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ABSTRACT 

 

 

Inter-and Intra-Population Variability across the Transcriptome of Lake Baikal’s Endemic 

Copepod with Ramifications for Adapting to Climate Change 

 

by 

 

Larry L Bowman, Jr.  

 

 

The future of Lake Baikal’s biodiversity is uncertain in response to climate change.  Unlike its 

diverse benthos, Lake Baikal’s zooplankton is species poor, with up to 96% of its biomass being 

composed of a single Calanoid copepod species, Epischura baikalensis.  This study characterizes 

the genetic differentiation and differential gene expression of E. baikalensis.  Using partial-

transcriptome sequences obtained by 454 Rosche and Illumina sequencing technologies, the 

genetic differentiation at inferred single nucleotide polymorphism (SNP) sites and differential 

gene expression in populations sampled from various parts of the lake were analyzed.  The 

functional genomics of genes showed significant differential expression among the lake’s 

regions with some genes being highly up-or down-regulated.  High genetic differentiation among 

regions suggests isolated subpopulations.  Moreover, significantly differentially expressed 

transcripts were significantly more genetically differentiated than transcripts exhibiting no 

differential expression.  These results suggest high potential phenotypic plasticity and 

adaptability in response to climate change, e.g., temperature. 
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CHAPTER 1 

INTRODUCTION 

  

 It has been shown that the more plasticity an organism displays, the better adapted it may 

become to climate change (Gomulkiewicz and Holt 1995).  Further, a population can be rescued 

from a critically low level of individuals by natural selection, but rescue is largely dependent on 

stochastic events that may instead force extinction (Gomulkiewicz and Holt 1995).  Changes in 

demography are critical to the success of populations in peril (Barton and Partridge 2000). 

Adaptive evolution can theoretically allow a population to occupy previously uninhabitable 

environments (Gomulkiewicz and Holt 1995).  Adaptation to climate change requires genetic 

variation within populations; therefore, to get a well-informed picture of the future success of a 

declining population, it is crucial to understand genetic variation within and among populations 

(Barton and Partridge 2000).   

Lake Baikal 

 Drastic changes are particularly dangerous for hotspots of biodiversity, where species are 

limited by range or endemism.  One of these hotspots is the ancient rift lake, Lake Baikal, 

Siberia, Russian Federation.  Lake Baikal boasts many unique characteristics: largest (by 

volume), deepest, and projected oldest (Moore et al. 2009).  Although the lake is superlative in 

physical characteristics, Lake Baikal is also home to many endemic species from the benthos to 

the world’s only freshwater seal (Pusa siberica).  Species diversity has been thoroughly 

investigated by numerous researchers (Timoshkin 1995; Sherbakov 1999), with much focus on 

the benthos; however, there is little research on the plankton of Lake Baikal at present.   
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  Lake Baikal shares many characteristics with other ancient lakes, specifically Lakes 

Tanganyika, Malawi, Biwa, and Ohrid.  Understanding the cold, oligotrophic Lake Baikal 

system may inform responses to projected climatic changes in the other ancient lakes, additional 

hotspots of biodiversity.  Increased warming has also occurred in all of the aforementioned lakes 

(Verburg, et al. 2003; Matzinger et al. 2006; Albrecht and Wilke 2009; Tsugeki, et al. 2009; 

Tierney et al. 2010), allowing for the opportunity to conduct comparative studies among ancient 

lake systems.   

With Lake Baikal’s many distinct characteristics, however, come many distinct 

challenges related to global climate change.  The temperature of Lake Baikal has been increasing 

over the past century and has been found to be rising twice as quickly as the global average, with 

a 1.2°C over the past century (Shimaraev et al. 2002; Hampton et al. 2008).  Currently, projected 

temperatures for the next century are estimated to be 4.5°C warmer, especially in shallow bays, 

which will present acute challenges to populations adapted to living in colder temperatures and 

those vulnerable to large increases in temperature (Moore et al. 2009).   

A 1.2+°C temperature increase over the next century will increase the possibility of 

extinction for many of Lake Baikal’s endemics, including the plankton (Moore et al. 2009).  The 

plankton has a special place in the ecosystem and is largely regarded as the major energy source 

within the food web (Sherbakov 1999; Sideleva 2003; Bondarenko et al. 2006; Moore et al. 

2009).  Endemic diatoms (Afanasyeva 1998) and zooplankton (Yoshii et al. 1999) feed the 

higher trophic level organisms, including many commercially important fish species (Moore et 

al. 2009).  Endemic plankton are also decreasing in Lake Biwa (Japan) because of warming 

(Tsugeki et al. 2010) and may suffer a similar fate in the Lake Baikal system. Changing the 

structure of the bottom trophic levels of this system will unequivocally affect higher trophic 
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levels, even the benthos species (Bondarenko et al. 2006): amphipods (Sherbakov 1999) and 

benthic fishes (Sideleva 2003).  Considering that endemic diatoms are the endemic zooplankter 

Epischura baikalensis’s primary energy source, one can surmise the remarkable support the 2 

provide for the ecosystem. 

 Epischura baikalensis, though an integral part of the ecosystem, is perhaps in the most 

fragile of positions.  It has been shown that E. baikalensis is especially susceptible to increased 

temperatures with a host of problems occurring (Moore et al. 2009), such as increased mortality 

(Afanasyeva 1998) and fungal infections by Saprolegnia sp. (Kozhova and Beim 1993).  Recent 

invasions by cosmopolitan species, especially in shallow bays, present an additional dimension 

to the stress of climate change.  Cosmopolitan species, such as Daphnia longispina and Cyclops 

spp., are projected to compete better in warmer temperatures than in the colder open waters of 

Lake Baikal (Melnik et al. 1998; Moore et al. 2009; Richardson et al. 2000).  Because the 

endemic plankton of Lake Baikal are smaller than the invading cosmopolitan species (Moore et 

al. 2009), cosmopolitan introductions will no doubt affect energy transfer from bottom trophic 

levels to top trophic levels.  The biogeochemical cycle is also likely to be affected, as has been 

shown in other lakes (Sekino et al. 2007). 

An increase in cladocerans (Daphnia spp.) and cosmopolitan copepods (Cyclops spp.) 

has been observed, while endemic copepods (E. baikalensis) have declined especially in 

warming parts of Lake Baikal such as Chivrikuj Bay (Hampton et al. 2008).  Unless genetic 

variation proves to be high, thereby allowing the selection of beneficial mutations, the endemic 

copepod population may be in danger of extinction with increasing water temperatures.  

However, even with high genetic variation in the endemic population, cosmopolitan species may 

outcompete endemic species in warmer waters.  Epischura baikalensis must not only be able to 
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survive a major climate change but must be more fit than invading species that may be better 

adapted to warmer waters.   

 As previously mentioned, the benthos of Lake Baikal has been thoroughly studied 

(Efremova et al. 2002; Macdonald III et al. 2005; Sherbakov 1999), but the plankton has not.  

Though many of the other functional groups show high species richness, the zooplankton group 

is remarkably species poor.  Because at current levels E. baikalensis composes 90% of the 

zooplankton biomass of Lake Baikal (Afanasyeva 1998), it is imperative that we understand its 

current state of genetic variation to help predict its future.  The elimination of this key species 

could be detrimental to the many other links in the lake and have far-reaching ramifications in 

the commercial and political realms.  Finding high genetic diversity among the zooplankton 

could predict E. baikalensis’s success in the future Lake Baikal ecosystem.  

Geography and Hydrography 

 Lake Baikal is a northern rift lake at approximately 53°40’N and 109°0’E.  Lake Baikal 

is split into 3 distinct basins: Northern, Central, and Southern Basins (Figure 1).  The Northern 

and Central basins are split by the underwater Academician Ridge, while the Central and 

Southern Basins are separated by narrowness and sedimentation caused by the Selenga River 

delta.  There are 3 larger bays: Chivrikuj Bay, Barguzin Bay, and Proval Bay (Figure 1).  An 

additional region of interest is the shallow, narrow inlet Maloe More on the western bank of the 

lake.  Olkhon Island borders Maloe More on the eastern side.  The Selenga, Upper Angara, and 

Barguzin Rivers empty into the lake, and the Angara River is the lake’s only outflow.   
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Figure 1 represents the major geographic regions of Lake Baikal.  The outlines represent as 

follows: Northern Basin (dark blue), Central Basin (light blue), Southern Basin (white), 

Maloe More (pink), Chivrikuj Bay (green), Barguzin Bay (yellow), and Proval Bay (purple).   
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Epischura baikalensis 

 Epischura baikalensis (Crustacea: Copepoda) is the chosen study species of this project.  

