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ABSTRACT

Comparison of different methods for estimating log-normal means

by

Qi Tang

The log-normal distribution is a popular model in many areas, especially in biostatis-

tics and survival analysis where the data tend to be right skewed. In our research, a

total of ten different estimators of log-normal means are compared theoretically. Sim-

ulations are done using different values of parameters and sample size. As a result

of comparison, “a degree of freedom adjusted” maximum likelihood estimator and

Bayesian estimator under quadratic loss are the best when using the mean square

error (MSE) as a criterion. The ten estimators are applied to a real dataset, an en-

vironmental study from Naval Construction Battalion Center (NCBC), Super Fund

Site in Rhode Island.
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1 INTRODUCTION

The log-normal distribution is widely used in many areas, such as environmental

study, survival analysis, biostatistics and other statistical fields. It is a right skewed

distribution with a long tail. Figure 1 displays the log-normal density curves with

different parameters. The log-normal distribution has a close association with the

normal distribution. By taking the natural logarithm of a random variable, the

random variable then will have a normal distribution.
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Figure 1: Density curve of several log-normal distributions
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One of the important interests is to get the efficient estimator for the log-normal

means. There is a long history of people seeking of an estimator of the log-normal

means. In 1941, Finney [9] found an unbiased estimator with minimum variance. He

also created the Finney function which has been used in other estimators. In 1971,

Zellner [6] proposed the minimal mean squared error (MSE) estimator and derived

the minimizing value under relative quadratic loss function. Rukhin [5] first provided

a generalized form of the log-normal mean estimator in 1986. He also found the

generalized prior of the Bayesian estimator. However, the posterior distribution was

not provided. In 1998, Zhou [3] developed an estimator based on Zeller’s minimal

mean squared error (MSE) estimator. In 2008, Longford [1] provided a minimax

estimator when the maximum of a parameter is known. In 2012, Enrico and Carlo

[2] improved Rukhin’s method; they proposed a new prior based on Ruknin’s prior,

which can be treated as the product of a flat prior.

In this thesis, Chapter 2 discusses eight frequentist methods for estimating log-

normal means. For each of the methods, the estimator, the bias and the mean squared

error (MSE) are given. Chapter 3 introduces two Bayesian methods for estimating

log-normal means. Chapter 4 compares these ten estimators by relative mean squared

error and relative bias using graphical displays. Simulations are presented in Chapter

5 to check the theoretical results when real data are involved. A real world example

applying these estimators are presented in Chapter 6. These ten estimators are ap-

plied to an environmental dataset which has a small sample size. Point estimates for

two contaminants are presented. Finally, conclusions are drawn and future work is

discussed.

8



2 FREQUENTISTS METHODS

Let X be the random variable from a log-normal distribution with parameters µ

and σ2. The parameter of common interest is θ = epµ+qσ2
. Different measures of

the distribution have this form and some examples are the median (p = 1, q=0), the

mode (p = 1 and q = −1), and the mean (p = 1 and q = 0.5). In this thesis, only the

estimators for the log-normal means are considered.

The mean of X is

E(X) = eµ+σ2

2 (1)

and the variance is

V(X) = (eσ2 − 1)e2µ+σ2

. (2)

Let X̄ be the sample mean from the log-normal distribution of size n. The sampling

distribution has a mean of

E(X̄) = E(X) = eµ+σ2

2 , (3)

and a variance of

V
(
X̄
)

=
V(X)

n
=

(e2µ+σ2
)(eσ2 − 1)

n
. (4)

Define Y = log(X). Then Y is normally distributed with mean µ and variance σ2.

Let Ȳ be the sample mean of Y . The goal is to find a constant b where θ̂(b) = eȲ +bS2

is used to estimate θ = eµ+σ2

2 .

The criterion used to compare different methods are the mean squared error (MSE)

and bias. The MSE measures the expected value of the difference between the esti-

mator and the true parameter, i.e., MSE = E(θ̂(b) − θ)2. The bias is defined as the

9



difference between the expected value of the estimator and the true parameter, i.e.,

Bias(θ̂(b)) = E(θ̂(b)− θ). To derive these, the expectation and the variance of eȲ and

e2Ȳ will be used.

The sample mean, Ȳ , has a normal distribution with mean µ and variance σ2

n
.

Therefore, the exponential of the sample mean, Ȳ , has a log-normal distribution, i.e.,

eȲ ∼ Lognormal

(
µ,
σ2

n

)
.

Its expectation and variance are

E
(
eȲ
)

= eµ+σ2

2n (5)

and

V(eȲ ) =
(
e

σ2

n − 1
)
e2µ+σ2

n . (6)

Furthermore, 2Ȳ has a normal distribution with mean 2µ and variance 2σ2

n
. So we

have

e2Ȳ ∼ Lognormal

(
2µ,

2σ2

n

)
.

Therefore,

E
(
e2Ȳ
)

= e2µ+ 2σ2

n . (7)

When the expectation and the variance of eȲ and e2Ȳ are obtained, we can use

them to derive the bias and MSE. In the following sections, different estimation

methods will be considered.
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2.1 The Naive Estimator

In statistics, a natural estimator of a distribution mean is the sample mean. In

this thesis, it is called the naive estimator. Therefore, the naive estimator is

θ̂1 = X̄.

