reduced crista prootica, a reduced occipital recess, and anterior 

semicircular canals that reach significantly further dorsally than the corresponding 

posterior semicircular canals. Both pairs of canals are roughly subequal in height in 

Anolis, and meet to form a large “X” on the dorsum of the supraoccipital. The Anolis 

braincase is further characterized by the deeply excavated dorsal pits found at the base of 

the paraoccipital processes. Many iguanid taxa bear shallow impressions here but never 

as conspicuously as in Anolis.  

 The frontal of Anolis, in addition to features already discussed above, is notable 

for its form of articulation with the parietal and postorbital. The posterolateral corners of 

the bone each produce a spine-like projection that extends ventrolaterally to secure the 

parietal posteriorly and to brace the postorbital anteriorly (Fig. 9). These processes tend 

to be less exaggerated in species with comparatively squat frontals (e.g., A. biporcatus 
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and A. equestris), but barring such exceptions I have not observed such laterally 

extensive projections in other iguanids besides Anolis.   

 The Brooksville taxon, aside from possessing synapomorphies discussed above 

for clades bracketed successively by Anolbanolis and Paranolis, displays a number of 

features not known for either that would ally it exclusively with Anolis among known 

taxa. Assuming all elements are associated correctly, it shares the following additional 

features with examined members of the extant genus: SNAF and AIAF combined on 

maxilla; SAF opens into deep jugal groove; anterolateral extension of coronoid; 

Meckelian groove fused anteriorly to the symphysis; Meckelian groove fused almost to 

the end of the tooth row, diverging posteriorly only to accommodate a small foramen; 

lingually projecting ridge of bone dorsal and anterior to CAMF (some); labial parapet 

notably wrinkled (some); mesiodistally expanded posterior teeth (some); quadrate 

roughly rectangular with a reduced medial concha and a thick tympanic crest that is 

continuous medially with the ventral condyle; prefrontal with pustulate rugosities; 

sphenoid with reduced posterolateral processes and a convex posterior margin; 

otooccipitals deeply excavated dorsally; outlines of anterior and posterior semicircular 

canals distinctly visible, forming a large X-shaped juncture dorsally on supraoccipital; 

frontal with laterally extensive postorbital facets. Even allowing for the possibility that 

some elements may be associated in error, dentigerous dentaries and maxillae alone may 

be sufficient for its allocation to Anolis.  

 There are nearly 400 extant species of Anolis (Uetz 2014), and to hazard an 

attempt to place the Brooksville species even among any of its most inclusive subclades 

is well beyond the scope of this study. Importantly, however, the Brooksville anole bears 
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little resemblance to A. carolinensis or to any of its close Caribbean relatives (the 

carolinensis series of Poe 2004). That group is derived for having a combined alveolar-

mylohyoid foramen generally positioned posterior to the tooth row (Poe 2004), and 

members analyzed for this study never had such a strongly vertical IMS (or attendant 

IML) as in the Brooksville taxon. Smith (2009a) identified at least one potential 

synapomorphy of the maxilla of the carolinensis series that would exclude the 

Brooksville species, namely a dorsally concave premaxillary process and multiple 

anterodorsal foramina. Even more generally, though, the canthal crest of observed 

members of the carolinensis series is extremely well defined and often strongly rugose; 

the medial bend is formed by a sharp angle that is obvious even in living specimens. The 

canthal crest of the Brooksville species, although apparent, is more subtle. In this way, it 

is more comparable to the morphology seen for A. roquet. Even if the relationships of the 

Brooksville anole cannot be precisely determined, it is not closely related to the only 

Anolis species native to the United States today.  

 Other pre-Pleistocene fossil Anolis are known only as amber inclusions from the 

early to middle Miocene of the Dominican Republic (Rieppel 1980; de Queiroz et al., 

1998; Polcyn et al. 2004) and Mexico (Lazell 1965; Carbot-Chanona and Milani 2008). 

Those specimens preserve articulated partial skeletons (often with soft tissue, and usually 

of juveniles) that did not warrant extensive comparison here. Given the most current age 

estimates of the amber from the Dominican Republic (15 to 20 Ma; Iturralde-Vinent and 

MacPhee 1996) and Mexico (early to middle Miocene; Perrilliat et al. 2010), the 

occurrence of Anolis at Brooksville predates all such specimens, minimally, by 3-5 

million years.  
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Figure 9. Oblique left lateral view of skull of Anolis carolinensis JIM 0266. 

Abbreviations: Fr, frontal; P, parietal; Po, postorbital. Scale bar equals 1 mm.  
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cf. Anolis sp. 

Morphotype B 

(Figure 10) 

Referred Material 

 UF 275662 (partial right dentary), UF 275695 (partial right dentary), UF 275696 

(partial right dentary), UF 275619 (partial left dentary), UF 275665 (partial left dentary) 

Description  

Dentary.  UF 275696 (Fig. 10) is the posterior portion of a right dentary. There 

are spaces for 10 teeth, 8 of which are occupied. All preserved teeth are tricuspid with 

gently tapering crowns. The Meckelian groove is closed and fused but is invaded 

posteriorly by a small oval foramen at a level below the antepenultimate tooth. The 

supra-Meckelian lip (sML) descends to nearly contact the infra-Meckelian lip (iML) 

again immediately afterwards (see Bhullar and Smith 2008), but the foramen remains 

incompletely encircled by bone. A short dorsal process rises from the dentary posterior to 

the tooth row to receive the coronoid. Labially, a roughly triangular facet for an 

anterolateral extension of the coronoid extends to, but not under, the last tooth. The 

dentary looks to have been posteriorly extensive; the end of the bone is broken but 

reaches well beyond the end of the tooth row. Looking through the dentary tube 

posteriorly, there is no IMS or IML.  
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 The anterior end of the bone is best preserved in UF 275695 (Fig. 10). It is long 

and slender, and the transition to tricuspid teeth occurs around the 12th tooth. A faint 

subdental gutter is discernible far anteriorly but fades quickly. The Meckelian groove is 

closed and fused. Anteriorly it opens ventrally as a narrow slit from the symphysis to a 

level below the sixth tooth. A weak genioglossus scar is visible labially. Posteriorly, there 

is no visible IMS.  
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Figure 10. Dentaries of Anolis sp. morphotype B. A, B, Right dentary of Anolis sp. 

morphotype B, UF 275696, in lingual and labial views, respectively. C, Right dentary of 

Anolis sp. morphotype B, UF 275695, in lingual view. Abbreviations: CAMF, combined 

alveolar-mylohyoid foramen; Co.ft, coronoid facet; iML, infra-Meckelian lip; sML, 

supra-Meckelian lip. Scale bar equals 1 mm.  



47 

Remarks  

These specimens are tentatively referred to Anolis for having a slender dentary 

with an extensively fused Meckelian groove, tapering tooth crowns, an anterolaterally 

expansive coronoid, and for the development of a small foramen (possibly a CAMF) 

confined primarily to the dentary (see discussion above for morphotype A). Given the 

morphology of the bone and the position of the foramen, the angular and splenial were 

necessarily reduced. The posterior end of the dentary almost certainly would have 

reached beyond the level of the dorsal apex of the coronoid, at least supporting an Anolis 

relationship (Etheridge and de Queiroz 1988). An anterior opening for the Meckelian 

groove typically does not extend further than the first 2 teeth in Anolis (Smith 2006; 

Smith and Gauthier 2013), and its elongate nature here (to the sixth tooth) might argue 

against such a relationship.  

 This taxon differs from morphotype A for having a longer anterior opening for the 

Meckelian groove, for the development of a dorsal coronoid process posteriorly, for 

lacking an IML, for its much smaller size (~50%), and for the seeming absence of any 

indication of an IMS. An alternative explanation for perceived differences among the two 

could be related to ontogeny; it is possible that these 5 dentaries belonged to immature 

individuals of morphotype A that lacked a fully developed IMS. An ossified IMS, 

though, is already present in the smallest available specimens of A. carolinensis (FB 274; 

SVL=38 mm) and A. porcatus (JIM 0258; SVL=20 mm), and their Meckelian grooves 

are fused smoothly to the symphysis.  

 The recognition of an additional Anolis (or Anolis-like) species at Brooksville 

admittedly jeopardizes the association of isolated elements to either. Dentaries of both 
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taxa are easily discriminated by the presence or absence of an IMS, and specimens were 

not referred to either if this feature could not be evaluated. The much greater size of 

morphotype A, though, as well as the significantly greater relative abundance of its 

dentaries, arguably provide a reliable litmus test for the association of nondentigerous 

material to one taxon or the other. By that metric, of all elements referred to morphotype 

A, perhaps only the association of frontals is equivocal; all are smaller than would be 

expected (by comparison with modern Anolis individuals) given the relative sizes of the 

fossil braincase, postorbital, maxillae, prefrontals, and quadrates. The association of those 

same frontals with morphotype B here would bolster a case for its relationship with 

Anolis but would not significantly alter the interpretation of morphotype A above.  

Iguanidae gen. et sp. indet. 

(Figure 11) 

Referred Material  

UF 275612 (partial left dentary), UF 274077 (partial right dentary), UF 275644 

(partial right dentary) 

Description 

Dentary. The most complete dentary, UF 275644 (Fig. 11), measures 5.32 mm in 

length. It has 16 tooth spaces, with teeth missing from positions 6, 10, 12, 14, and 16. The 

specimen is broken anteriorly and posteriorly, so a total tooth count or tooth row length is 

unknown. The dorsal curvature of the tooth row in the posterior half of the specimen 
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suggests it could not have continued much further, but the anterior extent of the bone 

cannot be estimated. An accurate dentary depth/tooth row length ratio (Smith 2006) is 

impossible, but it does not appear to have been exceptional at either extreme in this 

regard.    

Anteriorly the teeth are short, recurved, and unicuspid. Posterior teeth are taller, 

straighter, and bear weak mesial and distal cusps by the seventh preserved tooth position. 

Such cusps are not strongly defined, even by the last tooth. This may be at least partially 

attributable to wear; a replacement crown filling the resorption pit at the base of the 

eighth preserved tooth has more obvious grooves separating the cusps. The teeth are 

regularly spaced with roughly parallel-sided or gently tapering crowns. A moderately 

developed subdental shelf is present as far posteriorly as the specimen is preserved. The 

Meckelian groove is closed for a space of about 4 teeth between the sixth and ninth 

preserved tooth positions. It opens gently and remains restricted for the length of 

approximately 2 tooth spaces anterior to this, but thereafter the infra-Meckelian lip is 

broken and the nature of the groove is uncertain. The infra-Meckelian lip is likewise 

broken posterior to the level of ninth tooth position, and it is not clear how far posteriorly 

the closure would have persisted. Under the 11th tooth the supra-Meckelian lip is notched 

and may have delineated the AIAF dorsally. Just anterior to this the lingual face of the lip 

is marked by a faintly discernible oval-shaped impression. Lateral to the supra-Meckelian 

lip the IMS extends to a transverse level between the 10th and 11th teeth. It is displaced 

somewhat dorsally such that it cannot be seen in lateral view. The IML posterior to this is 

only very weakly expressed and is almost functionally absent.  
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 The labial surface of the dentary is predominantly flat. Four labial foramina are 

present, the last at the level of the eighth tooth. Posteriorly, a V-shaped notch is incised 

into the bone just below the last 2 tooth spaces that would have articulated with an 

anterolateral extension of the coronoid.  

 UF 275612 is more fragmentary and less informative. It is similar in size, 

suggesting this was a small lizard. The (broken) supra- and infra-Meckelian lips approach 

each other closely but never make contact. Although inconclusive as preserved, UF 

275612 indicates the Meckelian groove may not have always fully closed in this taxon.  