This species makes up almost 90% of the zooplankton biomass and a large portion of total 

biomass in Lake Baikal (Afanasyeva 1998).  As a cold-water stenotherm, this threatened 

endemic copepod species can be found throughout the water column and throughout all parts of 

Lake Baikal (Afanasyeva 1998).  The organism has yet to be successfully maintained in the 

laboratory, so all samples were collected directly from Lake Baikal. 
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CHAPTER 2 

RESEARCH OBJECTIVES 

 

 The main objective of this project is to characterize the zooplankton distribution, 

differential gene expression, and genetic differentiation within and among the zooplankton 

populations, specifically Epischura baikalensis, within the Lake Baikal system by location and 

temperature.   

Zooplankton Distribution 

 It is important to track the spread of invasions in fragile systems such as Lake Baikal.  

Characterizing zooplankton assemblages across the lake’s regions may suggest what parameters 

are necessary for invasions to be successful and what parameters are especially hard for the 

endemic Epischura baikalensis to overcome.   

 Understanding the zooplankton assemblages across the lake in response to certain abiotic 

factors may lead to predictions of how far the invasions may spread in the future and their 

immediate outlook with increasing temperatures in the short term.  Collecting data on abiotic 

factors along with current assemblage data will inform the genetics portions of the research 

objective, quantifying the ecological reasons for up-or down-regulated differential gene 

expression or heightened or lowered genetic differentiation.  Informing the genetic data with 

demographic data will allow for more informed predictions for the outlook of E. baikalensis in 

Lake Baikal’s warming future.   

Differential Gene Expression 

 Because of Lake Baikal’s biogeographic isolation among its 3 basins (Northern, Central, 

and South Basins), each basin has distinct characteristics that may be reflected in the local 
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adaptations of the individuals/populations that live within them.  Moreover, the drastic 

differences in climate seen in Lake Baikal’s bays (Chivrikuj, Barguzin, and Proval Bays) and 

shallow inlet (Maloe More) could further be correlated with differential gene expression among 

their respective zooplankton populations.  

 Finding significant differential gene expression among zooplankton from open Baikal 

and zooplankton from warmer waters may suggest the ability of E. baikalensis to adjust to 

climate change.  Quantifying differential gene expression may suggest what genes must be up-or 

down-regulated to compensate for hotter environments.  Highly significant differential gene 

expression differences among the different demes from around the lake could suggest high 

phenotypic plasticity to changing environmental conditions that would afford E. baikalensis 

greater success as Lake Baikal continues to warm in the future.    

Genetic Differentiation 

 Finding high genetic diversity among populations may suggest that the species has a 

greater chance of adapting to climate change; while exhibiting a relatively low level of genetic 

diversity may imply that the species lacks the diversity necessary to survive climate changes and 

to outcompete invading cosmopolitan species.  Alternatively, the large zooplankton population 

may be fragmented due to seasonal, spatial, or depth gradations.  Because Lake Baikal is split 

biogeographically into 3 basins, the separation of populations could be causing 3 smaller, more 

genetically diverse populations.   

 Because Epischura baikalensis inhabits the entire lake from its max depth to the surface, 

a depth gradient could be isolating populations.  All of these isolating factors could be increasing 

genetic diversity and differentiation; but overall, the mixing and upwelling of the lake could be 

sufficient to keep individuals in a large, interbreeding population. 
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 In this study, we plan to characterize the zooplankton abundance, differential gene 

expression, and genetic differentiation of 4 subpopulations from different geographic lake 

regions to better understand the inter-and intra-population variation of Epischura baikalensis.  

Samples from Maloe More that are naturally exposed to higher temperatures may serve as an 

example of E. baikalensis’s ability to respond and adapt to climate change.   
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CHAPTER 3 

MATERIALS, METHODS, AND RATIONALE 

 

 Sampling included 2 field seasons on Lake Baikal: the summers of 2012 and 2013.  

Samples were collected from summer populations of zooplankton.  Research efforts for both 

summers were locateded at the biostation at Bolshie Koty (              ), Irkutsk Oblast, 

Russia, owned and operated by Irkutsk State University.  The sampling plans described herein 

were different for each research component with similar sampling methods.   

Zooplankton Distribution 

Sample Collection 

 All zooplankton samples were collected with a 100 µm mesh-size plankton net with a 

diameter of 50 cm.  Nets were extended overboard using ropes designated with distance 

intervals.  Sampling was completed aboard 2 research vessels: Professor Kozhov, owned and 

operated by Irkutsk State University and Professor Treskov, owned and operated by the Baikal 

Museum. Data for temperature, dissolved oxygen, surface temperature, and chlorophyll 

concentrations were also collected using a YSI sonde.    Samples were taken from 100 m to 

surface in all stations where depth was 100 m or greater.  All other samples were taken at max 

depth, i.e., <100 m.  Samples were filtered through a small diameter 100 µm mesh-size plankton 

sieve to condense into plastic specimen flasks.  

 Depth Sampling in Chivrikuj Bay Summer 2013.  Sampling was completed in 3 traverses 

of Chivrikuj Bay following a transect along the 109
th

 meridian East that spanned from the 125 m 

or greater depth of open Lake Baikal to the inner reaches of the inner bay.  The 109
th

 meridian 

East was used for ease of transect sampling because it runs the length of the bay with minutes 
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north of the 53
rd

 parallel North being used to denote samples taken in a North to South direction.  

If a station was 125 m or greater in depth, a closing plankton net (100 µm mesh-size) was used to 

collect depth samples. Depth samples included all zooplankton in the water column from 125 m 

– 25 m, heretofore referred to as “deep” samples, and from 25 m – 0 m, heretofore referred to as 

“shallow” samples.  The net was closed at 25 m to only capture zooplankton from 125 m – 25 m 

depths.  The same was repeated for depths of 25 m – 0 m.  If a station was <125 m in depth, max 

depth was sampled.   

Sample Storage 

 Samples were stored in approximately 20 mL 70% ethanol for transportation back to East 

Tennessee State University, Johnson City, TN, where further processing and counts took place.  

Samples were refrigerated until counted.   

Sampling Rationale 

 Summer 2012.  Sampling in summer 2012 was intended for exploratory purposes; 

however, results were included from this sampling effort.  A map of sampling sites from summer 

2012 for zooplankton abundance is displayed in Figure 2.  Sampling from this season included 

samples from all 3 of Lake Baikal’s basins (Northern, Central, and Southern), Chivrikuj Bay, 

Barguzin Bay, and Maloe More. 

 Summer 2013.  Sampling in summer 2013 was repeated for all 3 of Lake Baikal’s basins 

(Northern, Central, and Southern), Chivrikuj Bay, Barguzin Bay, and Maloe More.  However, 

extensive sampling was completed in Chivrikuj Bay to obtain higher resolution of zooplankton 

assemblages, temperature, dissolved oxygen, surface temperature, and chlorophyll 

concentrations.  The only samples used for zooplankton distribution from summer 2013 were the 

Chivrikuj Bay samples; all others were for subsequent analyses.   
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 From previous personal observations, a sharp gradient of exclusion between the endemic 

Epischura baikalensis and the invasive Daphnia longispina in Chivrikuj Bay existed.  Extensive 

sampling was carried out to further investigate the parameters behind this sharp divide.   

 A map of all summer 2013 sampling sites of Lake Baikal is displayed in Figure 3, while a 

more detailed map of summer 2013 sampling sites of Chivrikuj Bay is displayed in Figure 4.   

Sample Processing 

 Samples were diluted in ethanol and split into less dense subsamples.  The counts were 

then corrected for their dilution factors.  Zooplankton was identified to the subclass Copepoda or 

to the order Cladocera.  All other zooplankton was classified to the subphylum Crustacea; 

specifically, the only zooplankton classified as “other Crustacea” was Macrohectopus branickii, 

Lake Baikal’s endemic, planktonic amphipod (Amphipoda: Gammaridea).   

 Copepoda.  Copepods were further classified into 3 categories: Cyclops spp., Epischura 

baikalensis, or Diaptomus graciloides.  Cyclops spp. includes Cyclops kolensis, the subgenera 

Mesocyclops, Acanthocyclops sp., and Cyclops vicinus.  Cyclops spp. were grouped as such due 

to difficulty in determining further species categories in organisms at various life stages.   

 Cladocera.  Cladocerans were further classified into 4 categories: Daphnia longispina, 

Chydorus sp., Bosmina sp., and Leptodora kindtii.   