This estimator is unbiased, thus

Bias
(
θ̂1

)
= 0. 1©

And the MSE is equal to V(X̄), i.e.,

MSE
(
θ̂1

)
= V

(
θ̂1

)
= V

(
X̄
)

=

(
eσ2 − 1

)(
e2µ+σ2

)
n

. 2©

The naive estimator is easy to calculate and it is unbiased. However, this estimator

can be inefficient when σ2 is large and sample size is small.
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2.2 The Maximum Likelihood Estimator (MLE)

Another commonly used estimator is the maximum likelihood estimator (MLE).

The basic idea in this section is to find the MLE of µ and σ2 and ultimately θ.

The following terminology is defined for future use. The sample variance of Y is

S2 =

∑
(Yi − Ȳ )2

n− 1
. (8)

The MLE for σ2 is

σ̂2 =

∑
(Yi − Ȳ )2

n
=

(n− 1)S2

n
. (9)

The maximum likelihood estimator for µ is X̄. Therefore the maximum likelihood

estimator for θ is

θ̂2 = eȲ +
(n−1)S2

2n .

The random variable V = (n−1)S2

σ2 has a Chi-square distribution with k = n−1 degrees

of freedom, i.e., V ∼ χ2
n−1.

The Chi-square density function with k = n− 1 degrees of freedom is

f(t) =
1

2
k
2 Γ(k

2
)
t

k
2
−1e−

t
2 .

12



To find the MSE of θ̂2, we need to derive E(θ̂2) and E(θ̂2
2). First we have

E(θ̂2) = E

(
eȲ +

(n−1)S2

2n

)
= E

(
eȲ
)

E

(
e

(n−1)S2

2n

)
= eµ+σ2

2n

∫ ∞

0

et σ2

2n
t

n−1
2
−1e−

t
2

2
n−1

2 Γ(n−1
2

)
dt

v=t
“
1−σ2

n

”
= eµ+σ2

2n

∫ ∞

0

v
n−1

2
−1e−

v
2(

1− σ2

n

)n−1
2
−1

2
n−1

2 Γ
(

n−1
2

) dv

1− σ2

n

= eµ+σ2

2n
1(

1− σ2

n

)n−1
2

= eµ+σ2

2n

(
n

n− σ2

)n−1
2

Using equation (7), E(θ̂2
2) is obtained using a similar process as we used to find E

(
θ̂2

)
.

That is,

E(θ̂2
2) = E

(
e2̄Y +

(n−1)S2

2n

)
= E

(
e2̄Y
)

E

(
e

(n−1)S2

2n

)
= e2µ+ 2σ2

n

∫ ∞

0

et σ2

n
t

n−1
2
−1e

−t
2

2
n−1

2 Γ
(

n−1
2

)dt
v=t

“
1−σ2

n

”
= e2µ+ 2σ2

n

∫ ∞

0

v
n−1

2
−1e−

v
2(

1− 2σ2

n

)n−1
2
−1

2
n−1

2 Γ
(

n−1
2

) dv

1− 2σ2

n

= e2µ+ 2σ2

n
1(

1− 2σ2

n

)n−1
2

= e2µ+ 2σ2

n

(
n

n− 2σ2

)n−1
2

13



Therefore Bias(θ̂2) and MSE(θ̂2) are obtained as

Bias
(
θ̂2

)
= eµ+σ2

n

(
n

n− σ2

)n−1
2

− eµ+σ2

2 3©

and

MSE
(
θ̂2

)
= E

(
θ̂2 − θ2

)2

= E
(
θ̂2
2

)
− 2θE

(
θ̂2

)
+ θ2

2

= e2µ+σ2

eσ2( 2
n
−1)

(
1− 2σ2

n

)−(n−1)
2

− 2e
σ2

2 ( 1
n
−1)
(

1− σ2

n

)−(n−1)
2

+ 1

 .

4©
Similar to the naive estimator, the maximum likelihood estimator is also easy to

carry out, thus making it convenient to use in practice. However this estimator tends

to be overestimated when sample size is small and is inefficient for large values of σ2.
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2.3 Approximately Minimum Mean Squared Error Estimator

Recall that MLE estimator has the form of θ̂ = eȲ +bS2
, where b is a constant.

Longford [1] proposed a method to find the value of b which can make the MSE as

small as possible. Thus, he provided this approximately minimum MSE estimator.

The main idea is to solve b of the the minimize MSE.

Define the estimator as θ̂3 = eȲ +bS2
.

First, we find the E
(
θ̂3

)
to obtain the value of MSE.

E(θ̂3) = E
(
eȲ +bS2

)
= E

(
eȲ )E(ebS2

)
= eµ+σ2

2n

(
n− 1

n− 1− 2bσ2

)(n−1)/2

. (10)

The MSE is

MSE
(
θ̂3

)
= e2µ

(
e

2σ2

n

(
n− 1

n− 1− 4bσ2

)(n−1)/2

− 2e
σ2

2n
+σ2

2

(
n− 1

n− 1− 2bσ2

)
+ eσ2

)
.

(11)

To get the minimum of the MSE, the derivative of MSE with respect to b needs to

be taken and so we have

∂
(
MSE(θ̂3)

)
∂b

= 2σ2e2µ

(
e

2σ2

n

(
n− 1

n− 1− 4bσ2

)(n−1)/2+1

− e
σ2

2n
+σ2

2

(
n− 1

n− 1− 4bσ2

)(n−1)/2+1
)
.