 

 
 

Figure 11. Right dentary of Iguanidae gen. et sp. indet., UF 275644, in lingual view. 

Abbreviations: AIAF, anterior inferior alveolar foramen; Mk.gr, Meckelian groove. Scale 

bar equals 1 mm.  
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Remarks  

The sparse material attributable to this taxon presents a mosaic of features that do 

little to constrain its relationships. I have assigned it to the Iguanidae based on its 

pleurodont, tricuspid teeth and form of tooth replacement.  

 Partial closure of the Meckelian groove without fusion occurs among 

phrynosomatines, crotaphytines, oplurines, some corytophanines, and some Liolaemus 

(Smith 2006). It is also known for the early Eocene stem anole Anolbanolis (Smith 

2009a; 2011a; Smith and Gauthier 2013), the problematic late Eocene Cypressaurus 

(Holman 1972; Smith 2006), and the problematic Oligocene Aciprion (Estes 1983a). 

Brief constriction, if not closure, is a consistent feature of Eocene and Oligocene fossil 

corytophanines from both Europe and North America. It is restricted (and sometimes 

closes) in early Eocene species of Suzanniwana (Smith 2009a; 2011a; Smith and 

Gauthier 2013), restricted in the late Eocene Oreithyia oaklandi (Smith 2011b; 2011c), 

and variably restricted or closed (interspecifically) in the Eocene-Oligocene European 

Geiseltaliellus (Smith 2009b; Augé and Pouit 2012). The groove is briefly restricted in 

the Eocene taxon ?Crotaphytus oligocenicus (Holman 1972; Estes 1983a), a species of 

uncertain ancestry (Estes 1983a; Sullivan and Holman 1996) that may be related to 

corytophanines (Rossman 1999; but see Smith 2009b).  

 An anterolateral extension of the coronoid is known for iguanines, hoplocercines, 

Anolis, Leiocephalus, and liolaemins (Etheridge and de Queiroz 1988; Smith 2011b); it 

has also been reported for Geiseltaliellus and some specimens of Suzanniwana (Smith 

2011a). A less common feature, perhaps, of the Brooksville taxon is the presence of a 

posteriorly extensive subdental shelf. Smith (2009a) commented on its rarity among 
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iguanids, noting its presence primarily among modern and fossil corytophanines. It is also 

evidently prominent in ?Crotaphytus oligocenicus (Holman 1972; Rossman 1999). In 

having a briefly closed Meckelian groove, a coronoid facet on the dentary that extends 

below the tooth row, and a conspicuous subdental shelf, the specimens referred here fit a 

relatively consistent morphological pattern for better known stem-members of 

Corytophaninae. The absence of a well-developed IML, however, would argue against 

such an assignment (Smith 2009a; 2009b). Additional material is desirable for a firmer 

diagnosis, but at present I propose that the fossil species represents neither taxon (Anolis 

or Sceloporus) inhabiting Florida today.  

Iguaninae gen. et sp. indet.  

(Figure 12) 

Referred Material 

 UF 274049 (partial right dentary), UF 275635 (partial left dentary) 

Description  

Dentary. UF 274049 and UF 275635 (Fig. 12) are roughly the same size and 

preserve similar features. They are broken anteriorly, but both appear to include the 

posterior extent of their respective tooth rows. The tooth shafts are tall, straight, and 

cylindrical in cross-section. Tooth crowns are flared and tricuspid. The teeth of UF 

275635 are somewhat worn, but the better-preserved crowns of UF 274049 exhibit a 

general trend in which the anterior accessory cusp tends to be slightly elevated relative to 
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the posterior accessory cusp. Many of the tooth crowns gently overlap; this seems to be 

just as much of a product of tooth density (the teeth are closely-spaced) as of the degree 

of flaring. Neither specimen displays a subdental gutter. If present anteriorly, it evidently 

was not extensive. A weakly developed subdental shelf is present but fades posteriorly.  

 The Meckelian groove is closed and fused for the majority of the length of the 

specimens. The resulting fused lingual face is flat and dorsoventrally tall, contributing to 

an overall deep appearance of the dentary. This surface increases in height posteriorly to 

where it opens at the Meckelian reentrant (Wellstead 1982). The Meckelian reentrant is a 

rounded, U-shaped opening that is somewhat dorsally displaced. Its apex extends 

anteriorly to a level under the last 4 to 5 teeth. Posteriorly, a moderately well developed 

IML is present. Looking down through the dentary in posterior view, a reduced IMS is 

visible only in UF 275635. Its exact limit is unknown, but it appears to end several tooth 

spaces anterior to opening of the last labial foramen. Dorsal to the IMS, an additional 

flange of bone bounds an even smaller opening of uncertain homology.  

 The labial surface of the dentary is fairly convex. Posteriorly there is a broad, 

rounded facet for an anterolateral extension of the coronoid that extends below the last 3 

to 4 teeth. The facet is demarcated dorsally by a ridge of bone that may indicate the 

presence of a small dorsal process posterior to the tooth row. Both specimens preserve 2 

small labial foramina anteriorly and a third that is considerably larger. In UF 275635, the 

ultimate foramen is teardrop-shaped and opens primarily anteriorly.  
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Figure 12. Dentaries of Iguaninae gen. et sp. indet. A, Right dentary of Iguaninae gen. et 

sp. indet., UF 274049, in lingual view. B, Left dentary of Iguaninae gen. et sp. indet., UF 

275635, in labial view. Abbreviations: Co.ft, coronoid facet; IML, intramandibular 

lamella; la.f, labial foramen. Scale bar equals 1 mm.  

Remarks  

A derived combination of flared tooth crowns, an anterolateral extension of the 

coronoid, and a fused Meckelian groove is common to iguanines and some tropidurines 

(Norell 1989; Pregill 1992), but additional characters of the referred dentaries favor a 

relationship with the former. The presence of a dorsoventrally short, posteriorly extensive 

intramandibular lamella in both specimens is noteworthy. Smith (2009a) originally drew 

attention to this structure as a functional feature of the iguanid dentary; a small flange of 

bone develops to secure the coronoid and splenial against the lateral surface of the supra-
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Meckelian lip in some taxa. He noted its presence primarily among corytophanines, but 

also in crotaphytines, some hoplocercines, some oplurines, some Anolis, and the iguanine 

Sauromalus. I have observed a similar feature in Brachylophus, Ctenosaura, Cyclura, 

Dipsosaurus, Iguana, and Sauromalus – every iguanine genus for which disarticulated 

specimens were examined. The lamella of iguanines, however, differs from other taxa in 

being more dorsally, laterally, and often posteriorly displaced. In this way its structural 

significance seems to emphasize support of the surangular instead. Indeed, the anterior 

end of the compound bone of observed iguanines typically bears an exaggerated groove 

that sheathes the base of the lamella and minimizes its contact with either the coronoid or 

the splenial. Although the mandible of the Brooksville taxon is represented only by 

dentaries, the placement and morphology of the intramandibular lamella most closely 

matches what is seen in iguanines. An intramandibular lamella was not observed for 

tropidurines.  

 In many ways the Brooksville species resembles figured specimens of 

Leiocephalus nebraskensis (Wellstead 1983: fig. 1; = L. septentrionalis of Wellstead 

1982) from the Barstovian of Nebraska. That taxon is represented by more abundant 

material (primarily maxillae and postdentary bones), and Norell (1989) and Pregill (1992) 

made convincing arguments for its close relationship with the monotypic Dipsosaurus 

dorsalis rather than with Leiocephalus. Some of their more salient points regarding its 

taxonomic reallocation are relevant here as well.  

The Brooksville dentaries are similar to those described for L. nebraskensis based 

on tooth morphology (Pregill 1992), the anterior extent of the coronoid (Norell 1989), the 

broad Meckelian reentrant (Pregill 1992), the flat subdental lingual face (Norell 1989), 
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and the reduction of the IMS (Wellstead 1982). Flared tooth crowns bearing 4 or more 

cusps are common, but not ubiquitous, among iguanines (de Queiroz 1987); the presence 

of only 3 cusps does not exclude either fossil taxon from that clade (Norell 1989; Pregill 

1992). Pregill (1992) suggested the crowns of L. nebraskensis are not as broad or 

labiolingually compressed as those of Dipsosaurus dorsalis, and his brief description of 

them approximates what is observed for the Brooksville specimens. The crowns of UF 

274049 (which are better preserved) have taller, more pointed cusps than those of modern 

and fossil D. dorsalis (see Norell 1989: fig. 8), but their morphology would serve only to 

exclude them from that species. Stem dipsosaurs are known from the Eocene and 

Miocene; the crowns of the Barstovian Armandisaurus explorator (Norell and de Queiroz 

1991) from New Mexico are exposed only labially (hindering comparison), and those of 

the Chadronian Queironius praelapsus (Smith 2011b) lack a distal flare altogether. Olson 

(1937) described the quadricuspid Tetralophosaurus minutus from the Arikareean of 

Nebraska, a species Norell (1989) later united with Dipsosaurus. It is known from a 

single fragmentary dentary but demonstrates that the addition of a fourth cusp had 

evolved in at least some members of the iguanine lineage by the late Oligocene.  

The broad, dorsally displaced Meckelian reentrant of the Brooksville dentaries is 

reminiscent of that figured for Leiocephalus nebraskensis and observed for Dipsosaurus 

dorsalis, and at the very least would serve to exclude it from Leiocephalus. The splenial 

of Leiocephalus is reduced, necessitating a smaller notch in the dentary to accommodate 

it (Pregill 1992). Even in the absence of a fossil splenial, it is clear that the Brooksville 

taxon did not share this character. Anterior to the reentrant, the fused subdental face of 

the Brooksville specimens has a flat, nearly vertical lingual surface that, as for L. 
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nebraskensis, is inconsistent with the shallow and rounded morphology shared among 

species of Leiocephalus (Norell 1989).  

Of the groups that share a fused Meckelian groove, an anterolateral extension of 

the coronoid, and flared tooth crowns, process of elimination leaves the assignment of the 

Brooksville fossils to the Iguaninae as the most defensible option. Although admittedly 

based primarily on plesiomorphy (i.e., it merely lacks derived characters of tropidurines), 

the morphology of its intramandibular lamella (possibly synapomorphic) reinforces this 

conclusion. At least superficially the fossil dentaries most closely resemble Dipsosaurus. 

Ultimately, however, the preserved material lacks characters that would ally it with any 

particular genus. Among fossil iguanines the Brooksville species is predated only by the 

late Eocene Queironius praelapsus (Smith 2011b).  

Eublepharidae gen. et sp. indet. 

(Figures 13-14) 

Referred Material  

UF 275603 (partial left maxilla), UF 274247 (partial right dentary), UF 278770 

(partial left dentary) 

Description  

Maxilla. UF 275603 (Figs. 13-14) is a relatively complete maxilla measuring 7.59 

mm in length. There are spaces for 27 teeth, with empty loci positioned at roughly equal 

intervals between every 3 to 4 teeth. A portion of the tooth row is missing anteriorly, and 
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perhaps posteriorly as well. Most of the teeth that remain are broken; only the 13th tooth 

retains an intact crown. The crown is weakly striated lingually, and its apex bears a 

longitudinal “valley” separating distinct labial and lingual cusps. Replacement crowns at 

the base of the 20th, 24th, and 26th tooth positions exhibit a similar morphology. The 

teeth are small, cylindrical, and densely spaced. They sit in a wide, deep supradental 

trough that spans the preserved length of the tooth row. Teeth are fairly uniform in size in 

the anterior portion of the maxilla but become progressively shorter towards the posterior 

end. Most of the premaxillary process is missing anterior to the AIAF, which opens at 

approximately the same horizontal level as the palatal flange. Posterior to the AIAF, the 

ascending portion of the facial process rises steeply. Much of the facial process is broken 

dorsally. Posteriorly the descending portion of the facial process continues as a sharp, 

vertical lateral wall to the end of the bone. Viewed dorsally, this posterior section turns 

slightly laterally relative to the anterior half of the maxilla. The palatine process is 

present as a weak medial bulge that roughly divides the palatal flange into anterior and 

posterior halves. Anteriorly the medial margin of the palatal flange is fairly straight (i.e., 

it lacks the conspicuous laterally-directed concavity common to many gekkotans). 