Statistical Analysis 

 JMP 11.0 was used for statistical analysis of the zooplankton distribution samples (SAS 

Institute Inc. 2013).  Raw counts were changed to percentages of full assemblage by 

species/taxonomic group in the water column for statistical analysis.   

 Whole Lake. One-way ANOVA were used to analyze the variation in percent abundance 

of different zooplankton groups between and among sampling sites across the lake in addition to 
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variation with response to abiotic factors (depth, average water temperature, dissolved oxygen, 

surface temperature, and chlorophyll concentrations).  All pairs Tukey’s HSD test with 95% 

confidence intervals were used to compare means in site-by-site comparisons.   

Chivrikuj Bay. Bivariate analyses were used to analyze the variation in percent 

abundance of different zooplankton groups by distance along the 109
th

 meridian East, the 

transect used for abundance sampling that runs the length of Chivrikuj Bay.  Regressions were fit 

to the data and analyzed with ANOVA with 95% confidence intervals.  
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Figure 2 represents sampling sites from summer 2012 Lake Baikal sampling cruises aboard 

the Professor Kozhov and Professor Treskov.  The sample codes are as follows: open Baikal 

(OB), Barguzin Bay (BB), Chivrikuj Bay (CH), and Maloe More (MM).  Open Baikal 

samples include sampling sites in all 3 basins.   



25 

 

Figure 3 represents sampling sites from summer 2013 Lake Baikal sampling cruises aboard 

the Professor Kozhov and Professor Treskov.  Sample codes are “Location-Year-Station” 

with “locations” as follows: Northern Basin (NB), Central Basin (CB), Southern Basin (SB), 

Selenga River Delta (SE), Proval Bay (PB), Barguzin Bay (BB), and Maloe More (MM).  

Chivrikuj Bay samples are not pictured due to density and can be found in Figure 4.   
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Figure 4 represents sampling sites from summer 2013 Chivrikuj Bay sampling cruise aboard 

the Professor Kozhov.  Sample codes are “Location-Year-Traverse.Station” with “location” 

as follows: Chivrikuj Bay (CH).  These samples represent 3 traverses of Chivrikuj Bay of a 

transect that runs North-South along the 109
th

 meridian East.   
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Reference Transcriptome 

 A reference transcriptome was obtained from ~250 adult individuals collected from the 

Southern Basin during the winter sampling expedition in March 2013 (Figure 3, SB-13-3).  This 

sample from the Southern Basin served as the reference against which all other sequenced 

transcriptomes are aligned.  RNA was extracted from these samples per the following protocol. 

RNA Extraction  

 Qiagen’s RNeasy kit was used for RNA extraction as follows (Qiagen 2006).  A sample 

of ~250 individuals was isolated and counted in RNAlater.  The sample was dried with filter 

paper, flash frozen with liquid nitrogen, and macerated with a pestle in an RNase-free 2 mL 

microcentrifuge tube.  Liquid nitrogen was allowed to evaporate without the sample thawing 

before whole-organism tissues were disrupted and homogenized with 600 µL lysis buffer (Buffer 

RLT) and mortar and pestle.  The lysate was centrifuged for 3 min at 13,500 rpm.  The 

supernatant (lysate) was removed and transferred to a new microcentrifuge tube.   

 Then, 600 µL 70% ethanol was added and mixed via pipette.  From this, a 700 µL sample 

was taken (including precipitate) and pipetted into an RNeasy spin column within a 2 mL 

collector tube.  The sample was centrifuged for 15 s at 13,500 rpm before an on-column DNase 

digestion was performed.    

 DNase Digestion.  An on-column DNase digestion was performed on each sample by 

adding 350 µL membrane-washing buffer (Buffer RW1) and centrifuging for 15 s at 13,500 rpm.  

After the flow-through was discarded, 80 µL DNase I incubation mix (10 µL DNase I stock 

solution and 70 µL Buffer RDD) was added directly to the spin column membrane and incubated 

at room temperature for 15 min.  After incubation, the column was washed with 350 µL Buffer 
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RW1 and centrifuged for 15 s at 13,500 rpm.  The flow-through was discarded, and the column 

was used for the remainder of the RNA extraction.   

 After the DNase digestion, 500 µL of another membrane-washing buffer (Buffer RPE) 

was added to the column.  The sample was centrifuged at 13,500 rpm, and the flow-through was 

discarded.  A second wash using 500 µL Buffer RPE was completed.  Two washes of Buffer 

RPE ensured that no ethanol that may hinder subsequent reactions continues in the protocol.  The 

column was inserted into a new collection tube and centrifuged for 1 min at 13,500 rpm.  In 

another new collection tube, the column’s membrane was washed with 50 µL RNase-free water 

and centrifuged for 1 min at 13,500 rpm.  The membrane was washed again with 50 µL RNase-

free water to ensure elution of all RNA.  The sample concentration (>10 ng/µL) was then 

confirmed with nanodrop and gel electrophoresis before 454 Rosche sequencing libraries were 

constructed.     

Library Construction and 454 Rosche Sequencing   

 Library construction and 454 Rosche sequencing were performed by Beckman Coulter 

Genomics.  Libraries (cDNA) for the 454 Rosche sequencing were prepared according to the 

manufacturer’s specifications (454 Life Sciences Corp. 2011).  The resulting reference 

transcriptome served as the basis for alignment of the Illumina double-end reads used in 

subsequent analyses.  454 Rosche sequencing was chosen to provide longer reads for better 

overlap with the goal of a more accurately aligned reference transcriptome.   

 The binary data file generated by the GS-FLX sequencing instrument software was 

converted to multiple-FASTA format and reads quality saved in multiple-QUAL format.  Quality 

values express negative base-10 log of the basecall error probability.  Transcriptome assembly 
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was conducted by Newbler (Fryslie 2012) and assembled contigs longer than 100 bases saved in 

a FASTA file.   

Differential Gene Expression 

 Differential gene expressions samples were taken from the summer 2012 transcriptome 

samples (Figure 5).  Samples included sites from the 3 major basins (Northern, Central, and 

Southern) and from the shallow inlet Maloe More.   

Sample Collection 

 All zooplankton samples were collected with a 100 µm mesh-size plankton net.  Nets 

were extended overboard using ropes designated with distance intervals.  Sampling was 

completed aboard 2 research vessels: Professor Kozhov, owned and operated by Irkutsk State 

University, and Professor Treskov, owned and operated by the Baikal Museum. Data for 

temperature, dissolved oxygen, surface temperature, and chlorophyll concentrations were 

collected using a YSI sonde.    Samples were taken from 150 m to surface in all stations where 

depth is 100 m or greater.  Samples were filtered through a small diameter 100 µm mesh-size 

plankton sieve to condense into plastic 2 mL microcentrifuge tubes. 

Sample Storage 

 Samples were dried with filter paper and stored in approximately 2 mL Qiagen RNAlater 

(RNA stabilization reagent) in 2 mL microcentrifuge tubes.  Microcentrifuge tubes with samples 

were immediately flash frozen in liquid nitrogen and stored in a dry vapor shipper for 

transportation back to East Tennessee State University, Johnson City, TN, where further 

processing took place.  Duplicates were flash frozen in liquid nitrogen alone.  Samples were 

refrigerated in a -80°C unit until processed.   
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Sampling Rationale 

 For the most robust transcriptome analysis, as many individuals from as many 

environments as possible proved the most useful.  However, because further analysis required 

whole-organism RNA extraction, care was taken to ensure only transcriptomes of the study 

organism were taken and not the transcriptomes of ciliates, algae, and other organisms that may 

have been present in the gut of Epischura baikalensis, i.e., the metatranscriptome.  Because of 

this caveat and a preference for transcriptome study on Epischura baikalensis alone, samples 

were taken from the Northern, Central, and Southern Basins, and Maloe More only, where E. 

baikalensis appears in >90% of the zooplankton abundance.  This sampling plan ensured RNA 

extraction from the most diverse habitats possible while minimizing contamination by other 

organisms’ transcriptomes and the metatranscriptome of the sampling region.  Three biological 

replicates were used from each transcriptome sample site (Figure 5).   
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Figure 5 represents transcriptome sampling sites from summer 2012 Lake Baikal sampling 

cruise aboard the Professor Kozhov and Professor Treskov.  Sample codes are 

“LocationStation-Year” with “location” as follows:  Northern Basin (NB), Central Basin 

(CB), Southern Basin (SB), and Maloe More (MM). 
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Sample Processing 

 RNA Extraction. Qiagen’s RNeasy kit was used for RNA extraction as previously 

explained in Reference Transcriptome: RNA Extraction.  Samples of 120 adult individuals were 

isolated and counted in RNAlater from each of the 12 samples (3 from each of 3 basins, 3 from 

Maloe More, Figure 5).  The sample concentrations (>10 ng/µL) were then confirmed with 

nanodrop and gel electrophoresis before cDNA libraries were constructed.  All samples were 

placed in TE buffer in a foil-sealed 96-well PCR plate for library construction.  The remaining 

volumes of samples were flash frozen and stored at -80°C.   