Let
∂(MSE(θ̂3))

∂b
= 0. This implies that:

e
2σ2

n

(
n− 1

n− 1− 4bσ2

)(n−1)/2+1

= e
σ2

2n
+σ2

2

(
n− 1

n− 1− 2bσ2

)(n−1)/2+1

.

Taking the natural logarithm on both sides, we obtain

2σ2

n
+

(
n− 1

2
+ 1

)
ln

n− 1

n− 1− 4bσ2
=
σ2

2n
+
σ2

2
+

(
n− 1

2
+ 1

)
ln

n− 1

n− 1− 2bσ2
.

15



Combine the similar terms of the equation. It turns out to be

n− 1− 2bσ2

n− 1− 4bσ2
= exp

(
2σ2

(n− 1) + 2

(
1

2
− 3

2n

))
.

Let Da = exp
(

2σ2

(n−1)+2

(
1
2
− 3

2n

))
. The constant b is equal to

b =
n− 1

2σ2

Da − 1

2Da − 1
.

Substituting the constant b into the formula (10) and (11), the bias and the MSE are

Bias(θ̂3) = eµ+σ2

2n

(
n− 1

n− 1− 2bσ2

)(n−1)/2

− eµ+σ2

2 5©

and

MSE(θ̂3) = e2µ

(
eσ2 − 2e

σ2

2
+σ2

2n

(
1− 2bσ2

n− 1

)−n−1
2

+ e
2σ2

n

(
1− 4bσ2

n− 1

)−n−1
2

)
. 6©

The “approximately minimum MSE estimator” is easy to calculate and implement.

It is efficient for both small and large values of σ2. It will be used as the reference for

comparisons of different methods.
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2.4 Approximately Unbiased Estimator

The previous section uses the minimum MSE to find the constant b. Different

ways to find b have been proposed. Longford [1] proposed an approximately unbiased

estimator. This method uses the unbiased estimating equation to obtain the value of

b. The estimator has the form

θ̂4 = eȲ +bS2

.

If θ̂4 is unbiased for θ, i.e., E(θ̂) = θ, then

eµ+σ2

2n

(
n− 1

(n− 1)− 2bσ2

)(n−1)/2

= eµ+σ2

2 ,

n− 1− 2bσ2

n− 1
= exp

[
−2σ2

n− 1

(
1

2
− 1

2n

)]
.

Therefore solving for the constant b, we have

b =
n− 1

2σ2

[
1− exp

(
− 2σ2

n− 1

(
1

2
− 1

2n

))]
.

The bias and the MSE of this estimator are

Bias
(
θ̂4

)
= eµ+σ2

2n

(
n− 1

n− 1− 2bσ2

)(n−1)/2

− eµ+σ2

2 7©

and

MSE
(
θ̂4

)
= e2µ

(
eσ2 − 2e

σ2

2
+σ2

2n

(
1− 2bσ2

n− 1

)−n−1
2

+ e
2σ2

n

(
1− 4bσ2

n− 1

)−n−1
2

)
. 8©

The approximately unbiased estimator has a simple form and it is an unbiased

estimator, making it is easier to be applied. However, when the sample size is small,

it returns a large MSE. As σ2 gets large, the estimator becomes inadequate.
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2.5 Minimax Estimator

In addition to the previous two estimators, Longford [1] proposed a minimax

estimator with the same form. The basic idea for this method is using a minimax

method to find b.

When 0 < b < 1
4

n−1
σ2 , Longford [1] proved that the variance of the estimator is an

increasing function of σ2. Therefore, the MSE is also an increasing function of σ2.

He drew a conclusion that there must be a specified value σ2
mx which is the upper

bound of σ2. When σ2
mx = σ2, the constant b solving from the equation can make the

estimator efficient.

The estimator is

θ̂5 = eȲ +bS2

,

where b = n−1
2σ2

mx

Da,mx−1

2Da,mx−1
and Da,mx = exp

(
2σ2

mx

(n−1)+2

(
1
2
− 3

2n

))
.

The bias and the MSE are

Bias(θ̂5) = eµ+σ2

2n

(
n− 1

n− 1− 2bσ2

)(n−1)/2

− eµ+σ2

2 9©

and

MSE(θ̂5) = e2µ

(
eσ2 − 2e

σ2

2
+σ2

2n

(
1− 2bσ2

n− 1

)−n−1
2

+ e
2σ2

n

(
1− 4bσ2

n− 1

)−n−1
2

)
. 10©

Unlike the other estimators, the minimax estimator requires the maximum of

parameter σ2 to be known in advance. In certain real analysis situations, the estimator

can be hard to handle. However, it performs very well for both the small and large

sample sizes regardless of the size of σ2.
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2.6 The Uniformly Minimum Variance Unbiased Estimator (UMVUE)

In this section we summarize an unbiased estimator called the uniformly minimum

variance unbiased estimator (UMVUE). It was proposed by Finney [9]. Recall that

the parameter of interest is θ = eµ+σ2

2 . The idea is to seek an unbiased estimator

which is a function of Ȳ and S2. As E(eȲ ) = eµ+σ2

2n , we need to find a function of S2

which is unbiased for e
σ2

2
−σ2

2n .