Posteriorly the flange tapers only gently in width; its medial and lateral borders are nearly 

parallel for a short distance where the jugal would have articulated. The SAF opens 

posterolaterally at about the same transverse level as the palatine process. Posterior to the 

SAF, there is a long, low, obliquely oriented ridge of bone. It arises in the middle of the 

palatal flange but soon after becomes confluent with its medial margin and continues 

posteriorly. By comparison with extant gekkotans this ridge would have bordered the 

prefrontal and/or jugal. The lateral face of the maxilla is nearly flat with 7 labial 
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foramina. A ventral row has 5 foramina. The last is the largest and is positioned at nearly 

the same transverse level as the SAF. There are 2 additional foramina dorsally.  
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Figure 13. Comparative maxillae of gekkotans in dorsal view. A, Left maxilla of 

Eublepharidae gen. et sp. indet., UF 275603. B, Left maxilla of Coleonyx mitratus 

(Eublepharidae) FB 2296. C, Left maxilla of Aristelliger praesignis (Sphaerodactylidae) 

UF 21740. D, Left maxilla of Thecadactylus rapicauda (Phyllodactylidae) JIM 1664. 

Abbreviations: f.pr, facial process of maxilla; Pa.pr, palatine process; SAF, superior 

alveolar foramen. Scale bar equals 1 mm.  
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Figure 14. Comparative maxillae of gekkotans in labial view. A, Left maxilla of 

Eublepharidae gen. et sp. indet., UF 275603. B, Left maxilla of Coleonyx mitratus 

(Eublepharidae) FB 2296. C, Left maxilla of Aristelliger praesignis (Sphaerodactylidae) 

UF 21740. D, Left maxilla of Thecadactylus rapicauda (Phyllodactylidae) JIM 1664. 

Abbreviations: f.pr, facial process of maxilla. Scale bar equals 1 mm.  
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 Dentary. A fragmentary dentary is associated here based on similar tooth form. 

There are 11 tooth spaces with 5 complete, if worn, teeth. The Meckelian groove is 

completely fused, and the teeth sit in a wide, deep subdental gutter. 

Remarks 

 The size, shape, and spacing of the teeth are sufficient for the assignment of these 

specimens to Gekkota. Grismer (1988) noted the presence of a supradental “trough” in 

the maxilla of Aeluroscalabotes; I find this feature, also observed in UF 275603, to be 

exaggerated in almost all observed gekkotans relative to other lizards. The unique 

“bicuspid” crown morphology of the teeth in the fossil maxilla would likewise unite it 

with most other geckos (Sumida and Murphy 1987; Grismer 1988), as would the closure 

and fusion of the Meckelian groove and the tubular morphology of the dentary (Estes et 

al. 1988).  

 Two features of the maxilla potentially link this taxon exclusively with 

eublepharids: the absence of a triangular anterior projection (see Müller and Mödden 

2001 on this term) and the near-vertical continuation of the facial process posteriorly. In 

most gekkotans the ascending portion of the facial process of the maxilla curves 

parabolically to contact the nasal anteromedially and to contribute significantly to the 

posterior border of the external naris. This curvature results in a distinctive triangular 

protrusion that overhangs the premaxillary process. In eublepharids the anterior margin of 

the nasal widens (Grismer 1988), and there is no anterodorsal projection on the maxilla. 

Although much of the facial process of the fossil is missing, the slope of the preserved 
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ascending portion (viewed laterally) suggests it would have continued posterodorsally 

without turning back on itself to form a projection.  

 The descending portion of the facial process of UF 275603 also indicates a 

eublepharid relationship. In most observed gekkotans the posterior half of the facial 

process curves strongly medially and either terminates abruptly without continuing far 

onto the orbital process or else decays into a low, wide, and rounded section of bone that 

extends further posteriorly. In observed eublepharines (sensu Grismer 1988; i.e., to the 

exclusion of Aeluroscalabotes) the facial process maintains a sharp dorsal edge and a 

(relatively) vertical position to the end of the bone. In this way the fossil approaches the 

condition seen in comparative specimens of Coleonyx, Eublepharis, and Hemitheconyx 

(representatives of Goniurosaurus and Holodactylus were not examined). 

 Among eublepharids only Coleonyx occurs in the Americas today. Seven species 

are distributed from Central America to the southwestern United States, and their 

ancestors are presumed to have migrated from Asia sometime in the early Cenozoic 

(Grismer 1988; Gamble et al. 2011). Unfortunately, pre-Pleistocene fossil geckos are rare 

from North America. Estes (1963) identified a single fragmentary dentary from Thomas 

Farm as an indeterminate gekkotan, and 3 incomplete dentaries are known from the 

Eocene of California (Schatzinger 1975). Hirsch (1996) named the oospecies 

Gekkoolithus columnaris based on fossilized gekkotan eggshells from the Eocene Wind 

River Basin, but skeletal remains were not recovered. Even higher-level relationships of 

all 3 taxa are uncertain. Coleonyx fossils are reported from the Holocene (Van Devender 

and Mead 1978) and late Pleistocene (Van Devender et al. 1977; 1991) of Arizona and 

the late Pleistocene of California (Norell 1986), but a detailed treatment of diagnostic 
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characters for the identification of isolated fossil remains is lacking. Although the 

Brooksville 2 material cannot be assigned to any particular genus, the morphology of the 

maxilla seems to minimally place it somewhere among the Eublepharidae.   

Rhineuridae gen. et sp. indet.  

(Figure 14) 

Referred Material  

UF 268989-94 (vertebrae), UF 274047 (vertebra), UF 275673 (partial right 

dentary) 

Description  

Dentary. UF 275673 is a partial right dentary measuring 1.94 mm in length. It is 

broken posteriorly and ventrally, but the symphysis and a partial tooth row remain. There 

are 4 subpleurodont teeth, the first 3 of which bear a small nutritive foramen posteriorly 

at each of their respective bases. The teeth appear short and stout, but the crowns look to 

have suffered some form of taphonomic corrosion. It is not clear how tall they may have 

been or if they were recurved. The teeth are roughly oval in cross-section and sit on a 

weak subdental shelf. Judging from the circumference of their bases, the first and third 

teeth are enlarged relative to the other two. The mandibular symphysis is well developed. 

It is flat, dorsoventrally tall, and has a weakly reniform outline. A small foramen, 

presumably an anterior opening of the Meckelian canal, exits its anteromedial face. The 

nature of the Meckelian groove is ambiguous posteriorly where the bone is broken. 



65 

Because it is encircled by bone anteriorly at the symphysis, however, I tentatively suggest 

it was closed and fused in this taxon.  

 

 Vertebrae. The 7 vertebrae assigned here vary in relative proportions and 

represent different positions along the vertebral column. They are small with exaggerated 

prezygapophyses, strong interzygapophysial ridges, and wide, dorsoventrally compressed 

cotyles and condyles. Centra are parallel-sided and ventrally flattened; only a single 

specimen, UF 268994, shows a low, sharp haemal keel. The synapophyses are well 

developed, oval in shape, and ventrally displaced. Subcentral foramina are variably (and 

sometimes only asymmetrically) present but are typically developed along the lateral 

margins of the centrum just posterior to the synapophyses. The anterior openings for the 

neural canal are subtriangular, with a dorsal apex that continues posteriorly as a low 

neural spine. Three vertebrae (UF 268991, UF 268992, and UF 274047) are 

dorsoventrally short and anteroposteriorly elongate. Following Hoffstetter and Gasc 

(1969), these presumably occupied more posterior positions in the vertebral series. The 

remaining specimens are relatively wider, bear a well-developed neural spine posteriorly, 

and often have wrinkled posterodorsal surfaces.  
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Figure 15. Vertebrae of rhineurids. A, Vertebra of Rhineuridae gen. et sp. indet., UF 

268993, in dorsal view. B, Vertebra of Rhineura floridana ETVP 7223 in dorsal view. 

Scale bar equals 1 mm 

Remarks 

 The record of rhineurid amphisbaenians in North America extends to the 

Paleocene (Sullivan 1985), but they are especially common in Eocene-Miocene faunas 

(reviewed in Hembree 2007). Genera and species have typically been diagnosed on the 

basis of relatively complete skulls, and none of the material preserved at Brooksville 2 

would suggest affinities with one particular group or another. Vertebral characters for 

rhineurids are given by Holman (1958) and Smith (2006). Yatkola (1976) noted subtle 

differences in the placement of the synapophyses in the Hemingfordian taxon Rhineura 

marslandensis as compared to the modern Rhineura floridana, a character that Holman 

(1979) later suggested was intraspecifically variable in the latter. Instead, in describing 

the Hemingfordian Rhineura sepultura, Holman (1979) remarked on the overall 
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similarity of its vertebrae with those of the extant species. Rhineurid vertebrae are clearly 

morphologically conservative, and specimens here do not warrant identification below 

the family level. They do not differ considerably, in size or otherwise, from Rhineura 

floridana living in the area today.  

 The single partial dentary described here is only tentatively associated with the 

vertebrae (on the basis of its overall amphisbaenian morphology) and does not factor into 

their taxonomic allocation. A full tooth count is desirable, but the apparent enlargement 

of the first and third teeth is potentially significant. Most known rhineurids are 

characterized by the enlargement of the first and fourth dentary teeth (Smith 2006), and 

the enlargement of the third tooth instead in UF 275673 would be a notable deviation 

from this pattern. The closure and fusion of the Meckelian groove, if interpreted 

correctly, would suggest a rhineurid relationship (Smith 2009a). Additional material is 

necessary to confirm if the specimen is even properly assigned.  

 The only living rhineurid, Rhineura floridana, is confined to the extreme 

southeastern United States. Previous records of the family east of the Mississippi River 

are known only from the Pliocene (Meylan 1982) and Pleistocene (Holman 1958; 1959; 

1962) of Florida, and the Brooksville 2 specimens extend their known temporal range 

from their modern center of endemism by approximately 26 million years.  

 

 

 

 

 



68 

Scincidae gen. et sp. indet.   

