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ABSTRACT 

Synthesis of a 4-(Trifluoromethyl)-2-Diazonium Perfluoroalkyl Benzenesuflonylimide (PFSI) 
Zwitterionic Monomer for Proton Exchange Membrane Fuel Cell 

 

by 

Chimaroke Nworie 

 

In order to achieve a more stable and highly proton conducting membrane that is also cost 

effective, the perfluoroalkyl benzenesulfonylimides (PFSI) polymers are proposed as 

electrolyte for Proton Exchange Membrane Fuel Cells. 4-(trifluoromethyl)-2-diazonium 

perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide (I) is synthesized from Nafion 

monomer via a 5-step schematic reaction at optimal reaction conditions. This diazonium PFSI 

zwitterionic monomer can be further subjected to polymerization. The loss of the diazonium 

N2
+ functional group in the monomer is believed to form the covalent bond between the PFSI 

polymer electrolyte and carbon electrodes support. All the intermediates and final products 

were characterized using 1H NMR, 19F NMR and IR spectrometry. 
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CHAPTER 1 

 INTRODUCTION  

The ability to convert chemical energy to electrical energy with reasonable efficiency is 

the main property associated with fuel cells. The advantages of these fuel cells show a 

decisive step towards replacement for the contemporary fossil fuel usage in the world [1]. 

Unlike the battery, the fuel cell does not need to be recharged as long as the right fuel is 

constantly supplied. It is fundamental to develop these fuel cells as they serve as an 

alternative source of power in stationary and portable devices. Generally, a fuel cell consists 

of an electrolyte that is squeezed between two electrodes (the anode and cathode), thus the 

generation of efficient electricity [2]. 

Table 1[3-5] compares the components and characteristics of different fuel cells. The 

electrolyte used is dependent on the type of electrochemical reactions involved, the operating 

temperatures, and also the application of the power produced.    

Table 1: Types of Fuel Cells 

Fuel Cells Electrolytes Fuel Used Oxidant Used 
Operating 

Temperatures 
Polymer Electrolyte 
Membrane Fuel Cell 

(PEMFC) 

H+ conducting 
membrane 

H2 Air, O2 ~80 oC 

Alkaline Fuel Cell 
(AFC) 

KOH H2 O2 ~100 oC 

Phosphoric Acid Fuel 
Cells (PAFC) 

Concentrated 
H3PO4 

Natural gas, H2 Air, O2 ~200 oC 

Molten Carbonate Fuel 
Cells (MCFC) 

Molten K2CO3 Natural gas, H2 Air, O2 ~650 oC 

Solid Oxide Fuel Cell 
(SOFC) 

Z2O2 Natural gas, H2 Air, O2 800-1000 oC 

Direct Methanol Fuel 
Cell (DMFC) 

H+ conducting 
membrane 

CH3OH Air, O2 80-130 oC 
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Among these different fuel cells, polymer exchange membrane Fuel Cells (also called 

proton exchange membrane fuel cell, PEMFC) that employ a solid polymer electrolyte to 

separate the fuel from the oxidant have the potential to replace the internal combustion engine 

in vehicles and other power applications due to their energy-efficient, clean, and fuel 

flexibility characteristics [2]. The direct methanol fuel cell (DMFC) that has recently fast 

developed is basically similar to the PEMFC as it employs the polymer membrane as 

electrolyte. But as opposed to hydrogen gas fuel, pure liquid methanol is used with the 

formation of CO2 as by product, and it greatly suffers from the very high rate of methanol 

crossover [6]. 

Due to good chemical and mechanical stability at lower temperature, Nafion, a 

perfluorosulfonic acid (PFSA) ionomer, is a known and widely used electrolyte membrane in 

the PEMFC [7]. The life span of this polymer will decrease over time because of the 

comparable weak physical integration between the fluoropolymer electrolyte and the carbon 

support. 