The estimator is

θ̂6 = eȲ g

(
(n− 1)S2

2

)
,

where g(t) is the Finney’s function with the expression of

g(t) =
∞∑
i=0

Γ
(

n−1
2

)
i!Γ(n−1

2
+ i)

(
n− 1

2n
t

)i

.

It can be shown that the expectation of θ̂6 is

E(θ̂6) = E
(
eȲ
)

E

(
g

(
(n− 1)S2

2

))
= exp

(
µ+

σ2

2

)
= 0.

which is θ. Therefore, the bias and the MSE for θ̂6 are

Bias(θ̂6) = E(θ̂6)− θ = 0 11©

and

MSE(θ̂6) = e2µ+σ2

(
e

σ2

n g

(
(n− 1)σ4

2n

)
− 1

)
. 12©

Since the UMVU estimator includes Finney’s function, it is difficult to calculate

in reality. The estimator is inefficient when the sample size is small. On the other

hand, this is an unbiased estimator and it works well as the sample size gets large.
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2.7 A Conditional Mean Squared Error Estimator

In this section, the estimator discussed has the same form as the UMVU estimator.

Zellner [6] noted that the class of estimators is CeȲ where C is a constant. The

conditional minimum MSE estimator for θ given σ2 is θ = exp
(
Ȳ + (n−3)σ2

2n

)
.

Since Zellner’s estimator has an unknown parameter σ2, Zhou [3] proposed a new

estimator called a conditional MSE estimator. Because E(eȲ ) = exp
(
µ+ σ2

2n

)
, an un-

biased estimator is needed for exp
(

(n−3)σ2

2n
− σ2

2n

)
, and it turns out to be g

(
(n−4)S2

2

)
.

Therefore,the estimator is

θ̂7 = exp
(
Ȳ
)
g

(
n− 4

2
S2

)
,

where g(t) is the Finney’s function. It follows that

E(θ̂7) = E
(
eȲ
)

E

(
g

(
(n− 4)S2

2

))
= eµ+σ2

2
− 3σ2

2n .

The bias and the MSE are

Bias(θ̂7) = E(θ̂7)− θ = eµ+σ2

2

(
e
−3σ2

2n − 1
)

13©

and

MSE(θ̂7) = e2µ+σ2

(
e
−2σ2

n g

(
(n− 4)2σ4

2n(n− 1)

)
− 2e

−3σ2

2n + 1

)
. 14©

Because a conditional MSE estimator involves Finney’s function, it is inconvenient

for application. This estimator tends to underestimate the true value of the log-normal

mean. Yet, it is very efficient for the small sample size.
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2.8 “A Degree of Freedom Adjusted” Maximum Likelihood Estimator

Shen [4] proposed another method to estimate the log-normal mean. He used

the second-order asymptotic to find a constant b which can minimize the MSE. Let

b = 1
d+n

, where d+ n > 0, both d and n are constants. The term b is then expanded

to 1
n
− d

n2 + o( 1
n2 ). Recall that

MSE = e2µ+σ2
[
e

2−n
2n

σ2

(1− 2cσ2)
−(n−1)

2 − 2e
1−n
2n

σ2

(1− cσ2)
−(n−1)

2 + 1
]
.

Let W = MSE

e2µ+σ2 . then minimizing MSE is the same as minimizing W . Substituting b

into W and using Taylor’s expansion,

W =
σ2

n

[
1 +

σ2

2
+
σ2

4n
(d2 − (8 + 3σ2)d+ 8σ2 +

7

4
σ4)

]
+ o(

1

n2
).

Thus, we only need to minimize d2−(8+3σ2)d part. Because this is a quadratic form,

when d = 4 + 3
2
σ2, W reaches the minimal value. Therefore b = 1

n+4+ 3σ2

2

. Replacing

σ2 by S2, the estimator is

θ̂8 = exp

(
Ȳ +

(n− 1)S2

2(n+ 4) + 3S2

)
.

The expectation of θ̂8 is

E(θ̂8) = E(eȲ )E

(
e

(n−1)S2

2(n+4)+3S2

)
,

= eµ+σ2

2n

∫ ∞

0

e
(n−1)S2

2(n+4)+3S2 ds,

Let V = (n− 1)S2

σ2 . Then V ∼ χ2
n−1 and

E(θ̂8) = eµ+σ2

2n

∫ ∞

0

e

(n−1)V
2(n+4)(n−1)

σ2 +3V f(V )dV.
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The bias and the MSE are

Bias = E(θ̂8)− θ 15©

and

MSE(θ̂8) = exp(2µ+ σ2)
(
e[(2−n)/n]σ2

f1 − 2e[(1−n)/2n]σ2

f2 + 1
)
, 16©

where

f1 = E

[
exp

(
2(n− 1)S2

2(n+ 4) + 3S2

)]
f2 = E

[
exp

(
(n− 1)S2

2(n+ 4) + 3S2

)]
.

Although a degree of freedom adjusted MLE tends to underestimate the true

value, it has a very small MSE when σ2 is small or moderate. It also performs well

when the sample size gets large. This estimator is recommended when MSE is used

as the criterion for comparison.
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3 BAYESIAN METHODS

The previous chapter discussed eight different frequentist methods. In this chap-

ter, Bayesian methods will be introduced. In Bayesian statistics, the prior distribution

is about what we already know for the parameters before the data is collected. The

likelihood function is the probability of the observed data given the known parameters.