(Figure 16) 

Referred Material  

UF 274043 (partial right dentary with splenial), UF 274063 (partial right dentary), 

UF 274239 (partial right dentary), UF 274240 (partial right dentary), UF 274252 (right 

premaxilla) 

Description  

Dentary. UF 274043 (Fig. 16) is the middle portion of a right dentary. It is 4.43 

mm long and bears 12 tooth spaces with 10 preserved teeth. The teeth are moderately 

low-crowned and sit in a well-developed subdental gutter that extends the entire length of 

the preserved portion of the dentary. The crowns are slightly bulbous, labially convex, 

and lingually striated. The Meckelian groove is open and increases in height posteriorly 

where it is invaded by a partially preserved splenial. The splenial has a U-shaped, 

posteriorly concave anterior margin formed by dorsal and ventral anterior extensions that 

continue along the supra- and infra-Meckelian lips, respectively. Presumably, this margin 

would have partially bound the AIAF. Part of the anterior mylohyoid foramen can be 

made out posterior to this but has mostly been broken away. An additional partial 

dentary, UF 274063, lacks a preserved splenial. Viewed ventrally a wedge-shaped facet 

for that bone is formed just lateral to the supra-Meckelian lip. It tapers anteriorly to an 

apex just under the 10th tooth position from the symphysis. The symphysis is relatively 
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weak in lingual view, but the anterior-most portion of the dentary assumes a precociously 

deep appearance when viewed labially.  
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Figure 16. Comparative dentaries of scincids. A, Right dentary of Scincidae gen. et sp. 

indet., UF 274043, in lingual view. B, Right dentary of Plestiodon fasciatus ETVP 2892 

in lingual view. C, Right dentary of Mesoscincus managuae FB 1131 in lingual view. 

Abbreviations: Mk.gr, Meckelian groove; Spl, splenial.  Scale bar equals 1 mm.  
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 Premaxilla. A single right premaxilla, UF 274252, is associated here based on 

similar tooth morphology, its unfused nature, and size. It bears three medial teeth, but the 

broken lateral portion of the dental shelf suggests the presence of a partial fourth locus.  

Remarks 

 Beginning in the Oligocene a number of geographically and temporally disparate 

North American fossils (mostly dentaries) have been assigned to extinct, extant, or 

indeterminate species of the genus Eumeces (reviewed in Estes 1983a). For the purposes 

of this discussion, I hereafter assume that previous mention of Eumeces in the North 

American fossil literature should be taken to mean Plestiodon (Smith 2005) unless 

otherwise noted. Such assignments are in fact made to living species now allocated to 

Plestiodon, and the description of extinct species typically involves modern comparisons 

that are exclusive to members of that genus (e.g., Holman 1977, 1981; Taylor 1941).  

The morphology of the Brooksville specimens agrees strongly with dental 

characters reviewed by Estes (1963), Norell (1989), and Bell (1993) for Plestiodon. Estes 

and Tihen (1964) remarked on the anteriorly deep dentary of the genus, a feature that also 

characterizes the fossils. Unfused premaxillae are known to occur only in some scincids 

and gekkotans among squamates (Estes et al. 1988), and the splenial morphology seen 

here is also suggestive of a scincomorph relationship (pers. obs.). Kingman (1932) and 

Olson et al. (1986) both noted a consistent asymmetry in premaxillary tooth counts for 

Plestiodon: 4 teeth on the right side, and 3 teeth on the left side (Kingman’s [1932] study 

also included a specimen of E. schneiderii, a member of Eumeces sensu stricto). A left 
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premaxilla is not known here, but the presence of 4 tooth spaces on the corresponding 

right element in the fossil taxon is notable.  

 Five extinct species of Eumeces (now Plestiodon) have been described: E. 

antiquus from the Arikareean of Nebraska (Holman 1981), E. miobsoletus from the 

Barstovian of Texas (Holman 1977), E. hixonorum from the Clarendonian of Kansas 

(Holman 1975), E. striatulus from the Blancan of Kansas (Taylor 1941), and E. carri 

from the Irvingtonian of Florida (Meylan 1982). Estes (1963), Wilson (1968), and 

Wellstead (1982) have all remarked on the difficulty of ascribing fossil material to any 

particular species of Plestiodon given their diversity and overall morphological 

similarity. I likewise find no reliable, objective metric for the identification of isolated 

tooth-bearing elements, even for more inclusive subclades indicated by molecular 

phylogenies (Brandley et al. 2012). I have not seen any of the type material, but extinct 

fossil species appear to be insufficiently diagnosed.  

 Eumeces antiquus is known from a single dentary and is diagnosed primarily by 

the presence of flattened tooth crowns in the posterior half of the tooth row. Holman 

(1981) notes that at least some of the posterior teeth are worn, so additional and better-

preserved material is desirable to more confidently assess the importance of such a 

character. Eumeces miobsoletus (Holman 1977) is known from a maxilla, a premaxilla, 

and a retroactively referred dentary (from the same locality) originally described and 

figured in Holman (1966). Holman (1977) argues that pigmentation in the maxillary and 

premaxillary tooth crowns of E. miobsoletus (not described for the dentary) is indicative 

of a close relationship with extant P. obsoletus. Pigmented tooth crowns were only 

observed in 2 of 12 modern skeletons of P. obsoletus available for this study. They are 
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also present in a specimen of P. laticeps, suggesting it may be a more widespread feature 

for the group with little taxonomic utility. The Brooksville fossils lack apical 

pigmentation. Eumeces hixonorum (Holman 1975) and E. striatulus (Taylor 1941) are 

diagnosed primarily based on size and tooth spacing, characters that display too much 

intraspecific variation and interspecific overlap to be of much value. Estes (1983) 

suggests that diagnostic features given by Meylan (1982) for the extinct E. carri are 

taphonomically artifactual or otherwise occur elsewhere in Plestiodon.   

The relatively recent recognition of a paraphyletic Eumeces (Brandley et al. 2005, 

2012; Griffith et al. 2000; Schmitz et al. 2004) has 2 important zoogeographic 

implications for the early fossil record of North American scincines: 1) Assuming a 

single invasion by the genus, there is little reason to expect North American fossil 

members of the Plestiodon lineage to fall outside the crown of the clade. North American 

members are nested well within East Asian Plestiodon, suggesting an Asian origin for the 

genus (Brandley et al. 2012; Macey et al. 2006). Despite an estimated 18-30 Ma 

divergence date (Brandley et al. 2011), morphological analysis (skeletal and external) 

indicates they remain very similar (Griffith et al. 2000). Indeed, Estes (1963) commented 

on his inability to tell apart modern Asian and North American forms based on cranial 

skeletal elements. Even the earliest New World immigrants, then, would be expected to 

look much like living species if molecular hypotheses are correct. 2) Mesoscincus (3 

species; also formerly Eumeces) from southern Mexico and Central America does not 

appear to be the sister taxon of Plestiodon (Brandley et al. 2005, 2012; Pyron et al. 2013; 

Schmitz et al. 2004). Such a scenario would necessitate an independent dispersal event 

that is thus far unaccounted for in the fossil record.  
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The single specimen of Mesoscincus managuae examined for this study shares 

with examined members of Plestiodon (and the fossil specimens) an open Meckelian 

groove that is directed ventrally anteriorly and turns lingually posteriorly, labially convex 

tooth crowns with lingual striae, an AIAF that is anteriorly displaced relative to the 

splenial (and an overall similar splenial morphology), and unfused premaxillae with 4 

tooth spaces on the right and 3 on the left (incompletely known for the fossil). Tooth-

bearing elements of the 2 genera are remarkably similar, but I tentatively suggest closer 

affinities of the fossils with Plestiodon for sharing slightly bulbous tooth crowns (not 

present in all observed Plestiodon) that are more strongly striated and the possession of a 

well-developed subdental gutter. The crowns of M. managuae are parallel-sided and only 

very weakly striated, and the teeth sit on a narrower, shallower dental shelf. Tooth apices 

also appear more angular. The postdentary articulations of M. managuae differ from at 

least some examined Plestiodon, but a broader survey of this character was not 

undertaken because none of the fossils preserve the posterior portion of the dentary. A 

greater sample size of comparative specimens of all 3 species of Mesoscincus is 

desirable, but preliminary analysis suggests closer morphological affinities of the fossils 

to Plestiodon.  

Among extant species of Plestiodon, only the anomalously derived (Telford 1959) 

P. reynoldsi (formerly Neoseps; a Florida endemic) can be reasonably excluded from 

consideration as a candidate for the fossil species. An adult (SVL= 56 mm) male 

specimen (JIM 1624) has fewer (15) teeth that are more widely spaced, slimmer, and 

have a markedly different, blade-like shape. An exact tooth count for the fossils is 

unknown, but almost certainly would have exceeded 15.  
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Conclusions 

At least 7 species of non-anguimorph lizards are present in the Brooksville 2 LF. 

Taxonomic resolution varies, but the assemblage includes the earliest record of Anolis, an 

additional “anole” that may or may not fall within the crown radiation, an iguanid of 

uncertain phylogenetic affinities, an iguanine, a eublepharid gekkotan, a rhineurid 

amphisbaenian, and a scincid. The fossil species of Anolis is disproportionately common 

relative to other taxa, and an argument for the generic-level identification of abundant 

dentaries is strengthened by the association of additional cranial elements displaying 

Anolis characters. It does not share a close relationship with A. carolinensis, the only 

species of anole native to the southeastern United States today. A second Anolis-like 

taxon is distinguished by its small size and highly reduced IMS but cannot confidently be 

referred to the extant genus. Even allowing for some taxonomic uncertainty, the early co-

occurrence of a species of Anolis with such a close relative is noteworthy given the 

extensive sympatry that characterizes many modern Anolis communities (Losos 2009). 

The relationships of 2 additional iguanids are less precise (one is likely an iguanine), but 

neither has a close living relative native to Florida. A eublepharid gekkotan could not be 

identified to any particular genus. Regardless, its occurrence is extralimital; the family is 

represented in the New World today only by Coleonyx in tropical Mesoamerica and the 

desert southwest. In contrast, new records of rhineurid amphisbaenians significantly 

extend their temporal range within their modern, relictual center of endemism. A scincid 

closely resembles species of Plestiodon inhabiting the region today, but a relationship 

instead with the tropical genus Mesoscincus cannot be ruled out.  

  



76 

CHAPTER 3 

NON-ANGUIMORPH LIZARDS OF THE MILLER LOCAL FAUNA 

Introduction 

Published lacertofaunas from the Hemingfordian LMA are rare; Robinson and 

Van Devender (1973) and Yatkola (1976) described lizards from the Split Rock and 

Runningwater Formations (respectively) from the Great Plains, Holman (1998) reported a 

single species of anguid from the Pollack Farm locality in Delaware, and Estes (1963) 

and Bhullar and Smith (2008) collectively documented the presence of 8 species of lizard 

from the Thomas Farm local fauna of Florida. Abundant and well-preserved 

microvertebrate remains from the Miller local fauna of Dixie County, Florida include a 

number of squamate taxa that promise to add significantly to our understanding of 

Hemingfordian herpetofaunas. In this chapter I seek to summarize the non-anguimorph 

lizard assemblage recovered so far from the site. Anguimorphs will be covered elsewhere 

by myself and others from the ETSU Department of Geosciences.  

 Only a select few taxa have been reported from the Miller LF. Fossils come from 

the Suwannee River (Baskin 2003), but there are no comprehensive discussions of the 

geology or taphonomy of the fossil-bearing deposits. Wang et al. (1999) reported the 

borophagine canid Desmocyon matthewi, Wang (2003) reported the hesperocyonine 

canid Osbornodon scitulus, Baskin (2003) described the potosin procyonid 

Bassaricyonoides phyllismillerae, and Mead and Schubert (2013) reported the occurrence 

of the erycine boid Pterygoboa. Morgan and Czaplewski (2012) discussed the presence 

of at least 3 species of bat, and Baskin (2003) mentioned undescribed mustelids. The 
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latter, along with the described canid taxa, suggest an early Hemingfordian age for the 

fauna (Baskin 2003).  

 Anolis sp.  