 Library Construction and Illumina Paired-End Sequencing.  Library construction and 

Illumina paired-end sequencing were completed by Beckman Coulter Genomics.  Libraries 

(cDNA) were constructed per the manufacturer’s specifications (Illumina 2011).  The binary data 

file generated by the GS-FLX sequencing instrument software was converted to multiple-

FASTA format and reads quality saved in multiple-QUAL format.  Quality values express 

negative base-10 log of the basecall error probability.  Quality filtered Illumina data were saved 

in FASTQ containing both basecalls and ASCII encoded quality values.    

Analysis 

 Illumina reads were mapped to the 454 Rosche partial transcriptome using Trinity/RSM 

(Grabherr et al. 2011).  Differential expression analysis was conducted by edgeR (Robinson et al. 

2013) by Beckman Coulter Genomics on centered TMM-normalized FPKM (fragments per 

kilobyte of length per million reads).  The 2-way cluster analysis was recreated by the author 

using JMP 11 (SAS Institute Inc. 2013).  A principal components analysis (PCA) on correlations 

and a color map on sample correlations were completed.   
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 tBLASTn.  A subset of 863 transcripts with a very conservative false discovery rates of 

<0.001 (FDR=0.001) was made.  These transcripts were used to search for similar sequences 

using the National Center for Biotechnology and Information’s (NCBI) translated BLAST for 

nucleotide databases (tBLASTn) within the Drosophila database of reference RNA sequences 

(refseq_rna) (Geer et al. 2010).  Additionally, these transcripts were used to search for similar 

sequences using NCBI’s tBLASTn within the “Invertebrates” database of nucleotide collection 

(nr/nt) (Geer et al. 2010).  The highest matched result of both searches for each transcript was 

annotated as the closest putative homologous transcript within Epischura baikalensis.  If no 

sequence matched, the sequence was considered novel to E. baikalensis.   

 Gene Ontology. Gene ontology results as CG identification numbers from the Drosophila 

database tBLASTn were then probed against FlyBase, a database for Drosophila genes and 

genomes (St. Pierre et al. 2014).  Putative molecular function, cellular component, and biological 

process were collected per transcripts that had a matching sequence from tBLASTn results.  

Output matches from the tBLASTn against “Invertebrates” that included gene ontology 

information were parsed for ontologies and merged with Drosophila putative ontologies to 

obtain the largest set of putative transcript functions.   

 The complete list of gene ontologies from both databases were placed into their 

respective categories of putative function, e.g. enzymes, structural proteins, chaperones.  The 

remaining transcripts with annotations from gene ontologies were grouped into an 

“unknown/other” category.  Functions for these transcripts were either unknown at the time of 

analysis, had poorly annotated gene ontologies, or did not fall into the other categories.  Once the 

annotated transcripts had been classified into ontological groups, they were separated by the 
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cluster of transcripts from which they came.  This allowed for a comparison of differential gene 

expression by cluster.   

Genetic Differentiation 

 Genetic differentiation samples were taken from the summer 2012 transcriptome samples 

(Figure 5) and were the same biological samples as the Differential Gene Expression samples.  

Samples included sites from the 3 major basins (Northern, Central, and Southern) and from the 

shallow inlet Maloe More.   

Sample Collection 

 Sample collection is the same as in Differential Gene Expression.  

Sample Storage 

 Sample storage is the same as in Differential Gene Expression.   

Sample Processing 

 Sample processing is the same as in Differential Gene Expression.   

Analysis 

 Illumina reads were mapped to the 454 Rosche partial transcriptome using Trinity/RSM 

(Grabherr et al. 2011).  Allelic frequencies of variant alleles were calculated for each 

significantly differentiated (p<0.05) single nucleotide polymorphism (SNP) per transcript.  

Fixation indices for subpopulations to total population (FST) were found for individual SNPs 

using methods outlined by Weir and Cockerham (1984).  Average FST values were found using 

mean numerator divided by mean denominator values as a more robust estimate of average FST 

for each SNP (Weir and Cockerham 1984) of transcripts that had >1 significantly differentiated 

SNP.  All 131 347 average FST values were then bootstrapped to estimate the variance, i.e., 

standard error, with 400 replicate resamplings.  One way ANOVA were used to determine 
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variance between subpopulations, and all pairs Tukey’s HSD test with 95% confidence intervals 

were used to compare means in site-by-site comparisons.   

 A principal components analysis (PCA) based on minor allele frequency of 2000 

randomly selected highly significantly differentiated SNPs was completed; expected FST values 

for randomly assigned alleles to subpopulations were found using a Poisson distribution and 

compared to actual FST values using JMP 11 (SAS Institute Inc. 2013).  For population size 

estimates, a neutral mutation rate of 10
-8

 was assumed, and effective population size (Ne) and 

migration rate (Nm) were estimated from average FST values using methods and equations 

outlined by Weir and Cockerham (1984).   

SNPs that were contained within transcripts that were enriched for FDR<0.001 or 

FDR<0.05 or that were in the top 5% of FST values were included in further analysis of gene 

ontologies.  Gene ontologies collected from the method previously mentioned in Differential 

Expression were used for genetic differentiation analysis.  Contingency tables were used to test 

for significant genetic differentiation in gene ontology groups with a Bonferroni correction for 

multiple comparisons.   
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CHAPTER 4 

ZOOPLANKTON DISTRIBUTION 

 

Results 

Whole Lake 

 There were significant differences of zooplankton distribution among the lake’s different 

regions (Figures 6 – 11, Tables 1 – 5).   

 Epischura baikalensis.  Epischura baikalensis abundances were significantly higher in 

open Baikal samples (Northern, Central, and Southern Basins) and Maloe More samples than in 

either Barguzin or Chivrikuj Bays (Figure 6, Table 1).  There were no significant differences 

between Maloe More and open Baikal or between Barguzin and Chivrikuj Bays.   

 Daphnia longispina.  Meanwhile, Daphnia longispina abundances were significantly 

higher in Barguzin and Chivrikuj Bays than in open Baikal samples (Figure 7, Table 2).  

Daphnia longispina was significantly more abundant in Chivrikuj Bay than in Maloe More and 

nearly significantly more abundant in Barguzin Bay than in Maloe More.  There were no 

significant differences between Maloe More and open Baikal or between Barguzin and Chivrikuj 

Bays.   

 Cyclops spp.  Cyclops spp. followed the same trend as Daphnia longispina (Figure 8, 

Table 3).  They were significantly more abundant in Barguzin and Chivrikuj Bays than in either 

open Baikal or Maloe More.  However, there were significantly more Cyclops spp. in Chivrikuj 

Bay than in Barguzin Bay.  There were no significant differences between Maloe More and open 

Baikal.   
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 Diaptomus graciloides.  Diaptomus graciloides were significantly more abundant in 

Chivrikuj Bays than in open Baikal or Maloe More (Figure 9, Table 4).  There were no 

significant differences between Barguzin Bay, Maloe More and open Baikal abundances nor was 

there a significant difference between the abundances of Barguzin Bay and Chivrikuj Bay.   

 Macrohectopus branickii.  No Macrohectopus branickii were found in the 2012 samples 

from Barguzin Bay, Chivrikuj Bay, or Maloe More.  Several were found in open Baikal, but 

there was no significant difference in abundance throughout the lake (Figure 10, Table 5).   
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Figure 6 represents the differences in Epischura baikalensis raw abundance in samples from 

different regions of Lake Baikal, R
2

16
 
= 0.6125, p = 0.0014.  Sample groups are such as follows: 

Barguzin Bay (BARG), Chivrikuj Bay (CH), Maloe More (MM), Open Baikal (OB-includes 

Northern, Central, and Southern Basins).  Means comparisons by site from all pairs Tukey’s 

HSD test with 95% confidence interval (right) can be found in Table 1.   