This research targets synthesizing one analogue diazonium PFSI monomer (Figure 1) for 

PEMFC. Firstly, the diazonium PFSI monomer, which can attach the carbon electrode by 

covalent carbon-carbon bond, provides a promising approach to achieving a better intimate 

integration between the electrolyte and the electrodes for PEM fuel cells. Secondly, the PFSI 

polymers are proposed to replace Nafion for PEMFC. This is due to their greater thermal 

stability in the acid form, inertness to electrochemical conditions, and lower susceptibility to 

oxidative degradation and dehydration compared to other PFSA polymers [8]. 

 

Figure 1: Structure of Diazonium PFSI 
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PEM Fuel Cells (PEMFCs) 

The reaction in PEM Fuel cells can be seen as a reversal of the electrolysis of H2O to 

produce electricity when a catalyst is used.  General electric’s Thomas Grubb and Leonard 

Niedrach in the early 1950s invented the PEM technology, but its application as a power 

source was made evident in the U.S. space program in the 1960s [9]. Innovative processing 

schemes have improved the development of the PEM fuel cells over the years [10]. 

PEM fuel cells are regarded as promising sources of energy in their applications in mobile 

and stationary power usage due to their moderately low operation temperature with a great 

current density, tightly packed as a result of its small size, cost effectiveness, longer life span, 

and smooth start up [11]. 

In a reversible PEM Fuel Cell, the anode and cathode electrodes are been fed by hydrogen 

gas and oxygen gas respectively. The reaction products are formed at the cathode for PEMFC 

as shown in Figure 2 [12]. With a negligible production of CO2 and almost no NOx, HC and 

CO, PEMFC has proven to be a cleaner energy than the internal combustion engines. The 

PEMFC can be single, stacked, or designed as a system depending on the amount of voltage 

needed for its application [13]. 

 

Figure 2: PEM Fuel cell. Used with permission [12]. 
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The electrochemical reaction involves the oxidation of the hydrogen molecules at the 

anode in the catalyst layer (the catalyst’s surface adsorbs hydrogen atoms from the hydrogen 

gas) to form protons and electrons. The electrons travel out of the cell to the outer circuit to 

produce electricity before re-entering the cathode. The protons are transferred to cathode 

through the proton conducting membrane to the catalyst layer (O2 is adsorbed unto the 

catalyst’s surface) where it combines with the reduced oxygen to produce water. The 

membrane is electrically nonconductive and thus does not allow the passage of electrons. The 

reaction occurring in the PEMFC is shown in scheme 1. 

Anode:                       2H2 → 4H+ + 4e-                                                                              … 1 

Cathode:                    O2 + 4H+ + 4e- → 2H2O                                           … 2 

Overall equation:      2H2 + O2 → 2H2O                                                     … 3 

Scheme 1: The reaction occurring in a PEM Fuel Cell 

The PEMFC operates at atmospheric pressure or even higher. Although higher 

temperatures have proven to increase the PEMFC performance, it does not specifically need 

high temperatures to be operational. This is because it undergoes an exothermic reaction 

whereby heat is generated as a by-product thus the excess heat needs to be removed by air or 

water cooling mechanism [8]. The PEMFC will be affected by contaminants in the fuel and in 

the air. Very tiny amounts of SO2, NOx, H2S at low temperature can be absorbed by the 

catalyst. Also, the performance of the cell can be reduced by poisoning the electrodes and 

membrane with contaminants like CO, CO2 [14-15]. 

Components of PEM Fuel Cells 

The PEMFC is made up of the bipolar plates and membrane electrode assembly (MEA) 

that comprise the Gas Diffusion Layer (GDL), catalyst layer, and proton exchange 

membrane. The electrochemical performance and efficiency of the electrodes is dependent on 

the modification of the MEA [16-18]. The transport system occurring in the cathode 

compartment of the MEA, as seen in Figure 3, includes; the movement of protons to the 
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catalyst from the membrane, the passage of the electrons from the collector electrodes to the 

catalyst through the GDL, and the ‘to and from’ shuttle of the reactant and product gases in 

the catalyst layer and gas channels [19]. 

 

Figure 3: Expanded view of the Cathode part of the MEA Structure [19]. 

