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ABSTRACT 

 

Role of the Ventral Tegmental Area and Ventral Tegmental Area Nicotinic Acetylcholine 

Receptors in the Incentive Amplifying Effect of Nicotine  

by 

 

A. Brianna Sheppard 

 

Nicotine has multiple behavioral effects as a result of its action in the central nervous system. 

Nicotine strengthens the behaviors that lead to nicotine administration (primary reinforcement), 

and this effect of nicotine depends on mesotelencephalic systems of the brain that are critical to 

goal directed behavior, reward, and reinforcement. Nicotine also serves as a ‘reinforcement 

enhancer’ – drug administration enhances behaviors that lead to other drug and nondrug 

reinforcers. Although the reinforcement enhancing effects of nicotine may promote tobacco use 

in the face of associated negative health outcomes, the neuroanatomical systems that mediate this 

effect of nicotine have never been described. The ventral tegmental area (VTA) is a nucleus that 

serves as a convergence point in the mesotelencephalic system, plays a substantial role in 

reinforcement by both drug and nondrug rewards and is rich in both presynaptic and postsynaptic 

nicotinic acetylcholine receptors (nAChRs). Therefore, these experiments were designed to 

determine the role of the VTA and nAChR subtypes in the reinforcement enhancing effect of 

nicotine. Transiently inhibiting the VTA with a gamma amino butyric acid (GABA) agonist 

cocktail (baclofen and muscimol) reduced both primary reinforcement by a visual stimulus and 

the reinforcement enhancing effect of nicotine, without producing nonspecific suppression of 

activity. Intra-VTA infusions of a high concentration of mecamylamine a nonselective nAChR 

antagonist, or methylycaconitine, an α7 nAChR antagonist, did not reduce the reinforcement 

enhancing effect of nicotine. Intra-VTA infusions of a low concentration of mecamylamine and 
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dihydro-beta-erythroidine (DHβE), a selective antagonist of nAChRs containing the *β2 subunit, 

attenuated, but did not abolish, the reinforcement enhancing effect of nicotine. In follow-up tests 

replacing systemic nicotine injections with intra-VTA infusions (70mM, 105mM) resulted in 

complete substitution of the reinforcement enhancing effects – increases in operant responding 

were comparable to giving injections of systemic nicotine. These results suggest that *β2-subunit 

containing nAChRs in the VTA play a role in the reinforcement enhancing effect of nicotine. 

However, when nicotine is administered systemically these reinforcement enhancing effects may 

depend on the action of nicotine at nAChRs in multiple brain nuclei.  
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CHAPTER 1 

INTRODUCTION 

 Tobacco related health consequences account for one in five deaths annually and are 

currently the leading cause of preventable death in the United States (Center for Disease Control, 

2011). Dependence on cigarettes, cigars, and smokeless tobacco products represents a costly 

behavioral problem in terms of both health care expenses and lost productivity, estimated at $48 

billion per year (CDC, 2008). It is estimated that 5.1 million years of potential life are lost 

annually as a result of smoking cigarettes in the United States alone (CDC, 2008). Although the 

total consumption of cigarettes has decreased by 27% since 2000, the consumption of tobacco 

products other than cigarettes has increased by 123% during this time—2000 to 2011 (CDC, 

2012). Many college-aged adults have self-identified as social smokers, smoking mostly at night 

and on weekends in settings such as bars and parties, that now represent a subgroup among the 

adult U.S. population that has shown a steady increase in smoking behavior since the 1990s 

(Debevec & Diamond, 2012; Moran, Wechsler, & Rigotti, 2004).  

These trends in tobacco product use indicate that antismoking campaigns have succeeded 

in reducing the social acceptability of smoking cigarettes (Alamar & Glantz, 2006) but not 

overall rates of tobacco dependence that remains a major social health problem. Nicotine is 

recognized as the main addictive component of tobacco responsible for the development and 

maintenance of tobacco dependence (see Bevins & Caggiula, 2009). Therefore, the motivation to 

obtain nicotine, known as the primary reinforcing effects of the drug, has traditionally served as 

the major focus of research in understanding the underlying mechanisms of tobacco dependence 

and developing drug cessation treatments (Le Foll & Goldberg, 2009). 
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Effects of Nicotine on Goal-Directed Behavior 

Primary Reinforcing Effects  

Animal models of clinical behavioral disorders and psychiatric illness are essential for 

elucidating and quantifying changes at behavioral, cellular, and molecular levels to objectively 

define human psychopathology and create more effective clinical interventions (Kaffman & 

Krystal, 2012). Laboratory rats and mice have traditionally been used to model human drug 

dependence because these models allow for the use of invasive procedures that can identify 

behavioral, anatomical, neurochemical, and pharmacological effects of substances. Drugs that 

are abused by humans are also typically self-administered by laboratory mice and rats (O’Dell & 

Khroyan, 2009) and nonhuman primates (Le Foll, Wertheim, & Goldberg, 2007). Drug self-

administration, a goal-directed behavior, is accomplished in animal models by implanting an 

intravenous (iv) jugular catheter and allowing lab animals to respond for intravenous drug 

infusions.  

Preclinical drug self-administration is the current gold-standard for evaluating the 

primary reinforcing effects of drugs (Le Foll & Goldberg, 2009). When given unlimited access, 

monkeys (Deneau, Yanagita, & Seevers, 1969; Johanson, Balster, & Bonese, 1976) and rats 

(Bozarth & Wise, 1985) will self-administer cocaine at high rates, even to the point of death. In 

monkeys, nicotine doses 10 times greater than those of cocaine are required to produce 

consistent intravenous drug self-administration, 300µg/kg/infusion versus 30 µg/kg/infusion, 

respectively (Goldberg & Spealman, 1982). Nicotine is self-administered at a very low rate by 

laboratory rats (Palmatier et al., 2006)—rats self-administer approximately 10 infusions per hour 

of 60µg/kg/infusion nicotine (Palmatier et al., 2006), the peak dose for reliable nicotine self-

administration in this species (Donny et al., 1998). These cocaine (Bozarth & Wise, 1985; 
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Deneau et al., 1976; Goldberg & Spealman, 1982) and nicotine (Palmatier et al., 2006) self-

administration studies indicate that the motivation to obtain nicotine is low and nicotine is a 

weak primary reinforcer, especially when compared to other abused psychostimulants such as 

cocaine and amphetamine (Le Foll & Goldberg, 2009).  

Low rates of nicotine self-administration in preclinical models suggest that this drug 

should have low abuse liability in humans. However, approximately 42.1 million people in the 

U. S. alone self-administer nicotine via smoking each year (CDC, 2012). The discontinuity 

between nicotine’s abuse liability as measured in animal models and the abuse liability of the 

drug observed in humans suggests that the primary reinforcing effects of nicotine are not 

sufficient to explain tobacco dependence in people. Initial studies of nicotine’s abuse liability 

suggested that the cues associated with drug delivery were important for maintaining nicotine 

self-administration in preclinical models (Goldberg, Spealman, & Goldberg, 1981) providing a 

potential explanation for why nicotine, a weak primary reinforcer, has a high abuse liability in 

people.  

Early research in squirrel monkeys showed that removal of cue lights associated with 

nicotine delivery during self-administration significantly decreased operant responding to obtain 

nicotine infusions despite the continued availability of the drug (Goldberg et al., 1981). Caggiula 

and colleagues (2001, 2002) investigated the importance of nonpharmacological environmental 

stimuli associated with nicotine self-administration as a potential explanation for understanding 

the high prevalence of dependence to this weak primary reinforcer. For example, nicotine self-

administration decreased when operant chamber lights previously associated with drug delivery 

were absent (Caggiula et al., 2001). Responding on the lever for nicotine infusions returned to 

baseline when light cues were reintroduced into the nicotine-infusion contingency (Caggiula et 
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al., 2001). These results suggest incentive stimuli play an important role in maintaining nicotine 

self-administration. Incentives are external stimuli that can come to control approach (or 

avoidance) behaviors through learning mechanisms and are capable of producing a conditioned 

motivational state (Cardinal, Parkinson, Hall, & Everitt, 2002). As a primary reinforcer, nicotine 

produces conditioned reinforcement through associative learning processes in that interoceptive, 

contextual, and discrete external cues become conditioned stimuli through reliable pairing with 

the pharmacological effects of the drug (Bevins & Palmatier, 2004). Nicotine may alter what is 

learned about the incentive value of external stimuli that predict nicotine availability by 

enhancing attentional control of cues associated with smoking (Chiamulera, 2005). Therefore, 

the conditioned reinforcing effects of nicotine have also received a considerable amount of 

attention as a potential explanation for the persistence of nicotine dependence despite well-

known negative health outcomes associated with tobacco product use (Bevins, 2009).   

The importance of discrete external stimuli in maintaining smoking behavior is supported 

by clinical research in dependent smokers. For example, Rose and colleagues (2003) directly 

assessed the importance of incentives to smokers in deriving satisfaction from the smoking 

experience. Researchers asked participants to abstain from smoking overnight and then 

administered nicotine intravenously (iv) in either a continuous or a pulsed manner—pulsed to 

simulate the rate at that nicotine would cross the blood-brain barrier if participants had taken 

puffs of a cigarette. These methods allowed researchers to eliminate the external incentive cues 

normally associated with smoking including the sight, scent, taste, and feel of holding a cigarette. 

Results showed that iv nicotine administration was not sufficient to reduce cravings, negative 

mood resulting from withdrawal, or the cumulative puff volume taken from a preferred brand 

cigarette following iv administration procedures (Rose, Behm, Westman, Bates, & Salley, 2003). 
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Perkins and colleagues (1994) observed an increase in the number of cigarette puffs made in 

response to seeing a lit cigarette after overnight abstinence suggesting that individuals attempting 

to quit are highly susceptible to the influence of smoking-related incentives. In smokers, 

exposure to smoking related cues results in automatic processing of salient smoking related 

stimuli, increases in drug-seeking behavior (Warren & McDonough, 1999) and increases in self-

reported craving (Ordonana, Gonzalez-Javier, Gomez, & Amor, 2012; Shiffman et al., 2012). 

This research showing that nicotine-associated stimuli induces cue reactivity in smokers is 

analogous to preclinical studies assessing the ability of nicotine-associated stimuli to elicit goal-

directed behavior (see Chiamulera, 2005 for review). 

In preclinical models, the ability of nicotine-associated cues to elicit goal-directed 

behavior, behavior in that a contingency exists between an action and an outcome with the 

outcome viewed as a goal (Cardinal et al., 2002), extends beyond the opportunity to self-

administer the drug. Acute nicotine administration increases responding for non-nicotine 

reinforcers such as visual stimuli (VS—turning off all lighting in the operant chamber for 60 

seconds) (Chaudhri et al., 2006a) and sucrose in rats (Palmatier, O’Brien, & Hall, 2012). Acute 

nicotine administration also increases responding for nicotine-conditioned stimuli (Chaudhri et 

al., 2006b; Palmatier et al., 2007b). Increased motivation to respond for non-nicotine stimuli 

following acute nicotine administration suggest more than one effect of nicotine on 

reinforcement (Chaudhri et al., 2006a; Palmatier et al., 2006). A dual reinforcement model that 

posits nicotine increases behaviors that lead to reinforcement by non-nicotine stimuli that is not 

contingent on nicotine self-administration has been proposed to help explain the multiple effects 

of nicotine on reinforcement (Caggiula et al., 2009; Chaudhri et al., 2006a).  
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Dual Reinforcing Effects  

According to the dual reinforcement model, nicotine has multiple effects on reinforced 

behavior including primary reinforcing and reinforcement enhancing effects (Caggiula et al., 

2009; Chaudhri et al., 2006a). Nicotine, acting on the brain, increases the frequency or 

probability of behaviors that lead to nicotine delivery (primary reinforcement). However, a more 

robust effect of nicotine is a drug-enhanced motivation to obtain other non-nicotine stimuli 

(reinforcement enhancing effect) (Caggiula et al., 2009; Chaudri et al., 2006a). Donny and 

colleagues (2003) showed that nicotine, either injected by the experimenter or self-administered 

by the rat, increased responding for a visual stimulus. Lever-pressing for the VS decreased when 

nicotine administration was discontinued in these subjects suggesting that potentiated responding 

(reinforcement enhancing effect) for the nondrug reinforcer resulted from the acute 

pharmacological effects of nicotine (Donny et al., 2003).  

Palmatier and colleagues (2006) used a 2-lever concurrent choice task in that rats could 

respond for either nicotine or a visual stimulus (1 sec cue light on followed by 1 min termination 

of all chamber lighting) as a reinforcer to directly test the dual reinforcement hypothesis. One 

group of rats could respond on one lever to self-administer nicotine infusions or on the 

alternative lever that resulted in presentation of the VS.  Rats in this group responded for nicotine 

infusions at low rates comparable to a separate group responding only for nicotine infusions 

(alternate lever had no programmed consequence for the nicotine only group), confirming that 

nicotine served as a primary reinforcer. However, responding for visual stimuli increased 

multiplicatively, with rates of responding for the VS significantly higher than rates of responding 

exhibited by a group of rats lever-pressing for the VS alone. These results confirmed that self-

administered nicotine could potentiate responding for a nondrug reward (Palmatier et al., 2006). 
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This experiment provided support for the dual reinforcement hypothesis by demonstrating that 

the primary reinforcing and the reinforcement enhancing effects of nicotine could be observed in 

the same paradigm but be behaviorally dissociated.  

The degree to that nicotine increases the motivation to respond for a non-nicotine 

reinforcer depends on the dose of nicotine (Palmatier et al., 2008a), repeated exposure to nicotine 

(Palmatier et al., 2007a), and the desirability of the non-nicotine stimulus (ability of the stimulus 

to support responding) (Palmatier et al., 2007a, 2012; Raiff & Dallery, 2008). In rats with ad 

libitum access to water, acute systemic nicotine administration increased responding for a 20% 

sucrose solution (high desirability) without increasing responding for a 0% sucrose solution 

(water; low desirability) confirming that nicotine enhanced motivation for a non-nicotine 

reinforcer—behavior was goal-directed and not simply a result of behavioral activation 

(Palmatier et al., 2012). Acute nicotine increases the rate of responding for nicotine-conditioned 

stimuli, representing an additional, dissociable effect of the drug on reward beyond secondary 

conditioned reinforcement (Guy & Fletcher, 2013; Jones, Raiff, & Dallery, 2010; Palmatier et 

al., 2007b). Nicotine also increases approach to incentives, salient stimuli that can elicit attention 

and motivational states (Berridge & Robinson, 1998), associated with noncontingent rewards 

such as sucrose (Palmatier et al., 2013), drinking water in water-restricted rats (Guy & Fletcher, 

2013; Olausson, Jentsch, & Taylor, 2003), and social interactions (Thiel, Sanabria, & 

Neisewander, 2009) in Pavlovian conditioning paradigms.  