 

Table 1 represents the means comparisons by sites from all pairs Tukey’s HSD test with 95% 

confidence interval for Epischura baikalensis raw abundance in samples from different regions 

of Lake Baikal.  Sample groups are such as follows: Barguzin Bay (BARG), Chivrikuj Bay 

(CH), Maloe More (MM), Open Baikal (OB-includes Northern, Central, and Southern Basins). 
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Figure 7 represents the differences in Daphnia longispina raw abundance in samples from 

different regions of Lake Baikal, R
2

16
 
= 0.7075, p = 0.0002.  Sample groups are such as follows: 

Barguzin Bay (BARG), Chivrikuj Bay (CH), Maloe More (MM), Open Baikal (OB-includes 

Northern, Central, and Southern Basins).  Means comparisons by site from all pairs Tukey’s 

HSD test with 95% confidence interval (right) can be found in Table 2.   

 

 

Table 2 represents the means comparisons by sites from all pairs Tukey’s HSD test with 95% 

confidence interval for Daphnia longispina raw abundance in samples from different regions of 

Lake Baikal.  Sample groups are such as follows: Barguzin Bay (BARG), Chivrikuj Bay (CH), 

Maloe More (MM), Open Baikal (OB-includes Northern, Central, and Southern Basins). 

 



40 

 

 

 

Figure 8 represents the differences in Cyclops spp. raw abundance in samples from different 

regions of Lake Baikal, R
2
16

 
= 0.8812, p = 0.0001.  Sample groups are such as follows: Barguzin 

Bay (BARG), Chivrikuj Bay (CH), Maloe More (MM), Open Baikal (OB-includes Northern, 

Central, and Southern Basins).  Means comparisons by site from all pairs Tukey’s HSD test with 

95% confidence interval (right) can be found in Table 3. 

 

 

Table 3 represents the means comparisons by sites from all pairs Tukey’s HSD test with 95% 

confidence interval for Cyclops spp. raw abundance in samples from different regions of Lake 

Baikal.  Sample groups are such as follows: Barguzin Bay (BARG), Chivrikuj Bay (CH), Maloe 

More (MM), Open Baikal (OB-includes Northern, Central, and Southern Basins). 
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Figure 9 represents the differences in Diaptomus graciloides raw abundance in samples from 

different regions of Lake Baikal, R
2

16
 
= 0.5578, p = 0.0038.  Sample groups are such as follows: 

Barguzin Bay (BARG), Chivrikuj Bay (CH), Maloe More (MM), Open Baikal (OB-includes 

Northern, Central, and Southern Basins).  Mean comparisons by site from all pairs Tukey’s HSD 

test with 95% confidence interval (right) can be found in Table 4.   

 

Table 4 represents the means comparisons by sites from all pairs Tukey’s HSD test with 95% 

confidence interval for Diaptomus graciloides raw abundance in samples from different regions 

of Lake Baikal.  Sample groups are such as follows: Barguzin Bay (BARG), Chivrikuj Bay 

(CH), Maloe More (MM), Open Baikal (OB-includes Northern, Central, and Southern Basins). 
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Figure 10 represents the differences in Macrohectopus branickii raw abundance in samples from 

different regions of Lake Baikal, R
2

16
 
= 0.2444, p = 0.2020.  Sample groups are such as follows: 

Barguzin Bay (BARG), Chivrikuj Bay (CH), Maloe More (MM), Open Baikal (OB-includes 

Northern, Central, and Southern Basins).  Mean comparisons by site from all pairs Tukey’s HSD 

test with 95% confidence interval (right) can be found in Table 5.   

 

Table 5 represents the means comparisons by sites from all pairs Tukey’s HSD test with 95% 

confidence interval for Macrohectopus branickii raw abundance in samples from different 

regions of Lake Baikal.  Sample groups are such as follows: Barguzin Bay (BARG), Chivrikuj 

Bay (CH), Maloe More (MM), Open Baikal (OB-includes Northern, Central, and Southern 

Basins). 
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Figure 11 represents zooplankton raw abundance by sampling site from different regions of 

Lake Baikal.  Sample code is as follows: “LocationStation” with “location” codes being open 

Baikal (OB), Chivrikuj Bay (CH), Barguzin Bay (BB), and Maloe More (MM).  See Figure 1 

for region color codes.   
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Chivrikuj Bay 

 Zooplankton Abundance.  There were significant differences in zooplankton distribution 

within Chivrikuj Bay (Figures 12 – 13).  Farther into the bay, i.e., more south, Epischura 

baikalensis percent abundances decreased significantly with distance into the bay, measured as 

minutes north of the 53
rd

 parallel North (Figure 12).  Conversely, Daphnia longispina, Cyclops 

spp., and Diaptomus graciloides percent abundances increased significantly with distance into 

the bay (Figure 12).   

 Abiotic Factors.  There were significant differences in abiotic factors within Chivrikuj 

Bay (Figure 14).  Farther into the bay, i.e., more south, water temperature, surface temperature, 

and percent dissolved oxygen increased significantly (Figure 14).  Farther into the bay, depth and 

chlorophyll concentration decreased significantly (Figure 14). 
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Figure 12 represents bivariate analyses of percent zooplankton abundances of Chivrikuj Bay, 

Lake Baikal.  Minutes from the 53
rd

 parallel North corresponds to a North – South direction, 

traveling farther south and farther into the bay, e.g., reading horizontal axis left to right 

corresponds to North (opening) to South (shore) direction.  Solid lines represent regressions with 

95% confidence intervals represented by dashed lines.  Top left: Epischura baikalensis, R
2
23

 
= 

0.5195, p <0.0001.  Above left: Daphnia longispina, R
2
23

 
= 0.6421, p <0.0001.  Top right: 

Diaptomus graciloides, R
2
23 = 0.2838, p = 0.0061.  Above right: Cyclops spp., R

2
23 = 0.2804, p = 

0.0065.   
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Figure 13 represents zooplankton raw abundance by sampling site from Chivrikuj Bay, Lake 

Baikal.  Sample code is as follows: “Location-Year-Traverse.Station” with “location” codes 

being Chivrikuj Bay (CH).  All samples from parallel stations of each respective traverse were 

combined as biological replicates.    
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Figure 14 represents bivariate analyses of the abiotic factors of Chivrikuj Bay, Lake Baikal.  

Minutes from the 53
rd

 parallel North corresponds to a North – South direction, traveling farther 

south and farther into the bay, e.g., reading horizontal axis left to right corresponds to North 

(opening) to South (shore) direction.  Solid lines represent regressions with 95% confidence 

intervals represented by dashed lines.  Top left: Surface Water Temperature, R
2

23 = 0.3800, p 

<0.0010.  Above left: Water Temperature, R
2

23
 
= 0.8428, p <0.0001.  Top right: Dissolved 

Oxygen, R
2

21 = 0.4941, p = 0.0002.  Center right: Chlorophyll Concentration, R
2
23 = 0.1737, p = 

0.0382; Bottom right: Depth, R
2
23 = 0.2931, p = 0.0052.   
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Discussion 

Whole Lake 

 The zooplankton population varies depending on the location within the lake. Evidence 

suggests that a major factor in having diverse assemblages, e.g. those that include invasive 

cosmopolitans, is temperature.  However, Maloe More, with its temperature not being 

significantly different from that of Chivrikuj Bay (Figure 15) lacks this uniform assemblage of 

cosmopolitans.  Maloe More’s assemblage mimics that of open Baikal despite its different 

hydrologic parameters.  Maloe More is significantly deeper than Chivrikuj Bay and is subject to 

stronger currents having an inflow and outflow.  This could suggest that the thermocline of 

Maloe More may be providing Epischura baikalensis with a suitably low water temperature such 

that it remains competitive, e.g., E. baikalensis can migrate below the thermocline should surface 

water temperatures rise above its thermal tolerance.  Whereas Chivrikuj Bay lacks the depth for a 

substantial thermocline, especially in its shallow reaches deep in the bay, E. baikalensis may 

have no suitable habitat from which to escape higher temperatures (>15°C).   

 The highly circulating currents of Maloe More may be preventing invasion by Daphnia 

longispina and the other cosmopolitans seen in Chivrikuj and Barguzin Bays.  Any 

cosmopolitans that could survive in Maloe More may be getting quickly removed into the very 

cold water of open Baikal (4°C), where their survival is decreased.  In addition to the lower 

temperatures, open Baikal lacks the chlorophyll concentrations usually required by 

indiscriminate-eating cosmopolitan species, such as Daphnia longispina.   

 It should be noted that there seems to be competitive exclusion between the endemics and 

invasive species.  The samples were nearly, if not 100%, dominated by either cosmopolitan 

invasives or Epischura baikalensis with little overlap.  It would be remiss to postulate that this 
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exclusion is entirely based on competitive exclusion for energy resources, however.  Though 

energy resources may play a factor in the step-wise relationship between endemics and 

cosmopolitans, the relationship seems to be driven more by abiotic factors and niche 

specialization of the extremely stenothermic E. baikalensis, as was seen in the Chivrikuj Bay 

samples (Figures 12, 14).   