The posterior distribution is the probability of the parameter given the observed data.

Bayes theorem expresses the relationships among the prior probability, the likelihood

function, and the posterior probability. The formula can be expressed as

p(θ|x) =
p(x|θ)p(θ)
p(x)

.

For the Bayesian method in log-normal distributions, Rukhin [5] proposed a gen-

eralized prior,

p(σ) ∝ σ−2ν+n−2 exp

[
−σ2(

γ2

2
− (1− 2

n
))

]
,

where ν and γ are prior parameters. The generalized form of the estimator is δ =

eȲ g ((n− 1)S2) . Enrico and Carlo [2] proposed a new prior based on Rukhin’s prior,

this can be seen as the product of a flat prior. The following two sections will discuss

the methods proposed by Enrico and Carlo [2]. They are Bayes estimator under

quadratic loss and under relative quadratic loss, respectively.
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3.1 Bayes Estimator Under Quadratic Loss

For the Bayesian estimators, it is important to know the prior and to derive the

posterior distribution. The prior proposed by Enrico and Carlo [2] is

p(σ2) ∝ (σ2)−ν+n
2
−3/2 exp

[
−σ2(

ψ2

2
− 2(b− a2/n))

]
,

where a = 1, b = 1
2
, ν and ψ are prior parameters. Define λ = −ν + n/2− 1/2, γ2 =

ψ2/2− 2(b− a2/n). The prior is a limit of a generalized inverse gamma distribution,

GIG(λ, δ, γ) as δ → 0.

Define η = log(θ). The distribution of η based on the prior is

η ∼ GH(λ̄, ᾱ, β̄, δ̄, µ̄),

where λ̄ = λ− n−1
2
, ᾱ =

√
n(γ2 + n

4
), β̄ = n

2
, δ̄ =

√
1
n
((n− 1)S2 + δ2), µ̄ = Ȳ . This is

a generalized hyperbolic (GH) distribution.

The density function of the GH is,

f(x) =
(γ

δ
)λ

√
2πKλ(δγ)

Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2α

exp(β(x− µ)),

where K is the Bessel-K function.

The posterior distribution of θ|x is a Log −GH distribution.

The moment generating function is used to find the expectation and the variance of

the estimator. The results are

E(θ|x) = MGH(1) (12)

and

V(θ|x) = MGH(2)− [MGH(1)]2. (13)
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The quadratic loss function is

L(θ̂, θ) = [θ − θ̂]2 = [eµ+σ2

2 − θ̂]2.

It follows that

E(L|σ2) = E(θ2)− 2θ̂E(θ) + θ̂2. (14)

The minimizing value for θ̂ is obtained by

0 = 0− 2E(θ) + 2θ̂.

Therefore the expression for the Bayes estimator under quadratic loss is

θ̂ = E(θ).

Based on formula (12) and (13), the formula for θ̂ is

θ̂ = E(θ|x) = MGH(1)

= eaȲ

(
γ2

γ2 − (a2

n
+ 2b)

)(λ−n−1
2

)/2

×
Kλ−n−1

2

√
(γ2 − a2

n
− 2b)((n− 1)S2 + δ2)

Kλ−n−1
2

√
((n− 1)S2 + δ2)γ2

.

Since the Bessel function is difficult to calculate, the author used a small argument

approximation to replace the Bessel K function and got

θ̂ ≈ exp(aȲ ) exp

[
−((n− 1)S2 + δ2)(a2 + 2nb)

4n(λ− n−3
2

)

]
.

The λ value is obtained by minimizing MSE, which is

λ =
n− 3

2
− (n− 1)(a2 + 2nb)

4nc
− (a2 + 2nb)

4nc

δ2

σ2
,

where c = b − 3a2/2n. Plugging λ in the approximate formula, letting δ = σ2

and neglecting σ4, then θ̂ = exp
(
Ȳ + S2(n−3)(n−1)

2n(n−1)+2nσ2

)
, which is close to the estimator

proposed by Shen [4]. Thus, there is some relationship between Bayes estimator and

non-Bayes estimator.
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Replacing σ2 by its unbiased estimator S2, the estimator is

θ̂9 = exp

(
Ȳ +

S2(n− 3)(n− 1)

2n(n− 1) + 2nS2

)
.

The expectation of θ̂9 is

E(θ̂9) = E(eȲ )E

(
e

S2(n−3)(n−1)

2n(n−1)+2nS2

)
,

= eµ+σ2

2n

∫ ∞

0

e

(n−1)(n−3)V

2n(n−1)2

σ2 +2nV f(V )dV,

where V = (n−1)S2

σ2 ∼ χ2
n−1.

Therefore the bias and the MSE for θ̂9 are

Bias(θ̂9) = E(θ̂9)− θ 17©

and

MSE(θ̂9) = exp
(
2µ+ σ2

) (
e[(2−n)/n]σ2

f1 − 2e[(1−n)/2n]σ2

f2 + 1
)
, 18©

where

f1 = E

[
exp

(
2(n− 1)(n− 3)S2

2n(n− 1) + 2nS2

)]
,

f2 = E

[
exp

(
(n− 1)(n− 3)S2

2n(n− 1) + 2nS2

)]
.