Several findings examining the effects of nicotine on reward processing in human 

samples are in agreement with the results of preclinical studies. Acute administration of nicotine 

increases the motivation to obtain alcohol and the amount of alcohol consumed (Barrett, 

Tichauer, Leyton, & Pihl, 2006), the perceived attractiveness of faces (Attwood, Penton-Voak, & 
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Munafo, 2009), and the motivation to obtain monetary rewards (Buhler et al, 2010). 

Experimental research has recently demonstrated the reinforcement enhancing effect of nicotine 

in human samples providing additional support for the dual reinforcement model of nicotine 

dependence (Perkins & Karelitz, 2013a, 2013b).   

Perkins and Karelitz (2013a) used a computer software program that manipulates 

schedules of reinforcement to measure the effects of nicotine on motivation to respond for 

nondrug reinforcers, approximating response behavior seen in preclinical studies. In a 

counterbalanced within-subjects design, participants responded significantly more for a music 

reinforcer after smoking a nicotine containing cigarette compared to rates of responding for the 

same reward after smoking a denicotinized cigarette or not smoking (Perkins & Karelitz, 2013a). 

The reinforcement enhancing effect of nicotine were present in both dependent and 

nondependent smokers, suggesting that this effect of nicotine is distinct from withdrawal-related 

motivation to smoke (Perkins & Karelitz, 2013a). As seen in preclinical studies (Palmatier et al., 

2007a, 2008a, 2012; Raiff & Dallery, 2008) the degree to that nicotine increased responding for 

a non-nicotine stimulus in smokers, specifically a preferred music reinforcer, also depended on 

the dose of nicotine and the desirability of the non-nicotine stimulus (Perkins & Karelitz, 2013b).  

Two recent meta-analyses of experiments investigating the underlying biological 

substrates of smoking cue reactivity, analogous to preclinical studies assessing the ability of 

nicotine-associated stimuli to elicit goal-directed behavior, have implicated a role for the ventral 

striatum, anterior cingulate cortex, left amygdala, and right temporal parietal junction (Kuhn & 

Gallinat, 2011) and extended visual system nuclei (Engelmann et al, 2012) in eliciting behavioral 

responses to external smoking cues. Neuroadaptations in motivation-related nuclei such as the 

ventral tegmental area, the nucleus accumbens (NAc; a nucleus within the ventral striatum), and 
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ventral pallidum (VP) play an important role in the initial attribution of salience to external 

stimuli associated with drug administration and the promotion of goal-directed behavior in that 

drug self-administration is the goal (Grace, 2000; Kalivas & Barnes, 1993; Koob & Volkow, 

2010). The importance of nicotine-conditioned stimuli in the maintenance of smoking behavior 

is well established; however, the recognition that the acute pharmacological effects of nicotine 

acting on the brain enhances behaviors that lead to other drug and nondrug rewards has been 

more recent (see Bevins & Caggiula, 2009; Chiamulera, 2005 for reviews).   

Incentive Amplifying Effect 

Nicotine-enhanced responding in operant conditioning paradigms may reflect an 

enhancement of incentive motivation. Incentive motivation is a conditioned motivational state 

elicited by incentive stimuli capable of initiating, maintaining, and potentiating reward-seeking 

behavior (Cardinal et al., 2002). Traditionally, incentives refer to stimuli and cannot always be 

dissociated from other motivational forces in operant conditioning. In operant conditioning, the 

manipulandum (e.g., nose-key) is the most salient discrete stimulus associated with reward 

delivery and should be considered an incentive. Experiments using other behavioral paradigms 

have demonstrated that nicotine increases Pavlovian conditioned approach responses (Guy & 

Fletcher, 2013; Palmatier et al., 2013) and conditioned reinforcement (e.g. Guy & Fletcher, 

2013; Olaussen et al., 2003) supporting the hypothesis that nicotine enhances incentive 

motivation. The title of this document reflects what we believe to be the underlying behavioral 

mechanism responsible for the reinforcement enhancing effect of nicotine – increased incentive 

motivation. However, the hypothesis that increased approach towards and engagement with the 

nose key operant cannot be directly tested in the current paradigm. Therefore, the term 

“reinforcement enhancing effect” is used in place of “incentive amplifying effect” throughout the 
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remainder of this manuscript to more accurately describe the effect of nicotine on reinforcement 

investigated in the present studies.    

Proposed Neural Substrates Underlying the Reinforcement Enhancing Effect of 

Nicotine 

Initial investigations into the neural mechanisms underlying the reinforcement enhancing 

effect of nicotine suggest this effect of the drug on reinforcement is mediated by nicotinic 

acetylcholine receptors (Guy & Fletcher, 2013; Liu, Palmatier, Caggiula, Donny, & Sved, 2007). 

Nicotinic acetylcholine receptors (nAChRs) are cation channels composed of combinations of α 

and β subunits in a pentameric configuration (Mansvelder, Mertz, & Role, 2009). Homomeric α7 

and heteromeric α4β2 nAChR subtypes are the most abundantly expressed nAChR subtypes in 

the central nervous system (Lodge & Grace, 2006; Mansvelder et al., 2009). However, the β2 

subunit can be found in combination with multiple α subunits including α3, α4, α5, and α6 

(Mansvelder et al., 2009). Studies by Liu and colleagues (2007) showed that systemic 

administration of the nonselective nAChR antagonist mecamylamine (MEC) and the *β2-subunit 

containing nAChR antagonist dihydro-β-erythriodine (DHβE—* indicating specificity for β-

subunit) prior to noncontingent intravenous nicotine administration attenuated responding for a 

nondrug visual stimulus. In water restricted rats, systemic nicotine administration prior to 

Pavlovian conditioning sessions in that a compound light and tone compound stimulus was 

paired with presentations of water as a reward increased approach to the compound conditioned 

stimulus (Guy & Fletcher, 2013). In the same rats acute systemic nicotine administration also 

potentiated operant responding for the light and tone compound stimulus as a conditioned 

reinforcer (CR) and increased responding for the CR was attenuated by systemic MEC and 

DHβE antagonist administration (Guy & Fletcher, 2013).  
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Nicotine self-administration was reduced by systemic administration (intraperitoneal) of 

the α7 nAChR antagonist methylylcaconitine (MLA) (Markou & Paterson, 2001). However, 

systemic MLA administration did not reduce to motivation to respond for a visual stimulus (Liu 

et al., 2007), a nicotine-conditioned reinforcer (Guy & Fletcher, 2013), or brain stimulation 

reward (Markou & Patterson, 2001). Palmatier and colleagues (2008b) have also shown that 

systemic administration of the metabotropic glutamate 5 receptor (mGluR5) antagonists 3-[(2-

methyl-1, 3-thiazol-4-yl)ethynyl]pyridine (MTEP) and 2-methyl-6-(phenylethynyl)pyridine 

(MPEP) decreased both intravenous nicotine self-administration and nicotine-enhanced 

responding for a visual stimulus in a 2-lever concurrent choice task. However, mGluR5 

antagonist administration did not attenuate the reinforcement enhancing effect when nicotine was 

administered by the experimenter (Palmatier, Liu, Donny, Caggiula, & Sved, 2008b). 

Attenuation of nicotine-enhanced responding for non-nicotine primary reinforcers (Liu et al., 

2007) and conditioned reinforcers (Guy & Fletcher, 2013) by systemic MEC and DHβE, but not 

MLA (Guy & Fletcher, 2013; Liu et al., 2007; Markou & Patterson, 2001), MTEP or MPEP 

administration (Palmatier et al., 2008b), indicates activation of *β2-subunit containing nAChRs 

is important for the reinforcement enhancing of nicotine. The actions of nicotine at *β2-subunit 

containing nAChRs expressed by brain nuclei composing circuits that are important for 

producing motivated, goal-directed behavior (Grace, 2000; Kalivas & Barnes, 1993; Kalivas, 

Churchill, & Romanides, 1999; Koob & Volkow, 2010) may underlie the reinforcement 

enhancing effect of this drug.  
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Motive Circuit 

It is well established that the mesocorticolimbic system plays an integral role in reward-

related (Floresco, West, Ash, Moore, & Grace, 2003; Kalivas & Barnes, 1993; Koob, 1996; 

Robinson & Berridge, 1998, 2000) and drug-taking behaviors (Balfour, Wright, Benwell, & 

Birrell, 2000; Grace, 2000; Wise, 2002; Wise & Bozarth, 1987). Evidence also demonstrates the 

importance of the ventral striatopallidal system in behavioral activation (Kalivas & Barnes, 

1993), particularly approach toward novel stimuli important for learning about cues that predict 

the presence or absence of reinforcers (Hooks & Kalivas, 1995). The mesolimbic and ventral 

striatopallidal afferent systems have been shown to work in conjunction to increase DA volume 

transmission (Belujon, & Grace, 2011; Lodge & Grace, 2006; Wise, 2002) that mediates 

motivated behavior (Carelli, 2002, 2004; Kalivas & Barnes, 1993). Interactions between these 

afferent systems may produce the reinforcement enhancing effect of nicotine while sustained 

nicotine use may result in neuradaptations that skew reward-based learning, shifting behavior 

from voluntary drug use to habitual drug-seeking (Koob & Volkow, 2010). 

The motive circuit (see Figure 1) consists of mesocorticolimbic and striatopallidal nuclei 

and is an integration point where emotional and motivational information are translated into 

adaptive motor behavior (Kalivas & Barnes, 1993; Kalivas, Churchill, & Romanides, 1999). The 

motive circuit consists of three subcircuits: 1) limbic, 2) motor, and 3) thalamocortical (Kalivas 

et al., 1999). The limbic subcircuit includes projections from the NaC shell to the VP and 

receives afferents from limbic nuclei such the VTA, the NAc core and the medial VP (Kalivas et 

al., 1999). The limbic subcircuit sends and receives projections from the motor subcircuit that 

consists of the substantia nigra (SN), NAc core, and the dorsolateral VP (Kalivas et al., 1999). 

Together, the limbic and motor subcircuits are important for registering the value of 
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motivationally salient stimuli and translating this motivationally relevant information into 

adaptive behavior, respectively (Kalivas et al., 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Motive Circuit The motive circuit consists of three subcircuits (limbic, motor, and 

thalamacortical) that work in conjunction to produce adaptive behavioral responses to 

motivationally relevant stimuli. The limbic subcircuit is hypothesized to attribute incentive value 

to external stimuli. The actions of nicotine on limbic subcircuit projections, in that the VTA is a 

central component, may result in the behavioral manifestation of incentive amplification. VTA-

ventral tegmental area; NAc-nucleus accumbens; VP- ventral pallidum. Adapted from Kalivas, 

Churchill, & Romanides, 1999.  

Motivationally relevant information from the limbic subcircuit is further modified by the 

thalamocoritical subcircuit that includes projections from the VP to the mediodorsal thalamus 

(MD) that receives information from prefrontal cortex (PFC) afferents including prelimbic and 

anterior cingulate cortices (Kalivas et al., 1999). Interestingly, the flow of information moves 

unidirectionally from the VP to the MD thalamus into the NAc core without reciprocal 

projections between these specific nuclei (Kalivas et al., 1999). This pallidal-thalamic projection 

may send information concerning the motivational salience of stimuli encoded by the limbic 
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subcircuit directly to the motor subcircuit. Such a direct projection may promote a strongly 

limbic-driven behavioral response that has not been refined by executive functions via the PFC, 

manifesting as a compulsion.  

The limbic, motor, and thalamocortical subcircuits are part of the mesocorticolimbic 

circuit and use gamma-aminobutyric acid (GABA) and glutamate as mediators of synaptic 

transmission with dopamine (DA) serving as a moderator of neuronal signaling (Kalivas et al., 

1999). The functions of these three neurotransmitters can be further modified by cholingeric 

interneuron activity (Calabresi, Centonze, Gubellini, Pisani, & Bernardi, 2000). The 

reinforcement enhancing effect of nicotine is hypothesized to result from sensitized neural 

substrates underlying incentive motivation (Palmatier et al., 2013), an internal state indicating 

anticipation of reward that comes under the control of reward-related incentive cues (Saunders & 

Robinson, 2013). Therefore, projections within the limbic subcircuit important for attributing 

stimulus salience are likely targets for the effects of nicotine that produce reinforcement 

enhancement upstream of motor circuits.   

Limbic Subcircuit: VTA-NAc-VP Connections  

The VTA is a midbrain convergence zone receiving descending afferents from the PFC, 

NAc, VP, medial and lateral preoptic areas, lateral hypothalamus, and lateral habenula (Geisler 

& Zahm, 2005). Ascending VTA afferents include the dorsal raphe, periaqueductal gray, 

mesencephalic and pontine reticular formations (Geisler & Zahm, 2005) and the amygdala 

(Wise, 2002). Although VTA neuronal cell bodies are predominately dopaminergic, the posterior 

VTA and tail of the VTA (tVTA) contain GABAergic interneurons hypothesized to control DA 

release under certain conditions to modulate behavior (Olson & Nestler 2007; Tolu et al., 2013; 

see also Cicarelli et al., 2012 for speculation on VTA glutamatergic neurons). The tVTA receives 
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similar inputs to those of VTA DA neurons with the exception of an additional input from the 

NAc shell (Kaufling, Neinante, Pawlowski, Freund-Mercier, & Barrot, 2009). The projection 

from the NAc shell to the VTA receives glutamatergic projections from the amygdala regulated 

by medial PFC and hippocampal input (Wise, 2002), suggesting an important target for 

examining nicotine-induced neuroadaptations in incentive learning processes.  

VTA DA neurons exhibit distinct population and burst physiological firing patterns that 

are altered through interactions between GABA and DA neurons (Floresco et al., 2003; Tolu et 

al., 2013). Population physiological firing activity involves spontaneous production of action 

potentials and is defined and quantified by the number of spontaneously active DA neurons in 

the VTA at a certain time (Floresco et al., 2003). These spontaneously active neurons maintain 

the dopaminergic tone of mesocorticolimbic circuitry (Floresco et al., 2003). Spontaneous firing 

of VTA DA neurons produces tonic DA release, maintaining steady-state levels of extracellular 

DA in axon terminals synapsing on the nucleus accumbens (Floresco et al., 2003). The nucleus 

accumbens is a major projection of VTA DA neurons that combines limbic and motor 

information to guide goal-directed behavior (Cheer et al., 2007; Floresco et al., 2003; Kalivas et 

al., 1999; McFarland & Kalivas, 2001; Wightman & Robinson, 2002). VTA-produced 

dopaminergic tone is regulated in part by GABAergic inputs from the VP (Floresco et al, 2003). 

Reduced GABA release from ventral pallidal terminals disinhibits at least a subset of VTA DA 

neurons, increasing the number of spontaneously active DA neurons and subsequently increasing 

tonic DA release (Floresco et al., 2003).  

Burst physiological firing activity has been linked with the presentation of stimuli 

associated with rewards in primates (Schultz, 1998) that is regulated by glutamatergic and 

cholinergic inputs from the pedunculopontine tegmental nucleus (Floresco et al., 2003) as well as 
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GABA release from GABAergic VTA neurons (Tolu et al., 2013). Burst firing results in phasic 

DA release producing high levels of extracellular DA in the nucleus accumbens, dissociable 

from tonic levels of DA produced by disinhibition (Floresco et al., 2003).  