(Figure 17) 

Referred Material  

MLF A1 (partial right dentary), MLF A2-3 (partial left dentaries), MLF A4 

(partial right maxilla)  

Description  

Dentary. MLF A1 (Fig. 17) is the posterior portion of a right dentary with the last 

11 spaces of the tooth row. The teeth have tapering, tricuspid crowns dominated by a 

large central cusp. Accessory cusps are developed on all preserved teeth but remain small 

throughout. Posterior teeth become gradually and weakly mesiodistally expanded relative 

to anterior teeth. The Meckelian groove is closed and fused far posteriorly, but eventually 

opens dorsally as a narrow slit (interpreted here as a CAMF) that extends beneath the last 

five teeth. Dorsal to the CAMF, the sML is pinched to form a lingually projecting ridge 

of bone that continues anteriorly for the length of several tooth spaces. Inside the dentary 

tube, an elongate, subvertical IMS extends to a level below the fourth from last tooth. The 

dorsal ramus of the IMS is continuous posteriorly with a moderately developed IML that 

surpasses the end of the tooth row. Immediately posterior to the tooth row there is an 
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elongate external medial notch for the coronoid. Labially a well-developed facet for an 

anterolateral extension of the coronoid extends below the ultimate tooth.  

 

 

Figure 17. Cranial elements of Anolis sp. A, Right dentary of Anolis sp., MLF A1, in 

lingual view. B, Right maxilla of Anolis sp., MLF A4, in labial view. Abbreviations: 

ca.cr, canthal crest; CAMF, combined alveolar-mylohyoid foramen; Co.ft, coronoid 

facet; IML, intramandibular lamella; IMS, intramandibular septum. Scale bar equals 1 

mm.  

 

Maxilla. A single maxilla, MLF A4 (Fig. 17), is associated here based on similar 

size and tooth form. It is broken posteriorly but retains the first 10 tooth spaces of the 

tooth row. Weak accessory cusps are developed by the seventh tooth. The SAF is roofed, 

and a small foramen pierces the dorsal surface of the palatal flange posterior to the crista 
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transversalis. Labially the surface of the maxilla is weakly rugose. The anteriormost 

labial foramen is distinct from the rest for being set on a globular “pedestal” of bone.  

The ascending portion of the facial process rises from the premaxillary process at a 

shallow angle and is folded weakly medially to form a subtle canthal ridge. There are not 

separate openings for the AIAF and SNAF, only a single large foramen at the anterior 

base of the facial process. Much of the anterior margin of the premaxillary process is 

broken, but an anteromedially projecting vomerine process is preserved. At its distal end 

the vomerine process bears an elongate facet for the vomer that is oriented 

ventromedially. Ventrally a small foramen penetrates the lingual edge of the palatal 

flange between the transverse level of the first and second teeth. 

Remarks 

Reasons for the referral of this species to Anolis are the same as given for dentary 

and maxillary specimens of Anolis sp. (morphotype A) in Chapter 2. Although less 

abundant and more poorly represented, material here does not differ significantly in 

morphology from the Brooksville taxon. Both share a strongly vertical IMS and possess a 

moderately developed IML posteriorly. The CAMF in the Miller anole is more elongate, 

but this character is intraspecifically variable in examined comparative material of 

modern Anolis. 

 Smith (2009a) remarked on the presence of dorsal and ventral foramina on the 

palatal flange of Anolis; one posterior to the crista transversalis dorsally, and another at 

the base of one of the anteriormost teeth ventrally. While such foramina are perhaps most 

common among Anolis, they evidently have a wider distribution among iguanids. I have 
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observed a dorsal foramen to be variably present among corytophanines, iguanines, 

phrynosomatines, and tropidurines in addition to Anolis. A ventral foramen is less 

common but occurs with some frequency among phrynosomatines. Both are present in 

the Miller Anolis, but their phylogenetic significance is not clear.  

 A common feature of observed Anolis maxillae, as described for the fossil above, 

is the tendency for the anteriormost labial foramen to protrude slightly. This may merely 

be related to the development of rugosities on the external surface of the bone, but its 

presence here at least supports an Anolis relationship.  

cf. Basiliscus sp. 

(Figure 18) 

Referred Material 

MLF C1 (right dentary), MLF C2 (partial right dentary), MLF C3 (splenial), MLF 

C4 (ectopterygoid), MLF C5 (coronoid) 

Description 

Dentary. MLF C1 (Fig. 18) is a nearly complete right dentary with spaces for 22 

teeth. The ventral border of the bone is nearly flat in lateral view, turning only at the 

symphysis. The tooth row, preserved in its entirety, measures 14.9 mm in length. Anterior 

teeth are short and unicuspid but become taller posteriorly. Weak accessory cusps are 

developed by the ninth tooth position; fully tricuspid teeth with flared crowns begin by 

the 13th tooth position and continue for the remainder of the dentary. The Meckelian 
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groove is open anteriorly, highly restricted at the level of the 10th through 12th tooth 

positions, and widely open posteriorly. The broadly diverging infra- and supra-Meckelian 

lips in the posterior half of the jaw give the bone a deep appearance. The dentary depth/ 

tooth row length ratio (Smith 2006) is 0.31. A subdental shelf is present for most of the 

tooth row, but ends abruptly after the level of the penultimate tooth. The end of the tooth 

row is marked by a vertical ridge of bone that forms the anterior border of a strong 

medial coronoid notch (Smith 2009a). The IMS extends to a level between the 16th and 

17th tooth positions, giving an IMS/ tooth row length ratio (Smith 2006) of 0.69. 

Posterior to this, there is a prominent IML that continues beyond the ultimate tooth to 

form part of the medial coronoid notch. Labially there is no coronoid facet. There are 8 

labial foramina, the first 6 of which are roughly paired. The last is at the level of the 16th 

tooth and opens primarily posteriorly.  
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Figure 18. Comparative dentaries of corytophanines. A, Right dentary of cf. Basiliscus 

sp., MLF C1, in lingual view. B, Right dentary of Basiliscus vittatus JIM 0228 in lingual 

view. Abbreviations: Co.ft, coronoid facet; iML, infra-Meckelian lip; IML, 

intramandibular lamella; Mk.gr, Meckelian groove; sML, supra-Meckelian lip. Scale bar 

equals 1 mm.  

Remarks 

The posterior development of the subdental shelf, the well-developed 

intramandibular lamella, and the brief restriction of the Meckelian groove all indicate 

affinities with Corytophaninae (see Chapter 2 under Iguanid Brooksville A). The length 

of the intramandibular septum and depth of the dentary are also consistent with what is 

observed for the clade, but not necessarily to the exclusion of other groups. Smith (2006) 
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considered an IMS ratio greater than 0.7 to be derived in a number of iguanids. An IMS 

ratio of 0.69 in the MLF C1, while common to corytophanines, is probably 

plesiomorphic. The depth of MLF C1 (with a ratio of 0.31) is not exceptional for iguanids 

(some iguanines and phrynosomatines, in particular, have similar ratios), but is roughly 

equal to values for Basiliscus and Corytophanes (Smith 2011a). The most telling 

evidence for a corytophanine relationship comes in the form of strong medial coronoid 

facet and a well-developed intramandibular lamella. Smith (2009a) first noted the 

significance of the medial coronoid facet in modern and fossil members of 

Corytophaninae, and I likewise have observed a comparable feature only in that group.  

 With the exception of the retention of an open Meckelian groove, MLF C1 is 

nearly identical to observed specimens of Basiliscus; the teeth are remarkably similar. 

The tooth crowns of fossil corytophanines are typically parallel-sided (Smith 2009a; 

2009b; 2011a; 2011b) and flare only infrequently in some specimens (Smith and Gauthier 

2013). Consistently flared tooth crowns, then, are probably derived for Basiliscus and 

Corytophanes and subsequently lost in Laemanctus (Lang 1989). Flared tooth crowns are 

common among iguanids (Lang 1989) but take on a variety of different forms. Although 

a detailed morphometric analysis of the variation this character encompasses was beyond 

the scope of this study, the teeth of MLF C1 are more like those of Basiliscus than of 

Corytophanes (see Pregill 1992).  

The Meckelian groove is open (but restricted) in stem corytophanines (Smith 

2011b), but its closure (and sometimes fusion) may have occurred independently in all 3 

extant genera (Smith 2009a; 2011b). It is fused in all species of Corytophanes, only 

closed in some species of Basiliscus (but fused in others), and even open in some 
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specimens of Laemanctus (Lang 1989). Depending on the evolution of this character, the 

open groove of the Miller species may or may not exclude if from the crown of 

Basiliscus.  

While fossil corytophanines are increasingly common in the Paleogene of North 

America and Europe, the Miller specimens may be the oldest material referable to an 

extant genus. Additional representative elements are needed for a stronger diagnosis, but 

preliminary evidence suggests a relationship with Basiliscus. Regardless of its lower-

level affinities, the Miller species represents the latest known extra-tropical occurrence of 

the subfamily.  

Iguanine gen. et sp. indet. 

(Figure 19) 

Referred Material 

MLF I1 (partial left mandible), MLF I2-3 (partial left dentaries), MLF I4 (partial 

right dentary) 

Description  

Mandible. MLF I1 (Fig.19) is a partial left dentary that retains articulated 

fragments of the splenial, coronoid, angular, and surangular posteriorly. There are spaces 

for 16 teeth, and the 5 that remain are tricuspid. The bone is broken anteriorly and 

posteriorly, so a total tooth count is not possible. There probably were not many 

additional tooth spaces posteriorly. The Meckelian groove is closed and fused. A weak 
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subdental shelf is present anteriorly but fades to barely accommodate the circumference 

of the tooth bases posteriorly. Even far back along the length of the bone, the lingual 

margin of the subdental shelf forms a sharp corner with the sML. The Meckelian 

reentrant is long, narrowly U-shaped, and extends to a level under the fourth from last 

preserved tooth space. It is invaded by part of the coronoid posterodorsally, part of the 

angular posteroventrally, and part of the splenial anteriorly. The AIAF, situated at the 

anterior apex of the Meckelian reentrant, is divided roughly equally between the dentary 

anterodorsally and the splenial posteroventrally. A smaller mylohyoid foramen is 

positioned posteroventral to the AIAF and is contained entirely by the splenial. Viewed 

lingually, the angular is exposed to a level under the penultimate tooth and the coronoid 

to under the ultimate tooth. The coronoid almost certainly extends farther anteriorly; it is 

deep to the splenial and obscured from view. Where the splenial is broken posteriorly, 

there is an obvious facet on the coronoid where the 2 bones overlapped. A fragment of 

the surangular previously occupied a position along the inside of the labial wall of the 

dentary, but became isolated during preparation. There is no obvious facet for an 

anterolateral extension of the coronoid. If present, it did not extend far anteriorly.  

 Other dentary specimens provide additional information. The symphysis is fairly 

robust, and the Meckelian groove is fused far anteriorly. An oval opening for the groove 

extends only for the length of the first 2 to 3 teeth. Anterior teeth are high-crowned, 

strongly lingually recurved, and develop accessory cusps early in the tooth row. In one 

specimen, MLF I4, distinct shoulders (Hotton 1955) are present by the second tooth. 

Teeth are evenly spaced, and crowns do not overlap. Relatively few crowns are well 

preserved for any specimen, but there is a tendency for the anterior accessory cusp to be 
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slightly higher relative to the posterior accessory cusp. The IMS, although not directly 

measurable in any specimen, is not elongate. Looking posteriorly into the dentary tube of 

MLF I2, the septum does not extend to the level of the last labial foramen. Viewed 

lingually the ventral margin of the bone is straight and curves only at the symphysis. 

 

 

Figure 19. Left mandible of Iguaninae gen. et sp. indet., MLF I1, in lingual view. 

Abbreviations: AIAF, anterior inferior alveolar foramen; AMF, anterior mylohyoid 

foramen; An, angular; Co, coronoid; Spl, splenial. Scale bar equals 1 mm.  