The Bayes estimator under quadratic loss tends to underestimate the true value

of the log-normal mean. It is very efficient for different sample sizes and returns a

small MSE when σ2 is large. This estimator is also recommended when MSE is used

as the criterion.
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3.2 Bayes Estimator Under Relative Quadratic Loss

In certain circumstance, we are interested in the Bayes estimator under quadratic

loss. Enrico and Carlo [2] proposed another estimator under relative quadratic loss.

Define the parameter τ = − ln(θ). Therefore, θ−1 = exp(τ), θ−2 = exp(2τ). We

have E(θ−1) = E(eτ ) and E(θ−2) = E(e2τ ). Since the distributions of τ and 2τ are

known, using the same prior, the moment generating function can be used to find the

expectation of θ−1 and θ−2. Thus,

τ |X ∼ GH(λ̄, ᾱ, β̄, δ̄, µ̄),

and

2τ |X ∼ GH(λ̄, ᾱ/2, β̄/2, 2δ̄,−2µ̄),

where λ̄, ᾱ, β̄, δ̄ and µ̄ are defined as before.

The relative quadratic loss is L = ( θ−θ̂
θ

)2 = (1− θ̂
θ
)2, and

E(L|σ2) = 1− 2θ̂E

(
1

θ

)
+ θ̂2E

(
1

θ

)2

.

Taking the derivative with respect to θ̂, we have

0 = 0− 2E

(
1

θ

)
+ 2θ̂E

(
1

θ

)2

.

Hence the Bayes estimator under relative quadratic loss is

θ̂ =
E(θ−1)

E(θ−2)
=

MGH(τ)

MGH(2τ)

= exp(aȲ )

(
n
a2 (γ

2 − 4a2

n
+ 4b)

n
a2 (γ2 − a2

n
+ 2b)

)(λ−n−1
2

)/2

×
Kλ−n−1

2

√
(γ2 − a2

n
+ 2b)((n− 1)S2 + δ2)

Kλ−n−1
2

√
(γ2 − 4a2

n
+ 4b)((n− 1)S2 + δ2)

.
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Note that if setting b? = b − 2a2/n and γ?2 = γ2 − 4a2/n + 4b, it is the same Bayes

estimator obtained under quadratic loss. The approximate estimator is replacing b

by b? = b− 2a2/n to the original estimator. So the estimator is

θ̂10 = exp

(
Ȳ +

S2(n− 7)(n− 1)

2n(n− 1) + 2nσ2

)
.

Replacing σ2 by its unbiased estimator S2, we have

θ̂10 = exp

(
Ȳ +

S2(n− 7)(n− 1)

2n(n− 1) + 2nS2

)
.

E(θ̂10) = E
(
eȲ
)

E

(
e

S2(n−7)

2n(n−1)+2nS2

)
,

= eµ+σ2

2n

∫ ∞

0

e

(n−1)(n−7)V

2n(n−1)2

σ2 +2nV f(V )dV,

where V = (n−1)S2

σ2 ∼ χ2
n−1.
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The bias and the MSE of this estimator are

Bias(θ̂10) = E
(
θ̂10

)
− θ 19©

and

MSE(θ̂10) = exp(2µ+ σ2)
(
e[(2−n)/n]σ2

f1 − 2e[(1−n)/2n]σ2

f2 + 1
)
, 20©

where

f1 = E

[
exp

(
2(n− 1)(n− 7)S2

2n(n− 1) + 2nS2

)]
,

f2 = E

[
exp

(
(n− 1)(n− 7)S2

2n(n− 1) + 2nS2

)]
.

The Bayes estimator under relative quadratic loss tends to underestimate the

ture value of the log-normal mean. It has a large MSE when the sample size is small.

However, as the sample size gets large, it performs well regardless of the size of σ2.
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4 COMPARISON OF THE ESTIMATORS

In the previous sections, we summarized ten alternatives to estimate log-normal

means, including frequentist methods and Bayesian methods. Each of the estimator

has its advantages and disadvantages. Therefore, it is better to make a comparison

of these ten estimators.

The relative bias using the true parameter θ as the reference, it allows one to check

whether each estimator is overestimated or underestimated. The MSE criterion is

used to compare estimators presented in Chapters. We will compare these methods

using different values of σ2 and sample size. We will look at values of σ2 from 0.1

to 5 by increments of 0.1 and three different values for the sample size: 10, 50, and

100, which corresponds to a small moderate, and large sample size, respectively. The

relative MSE is calculated using the “approximately minimum MSE estimator” (θ̂3)

as the reference. The reason to present the relative MSE is that we can eliminate the

influence of the parameter µ, and thus we only need to consider the effect of σ2.

Figures 2-4 present the relative MSE for different sample sizes. Figure 2 shows

that for small sample size, most of the estimators have a MSE greater than or equal

to the “approximately minimum MSE estimator” (θ̂3). Two estimators, “a degree of

freedom adjusted” MLE (θ̂8), and “Bayes estimator under quadratic loss” (θ̂9) have

smaller MSE than the others.
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Figure 2: Relative MSE for sample size 10

As σ2 increases, the “Bayes estimator under quadratic loss” shows some advan-

tages. Although the “minimax estimator” (θ̂5) and the “conditional minimal MSE

estimator” (θ̂7) are less inefficient than the previous two estimators, they had a smaller

MSE. In addition, the “naive estimator” (θ̂1) and “maximum likelihood estimator”

(θ̂2) are very inefficient compared to other estimators.
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Figure 3: Relative MSE for sample size 50

Figure 3 shows that when the sample size increases to 50, the performance of

the “naive estimator” (θ̂1) is not influenced by the sample size; it still has a large

MSE. The MSE of the“maximum likelihood estimator” (θ̂2) begin to decrease. Other

estimators start to come close to “approximately minimum MSE estimator” (θ̂3).