Physiological firing patterns can be modified by the pharmacological and kinetic 

properties of nAchRs expressed by the VTA and its afferents (Mansvelder & McGehee, 2002). 

VTA DA neurons express a diverse combination of nicotinic receptors including α7 subunits and 

combinations of α3, α4, α5, α6, and β2, β3, and β4 (see Mansvelder et al., 2009 for review) that 

may integrate information about the intensity of incoming sensory and experienced-based 

predictive information to regulate DA release. The two most abundant subtypes are α7- and *β2-

subunit containing nAChRs (Lodge & Grace, 2006). The α7 subtype is expressed pre-and peri-

synaptically on glutamatergic terminals suggesting cholinergic regulation of PFC projections to 

the VTA (Mansvelder & McGehee, 2002). Nicotinic receptors containing the *β2-subunit are 

expressed on GABAergic projections from the VP to the VTA as well as DA and GABAergic 

VTA neurons (Mansvelder et al., 2009; Wise, 2002). Dopaminergic projections from the ventral 

tegmental area to the nucleus accumbens are critical to the primary and conditioned reinforcing 

effects of nicotine (Balfour, Wright, Benwell, & Birrell, 2000; Corrigal, Coen, & Adamson, 

1994; Grace, 2000; Liechti, Lhuillier, Kaupmann, & Markou, 2007; Mansvelder & McGehee, 

2002).  

The nucleus accumbens is divided into core and shell regions based on histochemical 

differences (Groenewegen et al., 1999) and exhibits a topographic organization (Groenewegen et 

al., 1999; Kalivas et al., 1999), suggesting that information important for control of specific 

behaviors is localized (Cardinal et al., 2002; Kalivas et al., 1999; Wise, 2002). VTA DA 

afferents synapse onto nucleus accumbens GABAergic medium spiny neurons (MSNs) (Smith & 
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Bolam, 1990). These VTA-NAc connections integrate information concerning the motivational 

value of stimuli from multiple nuclei and the prefrontal cortex and translate this information into 

goal-directed behavior (Cardinal et al., 2002; Kalivas & Barnes, 1993; Carelli, 2002, 2004; 

Cheer et al., 2007; Kalivas et al., 1999). Nucleus accumbens MSNs send GABAergic projections 

back to the VTA and also to the VP (Groenewegen et al., 1999). NAc GABA release is regulated 

in part by cholinergic interneuron function (Bradfield, Bertran-Gonzalez, Chieng, & Balleine, 

2013) and activation of DA D1- and D2-like receptor subtypes (Seamans & Yang, 2004).   

D1 and D2-like receptors can have opposing physiological effects that function on 

different time courses to modulate the effects of GABA in a biphasic manner (Seamans & Yang, 

2004). However, the exact mechanisms by that DA receptor subtypes are able to relay 

information concerning stimulus salience is currently unclear. D1-like receptors modulate n-

methyl-d-aspartate receptor (NMDA-R) mediated excitatory postsynaptic potentials important 

for long-term potentiation that may regulate aspects of goal-directed behavior (Seamans & Yang, 

2004). D2-like receptors are thought to reduce both presynaptic glutamate release and non-

NMDA-R mediated depolarizations postsynaptically (Seamans & Yang, 2004), providing a 

potential mechanism for fine-tuning the intensity of stimulus salience initially encoded by D1-

like receptor activity (Redgrave, Gurney, & Reynolds, 2008; Seamans & Yang, 2004).  

The effects of nicotine at nAChRs expressed on limbic subcircuit nuclei such as the 

VTA, NAc, and VP play a critical role modulating DA release (Tolu et al., 2013; Zhao-Shea et 

al., 2011) that we hypothesize are necessary for the reinforcement enhancing effect of nicotine. 

Based on VTA-NAc-VP connectivity, nicotine’s actions at VTA nAChRs would be expected to 

increase GABA release from NAc shell medium spiny neurons that should decrease GABA 

release from the VP onto the VTA, disinhibiting DA neurons. Disinhibition of these VTA DA 
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neurons should result in elevated levels of tonic dopamine release, increasing approach toward 

and responding for an available nondrug reward.  

Proposed Functional Role of VTA in the Reinforcement Enhancing Effect of Nicotine  

Support for the hypothesis that VTA-NAcS-VP GABAergic disinhibitory mechanisms 

play a role in the reinforcement enhancing effect of nicotine is provided by results showing that 

reduced VTA neuron burst firing, that would decrease tonic and phasic DA release (Floresco et 

al., 2003), results in disruption of learning about external cues that are predictive of reward 

(Zweifel et al., 2009). Activation of *β2-subunit containing nAChRs is necessary to shift VTA 

DA neurons from a population firing state (low frequency/low burst) to spontaneously active 

states that display distinct patterns of firing:  high frequency/low burst, low frequency/high burst, 

or high frequency/high burst (Mameli-Engvall et al., 2006). Low frequency refers to a firing 

pattern in that action potential firing rates are lower than 5Hz and high frequency is defined as 

firing rates > 5Hz (Mameli-Engvall et al., 2006). Low burst indicates that the percent of spikes 

occurring with a burst (%SWB) are less than 20% of total spikes measured and high burst 

indicates that the %SWB is between 20%-60% of total spikes measured (Mameli-Engvall et al., 

2006).  

Noncontingent intravenous nicotine administration increases burst firing of VTA DA 

neurons (Mameli-Engvall et al., 2006; Tolu et al., 2013) that increases tonic and phasic DA 

release from the VTA to the nucleus accumbens (Adamantidis et al., 2011) through dissociable 

mechanisms (Floresco et al., 2003). Nicotine administration elicits three distinct burst firing 

patterns in VTA DA neurons: high frequency/low burst, low frequency/high burst, and high 

frequency/high burst (Mameli-Engvall et al., 2006). Nicotine-induced changes in burst firing 

patterns are potential mechanisms through that the drug affects motivational and associative 
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learning by rapidly increasing DA transmission in the nucleus accumbens in response to reward-

associated cues (Erhardt, Schwieler, & Engberg, 2002; Exley et al., 2011; Farquhar, Latimer, & 

Winn, 2012; Schilstrom, Rawal, Mameli-Engvall, Nomikos, & Svensson, 2003). VTA-produced 

dopaminergic tone is regulated in part by GABAergic inputs from the VP (Floresco et al., 2003) 

and reduced GABA release from ventral pallidal terminals disinhibits at least a subset of VTA 

DA neurons, increasing the number of spontaneously active DA neurons and subsequently 

increasing tonic DA release (Floresco et al., 2003). Mameli-Engvall and colleagues (2006) have 

shown that *β2-subunit containing nAChRs are necessary for the three distinct nicotine-induced 

burst firing patterns observed in VTA DA neurons.  

Nicotine administration shifted DA neurons from a resting to either high frequency/low 

burst or low frequency/high burst firing active states in wildtype and α7 knockout mice but not 

*β2 knockouts (Mameli-Engvall et al., 2006). Wild-type mice, but not α7 knockout mice, also 

exhibited a high frequency/high burst firing pattern (Mameli-Engvall et al., 2006). Selective re-

expression of *β2-subunit containing nAChRs in the VTA of *β2 knockout mice using lentiviral 

transfection was required for noncontingent intravenous nicotine administration to shift VTA DA 

neurons from resting to spontaneously active states in that DA neurons exhibited high 

frequency/low burst or low frequency/high burst firing patterns (Mameli-Engvall et al., 2006). 

The presence of all firing patterns in wildtype mice and all but the high frequency/high burst 

firing pattern in α7 knockout mice suggests that nicotine-induced activation of α7 nAChRs shifts 

VTA DA neurons into a high frequency/high burst firing state (Mameli-Engvall et al., 2006). 

The failure of intravenous nicotine administration to shift VTA DA neurons from a resting state 

to any spontaneous active state in *β2 subunit knockout mice suggests that the actions of 

nicotine at this receptor subunit type are necessary to induce active states (Mameli-Engvall et al., 
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2006). Shifting VTA DA neurons from resting to active states via activation of *β-subunit 

containing nAChRs would increase DA release at the NAc that mediates goal-directed behavior 

such as responding for drug or nondrug rewards (Carelli, 2002; 2004).  

The importance of VTA *β2-subunit containing nAChRs for goal directed behavior is 

supported by studies showing that nAChR *β2 subunit knockout mice do not self-administer 

nicotine (Orejarena et al., 2012; Picciotto et al., 1998) and blocking VTA nAChRs attenuates 

NAc DA release (Nisell, Nomikos, & Svensson, 1994), intravenous nicotine self-administration 

(Corrigal, Coen, & Adamson, 1994), and intra-VTA nicotine self-administration in rats 

(Ikemoto, Qin, & Liu, 2006). Corrigal and colleagues (1994) used a combination of infusions of 

the nAChR *β2-subunit antagonist DHβE into the VTA and NAc and partial lesioning of 

pedunculopontine tegmental nucleus (PPTg) cholinergic inputs to the VTA to demonstrate that 

the pharmacological effects of nicotine acting within the VTA are necessary for nicotine self-

administration. The authors demonstrated that VTA *β2-subunit containing nAChRs were 

necessary for nicotine self-administration (Corrigal et al., 1994); however, intravenous infusions 

of nicotine were reliability paired with a tone and light compound cue indicating nicotine 

availability. Systemic drug administration studies suggest an important role for VTA *β2-subunit 

containing nAChRs in the reinforcement enhancing effect of nicotine (Guy & Fletcher, 2013; Liu 

et al., 2007). However, the contributions of VTA *β2-subunit containing nAChRs to self-

administration cannot be dissociated from the reinforcement enhancing effect of nicotine based 

on the findings of Corrigal and colleagues (1994). The present studies were designed to directly 

assess the functional role of the VTA and VTA nAChRs in the reinforcement enhancing effect of 

nicotine.   

Research Questions Addressed  
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Nicotine has dual effects on reinforcement by increasing motivation to obtain more 

nicotine (Cagguila et al., 2001, 2002; Corrigal et al., 1994; Goldberg et al., 1981; Le Foll & 

Goldberg, 2009; Le Foll et al., 2007) and increasing motivated behaviors that maintain 

reinforcement by salient non-nicotine stimuli—reinforcement enhancing effect (Cagguila et al., 

2009; Chaudhri et al., 2006a, 2006b; Palmatier et al., 2006, 2012).  Animal and clinical studies 

suggest that the reinforcement enhancing effect of nicotine robustly increases behavior in a 

manner that is comparable to human tobacco use (Caggiula et al., 2009; Chiamulera, 2005; 

Perkins & Karelitz, 2013a, 2013b). The reinforcement enhancing effect of nicotine is 

hypothesized to be a motivationally driven effect (Palmatier et al., 2012, 2013) and the VTA 

plays a central role in both motivationally-driven behavior (Kalivas et al., 1999) and the 

reinforcing effects of nicotine (Corrigal et al., 1994; Mameli-Engvall et al., 2006). Therefore, the 

goal of this dissertation was to characterize the role of the VTA and VTA nAChR subtypes in the 

reinforcement enhancing effect of nicotine. This dissertation specifically addressed the 

following:  

1) Establish the role of the VTA in the reinforcing effects of a visual stimulus by 

examining the effects of in vivo intracranial injection of GABA agonists on operant 

responding for a reinforcing sensory stimulus. A visual stimulus has been used extensively as 

a primary reinforcer to evaluate the reinforcement enhancing effects of nicotine (Chaudhri et al., 

2006a; Donny et al., 2003; Liu et al., 2007; Palmatier et al., 2006, 2008b). No previous study has 

verified the role of the VTA in the primary reinforcing effects of the VS.  Intra-VTA infusions of 

a GABAA&C/GABAB receptor subtype agonist cocktail of muscimol and baclofen into the VTA 

has been shown to transiently inhibit this nucleus in a drug-reinstatement paradigm (McFarland 

& Kalivas, 2001). Therefore, we tested the hypothesis that intracranial infusion of a 
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GABAA&C/GABAB receptor subtype agonist cocktail of muscimol and baclofen into the VTA 

would reduce responding for VS in both nicotine and saline pre-treated subjects.  

2) Establish the role of VTA nAChRs in the reinforcement enhancing effect of 

nicotine by examining the effects of in vivo intracranial injection of a nonselective nAChR 

antagonist on operant responding for a reinforcing sensory stimulus. Systemic 

administration of the nonselective nAChR antagonist mecamylamine attenuates the 

reinforcement enhancing effect of nicotine (Guy & Fletcher, 2013; Liu et al., 2007). However, 

the role of VTA nAChRs in this effect of nicotine on reinforcement is unknown. We tested the 

hypothesis that intra-VTA infusion of the nonselective nAChR antagonist mecamylamine prior 

to systemic nicotine administration would reduce responding for the VS specific to rats receiving 

systemic nicotine.  

3) Characterize the roles of VTA nAChR subtypes in the reinforcement enhancing 

effect of nicotine. Systemic administration of the nAChR *β2-subunit antagonist DHβE, but not 

the α7 nAChR antagonist MLA, reduces nicotine-enhanced responding for a nondrug visual 

stimulus (Liu et al., 2007) and nicotine-conditioned stimuli (Guy & Fletcher, 2013; Palmatier et 

al., 2007b). We hypothesized that attenuation of responding for a VS following intra-VTA 

administration of nAChR antagonists would be specific to rats receiving systemic nicotine.  

Based on previous research using systemic antagonist administration (Liu et al., 2007), intra-

VTA administration of DHβE would be expected to significantly reduce responding for the VS 

in rats receiving systemic nicotine compared to rats receiving intra-VTA administration of MLA 

(α7 nAChR antagonist) and systemic nicotine. Homomeric α7 receptors regulate some forms of 

neuronal plasticity (Broide & Leslie, 1999) including ventral tegmental area neuron plasticity 

(Jin, Yang, Wang, & Wu, 2011) that may contribute to the acute reinforcement enhancing effect 
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of nicotine following chronic nicotine exposure. Therefore, we tested separate hypotheses that 

intra-VTA administration of *β2-subunit and α7 nAChR antagonists would attenuate the 

reinforcement enhancing effect of nicotine in a concentration-dependent manner without 

affecting rates of responding for the VS in rats pretreated with saline.   

 4) Establish that the acute pharmacological effects of nicotine in the VTA are 

sufficient to produce the reinforcement enhancing of nicotine. Intra-VTA nicotine 

administration produces conditioned reinforcing effects in the conditioned place preference 

paradigm (Laviolette, Alexson, & van der Kooy, 2002; Laviolette & van der Kooy, 2003) but 

does not produce strong primary reinforcing effects (Farquhar et al., 2012). No study to date has 

directly tested whether the acute pharmacological effects of nicotine acting in the VTA are 

sufficient to produce the reinforcement enhancing effect of nicotine. Therefore, we tested the 

hypothesis that intra-VTA nicotine administration concentration-dependently increases 

responding for the VS compared to responding for visual stimuli by rats receiving intra-VTA 

placebo administration and systemic saline.  