Remarks  

These specimens are referred to Iguaninae for having an extensively fused 

Meckelian groove and flared tooth crowns (see Iguaninae gen. et sp. indet. in Chapter 2). 

The development of accessory cusps early in the tooth row (Smith 2011b) and the higher 

relative position of mesial cusps compared to distal ones (pers. obs.) support this 

assignment. The absence of a preserved labial coronoid facet on the dentary on any 
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specimen is not surprising; all are broken posteriorly where one would (potentially) be 

found. Even with so many elements of the mandible represented, the Miller iguanine is 

difficult to place at lower taxonomic levels. The relative positioning of the AIAF and 

AMF is intraspecifically variable in iguanines (de Queiroz 1987; pers. obs.), so neither is 

very informative. Based on what is preserved of the postdentary bones in MLF I1, 

perhaps only Sauromalus can be excluded for having a characteristically reduced splenial 

(de Queiroz 1987).  

Tricuspid teeth are found in Amblyrhynchus, some Brachylophus, and some 

Ctenosaura among iguanines (de Queiroz 1987), but the evolution of polycuspate (here, 

more than 3) teeth is not well understood (see Chapter 2). The presence of only 3 cusps 

for some Brachylophus and some Ctenosaura could potentially represent apomorphic 

reversals (de Queiroz 1987), in which case an argument for referral of the Miller 

specimens to either could be made. The tooth crowns of Amblyrhynchus have 

exaggerated accessory cusps and would not be easily mistaken with other taxa (de 

Queiroz 1987; pers. obs.). Tricuspid teeth are also known for some Dipsosaurus dorsalis 

(Norell 1989) and the Eocene dipsosaur Queironius praelapsus (Smith 2011b); this 

character alone is insufficient for fossil referral. Alternatively, the population at the 

Miller site may not be adequately sampled. There are only a few specimens, and all are 

small relative to mature adults of most observed modern taxa. Some iguanines are 

tricuspid as juveniles, and then add cusps ontogenetically (de Queiroz 1987). Additional 

material may reveal that not all of the Miller individuals retained only 3 cusps.  

The sparse material available for the Brooksville and Miller iguanines is not 

amenable to extensive comparison, but there are at least 2 apparent differences. Even in 
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the absence of measurable tooth rows, the dentary of the Brooksville iguanine looks to be 

deeper than that of the Miller taxon. In the Brooksville specimens, the subdental lingual 

face is tall and nearly vertical; this results in a very “narrow” appearance when viewed 

posteriorly. In this way, it is similar to the morphology of Dipsosaurus dorsalis. In the 

Miller iguanine the same feature is shorter and more rounded, just as in many other 

iguanines. The teeth of the Miller specimens also never overlap as they do in the 

Brooksville iguanine, but the posterior end of the tooth row is admittedly never as well 

preserved in the former.  

Two other fossil taxa deserve mention. Stevens (1977) referred a fragmentary left 

dentary from the Arikareean of Texas to either Ctenosaura or Sauromalus. The specimen 

lacks features that would unite it definitively with either, but its fused Meckelian groove 

at least supports an iguanine relationship. Estes (1963) described a dentary fragment and 

single vertebra from Thomas Farm that potentially represent an iguanine (de Queiroz 

1987), but again, there is not enough preserved to merit further interpretation. Ultimately, 

the relationships of all 4 fossil taxa can only be clarified with additional material.  

Phrynosomatinae gen. et sp. indet. 

(Figures 20-21) 

Referred Material 

 MLF PDr1-10 (partial right dentaries), MLF PDl (partial left dentaries), MLF 

PMr1 (partial right maxilla), MLF PMl1-2 (partial left maxillae), MLF PF1-2 (partial 

frontals), MLF PP1-2 (partial parietals) MLF PB1-4 (partial braincase) 
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Description  

Dentary. Dentaries are well represented for this taxon, but only 2 specimens, MLF 

PDr1 and MLF PDr2, preserve the entire tooth row. They have spaces for 22 and 21 

teeth, respectively, and MLF PDr1 is approximately 25% larger than MLF PDr2. MLF 

PDr1 has an IMS/ tooth row length ratio of 0.75; MLF PDr2 has a slightly higher ratio of 

0.798. An exact measurement was unobtainable for other specimens, but the IMS 

consistently ends at around the level of the fifth (from last) tooth space whenever the 

posterior end of the bone is preserved. Teeth are high crowned, unicuspid, and gently 

recurved, especially anteriorly. Tooth shafts are distended lingually at mid-height, 

extending further medially than both the base and the crown. The shafts are oval in cross 

section, but the crowns taper conically to a sharp apex. In a few specimens weak 

accessory cusps are developed on only the posteriormost teeth. In most specimens, 

however, crowns are uniformly unicuspid throughout. Commonly, all but the last few 

teeth are weakly recurved. Genioglossus scars (Wellstead 1982) are frequently but not 

universally present anteriorly. An IML is variably present; it is moderately developed in 

some (e.g., MLF PDr1) specimens but absent in others. The Meckelian groove is either 

closed or restricted anteriorly but never fuses. Some individuals bear a distinct, obliquely 

oriented dorsolabial “shelf” posteriorly (the “dorso-labial concavity” of Wellstead 1982). 

Two specimens (MLF PDr3 [Fig.20] and MLF PDr4) exhibit a posterior extension of the 

dentary that continues well beyond the end of the tooth row. Labially the posterodorsal 

end of the bone is constructed to accommodate a weak invasion by the coronoid that does 

not reach the tooth row.  
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Figure 20. Dentary of Phrynosomatinae gen. et sp. indet. A, B, Right dentary of 

Phrynosomatinae gen. et sp. indet., MLF PDr3, in lingual and labial views, respectively. 

Abbreviations: Co.ft, coronoid facet; IMS, intramandibular septum; Mk.gr, Meckelian 

groove. Scale bar equals 1 mm.  

  

Maxilla. Three maxillary fragments are associated here based on tooth form, size, 

and relative abundance. The most complete fragment, MLF PMl1, is 5.29 mm in length. 

Nineteen tooth spaces are preserved, but part of the premaxillary process is broken away. 

One or 2 additional teeth were likely present anteriorly. Teeth are high crowned and 

unicuspid but lack the lingual distension described for dentary teeth. Maxillary teeth also 

appear more lingually recurved than those found on the mandible, even posteriorly. The 
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SAF is roofed. No specimen preserves a complete palatine process, so its morphology is 

unknown. Immediately posterior to where the palatine process is broken away on MLF 

PMl1, the lingual edge of the palatal flange bears a smooth, flattened area extending 

posteriorly for the length of several tooth spaces. At the end of the bone, the palatal 

flange is divided longitudinally into nearly equal labial and lingual halves by a low ridge 

of bone that separates the jugal and ectopterygoid facets.  Much of the facial process is 

broken dorsally, but anteriorly it bends medially to join the crista transversalis. The 

resulting canthal ridge slopes fairly steeply towards a dorsoventrally short premaxillary 

process. Medially the crista transversalis is very strongly developed. The relationship of 

the AIAF and SNAF is unclear due to breakage, but they are separate on MLF PMl2. On 

that specimen the anterior margin of the premaxillary process is asymmetrically concave 

when viewed dorsally; a medial projection extends further anteriorly than the lateral one. 

On both MLF PMl2 and MLF PMr1 a small foramen is present ventrally on the palatal 

flange at the anterior end of the tooth row.   

  

Frontal. Two azygous frontals are associated here based on size, relative 

abundance, and iguanian morphology. Both are broken anteriorly but were obviously 

constricted strongly between the orbits. The ratio of the narrowest width to the widest 

posterior width is 0.214 for MLF PF1 and 0.204 for MLF PF2. Dorsally weak epidermal 

scale impressions can be made out on both specimens. The crista cranii are individually 

wide posteriorly but narrow anteriorly where they approach each other. The posterior 

margin of the frontal is concave, suggesting the presence of a widely open parietal 

fontanelle. The posterolateral corners of the bone bear postfrontal facets.  
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Parietal. Two parietal fragments are tentatively associated with this taxon based 

on size and relative abundance. The parietal table of MLF PP1 is flat and roughly 

trapezoidal. The left postparietal process is broken, but the right one bears a lateral 

supratemporal facet posteriorly. The posterior nuchal fossae are widely separated. 

Ventrally a narrow parietal fossa is situated at the posterior margin of the bone.  

  

Braincase. The right portion of a damaged braincase, MLF PB1 (Fig. 21), is 

associated on the basis of size, relative abundance, and iguanian morphology. Portions of 

the basiocciptal, supraoccipital, otooccipital, and prootic are all represented and 

indistinguishably fused. A dorsal alar process is not developed. Medially, a very weakly 

developed supratrigeminal process is present. The crista prootica is reduced, and the 

paraoccipital process is short. The LARST is wider in diameter than the fenestra ovalis.  

The crista interfenestralis that separates them sweeps up and appears as a weak, angular 

projection when viewed posteriorly. A well-developed occipital recess is present dorsal to 

the basal tuber. In lateral view the ventral tip of the basal tuber is directed somewhat 

anteriorly. It is not clear if the sphenoid contacted the tuber, but there are no obvious 

facets indicating such an arrangement. The small facial foramen is positioned anterior to 

the fenestra ovalis. An additional foramen of similar size exits dorsal to the fenestra 

ovalis just below the crista prootica; its origin is unknown. 
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Figure 21. Comparative braincases of phrynosomatines. A, Braincase of 

Phrynosomatinae gen. et sp. indet., MLF PB1, in lateral view. B, Braincase of 

Holbrookia maculata ETVP 4038 in right lateral view. Abbreviations: asc, anterior 

semicircular canal; cr.P, crista prootica; f.o, fenestra ovalis; f.7, foramen for facial nerve; 

oc.r, occipital recess; Pocc, paroccipital process. Scale bar equals 1 mm.  
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Remarks  

A phrynosomatine relationship is inferred on the basis of the posterior elongation 

of the dentary (Etheridge and de Queiroz 1988), the slight anteroventral expansion of the 

coronoid (Etheridge and de Queiroz 1988), extensive closure/restriction of the Meckelian 

groove without fusion (Etheridge and de Queiroz 1988), the elongate IMS (Smith 2006), 

and the high-angle medial bend of the facial process of the maxilla (Smith 2011a). Other 

characters at least consistent with phrynosomatine morphology include the dorsolabial 

“shelf” of the dentary (Twente 1952; Etheridge 1958; Wellstead 1982), a large parietal 

fontanelle (see Etheridge 1964: fig. 1), and a highly constricted frontal (pers. obs.); 

interpretation of the latter 2 characters assumes that nondentigerous elements are 

associated correctly.  

 Phrynosomatines are a diverse (>140 spp.) group of iguanids distributed primarily 

among drier regions of the southwestern United States and Mexico (Uetz 2014). They are 

composed of 2 main clades: one containing Phrynosoma and the “sand lizards” 

(Callisaurus, Cophosaurus, Holbrookia, and Uma), and another containing Petrosaurus, 

Urosaurus, Uta, and Sceloporus (Reeder and Wiens 1996; Wiens et al. 2010). In an early 

study of the group Etheridge (1964: 612) observed that it was “impossible to arrange all 

of the species of [phrynosomatines] into neat groups according to dentition.” Norell 

(1989) undertook a more detailed analysis of their dental variation but ultimately used 

differences in tooth morphology only to delimit sympatric fossil morphotypes rather than 

to assign his specimens to modern groups. Even in the absence of clear-cut criteria for 

taxonomic differentiation, the sharp, recurved, and primarily unicuspid teeth displayed by 

(most of) the Miller sample are noteworthy. They are unlike those found in either of the 2 
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phrynosomatines inhabiting the eastern United States today (Sceloporus undulatus and 

the Florida endemic S. woodi; Krysko et al. 2011) and perhaps most closely match those 

observed here for Urosaurus. Still, there is little evidence linking the Miller species to 

any particular genus.  