 The other zooplankton present throughout Lake Baikal should also be mentioned because 

Cyclops spp. and Diaptomus graciloides represent many of the same challenges as the invasive 

Daphnia longispina.  Observing the highly significant abundances of these other generalist 

cosmopolitan invaders could lead to further pressures on the specialist Epischura baikalensis, 

should cosmopolitan colonies establish in open waters of Lake Baikal.   

 

Figure 15 represents the comparison of water temperature variation between Maloe More (MM) 

and Chivrikuj Bay (CH), R
2
25

 
= 2.72e-5, p = 0.9794. 
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Chivrikuj Bay 

 The zooplankton population within Chivrikuj Bay is quite dynamic from the bay’s 

entrance to its shallower inner waters.  The swift change from entirely Epischura baikalensis 

dominated assemblages to nearly entirely Daphnia longispina assemblages is striking.  Both 

species’ abundances mirror the temperature cline that exists along the 109
th

 meridian East.  Other 

abiotic trends mirror the steep decline in E. baikalensis abundance and the increase in the D. 

longispina abundance, but the most significant is temperature.  Again, E. baikalensis seems to 

have a step-wise relationship with D. longispina where the only overlap zone is in station 3 of all 

3 traverses (Figure 13).  This zone also exhibits temperatures that both species can tolerate while 

maintaining a depth capable of giving ample thermocline protection to E. baikalensis should day 

time surface waters become too warm.   

 The combination of various abiotic factors is likely driving the trend in zooplankton 

abundance in Chivrikuj Bay. The same is likely true of Barguzin Bay; however, it is interesting 

that temperature may not be the only factor in the relationship.  As seen in Maloe More, E. 

baikalensis has high abundance even with temperatures no different from those in Chivrikuj Bay.  

Hence, there is likely another factor in addition to water temperature or a factor that can mediate 

the major effects of higher water temperatures enabling E. baikalensis to survive in Maloe More 

but not in inner Chivrikuj Bay.  The combination of shallow depth, possible lack of thermocline, 

and lack of strong currents is likely affecting E. baikalensis abundance.  Meanwhile, higher 

dissolved oxygen in Chivrikuj Bay’s shallow water, i.e., higher water-gas interface, may allow 

for a better habitat in which D. longispina and other cosmopolitan species can thrive.   

 A caveat of this study of zooplankton abundance is that the Daphnia longispina and other 

cosmopolitan species of Chivrikuj Bay may have not been able to colonize open Baikal and 
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Maloe More simply because of lack of contact with those areas.  The circular current of 

Chivrikuj Bay could be excluding zooplankters from leaving the bay.  Very few Daphnia 

longispina specimen have been found outside of the shallow bays, in either open Baikal or Maloe 

More, and their origin has yet to be determined.  That is to say, however, should Daphnia 

longispina or other cosmopolitan species invade in substantial numbers in either Maloe More or 

open Baikal, colonization could be successful under the correct biotic and abiotic circumstances.  

Successful colonization in open Baikal’s frigid waters (4°C) is unlikely for D. longispina or the 

other zooplankters studied here but could certainly happen should another stenothermic plankton 

species invade.    
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CHAPTER 5 

DIFFERENTIAL GENE EXPRESSION 

 

Results 

Correlation Analysis  

 There was significant variation in gene expression in Epischura baikalensis from the 

lake’s different regions (Figures 16, 17).  From the FDR=0.001 transcripts, 4 distinct clusters 

were made from the differential expression data retrieved in this study.  Cluster 1 transcripts had 

up-regulation in Maloe More samples and down-regulation in all other samples (Figures 16, 17).  

Cluster 2 transcripts had up-regulation in Central Basin and Southern Basin samples (Figures 16, 

17).  Cluster 3 transcripts were more notably down-regulated in Northern Basin samples and 

show mixed expression levels in Maloe More, Central Basin, and Southern Basin (Figures 16, 

17).  Finally, cluster 4 transcripts showed very high up-regulation in the Northern Basin and 

down-regulation in Maloe More; expression levels in Central and Southern Basin was mixed in 

cluster 4.  There was a fifth cluster of genes, but despite significant differential gene expression 

in Lake Baikal samples, none of these transcripts mapped to either invertebrates or Drosophila.  

Hence, cluster 5 was excluded from further analysis due to lack of annotation for those 

transcripts.  Cluster 5 transcripts showed down-regulation in Maloe More and Central Basin, 

while remaining up-regulated and mixed in Northern and Southern Basins, respectively. 
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Figure 16 represents a dendrogram and heat map of different gene expression of 863 transcripts 

(FDR=0.0001).  Down-regulation (green) and up-regulation (red) are clustered by transcript 

family (left) and by sample site (dendrogram: top; sample label: bottom).  Sample name is 

“LocationYear.Station.Replicate” with “location” code as follows: Northern Basin (NB), Central 

Basin (CB), Southern Basin (SB), Maloe More (MM).  Clusters, with their corresponding color 

and primary characteristic expression, are as follows: Cluster 1 (teal; MM up-regulation), Cluster 

2 (red; NB down-regulation), Cluster 3 (green; NB and CB down-regulation), Cluster 4 (blue; 

NB up-regulation), Cluster 5 (orange; no primary characteristic pattern).   
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Figure 17 represents parallel plots by transcript cluster for the multivariate cluster analysis.  Up 

and down trends correspond to up-and down-regulation of clustered transcripts.  Cluster numbers 

and colors correspond to the color families from Figure 16.  Sample name is 

“LocationYear.Station.Replicate” with “location” code as follows: Northern Basin (NB), Central 

Basin (CB), Southern Basin (SB), Maloe More (MM).  Clusters, with their corresponding color 

and primary characteristic expression, are as follows: Cluster 1 (teal; MM up-regulation), Cluster 

2 (red; NB down-regulation), Cluster 3 (green; NB and CB down-regulation), Cluster 4 (blue; 

NB up-regulation), Cluster 5 (orange; no primary characteristic pattern).   

 

 From the PCA on correlations, the transcripts clustered in tight clouds in their respective 

clusters within 2 dimensions (Figures 18, 19).  Principal components 1 and 2 explained 85.9% of 

the variation within the correlations of transcripts (Figure 18).  All sampling sites clustered 

heavily together by location.  Nearly all transcripts variation was explained by 2 principal 

components expressing the strong correlations between transcript expression levels.   

Two principal components explained 81.7% of the variation within the correlations of 

sample sites (Figure 19).  Cluster 1 transcripts were dominated by the extreme down-regulation 
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of genes in the 3 basins (Northern, Central, and Southern).  Cluster 2 transcripts were dominated 

by the up-regulation of genes in individuals from the Central and Southern Basins.  Cluster 3 

transcripts were dominated by the down-regulation in Maloe More, Central Basin, and Southern 

Basin.  Finally, cluster 4 transcripts were strongly driven by the down-regulation of genes in 

Maloe More, Central Basin, and Southern Basin, coupled with the intense up-regulation of genes 

in the Northern Basin.  From the correlations summary (Figure 19), samples from each area 

clustered near other samples from the same region without overlap.  This analysis suggested that 

Epischura baikalensis from the 4 distinct areas sampled had very different gene expression 

levels largely with high correlation to location. 

A sample by sample correlation color map helped visualize direct correlation between 

samples (Figure 20).  The Central and Southern Basin expression levels had positive correlations 

to each other, while Maloe More and Northern Basin expression levels only correlated within 

their respective subsamples and, in fact, were highly negatively correlated with most other 

samples (Figure 20).   
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Figure 18 represents a Principal Components Analysis (PCA) on correlations of transcripts.  

Above left: eigenvalues for principal components.  Above middle: principal components 1 and 2 

explain 85.9% variation in correlations.  Above right: summary map of transcript vectors.  

Marker color corresponds to sample site as follows: Northern Basin (blue), Central Basin (red), 

Southern Basin (green), Maloe More (teal). 

 

 

Figure 19 represents a Principal Components Analysis (PCA) on correlations of sample sites.  

Above left: eigenvalues for principal components.  Above middle: principal components 1 and 2 

explain 81.7% variation in correlations.  Above right: summary map of sample vectors.  Sample 

name is “LocationYear.Station.Replicate” with “location” code as follows: Northern Basin (NB), 

Central Basin (CB), Southern Basin (SB), Maloe More (MM). 
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Figure 20 represents a color map of sample by sample correlations.  Highly positive correlations 

(brown), no correlations (white), and highly negative correlations (teal) represent how similar 

replicates are within samples and among other samples.  Sample name is “Location 

Year.Station.Replicate” with “location” code as follows: Northern Basin (NB), Central Basin 

(CB), Southern Basin (SB), Maloe More (MM). 