34 

 

CHAPTER 2 

 METHODS 

Subjects 

 Male Sprague-Dawley rats (Charles River and Harlan, Inc.) weighing approximately 250-

275g upon arrival were used in all studies. Subjects were housed individually in a temperature 

and humidity controlled room and maintained on a reversed 12:12 h light:dark cycle. Behavioral 

testing was conducted during the dark cycle for all experiments. Upon arrival, rats had free 

access to food for 4-6 days and were maintained on a restricted diet (100% body weight) 

throughout the remainder of the experiments. Rats were fed immediately after behavioral testing 

and had unlimited access to water in their home cages throughout the studies. All procedures 

were approved by the Institutional Animal Care and Use Committees at Kansas State University 

(Animal Welfare Assurance #: A3609-01) and East Tennessee State University (Animal Welfare 

Assurance #: A3203-01). 

Apparatus 

 Experimental sessions were conducted in standard operant conditioning chambers housed 

in sound attenuating cubicles (Med Associates). Chambers were equipped with two illuminated 

nose-keys, a liquid dipper in a receptacle containing 0.1 ml dippers cups and two white house 

lights as an ambient lighting source. Nose-keys were located on each side of the receptacle, and 

one of the two ambient light sources was on one side of the chamber with an additional ambient 

light source located on the opposite wall of the chamber. 

Drugs 

The following intracranial (IC) active compound solutions, expressed in millimolar (mM) 

concentrations, were prepared in sterile phosphate-buffered saline (PBS): 0.1mM 
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muscimol/1.0mM baclofen GABA agonist cocktail (musc/bac; Sigma), 0.1mM and 1.0mM 

mecamylamine (MEC; Sigma), 20mM and 100mM dihydro-beta-erythrodine (DHβE; Tocris), 

0.8mM and 8.0mM methyllycaconitine (MLA; Sigma), and 17mM, 35mM, 70mM, and 105mM 

nicotine (NIC—free base; Sigma). Figure 2 summarizes the types and concentrations of IC 

solutions used in the present experiments. IC compound concentrations were selected based on 

previous research using these compounds in a variety of reward-related behavioral tasks (See 

individual experiment descriptions below). Systemic administration of either (-)-Nicotine 

hydrogen tartrate salt (Sigma) dissolved in 0.9% saline to 0.40 mg/ml (free base) or isotonic 

saline served as a between-subjects factor. Systemic solutions were administered via 

subcutaneous (sc) injection at a volume of 1 ml/kg. The 0.40 mg/kg dose of nicotine (free base) 

was chosen based on previous dose-response data indicating that this dose is optimal for 

producing maximal operant responding for a visual stimulus (Palmatier et al., 2007a).   

Stimuli 

Rats were shaped to respond on nose-keys using a 20% sucrose solution (w/v; see 

Shaping Procedures). The primary reinforcer in all behavioral experiments was a visual stimulus 

(VS) operationally defined as extinguishing all lighting in the operant chamber (ambient light 

and illuminated nose-keys) for 30 seconds once the reinforcement schedule on the active nose-

key was met. Previous research has shown that the visual stimulus maintains moderate levels of 

responding as a primary reinforcer (Chaudhri et al., 2006b; Palmatier et al., 2006).  

Shaping Procedures 

Illuminated nose-keys were the only source of chamber lighting during shaping sessions. 

Noncontingent dipper presentations occurred throughout each 60-minute session on a random 1-

minute interval and nose-key lights were extinguished for 5s during each dipper presentation. 
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Rats were shaped to associate the activation of the dipper with access to 20% sucrose and to 

press nose-keys on a fixed ratio 1 (FR1) schedule—every press of either nose-key resulted in 

deliveries of 0.1ml sucrose into the receptacle by the dipper. Pressing either nose-key during 

shaping sessions resulted in two consecutive dipper presentations. Shaping procedures were 

considered completed when subjects earned a total of 100 sucrose reinforcers on the FR1 

reinforcement schedule. The right key was designated the active nose-key operant during 

behavioral testing procedures using the VS as the primary reinforcer.  

Presurgery Behavioral Testing 

 During each session rats were placed in an operant chamber and allowed to respond on 

the right nose-key for VS reinforcers on a FR3 schedule of reinforcement. Once rats met 

response stability criterion (<40% variability in mean number of VS earned for 3 of the previous 

4 days), subjects were administered saline via subcutaneous injection (sc) 15 minutes prior to 

being placed in the operant chamber for two tests sessions. Rats were then randomly assigned to 

one of two systemic drug administration groups (Nicotine or Saline) with the constraint that 

mean active nose-key responding did not differ between groups on the FR3 schedule under 

placebo conditions. This procedure was used in order to match for individual differences in 

response rates prior to drug administration (Pastor, Andres, & Bernabeu, 2012). Rats received 

injections (sc) of either 0.40 mg/kg nicotine or saline 15 minutes prior to behavioral testing. 

After responding was stable following drug administration, rats were implanted with infusion 

cannula aimed at the posterior VTA.  

Intracranial Cannula Implantation 

Subjects were anesthetized using an injection of ketamine (80 mg/kg; intraperitoneal 

cavity) and Diazepam (5 mg/kg) or induction with isoflourane gas (inhalation) and maintained 
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using either Diazepam booster shots or isoflourane gas. Subjects were surgically implanted with 

15 millimeter (mm) bilateral microinjection cannulas (mm from bregma) aimed at the posterior 

VTA (AP: -6.0; ML: +/- 0.75; D/V: -6.2) according to the atlas of Paxinos and Watson (2007) 

(Jaworski, Kimmel, Mitrano, Tallarida, & Kuhar, 2007). Cannulas (26 gauge hypodermic tubing, 

Small Parts) were secured to the skull using steel jeweler’s screws and dental acrylic. Sixteen 

mm wires (33 gauge, Small Parts) were inserted into cannulas to prevent cannula obstruction. 

Rats were treated with 5 mg/kg of an antibiotic (Baytril) and 3 mg/kg of a nonsteriodal anti-

inflammatory (Ketoprofen) administered via injection (sc) once daily for 3 days postoperatively. 

Rats were treated with 3 mg/kg of Baytril every other day until the study endpoint was reached.  

Postsurgery Behavioral Testing 

After 4-6 days of recovery, behavioral testing resumed and was conducted 7 days per 

week. Animals were handled and injected as would be performed during intracranial infusion 

tests. Injectors were not placed in the cannula to minimize tissue damage caused by multiple 

injector insertions until a postsurgery baseline level of responding was established. Subjects in 

all experiments then received 0.5 µL/hemisphere infusions of vehicle phosphate buffered saline 

(PBS) over a 120-second (s) period delivered through 17mm bilateral microinjectors (33 gauge 

hypodermic tubing, Small Parts) using a 10 μl Hamilton syringe on a digital pump (Stoelting). 

Injectors remained in place for an additional 60 s to allow diffusion of solution out of injectors. 

Once injectors were removed, subjects received designated sc injections (SAL or NIC) and 

obdurators were replaced. Fifteen minutes later, rats were placed in the operant chamber and 

allowed to respond for the VS on a FR3 schedule to establish a postsurgery baseline for VS 

responding. Postsurgical PBS infusion procedures were performed for all replications and were 
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designed to establish a postsurgery baseline rate of behavior including placebo infusion 

conditions. 

After a baseline level of responding was established, postsurgery behavioral testing 

procedures were repeated using active compounds. The order of IC infusions of active 

compounds was counterbalanced using a Latin Square design—compounds used during a given 

replication appeared in each possible order at least once. Rats were placed in the operant 

chamber 15 minutes after designated systemic injections (GABA agonists and nAChR 

antagonists) or immediately after systemic saline administration (intra-VTA nicotine 

administration) and allowed to respond for the VS on an FR3 schedule of reinforcement. A 

washout period was implemented after each IC infusion to re-establish a baseline rate of 

responding for the visual stimulus. On washout days animals were handled and received 

systemic injections as would be performed during intracranial infusion tests. However, injectors 

were not placed in the cannula to minimize tissue damage caused by multiple injector insertions. 

Figure 2 summarizes postsurgery behavioral testing procedures.   

Figure 2. Schematic of postsurgery behavioral testing procedure. For Experiment 3, rats were 

placed into the operant chamber directly after the systemic saline injection was administered. 

Abbreviations: Bac-Baclofen; Musc-Muscimol, MEC-Mecamylamine, DHBE-Dihydro beta 

erythroidine; MLA-Methyllycaconitine; NIC-nicotine. 
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Locomotor Activity 

Behavioral test sessions were recorded for a subset of subjects using cameras mounted in 

the operant chambers (Trendnet). Videos were scored using an automated behavioral scanning 

system (Any Maze, Stoelting Co., Wood Date, IL). Comparisons of total distance traveled 

(meters), a dependent measure of locomotor activity, in a subset of 60-minute behavioral tests 

following baseline, GABA agonist, and nAChR antagonist (DHβE and MLA) infusion 

procedures were conducted to examine whether any attenuation of responding for the VS 

following intra-VTA infusion procedures resulted from a reduction in goal-directed behavior or 

locomotor suppression. The critical comparison for evaluating general locomotor suppression 

was a reduction in total distance traveled following intra-VTA active compound administration 

in rats receiving systemic saline compared to baseline locomotor activity as these rats would not 

experience psychostimulant induced locomotor activating effects (Vezina, McGehee, & Green, 

2007).   

Cannula Placement Verification 

Brain tissue was extracted, fixed in a 37% formalin solution for ≥48hrs, and transferred to 

a 25% w/v sucrose/PBS solution until saturated. Tissue was then sectioned in 60 µm coronal 

slices using a cryostat (Leica) and cannula placements were verified by referencing a sterotaxic 

atlas (Paxinos & Watson, 2007). Subjects with bilateral cannula placement outside the posterior 

VTA (-5.4 to -6.24mm bregma range; Perroti et al. 2005; Rodd et al, 2008) were excluded from 

data analysis. Schematics illustrating cannula placement locations for rats meeting inclusion 

criteria are presented in Appendices A-J. 

 

 



40 

 

Research Design and Data Analysis 

 Systemic Drug x IC Drug x Response Mixed analyses of variance (ANOVAs) were 

conducted for each experiment with number of nose-key responses serving as the dependent 

measure. Systemic Drug served as the between subjects variable and type of nose-key response 

(active, inactive) as a within-subjects variable. IC Drug was treated as a within-subject variable 

in experiments when subjects completed tests for all concentrations of a specific compound. IC 

Drug was treated as a between-subjects variable when rats meeting inclusion criteria did not 

complete tests for all concentrations of a specific compound. Separate Systemic Drug x IC Drug 

Mixed ANOVAs were conducted to examine the effects of these factors on number of visual 

stimuli earned. Significant interactions were probed using simple effects analyses (Keppel & 

Zedeck, 1987) and t-tests where appropriate. Additional Repeated Measures and Between-

Subjects ANOVAs and post hoc tests were used to examine the effects intra-VTA compound 

administration on general locomotor activity (total distance traveled) where appropriate. Alpha 

was set at p<0.05 for all statistical analyses.  

IC Drug Baseline measures were calculated for each subject by averaging scores on each 

dependent measure (active and inactive nose-key responses and visual stimuli earned) across 

intra-VTA vehicle infusion (PBS) and wash-out days immediately preceding infusions of active 

compounds when response stability criterion had been met. Response stability criterion was 

defined as <40% variability in mean number of VS earned during postsurgery baseline 

procedures. The rationale for using this baseline measure was to decrease the total number of 

subjects needed to complete experiments by increasing the total number of intra-VTA infusions 

received by each subject while taking into account inherent variability in responding on nose-key 

operants.  
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Role of the VTA in the Primary Reinforcing Effects of the VS  

Transient inhibition of the VTA using intracranial infusion of a 0.1 mM muscimol and 

1.0 mM baclofen GABA receptor agonist cocktail followed by systemic drug administration was 

used to examine the role of the VTA in primary reinforcing effects of a visual stimulus used 

extensively to evaluate the reinforcement enhancing effect of nicotine (Chaudhri et al., 2006a; 

Donny et al., 2003; Liu et al., 2007; Palmatier et al., 2006, 2008b). This muscimol and baclofen 

mixture has been shown to transiently inactivate nuclei by increasing GABAA&C (muscimol) and 

GABAB (baclofen) receptor subtype activity (Floresco et al., 2003; Gabriele & See, 2011; 

McFarland & Kalivas, 2001).  

Statistical analysis used to evaluate the role of the VTA in the primary reinforcing effects 

of the VS consisted of a Systemic Drug (SAL, NIC) x IC Drug (Baseline; 1.0mM Bac/0.1mM 

Musc) x Response (Active; Inactive) Mixed Factorial ANOVA with systemic drug as the 

between subjects factor and number of nose-key responses made as the dependent variable. A 

separate Systemic Drug (SAL, NIC) x IC Drug (Baseline, 1.0mM Bac/0.1mM Musc) Mixed 

ANOVA was used to examine the effects of transient inhibition of the VTA on number of VS 

earned. Additionally, a Systemic Drug (SAL, NIC) x Session (Baseline, 1.0mM Bac/0.1mM 

Musc) Mixed ANOVA with Systemic drug serving as the between-subjects variable and total 

distance traveled (meters) as the dependent variable was conducted to examine whether intra-

VTA administration of GABA agonist compounds suppressed general locomotor activity.  

Role of VTA nAChRs in the Reinforcement Enhancing Effect of Nicotine  

Intra-VTA administration of mecamylamine, a nonselective nAChR antagonist that 

functions by blocking open calcium channels (Roegge & Levin, 2006), was used to examine 

whether VTA nAChRs are directly involved in the reinforcement enhancing effect of nicotine. 



42 

 

Intra-VTA administration of 0.1mM of MEC was chosen as this concentration has been shown to 

attenuate nicotine-induced Fos expression at the nucleus accumbens (Schilstrom, de Villiers, 

Malmerfelt, Svensson, & Nomikos, 2000). A higher concentration (1.0mM MEC) was also used 

to examine the role of VTA nAChRs in the reinforcement enhancing effect of nicotine. 

Statistical analyses to evaluate the role of the VTA nAChRs in the reinforcement 

enhancing effect of the nicotine consisted of a Systemic Drug (SAL, NIC) x IC Drug (Baseline, 

0.1mM MEC, 1.0mM MEC) x Response (Active, Inactive) Mixed Factorial ANOVA with 

systemic drug as the between subjects factor and number of nose-key responses made as the 

dependent variable. A separate Systemic Drug (SAL, NIC) x IC Drug (Baseline, 0.1mM MEC, 

1.0mM MEC) Mixed ANOVA was used to examine the effect of nonselective VTA nAChR 

blockade on number of visual stimuli earned. Video data for measuring total distance traveled 

was not available for mecamylamine infusion experiments.  