 Among roughly contemporaneous fossil taxa, the morphology of the Miller 

specimens draws comparison with ?Holbrookia antiqua from the Hemingfordian of 

Nebraska (Yatkola 1976) for sharing a diminutive size and similar tooth morphology. 

That species was assigned to Holbrookia only with reservation and is represented by 

three broken dentaries and a single fragmentary maxilla. 

If the frontals and braincase are associated here correctly, at least 2 characters 

would exclude the Miller species from Holbrookia or other sand lizards: the retention of a 

small postfrontal and the lack of an enlarged fenestra ovalis. The postfrontal is lost in the 

sand lizards (Etheridge and de Queiroz 1988), and the Miller frontals bear small facets 

indicating its presence. In Callisaurus, Cophosaurus, and Holbrookia the diameter of the 

fenestra ovalis of the braincase is greatly expanded at the expense of the (much smaller) 

LARST (Evans 2008; pers. obs.). This morphology is taken to an extreme in the earless 

lizards Cophosaurus and Holbrookia (Fig. 21), and the tendency to enlarge this opening 

appears convergently common in other, unrelated burrowing lizard taxa that have lost 

external ear openings (e.g., Plestiodon reynoldsi). The functional significance of this 

character in eared Callisaurus is less clear, but it seems to unite all 3 genera to the 

exclusion of the Miller phrynosomatine. Because the Miller species lacks derived features 

of other genera, though, it is not identified below the subfamily level.  
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Scincidae gen. et sp. indet. 

(Figures 22-23) 

Referred Material  

MLF S1-6 (partial right dentary), MLF S7-9 (partial left dentary), MLF S10 

(partial right maxilla), MLF S11-12 (?), MLF S13-16 (right premaxilla), MLF S17-20 

(left premaxilla), MLF S21 (left postfrontal) 

Description 

Dentary. All recovered dentaries are anterior, symphysis-bearing fragments. No 

specimen preserves an entire tooth row, so a tooth count is unobtainable. Tooth crowns 

are low, labially smooth and convex, and lingually striated (Fig. 22). The teeth of some 

specimens are labiolingually expanded and have a more robust appearance than the teeth 

of others. A moderately developed subdental gutter is always present, and the Meckelian 

groove is always open (primarily ventrally) as far as the bone is preserved.  
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Figure 22. Comparative dentaries of scincids. A, Right dentary of Scincidae gen. et sp. 

indet., MLF S1, in lingual view. B, Right dentary of Mesoscincus managuae FB 1131 in 

lingual view. C, Right dentary of Plestiodon fasciatus ETVP 2892 in lingual view. Scale 

bar equals 1 mm.  
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 Maxilla. Maxillary fragments are associated here based on similar size and tooth 

form. Only the posteriormost portion of the bone is known. There are dorsal and medial 

facets at the end of the palatal flange for the jugal and ectopterygoid, respectively, and 

the terminus is bifurcated.  

 

 Premaxilla. Not all premaxillae preserve a complete palatal flange, but of those 

that do left elements consistently bear 3 tooth spaces while right elements bear 4.  

 

 Postfrontal. The postfrontal (Fig. 23) is triradiate with a long, broad main body 

posteriorly and smaller lateral and medial processes anteriorly. The posteromedial edge is 

damaged. The anteromedial process bears a medial facet that would have clasped the 

frontal dorsally and ventrally. The anterolateral process lacks an obvious facet but 

presumably would have contacted the jugal. The anterior margin of the bone between the 

frontal and jugal processes is markedly concave and would have marked the 

posterodorsal boundary of the orbit. A long facet runs along the dorsal surface of the 

posterolateral edge. By comparison with other scincids, this facet would have been 

overlapped by either the postorbital or the squamosal.  
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Figure 23. Comparative postfrontals of scincids. A, Left postfrontal of Scincidae gen. et 

sp. indet., MLF S21. B, Left postfrontal of Mesoscincus managuae FB 1131. C, Left 

postfrontal of Plestiodon fasciatus ETVP 2892. First column, Dorsal view. Second 

column, Ventral view. Abbreviations: Fr.pr, frontal process; J.pr, jugal process; p.pr, 

posterior process. Scale bar equals 1 mm.  
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Remarks  

Reasons for referral to the Scincidae are the same as for the Brooksville skink 

above, and there is little about either that would distinguish the two. At least some of the 

Miller dentaries exhibit a feature not observed in the Brooksville specimens, namely a 

labiolingual expansion of the tooth shafts. In some specimens of Plestiodon (as well as in 

the single specimen of Mesoscincus) tooth shafts are expanded and rotated so that the 

lingual side of each tooth is directed somewhat posteriorly relative to the labial side. At 

least for Plestiodon this seems to be an ontogenetic transformation; it is more pronounced 

in larger individuals. Because its expression is tied with size and age, there is little reason 

to assign any special significance to discrepancies between the Brooksville and Miller 

specimens in this regard.  

 The morphology of the Miller postfrontal, however, may be informative. The 

anterior margin of the postfrontal of Mesoscincus is markedly concave (viewed dorsally), 

just as in the fossil. I have not observed a similar morphology in any examined member 

of Plestiodon, but only a single, immature individual of a single species of Mesoscincus 

was available for comparison. Without a broader osteological sample of Mesoscincus, it 

is difficult to judge the utility of this bone for drawing taxonomic conclusions. A better 

understanding of the Mesoscincus skeleton, as well as additional representative elements 

of both the Brooksville and Miller skinks, is necessary for a more definitive assignment.   

Teiidae gen. et sp. indet. 

(Figures 24-25) 
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Referred Material 

MLF T1-7 (7 partial dentaries), MLF T8 (partial left maxilla), MLF T9 

(premaxilla), MLF T10 (frontal) 

Description  

Dentary. Most specimens consist of anterior dentary fragments; the posterior end 

of the bone is never preserved. The best-preserved specimen, MLF T1 (Fig. 24), is the 

anterior portion of a left dentary with 12 teeth and 16 tooth spaces. Teeth are heterodont 

and subpleurodont with basal cementum. Anterior teeth are markedly shorter and smaller 

than those that follow. The first 6 teeth are unicuspid, but posteriorly the teeth become 

asymmetrically bicuspid with the addition of a small anterior cusp. The sML is 

dorsoventrally tall but never extends far enough ventrally to contact the iML. 

Consequently, the Meckelian groove is open lingually and somewhat ventrally. The 

dorsal margin of the sML is straight in lingual view, even anteriorly at the weak 

mandibular symphysis where most lizards evince a notable curvature. Another specimen, 

MLF T2, stands out for broadening considerably just before the broken posterior end. 

Viewed dorsally, the labial margin of the bone curves abruptly after the transverse level 

of the last preserved tooth and presages a significant labiolingual expansion posteriorly.  
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Figure 24. Comparative dentaries of “cnemidophorine” teiids. A, Left dentary of Teiidae 

gen. et sp. indet., MLF T1, in lingual view. B, Left dentary of Aspidoscelis tigris JIM 

0290 in lingual view. C, Left dentary of Kentropyx calcarata ETVP 3040 in lingual view. 

Abbreviations: iML, infra-Meckelian lip; sML, supra-Meckelian lip. Scale bar equals 1 

mm.  

 

Maxilla. A single posterior maxillary fragment is associated here based on similar 

tooth form. There are 4 tooth spaces and 3 bicuspid teeth that probably represent the end 

of the tooth row. A facet for the jugal is developed along the posterolateral edge of the 
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palatal flange. The SAF opens at the anterior end of the fragment, suggesting it must have 

been positioned far posteriorly on the maxilla.  

 

 Premaxilla. A single premaxilla is associated here based on its overall teiid 

morphology. Teeth are broken and worn, and part of the left portion of the bone is broken 

away. Assuming bilateral symmetry of the tooth row (the right side is complete), there 

were likely 8 teeth. The ascending nasal process rises fairly steeply, and there is no 

medial incisive process posteriorly. The left and right arms of the palatal flange diverge 

only gently posteriorly; they form an acute angle where they meet along the midline.  

 

 Frontal. MLF T10 (Fig. 25) is a small azygous frontal. It has a weak hourglass 

shape, reaching its narrowest point in the posterior half of the bone and widening 

anteriorly and posteriorly. The dorsal surface is rugose, and the boundaries between the 

paired frontoparietal and single frontal epidermal scales are clearly delineated by grooves 

in the bone. Viewed laterally, there is a gentle dorsal convexity. Ventrally, the crista 

cranii are spaced widely enough to accommodate a low midline ridge that arises 

posteriorly and runs between them before disappearing anteriorly. There is no indication 

of the distinctive descending processes found on the frontal of other scleroglossans 

(Evans 2008). 
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Figure 25. Comparative frontals of “cnemidophorine” teiids. A, Frontal of Teiidae gen. et 

sp. indet., MLF T10, in dorsal view. B, Frontal of Aspidoscelis tigris JIM 0290 in dorsal 

view. C, Frontal of Kentropyx calcarata ETVP 3040 in dorsal view. Scale bar equals 1 

mm.  
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Remarks  

Problematic generic-level relationships among at least some teiid lizards have 

provided an enduring source of uncertainty for the referral of North American fossil 

material (Estes 1963; Estes and Tihen 1964; Norell 1989; Bell 1993). Historical 

diagnoses of Ameiva and Cnemidophorus have relied on soft-tissue differences (Burt 

1931) that are not expressed skeletally, and consequently their remains cannot be 

confidently differentiated. Estes and Tihen (1964) suggested the taxonomy of both might 

be better served by synonymizing them under the same name, but even the inclusion of 

genetic characters has yet to fully clarify relationships that Estes (1963: 250) considered 

“hopelessly snarled.” Reeder et al. (2002) recovered both genera as paraphyletic, but did 

recover a monophyletic North American clade (all formerly Cnemidophorus) for which 

they resurrected the genus name Aspidoscelis. Their analysis also recognized a more 

inclusive “cnemidophorine” clade comprised of Ameiva, Cnemidophorus, Aspidoscelis, 

and Kentropyx, even while highlighting problems with the former two. In the absence of 

a stable definition of either Ameiva or Cnemidophorus (although see Harvey et al. 2012) 

to inform osteological comparisons, it is simplest at present to identify the Miller 

specimens only as a “cnemidophorine” teiid (sensu Reeder et al. 2002).  

 The distinctive bicuspid tooth crown morphology and basal cementum seen in the 

fossils are characteristic of all cnemidophorines (Estes 1963; Estes and Tihen 1964; 

Norell 1989; Bell 1993), but additional features of the dentary and frontal may rule out at 

least Kentropyx. Presch (1974) described Kentropyx as having a convex parietal-frontal 

roof, whereas Norell (1989) described it as having a concave parietal. Regardless of how 

one chooses to interpret this character, the single specimen of Kentropyx examined for 
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this study possesses a frontal that is markedly different from other cnemidophorines. It is 

dorsally concave (viewed laterally and anteriorly) and tapers to its narrowest point in the 

anterior half of the bone. In other cnemidophorines the frontal is weakly dorsally convex 

and tapers to its narrowest point in its posterior half. Viewed ventrally the Kentropyx 

frontal bears strong supraorbital flanges that I otherwise only observed as weaker 

developments on some specimens of Ameiva. The dentary of Kentropyx also differs from 

other cnemidophorines in having a more strongly curved (viewed laterally) crista dentalis 

and in possessing a much shorter (dorsoventrally) and less distinct supra-Meckelian lip. 