The gas diffusion layers allow the passage of the reactant gas from the bipolar plates to the 

catalyst layer with its porous layer characteristics. They also help to conduct electrons to the 

catalyst layer. Polytetrafluoroethylene (PTFE) is coated on electrode to prevent the 

accumulation of water in the GDL. It also controls the structure and porosity of the electrode. 

In the GDL, there is a diffusion of gases through the pores towards the electro-active layer. 

 The thin, porous catalyst layer plays an important role in the electrodes as it serves as the 

site for the half cell reaction occurring in PEMFC. The PTFE-based platinum in the catalyst 

layer increases the long-term performance of PEM FC [20]. The hydrophobic carbon powder 

and hydrophilic fluorinated polymer resin such as Nafion [21] present in the catalyst layer 

allowing the electrolyte to wet the carbon material permitting the diffusion of oxygen as air 

from the GDL to the electrolyte [22]. The performance of the catalyst will decrease when the 

catalyst layer is extremely hydrophobic and also when it contains too much of the electrolyte 

[23]. 
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A diagram of a typical PEM fuel cell MEA comprising of the catalyst layers, proton 

exchange layers, and the gas diffusion layers is shown in Figure 4. 

 

Figure 4: An overview diagram of the MEA structure (modified from Thampan) [12]. 

The basic requirements for PEMFC membrane include; good proton conductivity, 

excellent thermal, chemical and mechanical stability, low gas permeability, and cost 

effectiveness [24].  In addition to these characteristics, the membrane should be able to 

separate the fuel from the oxidant to avoid the mixing of the gases. Proton conductivities 

depends on the membrane’s morphology, water content, chemical structure, equivalent 

weight (EW=1000/IEC, IEC- ion exchange capacity), and the operating temperature. The 
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durability of the PEMFC partly depends on the lifespan of the electrolyte membrane 

integration to the carbon electrodes [24]. 

Nafion Membranes 

Most commercial electrolyte membranes of PEMFC such as Nafions are made up of the 

extrusive copolymerization of tetrafluoroethylene (TFE) with perfluorokyl (alkyl vinyl ether) 

based sulfonylic acid [25]. Other types of membranes also investigated by researches due to 

their special properties are the polyetherketones, polymides, and polyether sulfone [26, 27]. 

In the structure of Nafion, the perflurorinated alkyl backbones increase the chemical and 

thermal stability while the SO3H pendant allows for better ionic conductivity (higher than 

0.1Scm-1 at 80 oC) [28]. Also, low dielectric constants, good better insulating ability in both 

oxidative and reductive conditions are added advantages of Nafions [28]. Nafions are 

commercially available in the sulfonic acid form (-SO3H).  

 

Figure 5: Chemical Structure of the Sulfonic form of Nafion 

Limitations of Nafion as PEM Fuel Cell Membrane 

 Proton transfer in Nafion membrane depends on the dissociation of protons from the –

SO3H group in the presence of water [29]. Nafion membrane forms large rod-shaped micelles 

in water, and this disallows its passage into the micropores of the carbon’s ionomer coatings 

in the MEA catalyst layer. Thus, they are ‘washed out’ overtime [11]. This leads to lower ion 

conductivity and reduced performance. Also, the sulfonic acid groups (-SO3H) of the nafion 

decompose at higher temperatures by forming anhydrides (-SO2OSO2-). The electrolyte-to-
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carbon electrode integration (as there is no direct bonding of the electrolyte that is the solid 

nafion and the carbon support electrode at the catalyst layer) diminishes as a result of the 

oxidizing and highly acidic conditions that go on in the fuel cells’ operations [30]. Due to its 

long process of casting and preparation, Nafion poses a high cost on PEMFC [31]. 

Platinum particles are the most commonly used catalyst in the PEMFCs. Traditionally, the 

catalyst efficiency usage is about 10-20% when Nafion is used as electrolyte for the PEMFCs 

[32]. The traditional dense electrode is as shown in Figure 6 [33]. 

 

Figure 6: A Dense Carbon-Catalyst-Electrodes System in the PEMFCs. Used with 

permission [33]. 