Role of VTA *β2-subunit Containing and α7 nAChR Subtypes in the Reinforcement 

Enhancing Effect of Nicotine  

Intra-VTA infusions of the selective nAChR subtype antagonists DHβE (20mM & 

100mM) and MLA (0.8mM, 8.0mM) were used to target *β2-subunit containing and α7 nAChR 

subtypes, respectively. These specific antagonists were chosen to allow for comparisons of 

results to prior mechanistic work using systemic administration of these compounds in the 

reinforcement enhancing effect of nicotine (Liu et al., 2007). DHβE concentrations were chosen 

based on previous intra-VTA administration experiments examining the motivational valence of 

nicotine measured using CPP (Laviolette & van der Kooy, 2003) and intra-amygdala infusion of 

this compound in experiments examining the effects of nicotine on learning and memory (Addy, 

Nakijama, & Levin, 2003). MLA concentrations were chosen based on previous intra-VTA 
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antagonist experiments examining the role of α7 nAChR subtype in the effects of nicotine on 

responding for brain-stimulation reward (Panagais, Kastellakis, Spyraki, & Nomikos, 2000) and 

motivational valence of nicotine measured using the CPP paradigm (Laviolette & van der Kooy, 

2003).   

For DHβE and MLA infusion experiments, separate Systemic Drug (SAL, NIC) x IC 

Drug (Baseline, [Low], [High]) x Response (Active, Inactive) Mixed Factorial ANOVAs were 

conducted with number of nose-key responses made as the dependent variable. IC Drug was 

treated as a within-subjects variable in DHβE infusion experiments and as between-subjects 

variable in MLA infusion experiments as only four rats meeting inclusion criteria completed 

both α7 antagonist concentrations. Separate Systemic Drug (SAL, NIC) x IC Drug (Baseline, 

[Low], [High]) Mixed Factorial ANOVAs were also conducted for DHβE and MLA IC 

compounds with number visual stimuli earned as the dependent variable.  

Cameras were not available in the operant boxes until later replications of experiments. 

Therefore, locomotor activity data were only available for a subset of rats receiving systemic 

saline and intra-VTA DHβE infusions (See Table 7). Descriptive statistics and a graphical 

depiction of data are presented in the results section but inferential statistical tests were not 

conducted because of the limited number of videos available for analysis. A Systemic Drug 

(NIC, SAL) x IC Drug (Baseline, [Low], [High]) Between-subjects ANOVA with total distance 

traveled (meters) as the dependent variable was conducted to examine whether intra-VTA MLA 

administration suppressed general locomotor activity.  

Intra-VTA Nicotine 

Nicotine was administered directly into the VTA to determine whether the acute 

pharmacological effects of the drug in this nucleus were sufficient to produce the reinforcement 
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enhancing effect of nicotine. One group of rats received systemic saline and intra-VTA infusions 

of PBS (SAL + 0mM) and served as a control group to compare rates of responding for the VS 

and number of VS earned for rats receiving intra-VTA infusions of different nicotine 

concentrations (17, 35, 70, & 105mM; free base) and systemic saline administration.  A separate 

group of rats received systemic nicotine and intra-VTA PBS infusions (NIC + 0mM) to examine 

motivation for the VS following either systemic and intra-VTA nicotine.  

Statistical analysis consisted of a Nicotine Dose (SAL+0mM, NIC+0mM, 17mM, 35mM, 

70mM, 105mM) x Response (Active, Inactive) Mixed ANOVA with Nicotine Dose as the 

between subjects variable and number of nose-key responses made as the dependent variable. A 

separate Nicotine Dose (SAL+0mM, NIC+0mM, 17mM, 35mM, 70mM, 105mM) One-way 

ANOVA was conducted with number of visual stimuli earned serving as the dependent variable. 

Dunnett’s t was used to make multiple comparisons with the SAL+0mM group as the control 

comparison to test the hypothesis that intra-VTA nicotine administration concentration-

dependently increases responding for the VS compared to responding for the VS by rats 

receiving intra-VTA placebo administration and systemic saline. 
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CHAPTER 3 

RESULTS 

Role of the VTA in the Reinforcing Effects of a Visual Stimulus 

 The role of the VTA in the primary reinforcing effects of a visual stimulus was assessed 

by using intra-VTA administration of a 0.1 mM muscimol and 1.0 mM baclofen GABA receptor 

agonist cocktail followed by systemic drug administration. The hypothesis that intracranial 

microinjection of a GABA agonist cocktail of muscimol and baclofen into the VTA would 

reduce responding for a visual stimulus in both nicotine and saline pretreated subjects was 

supported. Descriptive statistics for transient inhibition experiments are presented in Table 1 

(nose-key = NP; visual stimuli = VS; meters = m).  

Table 1 

Descriptive Statistics for Transient Inhibition Experiments 

   Baseline Muscimol and Baclofen 

Systemic Drug Measure n M SEM M SEM 

Nicotine Active NP 6 321.33 25.89 0.00 0.00 

 Inactive NP 6 8.17 2.39 0.00 0.00 

 VS Earned 6 72.67 6.01 0.00 0.00 

 Total Distance 

Traveled (m) 

4 115.58 22.03 63.29 22.19 

Saline Active NP 9 144.89 18.96 2.67  1.42 

 Inactive NP 9 5.22 1.53 0.00 0.00 

 VS Earned 9 39.22  6.77 0.78 0.43 

 Total Distance 

Traveled (m) 

6 21.23 8.56 27.34 16.95 

 

Figure 3 illustrates the mean number of active nose-key responses made during baseline 

procedures (empty bars) and intra-VTA infusion of a 1.0mM 0.1mM muscimol and baclofen 

GABA agonist cocktail (black bars) in rats that received either systemic Nicotine (n=6) or Saline 

(n=9). As shown in the figure, responding for a visual stimulus was reduced in both Nicotine and 
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Saline groups following transient inhibition of the VTA using a GABA agonist cocktail (black 

bars) indicating an important role for this nucleus in the primary reinforcing effects of the VS. 

Mixed ANOVA yielded main effects of Systemic Drug, Response, and IC Drug (Fs≥31.60, 

ps<0.0001), significant two-way interactions between all factors (Fs≥28.37, ps<0.0001), and a 

significant Systemic Drug x Response x IC Drug three-way interaction, F(1, 13) ≥ 31.304, p < 

0.0001.  

Simple effects analyses confirmed that rats receiving systemic Nicotine made more active 

nose-key responses (M = 321.33, SEM = 25.89) than the Saline group (M = 144.89, SEM = 

18.96) and that transient inhibition of the VTA significantly reduced responding on the active 

nose-key for rats receiving either systemic Nicotine (M = 0.00, SEM = 0.00) or Saline (M = 2.67, 

SEM = 1.42), Fs(1, 13) ≥ 102.015, ps < 0.05. Intra-VTA GABA agonist administration 

eliminated responding on the inactive nose-key in both systemic drug treatment groups (Figure 3 

inset). However, the mean number of inactive nose-key responses made did not differ between 

groups under either IC Drug condition, Fs < 1. The mean number of visual stimuli earned by 

both systemic groups was also significantly reduced following intra-VTA GABA agonist 

administration (Figure 4). This was confirmed by Mixed ANOVA yielding significant main 

effects of Systemic Drug and IC Drug (Fs ≥ 11.11, ps ≤ 0.005) and a significant Systemic x IC 

Drug interaction, F(1, 13) ≥ 12.73, p = 0.003.  
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Figure 3: Transient inhibition of the VTA attenuated the primary reinforcing effects of the visual 

stimulus. Rats pretreated with Nicotine made significantly more active nose-key responses than 

rats pretreated with Saline following baseline procedures—p < 0.05, indicated by *. Intra-VTA 

GABA agonist infusion reduced responding on the active nose-key for both systemic drug 

treatment groups, ps < 0.05—indicated by ^. Mean inactive nose-key responses are shown in the 

figure inset. There were no significant differences in responding on the inactive nose-key 

between Nicotine and Saline groups under either intracranial drug infusion condition, p > 0.05. 

 

Figure 5 shows the effects of intra-VTA GABA agonist administration on total distance 

traveled, a measure of general locomotor activity, in a subset of rats receiving either systemic 

Nicotine (n=4) or Saline (n=6). Total distance traveled was reduced in the Nicotine group to a 

greater extent than rats in the Saline group (MD = -52.29 and -14.17, respectively).  However, 
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decreased primary reinforcing effects of the VS following transient inhibition of the VTA did not 

appear to result from general locomotor suppression as confirmed by a significant Mixed 

ANOVA Systemic x IC Drug interaction with total distance traveled as the dependent measure, 

F(1, 8) = 5.57, p < 0.05. Probing the interaction revealed that total distance traveled was 

significantly reduced in the Nicotine group, F(1, 8) = 17.48, p < 0.05 but not the Saline group, 

F(1, 8) = 1.93, p>0.05. Intra-VTA GABA induced reductions in total distance traveled 

specifically in the Nicotine group likely reflects a reduction in nicotine-induced locomotor 

activating effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Intra-VTA infusion of muscimol and baclofen reduced the total number of visual 

stimuli earned. Rats pretreated wit Nicotine earned significantly more VS compared to rats 

pretreated with Saline following baseline procedures—p < 0.05, indicated by *. Intra-VTA 

GABA agonist infusion reduced the number of VS earned by both systemic drug treatment 

groups, ps < 0.05—indicated by ^.  
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Figure 5. Transient inhibition of the VTA did not suppress general locomotor activity. Rats 

pretreated with Nicotine had significantly higher baseline rates of locomotor activity than rats in 

the Saline group—p < 0.05, indicated by *. Intra-VTA GABA infusion reduced total distance 

traveled in the Nicotine group (p < 0.05; indicated by ^) but not the Saline group (p > 0.05) 

reflecting a reduction in nicotine-induced locomotor activating effects. 

 

Role of VTA nAChRs in the Reinforcement Enhancing Effect of Nicotine 

Systemic administration of the nonselective nAChR antagonist mecamylamine attenuates 

the reinforcement enhancing effect of nicotine (Guy & Fletcher, 2013; Liu et al., 2007). We 

tested the hypothesis that intra-VTA infusion of MEC prior to systemic nicotine administration 

would attenuate motivation for the VS to levels reflective of responding supported by the 

primary reinforcing effects of the VS. As shown in Figures 6 and 7, rats receiving systemic 

Nicotine (n=12) made more active nose-key responses (Figure 6) and earned more visual stimuli 

(Figure 7) compared to rats receiving Saline (n=8) under all IC Drug conditions. Intra-VTA 
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administration of 0.1mM MEC, but not 1.0mM MEC, reduced responding on the active nose-key 

and the number of visual stimuli earned in rats receiving systemic Nicotine.  Descriptive 

statistics for MEC infusion experiments are presented in Table 2. 

Table 2 

Descriptive Statistics for Intra-VTA Mecamylamine Infusion Experiments 

  Baseline 0.1mM MEC 1.0mM MEC 

Systemic 

Drug 

Measure M SEM M SEM M SEM 

Nicotine  Active NP 291.67 23.13 237.83 28.03 265.50 91.73 

(n=12) Inactive NP 9.92 3.34 3.83 1.97 6.33 10.15 

 VS Earned  69.83 4.2 57.83 5.98 64.08 18.87 

Saline  Active NP 144.5 21.63 137.88 27.59 157.88 16.06 

(n=8) Inactive NP 7.86 2.61 8.00 4.04 5.63 2.07 

 VS Earned 37.75 6.91 37.50 7.70 42.75 5.15 

 

A Systemic Drug x Response x IC Drug Mixed ANOVA yielded significant main effects 

of Systemic Drug and Response, Fs ≥ 11.80, ps ≤ 0.003, but not IC Drug, F(2, 36) = 3.04, p = 

0.060. Main effects were qualified by significant Systemic Drug x Response and Response x IC 

Drug two-way interactions, Fs ≥ 3.32, ps ≤ 0.05. Simple effects analyses confirmed that all rats 

made significantly more active (Figure 6) than inactive nose-key responses (Figure 6 inset) under 

all IC conditions, F(1,36) = 361.62, p < 0.05. Responding on the inactive nose-key did not differ 

between systemic drug groups under any IC drug condition, Fs(1,36) ≤ 1.59, ps > 0.05. Rats in 

the Nicotine group made significantly more active nose-key responses (M = 291.67, SEM = 

23.13) than rats pretreated with Saline (M = 144.50, SEM = 21.63), F(1, 36) = 157.067, p < 0.05. 

Probing the significant Response x IC Drug interaction revealed that rates of responding on the 

active nose-key were significantly lower following intra-VTA administration of 0.1mM MEC 

compared to baseline rates of responding, t(19)=2.49, p<0.05. This effect is likely driven by 
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reduced responding on the active nose-key in the Nicotine group (MD = -53.84) compared to the 

Saline group (MD = -6.62).  

As shown in Figure 7, rats receiving systemic Nicotine earned significantly more visual 

stimuli than the Saline group under all IC Drug conditions. This was confirmed by a Systemic 

Drug x IC Drug Mixed ANOVA yielding a significant main effect of Systemic Drug, F(1,18) = 

9.96, p = 0.005. Compared to baseline conditions, a greater reduction in mean number of VS 

earned was seen in the Nicotine group (MD = -12.00) compared to the Saline group (MD = -

0.25) following intra-VTA 0.1mM MEC administration. However, the main effect of IC Drug 

and the Systemic Drug x IC Drug interaction did not reach statistical significance, Fs ≥ 2.17, ps 

≥ 0.062. Mean differences in active nose-key responses and VS earned suggested that reduced 

responding for the VS was driven by the effects of 0.1mM intra-VTA MEC in rats pretreated 

with Nicotine. Additional follow-up analyses using paired samples t-tests and Bonferroni’s 

method to correct for alpha inflation (significance of alpha set at p≤0.017) were conducted for 

each systemic drug group to test the hypothesis that intra-VTA 0.1mM MEC significantly 

reduced responding on the active nose-key in rats pretreated with systemic Nicotine compared to 

the baseline condition. Results of the paired samples t-test for the Nicotine group confirmed that 

intra-VTA administration of 0.1mM MEC significantly reduced the mean number of active nose-

key responses made compared to baseline conditions, t(11) = 2.86,  p = 0.015. Compared to 

baseline conditions, intra-VTA administration of 0.1mM MEC did not significantly reduce the 

mean number of active nose-key responses made by the Saline group, t(7) = 1.41, p = 0.20.  
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Figure 6. Intra-VTA Administration of a low, but not high, concentration of the nonselective 

nAChR antagonist mecamylamine attenuated the reinforcement enhancing effect of nicotine. 

Rats pretreated with Nicotine made significantly more active nose-key responses than rats in the 

Saline group under all IC Drug conditions—indicated by *. Infusing 0.1mM MEC (gray bars) 

into the VTA reduced the mean number of active nose-key responses only in rats pretreated with 

Nicotine. Attenuation of the reinforcement enhancing effect of nicotine by intra-VTA 0.1mM 

MEC infusion was confirmed by follow-up analyses using a paired samples t-tests that revealed 

that intra-VTA 0.1mM MEC infusions significantly reduced the mean number of active nose-key 

responses made by the Nicotine group compared to Baseline, p < 0.017—indicated by ^. 