32



Figure 4 indicates that when the sample size gets larger, the “naive estimator”

(θ̂1) still has a large relative MSE, while the other estimators become close to “ap-

proximately minimum MSE estimator” (θ̂3). This indicates that when the sample

size is very large, the difference among those ten estimators becomes smaller.
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Figure 4: Relative MSE for sample size 100
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Figures 5-7 display the relative bias for different sample sizes. For the relative bias

of a small sample size, Figure 5 shows that only the “MLE” (θ̂2) is over estimated

and others are either unbiased or underestimated. The underestimated estimator

are: “a conditional minimal MSE estimator” (θ̂7), “a degree of freedom adjusted”

MLE(θ̂8), “Bayes estimator under quadratic loss”(θ̂9) and “Bayes estimator under

relative quadratic loss” (θ̂10). The figures also show that the “naive estimator” (θ̂1),

“the approximately unbiased estimator” (θ̂3) and “UMVUE” (θ̂6) are the unbiased

estimators, which are consistent with the theoretical results.
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Figure 5: Relative bias for sample size 10
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Figure 6: Relative bias for sample size 50

Figure 6 illustrates that when sample size increase to 50, the relative bias of

the “maximum likelihood estimator” starts to decrease. The other underestimated

estimators also begin approaching the true parameter.
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We see from Figure 7 that as the sample size gets large, the relative bias for all

the estimators are close to zero. This indicates that all of these estimators are less

biased when the sample size is large. However, for the same sample size, all biased

estimators have a large bias for large value of σ2
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Figure 7: Relative bias for sample size 100
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5 SIMULATION

Simulations were done to verify the theoretical results and to check any deviations

when dealing with real data. In this simulation, we set µ=0 and σ2 takes values

from 0.1 to 5.0 with a segment of 0.1. The sample size was set to 10, 50 and 100,

respectively. For each sample size and each σ2, a random sample is drawn from the

log-normal distribution and the ten estimates were calculated. The procedure was

repeated 5000 times. The bias and the MSE of each estimator are calculated. Figures

7-12 portray the simulation results.
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Figure 8: Simulations for relative MSE of sample size 10

37



0 1 2 3 4 5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Sample size 50

σ
2

R
e

la
ti
ve

 M
S

E

Naive
ML
Approximately Minimum
Approximately Unbiased
Minimax
UMVU
A conditional minimal MSE
A degree of freedom adjusted
Bayes
Bayes under relative

Figure 9: Simulations for relative MSE of sample size 50

Figures 8-10 depict the simulation results of relative MSE with different sample

sizes. When the sample size is small, Figure 8 shows that the MSE of both “a degree

of freedom adjusted” MLE (θ̂8) and “Bayes estimator under quadratic loss” (θ̂9) are

smaller than the MSE of “approximately minimum MSE estimator” (θ̂3). When σ2

gets larger, “Bayes estimator under quadratic loss” (θ̂9) has a smaller MSE than “a

degree of freedom adjusted” MLE (θ̂8). This is consistent with the theoretical results.

When the sample size increases to 50, Figure 9 indicates that the “naive estimator”

(θ̂1) still returns a large MSE.
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Figure 10: Simulations for relative MSE of sample size 100

As the sample size gets closer to 100, Figure 10 shows that most of the estimators

MSE tend to approach the “approximately minimum MSE estimator” (θ̂3) ’s MSE

except the “naive estimator” (θ̂1). This verifies the theoretical results are correct

when dealing with real data.
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Figure 11: Simulations for relative bias of sample size 10

Figures 11-13 illustrate the simulation results of relative bias with different sample

sizes. When the sample size is small, Figure 11 shows that the “MLE” (θ̂2) is an over-

estimated estimator, and “naive estimator” (θ̂1), “approximately unbiased estimator”

(θ̂3) and “UMVUE” (θ̂6) are all unbiased estimator. These results are consistent with

the theoretical conclusions.

40



0 1 2 3 4 5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

Sample size 50

σ
2

R
e

la
ti
ve

 B
ia

s

Naive
ML
Approximately Minimum
Approximately Unbiased
Minimax
UMVU
A conditional minimal MSE
A degree of freedom adjusted
Bayes
Bayes under relative

Figure 12: Simulations for relative bias of sample size 50

It can be seen from Figure 12 that when the sample size increases to 50, these ten

estimators begin to approach the true parameter.
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Figure 13: Simulations for relative bias of sample size 100

When the sample size is 100, Figure 13 illustrates that all of the estimators are

approximately equal to the true mean value, which indicates that all of these estima-

tors tend to be unbiased when sample size is large. This is also consistent with the

theoretical results.

As we can see form the figures, the simulations curves are not as smooth as they are

in the theoretical graphs. The reason is that the data are randomly generated from the

log-normal distribution and the the results are based on limited number of repetitions.