Proposed PEM Fuel Cell Structure 

Despite several efforts to improve the carbon electrode-electrolyte surface, such as 

applying the catalyst at close contacts with the membrane, using a thin film layer of the 

electrolyte on the electrodes surface, and increasing the active sites in the metal catalyst on 

the permeable electrode surfaces [34-36], the effective use of the expensive catalyst was not 

achieved.  
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A porous electrode, as seen in Figure 7, has been proposed recently to chemically graft the 

electrolyte onto the pores of the electrode [33]. This is believed to increase the use of the 

catalysts by allowing a better bonding. 

 

Figure 7: A Porous Carbon-Catalyst-Electrodes System in the PEMFCs. Used with 

permission [33]. 

Diazonium PFSI Zwitterions 

Zwitterions are best described as molecules having substituent groups carrying ionic 

charges with the anion and cation contained in the same molecule. The zwitterionic amino 

acids posses both an amino and a carboxylic functional groups at the iso-electric point. 

Zwitterions posses an overall neutral charge [37]. 

 

Scheme 2: Example of Amino Acid at the isoelectric point 

Functional groups that contain significant charge being separated between directly bonded 

atoms are termed ‘Semipolar’. Semipolar group are described as the possession of a filled 

orbital on one atom and an unfilled orbital on the other leading to them being distorted 

inductively by a charge separation that sometimes may be conjugated. These interactions 
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decrease the polarity of semipolar groups below that of the pure dipolar form [38]. Hence, it 

is believed that Zwitterions increase the stability of large molecules. 

PFSI Acidity Advantages  

The Perfluoroalkyl sulfonic acids are commonly referred to as superacids as a result of the 

strong electron withdrawing perfluoroalkyl group [39]. These Perfluoroalkyl sulfonic acids 

have low pKa values. For example, the pka of Nafion 53 is close to -6 [40]. 

The trifluormethane sulfonyl group (CF3SO2
-) are believed to be strong neutral electron 

withdrawing group. One of the most acidic groups amongst other neutral acids in their gas 

phase are the (C4F9SO)2NH groups  (pKa=19.8) [41]. The (RfSO2)2NH (Rf≠CF3) was earlier 

prepared by Meussdoerffer and Niederprum in the 1980s [42]. The polarisable 

substituent/anion interaction (P effect), correctly oriented dipolar substituent/anion 

interaction (F effect),  and lastly, the  substituent/ π-electron-acceptor interaction (R effect) 

that preferentially stabilizes the strong electron-pair donor anion forms compared to the 

corresponding weaker π-donor conjugate acid forms is believed to increase the gas phase 

acidity of the (C4F9SO)2NH. The conjugate base of the PFSI (Rf-SO2)2N- is stabilized by the 

resonance effect. Hence, this accounts for the increase in acidity of the PFSI as seen in the 

scheme below. 

 

Scheme 3: Charge delocalization in the conjugate base of PFSI 
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Diazonium PFSI Zwitterions Monomers 

Diazonium PFSI zwitterionic monomers are proposed to improve the flexibility and ion 

exchange capacity necessary to attach the electrolyte to carbon as desired for PEM fuel cells. 

To replace the use of PFSA such as Nafion in PEMFCs, novel functional diazonium 

zwitterions containing the perfluoro sulfonimide groups were synthesized to chemically bond 

onto a modified carbon through grafting [11]. There is a covalent carbon-carbon bonding 

between the electrolyte and the carbon support by losing the diazonium group -N2
+ via 

thermo or electro-chemcial reaction [43] as shown in scheme 3 where X is SO2N-SO2Rf. An 

already synthesized p-N2
+PhSO2N-SO2CF3 monomer has been successfully grafted onto the 

carbon electrode [11]. 