Responding on the inactive nose-key did not differ between groups under any IC Drug condition, 

ps > 0.05 (inset).  
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Figure 7. Intra-VTA mecamylamine did not reduce the number of VS earned in rats receiving 

systemic nicotine. Rats pretreated with Nicotine made significantly more active nose-key 

responses than rats in the Saline group under all IC Drug conditions—indicated by *.  

 

Role of VTA *β2-subunit Containing and α7 nAChR Subtypes in the Reinforcement 

Enhancing Effect of Nicotine 

*β2-subunit Containing nAChR Subtype  

Systemic administration of the nAChR *β2-subunit antagonist DHβE reduces nicotine-

enhanced responding for a nondrug visual stimulus reinforcer (Liu et al., 2007). Blocking *β2-

subunit containing nAChRs in the VTA also reduced the responding for the VS in a 

concentration-dependent manner, an effect specific to rats treated with systemic Nicotine. As 

shown in Figure 8, Intra-VTA administration of DHβE reduced responding on the active nose-

key in the Nicotine group (n=8) but not the Saline group (n=7). This was confirmed by a 

Systemic Drug x Response x IC Drug Mixed ANOVA that yielded significant main effects of 

Systemic Drug, Response, and IC Drug, Fs ≥ 21.60, ps ≤ 0.001 and significant two-way 

Nicotine Saline
0

20

40

60

80

100

Baseline

0.1mM MEC

1.0mM MEC

*

*
*

Systemic Drug

M
e
a
n

 (


1
 S

E
M

) 
V

S
 E

a
rn

e
d



54 

 

interactions between all factors (Fs ≥ 10.83, ps ≤ 0.012) that were qualified by a significant 

Systemic Drug x Response x IC Drug interaction, F(2, 26) = 4.59, p = 0.02.  

Probing the significant three-way interaction revealed that intra-VTA administration of 

20mM (M = 242.75, SEM = 25.89) and 100mM DHβE (M = 205.63, SEM = 21.58) reduced the 

number of active nose-key responses made compared to the baseline condition (M = 312.38, 

SEM = 18.89) in the Nicotine group (ts ≥ 6.64, ps < 0.05). The mean number of active nose-key 

responses did not significantly differ between low and high DHβE concentrations, t(7) = 1.57, p 

> 0.05 (See Table 3). Simple effects analyses confirmed there were no significant differences in 

active nose-key responses under any IC Drug conditions in rats receiving systemic Saline, F(1, 

26) = 1.84, p > 0.05. Mean number of inactive nose-key responses is presented in the Figure 8 

inset. Although reductions in responding on the inactive nose poke were observed following 

DHβE administration, there were no significant differences in mean number of inactive nose-key 

responses made under any IC Drug condition for either Systemic Drug treatment group, Fs ≤ 

2.31, ps > 0.05. 

Mean number of visual stimuli earned also decreased following intra-VTA DHβE 

infusions in a concentration dependent manner (Figure 9). Mixed ANOVA yielded main effects 

of Systemic Drug and IC Drug, Fs ≥ 9.34, ps ≤ 0.002 but not a Systemic Drug x IC Drug 

interaction, F = 1.95, p = 0.16. Rats treated with systemic Nicotine earned more visual stimuli 

than rats treated with systemic Saline under all IC Drug conditions. Intra-VTA DHβE 

administration reduced total mean number of VS earned. Examining Table 3 indicates that the 

main effect of IC Drug is likely driven by reduced number of VS earned by the Nicotine group. 

A second potential explanation is that a low concentration of DHβE (20mM) may be sufficient to 

significantly attenuate the reinforcement enhancing effect of Nicotine ([Low] – Baseline MD = -
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9.38; Saline MD = -1.14) while higher concentrations may reduce overall responding for the VS 

as a primary reinforcer (NIC [High] – Baseline MD = -20.63; Saline MD = -7.71). Alternatively, 

higher concentrations of *β2-subunit containing nAChR antagonists may produce general 

locomotor suppression. However, no effect on active nose-key responding (Figure 8) or total 

distance traveled (Figure 10) was observed following intra-VTA DHβE administration in rats 

receiving systemic Saline. Therefore, locomotor suppression is an unlikely explanation for the 

observed results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Blocking VTA *β2-subunit containing nAChRs attenuated the reinforcement 

enhancing effect of nicotine. Both DHβE concentrations tested reduced responding on the active 

nose-key in the Nicotine, but not the Saline, group. Rats treated with systemic Nicotine made 

significantly more active nose-key responses than rats treated with Saline under all IC drug 

conditions, respectively (ps < 0.05, indicated by *). Intra-VTA DHβE significantly reduced 

responding on the active nose-key in the Nicotine group compared to baseline—p < 0.05, 

indicated by ^. Responding on the inactive nose-key did not differ between groups under any IC 

Drug condition, ps > 0.05 (inset).   
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Figure 9. Intra-VTA administration of DHβE reduced the number of visual stimuli earned. Rats 

receiving systemic Nicotine earned significantly more VS than rats treated with Saline under all 

IC drug conditions (ps < 0.05, indicated by *). Intra-VTA DHβE infusions reduced the mean 

number of VS earned (p < 0.05, indicated by ^), an effect likely driven by Nicotine group.  
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Figure 10. Blocking VTA *β2-subunit containing nAChRs did not affect general locomotor 

activity. Intra-VTA DHβE administration did not reduce total distance traveled in rats receiving 

systemic Saline at either concentration tested.   

Table 3 

Descriptive Statistics for Intra-VTA DHβE Infusion Experiments 

  Baseline 20mM DHβE 100mM DHβE 

Systemic 

Drug 

Measure M SEM M SEM M SEM 

Nicotine Active NP 312.38 18.89 242.75 25.89 205.63 61.05 

(n=8) Inactive NP 14.13 5.57 7.38 3.37 2.88 5.08 

 VS Earned 73.38 3.32 64.00 6.21 52.75 15.75 

Saline Active NP 117.00 26.40 123.00 33.57 86.43 27.51 

(n=7) Inactive NP 4.57 1.62 2.71 1.32 1.43 0.75 

 VS Earned 30.43 8.51 29.29 9.00 22.71 9.66 

Saline  n=6  n=4  n=3  

 Total Distance 

Traveled (m) 

59.67 8.56 75.27 20.04 60.47 10.90 

 

α7 nAChR Subtype 

 Systemic administration of the α7 nAChR antagonist MLA does not reduce nicotine-

enhanced responding for a visual stimulus (Lui et al., 2007) or a nicotine-conditioned stimulus 

(Guy & Fletcher, 2013). However, homomeric α7 receptors regulate some forms of neuronal 
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plasticity (Broide & Leslie, 1999) including ventral tegmental area neuron plasticity (Jin et al., 

2011) that may contribute to the acute reinforcement enhancing effect of nicotine following 

chronic nicotine exposure. We tested the hypothesis that blocking VTA α7 nAChRs would 

attenuate the reinforcement enhancing effect of nicotine in a concentration-dependent manner 

without affecting rates of responding for the VS in rats pretreated with saline. Intra-VTA 

infusions of MLA did not reduce responding for the VS at either concentration tested (Figure 11) 

in either systemic treatment group (See Table 4).  

Contrary to the research hypothesis, intra-VTA MLA did not significantly reduce the 

mean number of active nose-key responses made (Figure 11) or the mean number of VS earned 

(Figure 12) in rats receiving systemic Nicotine at either MLA concentration tested. A Systemic 

Drug x Response x IC Drug Mixed ANOVA, with Response (Active, Inactive) as the within-

subjects variable, yielded significant main effects of Systemic Drug and Response, Fs > 62.32, 

ps ≤ 0.0001, but not IC Drug, F < 1. Main effects were qualified by a significant Systemic Drug 

x Response two-way interaction, F(1, 50) = 55.36, p<0.0001. Probing the two-way interaction 

confirmed that rats in the Nicotine group made significantly more active nose-key responses than 

rats pretreated with Saline under all IC Drug conditions, F(1, 50) = 124.70, p < 0.05. There were 

no significant differences in mean inactive nose-key responses for either systemic drug group 

under any IC Drug condition, F < 1 (Figure 11 inset). For dependent variable VS earned, a 

Systemic Drug x IC Drug Between-Subjects ANOVA yielded a significant main effect of 

Systemic Drug, F(1, 50) = 54.070, p < 0.0001 but no main effect of IC Drug or a Systemic Drug 

x IC Drug interaction, Fs < 1. Rats in the Nicotine group earned significantly more VS than rats 

pretreated with Saline under all IC Drug conditions (Figure 12).  
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As seen in Figure 13, intra-VTA administration of MLA did not produce locomotor 

suppression. Although intra-VTA infusion of 0.8mM MLA increased locomotor activity in the 

Systemic Nicotine group (gray bars), this effect was not statistically significant (p > 0.05). A 

Systemic Drug x IC Drug Between-Subjects ANOVA with total distance traveled as the 

dependent measure yielded a significant main effect of Systemic Drug, F(1, 26) = 12.32, p = 

0.002, but no main effect of IC Drug or a Systemic Drug x IC Drug interaction, Fs < 1.21, ps ≥ 

0.31.  

Table 4 

Descriptive Statistics for Intra-VTA MLA Infusion Experiments 

  Baseline 0.8mM MLA 8.0mM MLA 

Systemic 

Drug 

Measure M (n) SEM M (n) SEM M (n) SEM 

Nicotine Active NP 299.46 (13) 25.84 280.18 (11) 28.15 269.50 (10) 41.20 

 Inactive NP 11.84 (13) 3.56 13.09 (11) 3.55 6.90 (10) 3.81 

 VS Earned 66.54 (13) 5.26 65.73 (11) 6.99 64.5 (10) 8.28 

 Total Distance Traveled (m) 131.85 (7) 23.73 176.22 (4) 50.00 118.34 (5) 27.27 

Saline Active NP 98.56 (9) 13.99 106.83 (6)  8.59 90.43 (7) 17.27 

 Inactive NP 3.44 (9) 1.06 4.50 (6) 2.60 2.57 (7) 2.25 

 VS Earned  25.56 (9) 5.38 27.17 (6) 3.52 22.71 (7) 5.31 

 Total Distance Traveled (m) 59.67 (6) 8.56 81.89 (6) 13.11 68.71 (4) 23.65 
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Figure 11. α7 nicotinic acetylcholine receptor antagonism did not attenuate the reinforcement 

enhancing effect of nicotine. Rats receiving Nicotine made significantly more active nose-key 

responses than rats in the Saline group under all IC Drug conditions, p < 0.05—indicated by *. 

Responding on the inactive nose-key did not significantly differ between systemic drug groups 

under any IC Drug condition, p > 0.05 (inset).  
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Figure 12. α7 nicotinic acetylcholine receptor antagonism did not reduce the number of VS 

earned. Rats pretreated with Nicotine earned significantly more VS than rats in the Saline group 

under all IC Drug conditions, p < 0.05—indicated by *).  
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Figure 13. Blocking VTA α7 nAChRs did not produce general locomotor suppression. Mean 

total distance traveled was greater for rats treated with systemic Nicotine compared to systemic 

Saline under all IC Drug conditions, p < 0.05, indicated by *. 

Intra-VTA Nicotine 

No published study to date has directly tested whether the acute pharmacological effects 

of nicotine acting at the VTA are sufficient to produce reinforcement enhancement. Therefore, 

we tested the hypothesis that intra-VTA nicotine administration would increase responding for 

the VS compared to rats receiving intra-VTA placebo administration and systemic saline. 

Supporting the research hypothesis, nicotine administration directly into the VTA of rats 

chronically treated with systemic nicotine increased responding for the VS at higher 

concentrations (70mM & 105mM) compared to nicotine naïve rats (SAL + 0mM) (Figure 14).  

Increased responding for the VS was confirmed by a Nicotine Concentration x Response 

Mixed ANOVA with nicotine concentration serving as the between-subjects variable. Results 
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yielded main effects of Nicotine Concentration and Response, Fs ≥ 3.86, ps ≤ 0.008 and a 

significant Nicotine Concentration x Response interaction, F(5, 32) = 3.36, p = 0.015. A one-

tailed Dunnett’s post hoc analysis using the SAL + 0mM group as the control comparison 

confirmed that rats receiving systemic Nicotine (NIC + 0mM; M = 260.00, SEM = 48.05) or 

70mM intra-VTA NIC (M = 232.60, SEM = 32.85) and 105mM intra-VTA NIC (M = 202.33, 

SEM = 51.64) followed by systemic saline made significantly more active nose-key responses 

than the control group (M = 71.57, SEM = 14.02), ps ≤ 0.038. There were no differences in 

responding on the inactive nose-key, F < 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Intra-VTA nicotine is sufficient to produce reinforcement enhancement. Rats 

receiving 70mM or 105mM intra-VTA Nicotine infusions or systemic Nicotine (filled squares) 

made significantly more active nose-key responses (left Y-axis) and earned more VS (right Y-

axis) compared to controls (SAL + 0mM; filled circles), ps ≤ 0.038—indicated by *. There were 

no differences in responding on the inactive nose-key (empty symbols), p > 0.05  

0

100

200

300

400

0

20

40

60

80

0 17 35 70 105

Saline

Nicotine

* *

*

Intra-VTA Nicotine Concentration (mM)

M
e

a
n

 (
+

1
 S

E
M

) 
N

o
s

e
 P

o
k

e
 R

e
s

p
o

n
s

e
s

M
e

a
n

 (+
1

 S
E

M
) V

S
 E

a
rn

e
d



65 

 

 

 Results of a one-way between-subjects ANOVA with visual stimuli as the dependent 

measure further supported the research hypothesis that the acute pharmacological effects of 

nicotine are sufficient to produce reinforcement enhancement, F(5, 38) = 2.83, p = 0.032. Results 

of a one-tailed Dunnett’s multiple comparison (SAL + 0mM as comparison group) mirrored 

those for active nose-key responses with rats receiving either systemic Nicotine or high 

concentrations of intra-VTA Nicotine (70mM & 105mM) earning significantly more VS than 

nicotine naïve rats, ps ≤ 0.038. Descriptive statistics for intra-VTA Nicotine infusion 

experiments are presented in Table 5.  