A broader skeletal sample of Kentropyx is desirable for a better understanding of the 

observed deviation in both bones.    

 The frontal of cnemidophorines becomes increasingly rugose with ontogeny 

(Norell 1989), suggesting the single frontal here belonged to an older individual. The 

divided frontoparietal scales inferred from encrustations on MLF T10 are probably 

primitive for teiids but exclude it from at least some members of Aspidoscelis. 

Aspidoscelis carmensis, A. ceralbensis, A. danheimae, A. espiritensis, A. franciscensis, A. 

hyperythra, and A. picta all have a single, undivided frontoparietal scale (Walker et al. 

1966; Walker and Taylor 1968; Reeder et al. 2002). That they are not closely related with 

the Miller species is not surprising given their distribution; all are found in southern 

California and on the Baja Peninsula (Grismer 1999).  

 Cnemidophorine teiids are common in late Neogene fossil herpetofaunas (Norell 

1989), but only a single extinct species has been described. Taylor (1941) named 

Cnemidophorus (= Aspidoscelis) bilobatus from the Pliocene of Kansas. His diagnosis 

was based mainly on subtle differences in tooth morphology that appear to be too 
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intraspecifically variable in modern specimens to warrant comparison with the Miller 

material. Previously, the oldest record of teiids in North America was from the 

Hemingfordian Thomas Farm locality (Estes 1963); the Miller specimens may be slightly 

older.  

Conclusions 

Non-anguimorph lizards from the early Hemingfordian Miller LF include a 

species of Anolis, a corytophanine closely resembling Basiliscus, an iguanine, a 

diminutive phrynosomatine, a scincid, and a “cnemidophorine” teiid. Remains of Anolis 

cannot be reliably distinguished from those from Brooksville 2, but they are considerably 

less abundant. Taken together, both records suggest the continued presence of non-

carolinensis anoles in Florida across the Oligocene/Miocene boundary. The 

corytophanine differs from modern species of Basiliscus only in retaining an open 

Meckelian groove but otherwise shares closer affinities with modern taxa than with fossil 

relatives from the Eocene. The precise relationships of an iguanine could not be 

determined. Regardless, the record is biogeographically significant because the subfamily 

does not have native representatives in the southeastern United States today. The small 

phrynosomatine is the most abundant lizard at the site. Characters of associated frontals 

and a partial braincase exclude it only from the “sand lizards” among the subfamily. The 

presence of a scincid, as for Brooksville 2, highlights the need for a better understanding 

of the Mesoscincus skeleton. A “cnemidophorine” teiid is the oldest known from North 

America. Records are unknown prior to the Hemingfordian, and their appearance in the 

early Miocene likely documents dispersal from South America.  
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS 

 In a study of late Eocene lizards from North Dakota, Smith (2006) brought 

attention to an uncharacteristic assemblage of iguanids that contrasted sharply with the 

known Paleogene record of the family. Gilmore’s (1928) original compendium of North 

American fossil lizards was dominated by early Cenozoic accounts of anguimorphs and 

amphisbaenians, and later overviews by Tihen (1964) and Estes (1970) yielded a similar 

pattern. The latter 2 studies were aided by an improved Neogene record that, considered 

together with the living herpetofauna, pointed to a dramatic taxonomic reorganization 

sometime in the Oligo-Miocene involving 1) the extirpation of anguimorphs and 

amphisbaenians from much of their former range, 2) a substantially increased 

representation of iguanids, 3) the arrival of scincids from Eurasia, and 4) the appearance 

of teiids from South America.  

That anguimorphs and amphisbaenians were affected by Cenozoic climatic 

changes is expected. Both groups are well represented in the North American Paleogene, 

and their modern diversity and distributions speak to conservative environmental 

preferences that would have hindered their continued occupation of middle latitudes. 

Modern scincids do not appear in the North American record until the Oligocene 

(Sullivan and Holman 1996), and teiids are unknown before the Miocene (Estes 1963; 

this study). The exact timing of their (multiple) respective dispersals is constrained only 

by negative fossil evidence, but comprehensive molecular phylogenies have mostly 

upheld early biogeographic hypotheses concerning their external origin (Reeder et al. 
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2002; Macey et al. 2006; Giugliano et al. 2007; Brandley et al. 2011; Brandley et al. 

2012).  

 In the separate summaries of Tihen (1964) and Estes (1970), iguanids were still 

poorly represented from the Paleogene. The description of a diverse iguanid community 

in the late Eocene by Smith (2006) suggested their apparent rise in the Miocene and after 

was artifactual; taxonomic biases in older faunas stemmed from inadequate sampling 

techniques that disproportionately favored the recovery of larger lizards (typically 

anguimorphs). Importantly, however, the iguanids identified by Smith (2006) were unlike 

those inhabiting the temperate latitudes of North America today. A more detailed 

reassessment of the same Chadronian fauna (Smith 2011b) and additional records from 

the early Eocene (Smith 2009a; 2011a; Smith and Gauthier 2013) bore out this notion 

further: Eocene iguanids included corytophanines, iguanines, and fossil relatives of 

Anolis and Polychrus — taxa now confined primarily to the neotropics. None of these 

groups have a definitive fossil record from middle latitudes in the Oligocene (Sullivan 

and Holman 1996), and their disappearance coincides with the climatic deterioration that 

characterizes the beginning of the epoch (Smith 2006).  

In some ways iguanid assemblages from Brooksville 2 and Miller are more 

similar to those from the Eocene than to others reported from the late Oligocene and 

Miocene. Arikareean, Hemingfordian, and Barstovian iguanids come almost exclusively 

from Great Plains localities, though, and provincialism in the Gulf Coast region has been 

demonstrated for mammals at this time (Albright 1998). The taxonomic resolution 

afforded by fossil squamate remains does not often lend itself to the same kind of 

between-locality faunal comparison that is possible for mammals (Norell 1989), but a 
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similar pattern for lizards is evident even at broad taxonomic levels at coarse temporal 

scales. Aside from a ubiquitous phrynosomatine presence at iguanid-bearing sites from 

the Great Plains (Estes and Tihen 1964; Robinson and Van Devender 1973; Yatkola 

1976; Wellstead 1982), several studies include an additional taxon that is invariably 

aligned with Leiocephalus (Estes and Tihen 1964; Robinson and Van Devender 1973; 

Wellstead 1982). Allowing for the possibility that such taxa may actually represent 

Iguaninae (Norell 1989; Pregill 1992), the contemporary (broadly-speaking) record from 

Florida is unique for the presence of anoles and corytophanines (this study).  

Comparisons with the Hemingfordian Thomas Farm locality are more difficult. 

Estes (1963) listed 4 iguanid taxa from the site: Leiocephalus sp. and 3 additional 

indeterminate morphotypes. His record of Leiocephalus sp. is insufficiently diagnosed 

(Pregill 1992), and the fragmentary material for the 3 other species provides few clues 

about their relationships. Estes (1963) suggests that his “species A” has teeth similar to 

Anolis, and that his “species C” may be an iguanine. “Species B” is differentiated from 

the others for having an open Meckelian groove, but no potential relationship is 

proposed.   

Ostensibly, regional provincialism observed for lizards in the late Oligocene and 

early Miocene presages some of the taxonomic disparity between eastern and western 

herpetofaunas today. Phrynosomatinae is the most speciose clade of lizards in North 

America, but most of this diversity is concentrated in relatively arid regions (Wiens et al. 

2013). Of more than 140 extant species (Uetz 2014), only 2, Sceloporus undulatus and S. 

woodi, occur in the eastern United States (Krysko et al. 2011). The presence of a small 

phrynosomatine at Miller does not necessarily imply strong faunal continuity with 
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western sites in the early Neogene. Great Plains localities often include multiple 

phrynosomatine taxa (Robinson and Van Devender 1973; Yatkola 1976), and at least 2 

preserve the western endemic Phrynosoma (Estes and Tihen 1964; Robinson and Van 

Devender 1973). The paleontological signal for the proliferation of phrynosomatines in 

western regions in the Neogene is strong (see, for example, Norell 1989), but because 

other iguanid clades were present in the Eocene, Smith (2006: 37) emphasized the need 

to make a distinction between modernization and “phrynosomatization.”  

Tihen (1964) and Estes (1970; 1983) both spoke generally of a gradual 

“restriction” of tropical lineages to lower latitudes in the Cenozoic, a concept that Smith 

(2009a; 2011b) later explored in greater detail. Restriction, he argued, involved the 

extirpation of extra-tropical members of widespread clades when climates became 

unfavorable at higher latitudes. Retreat, instead, involved the movement of entire clades 

from high latitudes to low latitudes as meridional temperature gradients increased 

through time. The second scenario does not require that a clade had low-latitude 

representatives in the past to be found in the tropics today and allows for the possibility 

that modern tropical clades originated elsewhere. The presence of corytophanines and 

non-carolinensis anoles at Brooksville 2 and Miller is consistent with either scenario; 

both have relatives at higher latitudes in the warmer Eocene, and both are limited to 

tropical latitudes today.  

Either way, the strong extralimital character of lacertofaunas from Brooksville 2 

and Miller lend paleontological support to aspects of the Tropical Conservatism 

Hypothesis of Wiens and Donoghue (2004). They argued that tropical regions are more 

species-rich for 3 complementary reasons: 1) megathermal (see Smith 2009a) 
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environments have typically been much more extensive than they are now, 2) many 

modern clades have inhabited megathermal environments for longer than they have 

temperate ones, allowing them more time to diversify there, and 3) phylogenetic niche 

conservatism generally prevents tropical organisms from invading temperate habitats. As 

ectotherms, species richness patterns of reptiles are correlated strongly with temperature 

(Qian 2010; Jetz and Fine 2012). That entire clades of lizards seem to so closely track the 

climatic changes of the Cenozoic (Smith 2009a; 2011b; this study) suggests a basic 

environmental preference that has not changed for tens of millions of years.  

Just as for many of Smith’s (2009a; 2011b) Eocene taxa, a number of lizards from 

Brooksville 2 and Miller are limited to the neotropics today. The distributions of Anolis, 

corytophanines, iguanines, and helodermatids are all confined by a common northern 

boundary along Mexico’s Atlantic coast (Vitt and Caldwell 2014; see also Wiens et al. 

2006). The eublepharid genus Coleonyx has disjunct distributions in North America that 

reflect phylogenetically progressive adaptations to arid habitats, but basal tropical species 

have a similar northeastern limit (Dial and Grismer 1992). This trend extends to other 

Arikareean and Hemingfordian Gulf Coast taxa as well. Albright (1994) reported 

Dermatemys from the Toledo Bend LF of Texas, and Baskin (2003) described a potosin 

procyonid from Miller.  

Only the phrynosomatine iguanid and teiid from Miller, the rhineurid 

amphisbaenian from Brooksville 2, and possibly the scincid from both sites conform to 

expectations based on modern distributions. Still, each is significant. The phrynosomatine 

is the earliest eastern record of the subfamily. The teiid represents the earliest record of 

“cnemidophorine” teiids in North America. Rhineurid amphisbaenians are endemic to the 
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extreme southeastern United States today, and their presence at Brooksville 2 extends 

their temporal range in the region by 26 to 27 million years. The significance of the 

scincid at both sites ultimately depends on whether each represents temperate Plestiodon 

or tropical Mesoscincus (or a close relative of either).  
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