Thus, the curves in the simulations figures fluctuate around the theoretical lines.
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6 APPLICATION

To present the application of the ten methods, we used the data from EPA [7],

the Naval Construction Battalion Center (NCBC) Superfund Site in Rhode Island.

The ground water samples were drawn from seventeen wells from the NCBC site. It

was used for inorganic analyses. The purpose is to find the trustworthy estimates

of the means of different inorganic contaminants at this area. For application, two

contaminants, aluminum and manganese are analyzed.

The data for contaminants of aluminum are: 290, 113, 264, 2660, 586, 71, 527,

163, 107, 71, 5920, 979, 2640, 164, 3560, 13200, 125. The sample mean and the

standard deviation for the original data are 1849.412 and 3351.273, respectively. The

sample mean and standard deviation for the log-transformed data are 6.225681 and

1.659261 respectively.

The data for contaminants of manganese are: 15.8, 28.2, 90.6, 1490, 85.6, 281,

4300, 199, 838, 777, 824, 1010, 1350, 390, 150, 3250, 259. The sample mean and

standard deviation for the original data are 902.2471 and 1189.489. For the log-

transformed data, the sample mean is 5.912132 and the standard deviation is 1.567666

respectively.

Figure 14 shows the histograms of the two contaminants. One can see that the

aluminum data has a longer tail than the manganese data. Thus it is more skewed

than the manganese data. A Shapiro Wilks test will be used to test for normality of

the data.
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Figure 14: Histogram of two contaminants: aluminum and manganese
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For the contaminants of aluminum, the Shapiro Wilks test yields a p-value of

0.000009173. This indicates that the original data is not normally distributed. For

the natural logarithm of the data, the p-value is 0.1134. This means after the trans-

formation, the data is normally distributed and the original data of the aluminum is

log-normal distribution.

For the contaminants of manganese, the Shapiro Wilks test has a p-value of

0.000225 for the original data and p-value of 0.7994 for the natural logarithm of

the data. Thus, the original data of the manganese has a log-normal distribution.

Ten methods were applied to these two datasets. The point estimates for the

log-normal means of the two contaminants are presented in Table 1.

For aluminum, the order of the point estimates from the smallest to largest is: θ̂10,

θ̂5, θ̂3, θ̂8, θ̂9, θ̂7, θ̂4, θ̂6, θ̂2, θ̂1. Both the “naive estimator” (θ̂1) and the “maximum

likelihood estimator” (θ̂2) are large. This is because they are inefficient estimators,

which tend to have a large estimates. Note that the “approximately minimum MSE

estimator” (θ̂3), “minimax estimator” (θ̂5), “the conditional MSE estimator” (θ̂7), “a

degree of freedom adjusted” MLE (θ̂8) and the “Bayes under quadratic loss” estima-

tor (θ̂9) have relatively small estimates. This observed results correspond with the

theoretical conclusions.

For manganese, the order of the point estimates from the smallest to largest is:

θ̂10, θ̂5, θ̂3, θ̂8, θ̂9, θ̂1, θ̂7, θ̂4, θ̂6, θ̂2. The results are similar to the contaminants of

aluminum. However, the “naive estimator” (θ̂1) is smaller than some of the others.

The “maximum likelihood estimator” (θ̂2) still returns a large value. “Bayes under

relative quadratic loss” (θ̂9) gives us small estimates in both cases.
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Table 1: Point Estimates for the Log-normal means
Aluminum Manganese

Estimate

θ̂1 1849.41 902.2471

θ̂2 1846.927 1174.548

θ̂3 1178.845 797.2196

θ̂4 1672.057 966.1599

θ̂5 1112.763 747.2176

θ̂6 1704.844 1100.925

θ̂7 1372.127 905.091

θ̂8 1214.563 819.38

θ̂9 1329.953 888.3252

θ̂10 1008.835 691.3925

46



7 CONCLUSION AND FUTURE WORK

In this thesis, we compared ten different estimating methods for log-normal means.

For each method, the estimator, and its bias and MSE were given. Figures were pro-

duced based on the theoretical formula to compare the results visually. Simulations

were done to support the theoretical result and to compare the results in the scenario

of the real data.

As a result, “a degree of freedom adjusted” MLE (θ̂8) and “Bayes estimator un-

der quadratic loss” (θ̂9) have a smaller MSE than the others. Although these two

estimators are not unbiased estimator, they have some advantages. For large σ2, the

“bayes estimator under quadratic loss” (θ̂9) is more efficient than “a degree of freedom

adjusted” MLE (θ̂8). To estimate log-normal means, “a degree of freedom adjusted”

MLE (θ̂8) is recommended when σ2 is small and moderate, whereas “bayes estimator

under quadratic loss” (θ̂9) is favored when σ2 is large.

There are several possible directions of future work. One possibility is to con-

struct the confidence intervals for all of these estimators. The confidence interval is

another criterion for measuring the accuracy of an estimator. It can also be used to

compare the coverage of different methods. Bootstrapping method has been popular

in calculating the confidence interval. It is a non-parametric method and easy to be

applied to almost any problems and any datasets. Therefore, bootstrapping method

may be added for further comparison.

In this thesis, only the estimators of log-normal means are discussed, so another

possible direction is to find similar estimators of other log-normal measures, such as

the median and mode, and then compare those against different sample sizes and σ2.
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