Table 5 

Descriptive Statistics for Intra-VTA Nicotine Infusion Experiments 

  Active NP Inactive NP VS Earned 

[Nicotine] Group n M SEM M SEM M SEM 

NIC + 0mM 7 260.00 48.05 12.00 5.22 58.28 9.05 

17mM  5 142.60 47.30 4.40 1.81 36.80 14.55 

35mM 8 130.13 25.65 4.75 3.07 35.88 8.35 

70mM 5 232.60 32.85 15.60 11.07 59.80 7.51 

105mM  6 202.33 51.64 14.83 10.94 51.67 13.69 

SAL + 0mM 7 71.57 14.02 3.57 2.61 18.29 3.80 
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CHAPTER 4 

DISCUSSION 

The effects of nicotine in the brain increase the frequency or probability of responses that 

lead to nicotine (primary reinforcement; Caggiula et al., 2001, 2002; Corrigal et al., 1994; 

Goldberg et al., 1981; Le Foll & Goldberg, 2009; Le Foll et al., 2007). Nicotine also increases 

behaviors that lead to non-nicotine stimuli— the reinforcement enhancing effect (Caggiulla et 

al., 2009; Chaudhri et al., 2006a; Palmatier et al., 2006, 2012). Synergistic interactions between 

the acute pharmacological effects of nicotine and salient non-nicotine stimuli likely contribute to 

continued tobacco use despite associated negative health outcomes. The ventral tegmental area, a 

brain region important for goal-directed behavior, has been implicated in the primary reinforcing 

effects of nicotine (Corrigal et al., 1994; Tolu et al., 2013). The studies reported here are the first 

to examine the role of the VTA in the reinforcement enhancing effect of nicotine. We found that 

intra-VTA infusions of DHβE into the VTA significantly attenuated the reinforcement enhancing 

effect of nicotine without affecting basal responding for the visual stimulus (VS). The 

reinforcement enhancing effects of nicotine were also attenuated by a low (0.1 mM) but not a 

high (1.0 mM) intra-VTA infusion of the nonselective nAChR antagonist mecamylamine 

(MEC). Intra-VTA administration the α7 receptor antagonist MLA did not significantly affect 

responding. These results suggest that the *β2 subunit containing nAChRs in the VTA play at 

least a partial role in the reinforcement enhancing effects of systemic nicotine administration. 

However, the *β2-subunit antagonist only partially reduced the reinforcement enhancing effect 

of nicotine suggesting that other nAChR subtypes in the VTA or nAChRs in other brain nuclei 

should be investigated in future studies. 
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 The present studies are also the first to illustrate that the VTA is necessary for the 

primary reinforcing effects of a visual stimulus and that the acute pharmacological effects of 

nicotine at the VTA are sufficient to produce a reinforcement enhancing effect. Transient 

inhibition of the VTA using a GABA agonist cocktail reduced the reinforcement enhancing 

effect in rats pretreated with nicotine as well as responding for the visual stimulus in rats 

receiving either systemic nicotine or saline without producing general locomotor suppression. 

Infusing nicotine directly into the VTA increased responding for the VS suggesting that the 

effects of nicotine at this nucleus are sufficient to produce the reinforcement enhancing effect.  

Role of the VTA in the Primary Reinforcing Effects of a Visual Stimulus 

The VTA is part of the limbic subcircuit important for attributing motivational value to 

salient stimuli and translating relevant motivational information into adaptive behavior via 

connections to thalamocortical and motor subcircuits, the three components of the motive circuit 

system (Kalivas et al., 1999). The dopaminergic projections from the ventral tegmental area to 

the nucleus accumbens are critical for the primary reinforcing effects of drugs of abuse including 

nicotine (Balfour et al., 2000; Corrigal et al., 1994; Grace, 2000; Liechti et al., 2007; Mansvelder 

& McGehee, 2002). Studies using bilateral or contralateral VTA dopaminergic lesions have 

shown that this nucleus is also important for the reinforcing effects of the non-nicotine stimuli 

such as sucrose (Shibata, Kameishi, Kondoh, & Torii, 2009) and intracranial self-stimulation 

(Fibiger, LePiane, Jakubovic, & Phillips, 1987).  

 Using a GABA agonist cocktail to transiently inhibit the VTA, we found that the visual 

stimulus served as a reinforcer. For rats pretreated with saline responding on the active nose-key 

occurred at higher rates than responding at the inactive nose-key. Nicotine administration 

enhanced reinforcement by the VS; rats receiving systemic nicotine made more active nose-key 
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responses and earned more visual stimuli than rats administered systemic saline under baseline 

conditions. Infusions of 0.1mM muscimol/1.0mM baclofen bilaterally into the VTA reduced 

responding on the active nose-key and the mean number of VS earned in both systemic drug 

treatment groups. Increasing inhibition in the VTA also eliminated responding on the inactive 

nose-key in both systemic drug groups suggesting that GABA agonist administration may have 

resulted in a general suppression of all behavior. However, rates of responding on the inactive 

nose-key were low under baseline conditions and there were no significant differences in mean 

number of inactive nose-key responses made by either systemic group during baseline or 

transient inhibition trials. More convincingly, Intra-VTA GABA agonist infusion did not 

significantly reduce the total distance traveled by the systemic Saline group during the GABA 

agonist trial compared to baseline levels of locomotor activity. Intra-VTA GABA agonist 

administration significantly reduced total distance traveled in Nicotine group reflecting a 

reduction in the locomotor activating effects of nicotine (Vezina et al., 2007). Together, these 

results support that the VTA is necessary for the primary reinforcing effects of the visual 

stimulus.  

McFarland and Kalivas (2001) previously demonstrated that transient inhibition of the 

VTA blocks cocaine-induced reinstatement without producing locomotor suppression. In their 

study, locomotor activity was measured in an open-field arena following a 1-hour habituation 

period. The current study measured the effects of transient inhibition of the VTA on general 

locomotor activity within the reinforcement context of the operant chamber, eliminating the 

possibility that environmental novelty contributed to observed locomotor activity. The GABA 

agonist cocktail used by McFarland and Kalivas (2001) and the current study blocked GABA A, 

B, and C receptor subtypes to produce gross inhibition of the VTA that reduced specific 
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motivated behaviors without affecting general motor activity. Laviolette and van der Kooy 

(2001) have shown that VTA somatodendritic GABA receptor subtypes play differential roles in 

relaying motivational information in a conditioned place preference paradigm. More specifically, 

GABAB receptor subtypes have been shown to relay information about the motivational valence 

of a drug-conditioned context independent of DA receptor function while GABAA receptor 

subtypes work in conjunction with DA receptors to indicate rewarding and aversive information 

(Laviolette & van der Kooy, 2001).  

A fruitful avenue of potential study for better understanding the role of the VTA in the 

primary reinforcing effects of non-nicotine stimuli and reinforcement enhancing effect of 

nicotine is to examine the contributions of GABA receptor subtypes in these reinforcement 

behaviors. For example, the posterior VTA, specifically targeted in the present study, expresses a 

higher density of GABAA receptors (Cicarelli et al., 2012) and receives projections directly from 

nucleus accumbens shell GABA releasing medium spiny neurons (Xia et al., 2011). 

Antagonizing pVTA GABAA receptors only may prevent disinhibition of VTA DA neurons, 

decreasing the physiological activity of VTA DA neurons that subsequently reduces the salience 

of stimuli. Additional studies examining the relay of motivational information within the VTA 

will help disentangle the role of this nucleus in the multiple reinforcing effects of nicotine. 

Role of VTA nAChRs in the Reinforcement Enhancing Effect of Nicotine 

Nonselective Antagonism  

Systemic nicotine administration increased responding for a visual stimulus compared to 

systemic saline administration in all experiments. This result is in agreement with previous 

research showing that nicotine increases the motivation for non-nicotine reinforcers in an operant 

conditioning paradigm including visual and audio-visual stimuli (Chaudhri et al., 2006a, 2006b; 
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Liu et al., 2007; Palmatier et al., 2006, 2007a), sucrose (Palmatier et al., 2012), and nicotine-

conditioned stimuli (Chaudhri et al., 2006a; Jones et al., 2010; Palmatier et al., 2007b; Raiff & 

Dallery, 2008). Previous research has shown that systemic MEC administration reduces 

responding for a visual stimulus (Liu et al., 2007) and nicotine-conditioned reinforcers (Guy & 

Flecther, 2013; Jones et al., 2010). Additionally, intra-VTA nicotine administration has been 

shown to induce Fos expression in the nucleus accumbens, a marker of drug-induced 

neuroplasticity. Fos expression is blocked by intra-VTA administration of 0.1mM MEC 

(Schilstrom et al., 2000).   

Based on these findings, we hypothesized that intra-VTA administration of nAChR 

antagonists would attenuate the reinforcement enhancing effect of nicotine in a concentration-

dependent manner. Follow-up analyses indicated that bilateral intra-VTA infusion of 0.1mM 

MEC reduced responding on the active nose-key by rats receiving systemic Nicotine. A higher 

concentration of mecamylamine (1.0 mM) did not significantly reduce responding for the VS in 

either systemic group. Mecamylamine can transiently NMDA-Rs at higher concentrations 

(Papke, Sanberg, & Shytle, 2001). If 1.0mM MEC were delivered at a high enough concentration 

to saturate VTA nAChRs, nonspecific antagonism of NMDA-Rs would be expected to reduce 

responding by both Nicotine and Saline groups. However, 1.0mM MEC infusions did not reduce 

responding compared to baseline condition, suggesting that antagonism of NMDA-Rs did not 

reach a level that could interfere with operant behavior. One potential explanation for a reduction 

at the low, but not high, antagonist concentration is that MEC has different affinities for nAChR 

subtypes that are differentially expressed by dopaminergic and GABAergic VTA neurons.  

Yang and colleagues (2009) have identified three functionally distinct nAChR 

phenotypes expressed on VTA dopaminergic neurons. Using patch-clamp recordings and mRNA 
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RT-PCR in freshly harvested VTA neurons, the authors showed that individual VTA DA 

neurons predominately express one of three subtypes of nAChRs that are more sensitive to either 

α4β2 agonists and antagonists, α7 agonists and antagonists, or cysteine (*β2-subunit agonist) and 

MEC (Yang et al., 2009). Direct application of 0.001mM nicotine to the posterior (but not 

anterior) VTA activated nAChRs in wild-type mice without producing currents in α4* nAChR 

knockout-mice (Zhao-Shea et al., 2011). Analysis of nAChR subunit gene expression indicated 

that α4, α6, and β3 nAChR subtypes were predominantly expressed in pVTA DA neurons (Zhao-

Shea et al., 2011) while α4β2* nAChRs are expressed on both DA and GABA VTA neurons 

(Grady et al., 2010). Mecamylamine may have a higher affinity for α4 and/or α6 + β2 subunit 

containing nAChRs expressed in the pVTA (Pidoplichko, DeBiasi, Williams, & Dani, 1997), 

reducing motivation when these receptors are occupied at low concentrations of MEC. Higher 

concentrations of MEC may occupy additional nAChR binding sites that have opposing 

functions, producing no net change in behavior. Intra-VTA administration of more selective α* 

and *β subunit agonists or antagonists would help elucidate the contributions of VTA DA and 

GABA neuron nAChR subtypes in the reinforcement enhancing effect of nicotine. Results from 

intra-VTA administration of two nAChR subtype specific antagonists, DHβE and MLA, to 

antagonize *β2-subunit containing subtypes and α7 subtypes, respectively, indicate that VTA 

*β2-subunit containing nAChRs mediate the reinforcement enhancing effect of nicotine.  

*β2-subunit Containing Subtype  

Corrigal and colleagues (1994) concluded that VTA *β2-subunit containing nAChRs 

were necessary for nicotine self-administration. Intravenous infusions of nicotine were reliably 

paired with a light and tone compound cue indicating nicotine availability and acute 

administration of DHβE reduced responding for the combined nicotine and cue reinforcer. 
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Notably, Palmatier and colleagues (2006) have demonstrated the nicotine self-administration is 

behaviorally dissociable from the reinforcement enhancing effect of the drug and that the effects 

of MEC, a nonselective nAChR antagonist, differed in its ability to reduce responding for 

nicotine relative to responding for the VS (Palmatier, Liu, Caggiula, Donny, & Sved, 2007c). 

Therefore, manipulations that acutely reduce operant responding for nicotine may more likely 

reflect a reduction in the incentive-promoting or reinforcement enhancing effect of nicotine (e. g. 

Corrigal et al., 1994). The present experiments are the first to show that VTA *β2-subunit 

containing nAChRs mediate the reinforcement enhancing effect of nicotine in a paradigm that 

specifically isolates this effect of nicotine from its primary reinforcing effects.  

Attenuation of the reinforcement enhancing effect of nicotine following intra-VTA DHβE 

administration is consistent with previous research showing that systemic administration of 

DHβE prior to systemic nicotine administration reduces responding for a visual stimulus (Liu et 

al., 2007) and a nicotine-conditioned reinforcer (Guy & Fletcher, 2013). The α4β2 receptor 

subtype is the most commonly expressed subtype of nAChR containing the *β2-subunit in the 

VTA (Mansvelder et al., 2002). This receptor is necessary for registering the aversive and 

rewarding effects of nicotine in context conditioning (Laviolette & van der Kooy, 2003) 

suggesting that this receptor subtype expressed in the VTA plays an important role in attributing 

motivational salience to cues predicting reward availability. The α4β2* nAChR subtype has the 

highest affinity for nicotine compared to α6β2*, α3β4*, and α7 receptor subtypes (Grady et al., 

2010). The α4β2* receptor subtype is expressed on pVTA DA neurons (Yang et al., 2009) and 

regulates DA release in the mesoaccumbens pathway (Grady et al., 2010) important for initiating 

goal-directed behaviors (Carelli, 2002, 2004).  
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The β2*-containing nAChRs on dopaminergic VTA neurons express combinations of α4, 

α5, and α6 subunits while VTA GABA neurons predominately express (α4)2(β2)3 receptors 

(Klink, de Kerchove d’Exaerde, Zoli, & Changeux, 2001; see also Nashmi & Lester, 2006) that 

regulate GABA release in this nucleus (Grady et al., 2010). A combination of activation and 

desensitization of α4β2* receptors on specific populations of GABAergic and dopaminergic 

neurons may be necessary for reward anticipation (Klink et al., 2001; Tolu et al., 2013; van 

Zessen, Phillips, Gudygin, & Stuber, 2012) and consumption behaviors (van Zessen et al., 2012). 

Using lentiviral re-expression of nAChR *β2-subunits on VTA neurons, Tolu and colleagues 

(2012) have shown that activation of at least a subset of GABAergic VTA neurons is necessary 

for increased VTA DA neuron burst firing. In vivo optogenetic stimulation of VTA GABA 

neurons during the presentation of a cue predicting a sucrose reward did not disrupt approach to 

the sipper spout or licking behavior to consume the reward (van Zessen et al., 2012). However, 

optogenetic activation of VTA GABA neurons following reward delivery decreased total reward 

consumption without affecting anticipatory approach behavior (van Zessen et al., 2012).  

VTA GABA neuron activation during cue presentation increases GABA and DA release 

in the nucleus accumbens while suppressing physiological activity of VTA DA neurons in close 

proximity to stimulated GABA neurons (van Zessen et al., 2012). The composition and 

configuration of nAChRs differentially expressed on DA and GABA VTA neurons affect rates 

of desensitization and recovery from desensitization (Campling, Kuryatov, & Lindstrom, 2013; 

Girod et al., 1999). Together these results suggest that one or more populations of GABAergic 

neurons are tonically inhibiting DA neuron function while other subsets of GABAergic 

interneurons can selectively disinhibit DA neurons by suppressing tonically active VTA 

GABAergic neurons via different rates of nAChR desensitization and recovery. The net result of 
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these different desensitization profiles could be a net increase in DA neuron activity and 

anticipatory approach behavior. Additionally, desensitization of α4β2* nAChRs on GABAergic 

interneurons may reduce tonic inhibition on VTA DA neurons that would also produce a net 

increase in DA neuron burst activity.  