  

Transcript Annotation and Gene Ontology   

 Many transcripts from the subset of 863 transcripts differentially expressed with 

FDR=0.001 were able to be mapped to either Drosophila or invertebrate sequences with known 
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ontologies.  Ontologies grouped by cluster show variation in which groups of transcripts were 

either up-or down-regulated among the samples (Table 6).  

 

Table 6 represents the transcripts belonging to different ontologies from all known putative 

functions of the 863 significantly differentially expressed (FDR=0.001) transcripts in Epischura 

baikalensis by cluster.  Cluster numbers refer to transcript cluster families from Figure 16.  

Transcript functions are from alignments to Drosophila and invertebrate sequencing databases.  

Some transcripts matched both databases for the same putative function and were counted once 

toward that function, i.e. “total” may not equal total from 4 clusters combined.  For a more 

detailed view of which annotations came from which database see Table 7.   

Gene Ontology Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total 

Actin Binding Proteins 1 1 8 8 18 

ATP Binding Proteins 1 3 7 3 14 

Chaperones (Protein Folding, HSP) 0 0 3 0 3 

DNA Binding Proteins 1 0 7 3 11 

Enzymes 28 21 36 28 113 

Gene Expression (Splicing) 1 8 2 6 17 

Glutathione Proteins 2 1 1 0 4 

Histones 1 0 0 2 3 

Nucleic Acid Binding Proteins 1 7 13 9 30 

Oxidoreductases (Redox Enzymes) 1 0 8 5 14 

Peptidases 17 14 5 8 44 

Ribosomal Proteins 3 5 1 2 11 

RNA Binding Proteins 0 6 1 3 10 

Structural Proteins 0 5 1 12 18 

Transcription Factors 0 0 3 1 4 

Transcription Proteins 3 0 5 3 11 

Translation Proteins 1 5 2 2 10 

Transporter Proteins 13 2 8 3 26 

 

 

 Several transcripts aligned to both Drosophila and invertebrate databases with the same 

putative functions (Table 7).  Transcripts were often annotated with several putative functions, 

and many fell into one or more categories, e.g. peptidases fall into both “peptidases” and 

“enzymes” categories (Tables 6, 7).  Many transcripts aligned to no significant sequences in 
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either database, and many more aligned to genes/transcripts with unknown functions or were 

annotated poorly.  These transcripts were placed into an “unknown/others” category not shown 

here due to difficulty in parsing known “unknown” functions from no significant alignments.   

 

Table 7 represents the transcripts belonging to different ontologies from all known putative 

functions of the 863 significantly differentially expressed (FDR=0.001) transcripts in Epischura 

baikalensis by alignment database.  Transcript functions are from alignments to Drosophila and 

invertebrate sequencing databases.  Some transcripts matched both databases for the same 

putative function and were counted once toward that function, i.e. “total” may not equal total 

from 4 clusters combined. 

Gene Ontology Drosophila Invertebrates Total Transcripts 

Actin Binding Proteins 12 6 18 

ATP Binding Proteins 14 0 14 

Chaperones (Protein Folding, HSP) 0 3 3 

DNA Binding Proteins 11 0 11 

Enzymes 110 3 113 

Gene Expression (Splicing) 17 0 17 

Glutathione Proteins 0 4 4 

Histones 0 3 3 

Nucleic Acid Binding Proteins 30 0 30 

Oxidoreductases (Redox Enzymes) 14 0 14 

Peptidases 40 5 44 

Ribosomal Proteins 5 9 11 

RNA Binding Proteins 10 0 10 

Structural Proteins 18 0 18 

Transcription Factors 3 1 4 

Transcription Proteins 5 6 11 

Translation Proteins 6 4 10 

Transporter Proteins 5 21 26 

 

 

 All clusters had most function in the enzymes category (Figures 21, 22).  The next 

highest variability expression transcripts were peptidases, nucleic acid binding proteins (included 

RNA and DNA binding proteins), and transporter proteins.  Cluster 1 transcripts, primarily 
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characterized by up-regulation in Maloe More and down-regulation in the 3 basins, had high 

differential expression in peptidases and transporter proteins (Figure 22).  Cluster 2 transcripts, 

primarily characterized by down-regulation in the Northern Basin, had high differential 

expression in peptidases and gene expression transcripts (splicing mediators) (Figure 22).  

Cluster 3 transcripts, primarily characterized by down-regulation in the Northern and Central 

Basins, had high differential expression in nucleic acid binding proteins (included RNA and 

DNA binding proteins), ATP binding proteins, actin binding proteins, oxidoreductases, and 

transporter proteins (Figure 22).  Cluster 4 transcripts, primarily characterized by up-regulation 

in the Northern Basin, had high differential expression in peptidases, nucleic acid binding 

proteins (included RNA and DNA binding proteins), structural proteins, and actin binding 

proteins (Figure 22).   

  



61 

 

 

 

Figure 21 represents the transcripts belonging to different ontologies from all known putative 

functions of the 863 significantly differentially expressed (FDR=0.001) transcripts in Epischura 

baikalensis.  Transcript functions are from alignments to Drosophila and invertebrate sequencing 

databases.  Some transcripts matched both databases for the same putative function and were 

counted once toward that function.  Transcripts may appear in multiple gene ontology categories.   
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Figure 22 represents the transcripts by cluster (Figure 16) belonging to different 

ontologies from all known putative functions of the 863 significantly differentially 

expressed (FDR=0.001) transcripts in Epischura baikalensis.  Transcript functions are 

from alignments to Drosophila and invertebrate sequencing databases.  Some transcripts 

matched both databases for the same putative function and were counted once toward that 

function.  Transcripts may appear in multiple gene ontology categories. 
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Discussion 

 The differential gene expression throughout Lake Baikal is very high.  High variability in 

gene expression leads to greater plasticity.  In the various climates of Lake Baikal, some 

differential expression was expected.  Maloe More, especially, having a vastly different average 

water temperature and biota was expected to have very different gene expression than sites from 

the other basins within the lake.  However, the differential expression between the 3 basins of the 

lake is somewhat surprising.  With heavy mixing and strong currents, the water climate of Lake 

Baikal would presumably be static over all 3 basins with possible warming due to lower latitudes 

in the Southern Basin (Kozhova 1993).  One would expect relatively uniform expression across 

the 3 basins, but there is significant differential gene expression among the 3 basins.  This 

observation of high differential gene expression could suggest that even in a relatively static 

habitat Epischura baikalensis is exhibiting a high amount of phenotypic plasticity.  Being able to 

induce the phenotypic changes in metabolism, growth, and reproduction could enable E. 

baikalensis to fare well as Lake Baikal climate continues to warm and change.   

Cluster Analysis 

 Cluster 1 Transcripts.  This transcript family had high differential expression in 

peptidases and structural proteins.  With the higher temperatures Epischura baikalensis might be 

dealing with in Maloe More, there is likely increased metabolic rates, increased productivity, and 

increased growth rates.  For these reasons, increases in peptidases are logical.  Increased growth 

rate could also explain heightened up-regulation of structural proteins as well.   

 Cluster 2 Transcripts. This transcript family had high differential expression in peptidases 

and gene expression mediators.  With the lower temperatures of Northern Baikal, Epischura 

baikalensis is likely exhibiting lower metabolic rates, lower productivity, and decreased growth 
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rates.  For these reasons, decreases in peptidases are logical.  Having decreased expression of 

splice variants and mediators could also be explained by decreased temperatures and lower 

metabolic rates if those gene expression mediators deal specifically with higher productivity 

functioning.   

 Cluster 3 Transcripts.  This transcript family had high differential expression in several 

categories: nucleic acid binding proteins (included RNA and DNA binding proteins), ATP 

binding proteins, actin binding proteins, oxidoreductases, and transporter proteins.  This cluster 

of transcripts was down regulated in the Central and Northern Basins, where temperatures are 

colder but not necessarily significantly colder than the Southern Basin.  Because reducing energy 

consumption seems to be the overarching theme of these down-regulated transcripts, an energy 

expending activity must be driving this trend.  These individuals could be preparing for a growth 

or reproduction event concurrently across the basins or the down-regulation could entirely be due 

to lowered temperatures. 