Consistent with these hypotheses, concentrations of nicotine achieved by smokers 

(0.13µM) are capable of producing in vivo smoldering activation, desensitization of some 

nAChRs and activation of other nAChRs, only in α4β2* receptor subtypes (Campling et al., 

2013). Additionally, VTA GABAergic neurons that synapse onto VTA DA neurons express α6* 

containing nAChRs on their terminal buttons (Yang et al., 2011) that may be another potential 

target for altering DA neuron population and burst firing patterns. Computational models 

incorporating data from studies of nAChR function expressed on DA and GABA neurons in vitro 

and in vivo support a combination of direct activation and disinhibition in nicotine reinforcement 

(Graupner, Maex, & Gutkin, 2013). Disentangling the functional roles of α4β2* receptor 

activation and desensitization on DA and GABA VTA neurons in anticipatory and consumatory 

behaviors represents an area of research with promise for pharmacologically targeting two facets 

of nicotine reinforcement—reinforcement enhancement and nicotine self-administration.    

The present findings that blocking *β2-subunit containing nAChRs subtypes attenuates 

the reinforcement enhancing effect of nicotine and previous results from our lab showing that 

nicotine increases Pavlovian conditioned-approach as measured by sign-tracking behavior 

(Palmatier et al., 2013) suggests that the *β2-subunit containing nAChRs may be especially 

important for registering the salience of cues that elicit approach behavior and incentive 

motivation (Tomie, Grimes, & Pokorecky, 2008). A direct measure of the role of VTA nAChRs 

containing *β2-subunits in incentive motivation would be to repeat the present infusion protocols 
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using a sign-tracking/goal-tracking paradigm. Attenuation, but not elimination, of enhanced 

responding on the active nose-key in the Nicotine group suggests that nicotine may be acting at 

nAChRs in other brain regions that contribute to reward seeking behavior. Therefore, 

simultaneous administration of DHβE and nicotine directly into the VTA in a sign-tracking 

paradigm will provide additional specificity when defining the role of *β2-subunit containing 

nAChRs in this nucleus on incentive motivation. Given the importance of nicotine-associated 

incentives in satisfaction gained from smoking (Chiamulera, 2005; Rose et al., 2003) and craving 

(Ordonana et al., 2012; Shiffman et al., 2012; Warren & McConough, 1999), understanding the 

intricacies of nAChR function in incentive motivation is especially important for understanding 

underlying mechanisms of nicotine dependence.   

α7 Subtype  

Consistent with previous research using systemic administration of the α7 nAChR 

antagonist MLA (Guy & Fletcher, 2013; Liu et al., 2007), intra-VTA α7 nAChR antagonist 

administration did not significantly affect responding for the visual stimulus in either the nicotine 

or saline systemic drug treatment groups. A significant contribution of somatodendritic α7 

nAChRs in the posterior VTA to the reinforcement enhancing effect of nicotine is not supported 

by the present results. Studies using mRNA detection have shown that somatodendritic 

expression of the α7 nAChR subtype occurs in less than half of VTA neurons (Klink et al., 2001; 

Nashmi & Lester, 2006); however, this subtype is highly expressed pre-, peri-, and 

extrasynaptically on terminals that modulate the release of other neurotransmitters such as 

GABA, glutamate, and acetylcholine in multiple brain areas (Girod et al., 1999) including 

glutamatergic projections to the VTA (Jones & Wonnacott, 2004) and in the nucleus accumbens 



76 

 

(Fu, Matta, Gao, & Sharp, 2000). Therefore, α7 nAChRs expressed on ascending or descending 

projections to the VTA may contribute to the acute reinforcement enhancing effect of nicotine.  

Using microdialysis to deliver antagonists and extract dialysate in vivo, Fu and colleagues 

(2000) showed that intra-accumbens, but not intra-VTA, administration of MLA reduced striatal 

DA release following noncontingent intravenous nicotine administration. In the same study, Fu 

and colleagues (2000) showed that infusions of MEC into the VTA, but not NAc core, reduced 

striatal DA release. Simultaneous infusion of MEC into the VTA and MLA into the NAc core 

attenuated DA release more than administration of either nAChR antagonist alone. The authors 

concluded that stimulus-induced striatal DA release may be further increased by the effects of 

nicotine at α7 nAChR expressed in the nucleus accumbens (Fu et al., 2000). Based on these 

findings, administering MLA into the nucleus accumbens prior to systemic nicotine 

administration would be expected to attenuate of the reinforcement enhancing effect of nicotine 

as measured in the current paradigm. Contralateral antagonism of VTA *β2-subunit containing 

nAChRs and NAc α7 nAChRs simultaneously would also be expected to decrease responding for 

a visual stimulus compared to nucleus specific administration of either nAChR subtype 

antagonist alone. 

Intra-VTA Nicotine Administration 

Drugs with high abuse liability such as cocaine (Rodd et al., 2005), morphine, and 

ethanol (McBride, Murphy, & Ikemoto, 1999) are readily self-administered directly into the 

pVTA by rats. Previous studies investigating the primary reinforcing effects of nicotine using 

intra-VTA drug self-administration concluded that nicotine has weak primary reinforcing effects 

(Farquhar et al., 2011).  More intra-VTA nicotine infusions were earned in rats responding on a 

lever that had previously been associated with non-nicotine reinforcers (food delivery and an 
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associated light conditioned stimulus) compared to rats with a drug-lever association only (no 

previous food reinforcement; Farquhar et al., 2011). The current experiments are the first to 

directly show that the acute pharmacological actions of nicotine are sufficient to enhance operant 

responding for a non-nicotine reinforcer. Intra-VTA administration of nicotine directly into the 

pVTA was sufficient to produce reinforcement enhancement. Responding for visual stimuli 

following 70mM and 105mM intra-VTA nicotine infusions directly into the VTA produced rates 

of responding on the active nose-key similar to systemic nicotine administration and significantly 

higher than responding for the VS in rats receiving intra-VTA and systemic placebo.  

No published studies to date have provided information on brain nicotine concentrations 

during smoking in humans (Campling et al., 2013). Therefore, direct comparisons of the VTA 

nicotine concentrations producing reinforcement enhancement in the present studies and those 

observed in smokers is not possible. Peak venous blood nicotine concentrations have been 

estimated to be between 0.058-0.34nM (Benowitz, Kuyt, & Jacob, 1982; Campling et al., 2013) 

with brain concentration levels hypothesized to be significantly higher because of the inhalation 

route of administration via smoking. Higher nicotine brain concentrations following inhalation of 

cigarette smoke is supported by studies showing that nicotine levels in arterial plasma are more 

than double venous concentrations (Henningfield, Stapleton, Benowitz, Grayson, & London, 

1993). In vitro studies indicate that the clinically relevant nicotine concentrations that can be 

achieved via smoking that are necessary to produce α4β2* nAChR desensitization at levels 

observed in human smokers (Brody et al., 2006) range between 0.1 µM and 0.18 µM (Campling 

et al., 2013), much lower than concentrations used in the present study. Studies using systemic 

nicotine administration suggest that 0.125mg/kg nicotine (0.77mM) approximates serum nicotine 

concentrations found in humans (Harris, Mattson, LeSage, Keyler, & Pentel, 2010). Systemic 
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nicotine concentrations (2.47mM) that produced similar rates of responding on the active nose-

key for the VS as 70mM and 105mM intra-VTA concentrations used in the present study were 

also higher than in vitro (Campling et al., 2013) and in vivo (Harris et al., 2010) estimates for 

clinically relevant nicotine concentrations. Studies in clinical samples illustrating the ability of 

nicotine via smoking to increase responding for a nondrug music reinforcer (Perkins & Karelitz, 

2013a; 2013b) and cue-elicited smoking behavior despite self-reported satiety (Hogarth, 

Dickinson, & Duka, 2010) supports the clinical relevance of the present studies to better 

understand the neural substrates of reinforcement enhancement involved in nicotine dependence. 

Investigating clinical behavioral disorders and human psychopathology in animal models is 

necessary to understand the behavioral, cellular, and molecular substrates underlying these 

conditions (Kaffman & Krystal, 2012). Metabolic and neuroanatomical differences between rats 

and humans prevent one-to-one comparisons between species (Kaffman & Krystal, 2012). 

However, continued investigations of the reinforcement enhancing effect in both preclinical and 

clinical samples is needed to understand the mechanism through that nicotine increases 

motivation to obtain non-nicotine reinforcers and the contribution of this reinforcement 

enhancing effect to nicotine dependence.  

The current data confirm the involvement of the VTA in the reinforcement enhancing 

effect of nicotine; however, nicotine self-administered via smoking is distributed throughout the 

central nervous system and affects nAChRs on multiple nuclei involved in the reinforcing effects 

of the drug. Other nuclei within the limbic subcircuit of the motive circuit have reciprocal 

connections to the VTA (Groenewegen et al., 1999; Kalivas et al., 1999), specifically the NAc 

and VP, that are important for adaptive, goal directed behaviors (Carelli, 2002, 2004; Kalivas et 

al., 1999). For example, the VP has been shown to play an important role in cocaine (Root et al., 
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2013) and alcohol (Kemppainen, Raivio, & Kiianmaa, 2012) self-administration as well as 

approach to food-associated incentive stimuli (Smith, Tindell, Aldridge, & Berridge, 2009) and 

predictive learning mechanisms (Leung & Balleine, 2013) supporting an especially important 

role of this nucleus in the reinforcement enhancing effect of nicotine that warrants additional 

research. A future study replicating the infusion procedures used in the current experiments will 

help elucidate the role of the VP and VP nAChRs in the reinforcement enhancing effect of 

nicotine.  

Limitations 

The current experiments are the first to confirm that acute pharmacological effects of 

nicotine acting on nAChRs within the VTA are sufficient for potentiating responding for a non-

nicotine reinforcer and that *β2-subunit containing nAChRs expressed on this nucleus mediate 

this reinforcement enhancing effect of nicotine. Systemically administering nicotine adds 

external validity to the results as nicotine administration via smoking would also result in actions 

of the drug throughout the central nervous system. However, systemic drug treatment limits the 

specificity of conclusions that can be drawn about the contribution of nAChR subtypes expressed 

on the VTA. Simultaneous administration of nicotine and nAChR antagonists directly into the 

VTA is necessary to identify the unique contribution of VTA nAChRs by limiting the actions of 

nicotine to this nucleus.  

Methyllycaconitine was used as a selective α7 nAChR subtype antagonist in the current 

studies; however, this compound has been shown to interact with α3/α6β2β3 nicotinic receptor 

subtypes (Mogg et al., 2002). Therefore, conclusions about the specific contribution of the α7 

homomeric receptor subtype must also include consideration for these *β-subunit containing 

subtypes. In a similar vein, the *β-subunit containing antagonist nAChR DHβE shows a high 
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specificity for the α4β2* receptor subtype; however, the contributions of different α4β2* subunit 

stoichiometries cannot be assessed with this compound (Grady et al., 2010). Additionally, video 

data was only available for a subset of subjects; therefore, firm conclusions about the effects of 

blocking *β2-subunit containing nAChR subtypes on general locomotor activity or nicotine-

induced locomotor activation cannot be drawn from the present experiments.  

Previous research has shown that the reinforcement enhancing effect of nicotine is an 

effect on motivation (Palmatier et al., 2012). The fixed ratio schedule of reinforcement used the 

present studies (FR3) is not as strong a measure of motivation as a progressive ratio schedule 

(PR) in that subjects must make successively more responses to earn the next reinforcer, a 

technique commonly used to examine drug reinforcement (Richardson & Roberts, 1996). 

Although the PR schedule was not employed in the current studies to measure motivation to 

obtain the VS, research from our lab indicates that the mean breaking point, the highest number 

of responses a subject is willing to make to earn a single reinforcer used as a measure of 

motivation (Richardson & Roberts, 1996), is three for the VS (Sheppard & Palmatier, 

unpublished results), supporting the appropriateness of the FR3 schedule used in these 

experiments.  

Translational Implications 

Animal and clinical studies suggest that the reinforcement enhancing effect of nicotine 

robustly increases behavior in a manner that is comparable to human tobacco use (Carter & 

Tiffany, 1999; Chiamulera, 2005; Perkins & Karelitz, 2013a, 2013b). The current studies provide 

a groundwork for understanding the neural circuitry underlying the reinforcement enhancing 

effect of nicotine on behavior. For example, varenicline, a partial agonist with actions at α4β2* 

nAChRs and currently one of the most effective pharmacotherapies for smoking cessation, 
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potentiates responding for non-nicotine reinforcers at low doses while attenuating the 

reinforcement enhancing effect of nicotine at higher concentrations in preclinical models of 

nicotine dependence (Levin et al., 2012). The current studies suggest that VTA nAChRs are part 

of the underlying mechanism for the effects of varenicline, an empirical question that can be 

addressed by intra-VTA administration of varenicline in the behavior paradigm used in the 

current study. Identifying the neural substrates underlying the reinforcement enhancing effect of 

nicotine will increase our understanding of the development and maintenance of tobacco 

dependence and provide additional insight for intervention efforts.  

Conclusions 

The current series of experiments are the first to show that *β2-subuniting containing 

nAChR subtypes expressed somatodendritically on the VTA partially mediate the reinforcement 

enhancing effect of nicotine. Results of the present studies are also the first to show that the VTA 

is necessary for the primary reinforcing effects of a visual stimulus and that the acute 

pharmacological effects of nicotine at the VTA are sufficient to produce reinforcement 

enhancement. These results support previous findings that the *β2-subunit containing nAChRs 

are important for nicotine-enhanced responding for non-nicotine reinforcers (Guy & Fletcher, 

2013; Liu et al., 2007) and provides additional insight into the neuroanatomical and 

pharmacological substrates underlying this effect of nicotine on reinforcement. These studies 

also highlight the need for additional research on different nAChR subtypes and subtype 

configurations as well as the effects of nicotine at other nuclei involved in motivated behavior in 

that the VTA is but one point within interconnected circuits.  
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APPENDICES 

Appendix A: Cannula Placements—Muscimol and baclofen 
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Appendix B: Cannula Placements—Mecamylamine 
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Appendix C: Cannula Placements—DHβE 
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Appendix D: Cannula Placements—MLA 
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Appendix E: Cannula Placements—NIC + 0mM Intra-VTA NIC 
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Appendix F: Cannula Placements—17mM Intra-VTA NIC  
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Appendix G: Cannula Placements—35mM Intra-VTA NIC  
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Appendix H: Cannula Placements—70mM Intra-VTA NIC 
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Appendix I: Cannula Placements—105mM Intra-VTA NIC  

 



113 

 

Appendix I: Cannula Placements—SAL + 0mM Intra-VTA NIC  
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