 Cluster 4 Transcripts.  This transcripts family had high differential expression in 

peptidases, nucleic acid binding proteins (included RNA and DNA binding proteins), structural 

proteins, and actin binding proteins.  The temperature in the Northern Basin is largely uniform 

year round but is slightly colder for a longer duration of the year.  Enjoying colder temperatures 

could explain why many actin binding proteins, ATP binding proteins, and transporter proteins 

are up-regulated as the extremely stenothermic Epischura baikalensis thrives in its native habitat.  

Additionally, higher productivity at these lower temperatures could explain high expression of 

nucleic acid binding proteins as transcription and translation are maximized.   
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CHAPTER 6 

GENETIC DIFFERENTIATION 

 

Results 

Correlation Analysis 

From the PCA on correlations, SNP frequencies clustered in tight clouds in their 

respective geographic locations within 2 dimensions (Figure 23).  Two principal components 

explained 35.4% of the variation within the correlations of transcripts (Figure 23).  Much of the 

SNP frequency variation was explained by 2 principal components expressing the strong 

correlations between geographic locations.   

 

Figure 23 represents a Principal Components Analysis (PCA) on correlations of 2000 randomly 

sampled highly significantly differentiated SNP frequencies.  Above left: eigenvalues for 

principal components.  Above middle: principal components 1 and 2 explain 35.4% variation in 

correlations.  Above right: summary map of SNP frequency vectors.  Marker color corresponds 

to sample site as follows: Northern Basin (blue), Central Basin (red), Southern Basin (green), 

Maloe More (teal). 
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Randomly assigned FST values by a Poisson distribution predicted less genetic differentiation 

than actual FST values (Figure 24).   

  

Figure 24 represents the actual (blue) and expected (red) FST values based on a random 

assignment of alleles via Poisson distribution to population distributions of FST values in the 4 

sample groups shown in Figure 23.   

 

 

One way ANOVA displayed significant differences in FST among subpopulations as grouped by 

differential expression clusters (Figure 25).  There were no significant differences in gene 

ontology between differentially expressed and highly genetically differentiated transcripts except 

in nucleic acid binding proteins and gene expression related proteins (p<0.05).  The effective 

population size (Ne) of Lake Baikal’s population of Epischura baikalensis was estimated to be 
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306108 individuals, with a migration rate of 20.16 individuals per generation (6 months) (Table 

8).  The FST for the population of E. baikalensis was found to be 0.0122 ±3.428E-05 (Table 8). 

 

 

Figure 25 represents the subpopulation means comparisons of FST by cluster membership in 

differential expression.  Colors correspond to clusters represented in Figure 16 with the No DE 

category representing SNP FSTs that were not differentially expressed.  Site codes are as follows: 

MM_up (teal; up-regulation in Maloe More), N_down (red; down-regulation in Northern 

Basins), N&C_down (green; down-regulation in Northern and Central Basins), N_up (blue; up-

regulation in Northern Basin), and No DE (orange; no differential expression/no cluster 

membership).  Standard error bars calculated using 95% CI of means.  All means are 

significantly different by cluster membership.   

 

 

Table 8 represents summary statistics for the genetic differentiation analysis.  FST, effective 

population size (Ne), migration rate, and genome size are included.   

FST Eff. Pop. Size (Ne) Migration Rate (Nm) Est. Genome Size 

0.0122 ±3.428E-05 306108 individuals 20.16 ind./gen. 0.86 pg 
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Discussion 

 The populations of Epischura baikalensis exhibit high genetic differentiation as 

corroborated by the high FST value (Table 8).  The genetic differentiation is significantly more 

than predicted by a random assignment of variant alleles (Figure 24), and most of the variation 

between and among populations can be described by geographic location (Figure 23).  The 

effective population size of E. baikalensis is significantly smaller than actual population size but 

could have been much smaller given the possible geographic and other isolating mechanisms in 

the system.  The migration rate suggests that about 20 individuals migrate into and out of their 

respective subpopulations per generation, which is estimated at 6 months, given the winter and 

subsequent summer populations.  This small migration rate, given actual population size suggests 

that little mixing and interbreeding of these subpopulations occurs.   

 There was no significant difference in the transcripts that had the highest differential 

expression and those that had high FST values except in nucleic acid binding proteins and gene 

expression associated proteins.  These 2 groups especially would likely be highly conserved 

across populations regardless of local selection pressures due to their “housekeeping” nature.  

The SNPs that were highly significantly differentiated were easily separated by geographic 

location further cementing the maintenance of local intermixing populations.   

 However, transcripts with high FST values were also highly differentially expressed 

(Figure 25).  This suggests that genes that are undergoing differential expression have higher 

probabilities of becoming fixed in the local populations, suggesting that there is high selection 

pressure on transcripts that are being differentially expressed.  Genes without differential 

expression were least differentiated, and the genes that would matter most for local adaptation, 

i.e., ones being highly differentially expressed, were the most genetically differentiated, further 
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corroborating the high adaptability potential of E. baikalensis in its varying biota with respect to 

projected climate change.   



70 

 

CHAPTER 7 

CONCLUSIONS 

 

Zooplankton Distribution 

 The fate of Epischura baikalensis may not ever be certain.  From the zooplankton 

distribution analysis, invaders may easily invade and colonize open Baikal given higher 

temperatures.  However, as long as there is a thermocline to retreat to, E. baikalensis may 

survive regardless due to its sheer abundance in open Baikal.  The depth of Lake Baikal will 

likely always maintain a temperature within which E. baikalensis can thrive, but the true story 

will be told with how much E. baikalensis is competitively excluded by invading cosmopolitans.  

Future work would investigate whether cosmopolitans could survive if they were washed into 

open Baikal.  Modeling the movement of cosmopolitans within the bays could predict whether 

transfer of many individuals is occurring and colonization is unsuccessful or whether 

cosmopolitans have simply not had the chance to colonize yet.   

Differential Gene Expression 

 Epischura baikalensis exhibited a surprising amount of differential gene expression 

among the different lake regions.  For the 3 basins, despite being relatively similar habitat, E. 

baikalensis is showing a vast array of different expression levels for many different transcripts 

with many different putative functions.  With high ability to express plastic traits in different 

environments, the chances of survival in dramatic climate change events increases.  Future work 

in this area would include temperature acclimation and tolerance experiments followed by 

subsequent sequencing of those individuals for temperature-specific differential expression.  

Finding the upper limits to E. baikalensis’s expression level in high temperature environments is 
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crucial to understanding how it might react to its changing natural habitat.  Acclimation studies 

might forecast that if waters warm slowly, survivorship in E. baikalensis may remain unchanged. 

Genetic Differentiation 

 Epischura baikalensis exhibited significant genetic differentiation among its 

subpopulations in the different lake regions.  Even the 3 major basins have significantly different 

genetic differentiation among their individuals.  This high genetic variation suggests that E. 

baikalensis may be well prepared to adapt to climate change.  Across the entire population there 

is significant variation, and between its subpopulations, one of which is warming rapidly, there is 

selection on differentially expressed genes that have a high number of significant variant alleles.  

With high genetic differentiation in different biota, E. baikalensis possesses the ability to adapt 

rapidly to climate change.  Future work in this area would include characterizing the SNPs as 

synonymous and nonsynonymous to further elucidate their importance in altering E. 

baikalensis’s adaptability.   

Ramifications for Climate Change 

 Because Epischura baikalensis showed significant differential expression of many 

transcripts and those transcripts were highly genetically differentiated, this study predicts that E. 

baikalensis will have the ability to exhibit not only phenotypic plasticity but locally adapted 

traits that are heritable.  As Lake Baikal warms, E. baikalensis populations may have the ability 

to offset the effects of climate change by inducing plastic traits and selecting for heritable 

mutations that are advantageous in warming waters.  Future studies include investigating the 

limits of E. baikalensis’s phenotypic plasticity and analyzing the single nucleotide morphisms 

for synonymous and nonsynonymous changes with further study in gene ontologies and 

annotation.      
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APPENDICES 

APPENDIX A: Lake Baikal Fauna 

 

Epischura baikalensis 

 

 

Daphnia longispina 
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Left: Epischura baikalensis; Right: Daphnia longispina 

 

 

Cylcops kolensis 
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Macrohectopus branickii 

 

 

Pusa sibirica 
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APPENDIX B: Research Vessels 

 

Professor Kozhov 

 

 

From Far Left to Right: Professor Treskov and Professor Kozhov 
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APPENDIX C: Bolshie Koty, Irkutsk Oblast, Siberia 

 

View of biostation from main dock 

 

 

View of Bolshie Koty from main dock  
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