 

Scheme 4: Grafting of the FDZ on carbon electrode 

The PFSI monomers capable of undergoing further polymerization enhance the 

workability of the electrolyte. With an active diazonium group and a polymerizable 

functional group, there abound challenging but possible ways to design synthetic routes for 

the monomers than the small diazonium zwitterionic compounds. One analogue of diazonium 

perfluoroalkylsulfonimide (PFSI) monomer synthesized in this research is the 4-

trifluoromethyl-3-diazonium perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide 

X
X

N 2

X
X H

N 2

1 .-N 2 (+ e  o r  h e a t)

2 .H
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monomer (I) as shown in Figure 8. The synthesis method was used after various reaction 

conditions were tried in the lab.  

 

SO2CF2CF2OCF(CF3)CF2OCF=CF2SO2NN2

II  

Figure 8: Structures of the two Diazonium Perfluorobenzene sulfonyl imide monomers 

Bronsted-Lowry acidity is the capability of a compound to lose its proton [44]. It is 

believed that the acidity of the compound and the mobility of hydrogen increases with the 

presence of the electron withdrawing CF3 substituent. Also, CF3 group has a long-range 

acidifying factor because of its ability of producing a long-range electrostatic field that 

stabilizes the meta and para lone pairs in the conjugate base formed [45]. As earlier stated, 

the workable electrolyte membrane for PEMFC should have high proton conductivity so the 

presence of the substituted CF3 group is proposed to increase the acidity of the modified 

functional diazonium zwitterions (FDZ). After further polymerization, this 

perfluoroalkylsufonimide (PFSI), I, can be compared with an already synthesized novel 

diazonium PFSI monomer, II [46] to compare their proton conductivity, reactivity and 

stability. 
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CHAPTER 2 

RESEARCH AND DISCUSSION 

The synthesis of the diazonium PFSI monomer was prepared from two starting materials: 

2-Nitro-4-(trifluromethane) benzenesulfonyl chloride and Nafion Monomer. This involves a 

five-step procedure: 1. an ammonolysis reaction, 2. a bromination reaction, 3. a coupling 

reaction followed by debromination , 4. a reduction reaction,  and 5. a diazotization reaction. 

TLC was used to monitor the reaction progress of except the bromination and diazotization. 

The synthesized products were characterized by 1H &19F NMR and IR spectroscopy. 

 

Scheme 5: Overall synthesis scheme 
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Ammonolysis Reaction 

The conversion of 2-nitro-4-(trifluoromethyl)benzenesulfonyl chloride, 1 to 2-nitro-4-

(trifluoromethyl)benzene sulfonyl amide 2 was carried out by refluxing it in the presence of 

excess ammonium hydroxide and acetonitrile at about 100 oC. The stoichiometric mole ratio 

of the aqueous ammonia to sulfonyl chloride is 2:1 respectively. This SN2 reaction as seen in 

scheme 5 involves the replacement of the ‘Cl-’ions with the incoming –NH2 group with the 

formation of HCl which is neutralized in the presence of the unreacted ammonia.  

 

Scheme 6: Ammonolysis of 2-nitro-4-(trifluoromethyl) benzene sulfonyl chloride. 

(i: Ammonia water, reflux at 100 oC overnight, 80%). 

 

 Ammonolysis reaction is more feasible than hydrolysis reaction because NH3 is a better 

nucleophile than H2O. Although the ammonolysis product was insoluble in water, the 

completion of this reaction was monitored. The impurity 2'', as seen in scheme 7, comes from 

the hydrolysis of the 2-nitro-4-(trifluoromethyl)benzene sulfonyl chloride in aqueous 

solutions. Usually the hydrolysis impurities (the ammonium salt) can be removed easily 

through vacuum filtration. But because of the hydrophobic –CF3 functional group on the 

benzene ring, the solubility of the hydrolysis product is decreased. Hence, the purification 

process is achieved through employing column chromatography or by recrystallization in 

water and acetonitrile. 



25 
 

 

Scheme 7: The hydrolysis reaction during Ammonolysis 

Bromination of Nafion Monomer 

The Nafion monomer 3, that contains strong electron withdrawing perfluoroalkyl chain 

and perfluorovinyl ether group, is sensitive to bases at high temperature instead of acids like 

most alkenes. Protection of the double bond with bromine was achieved through a free 

radical reaction at a low temperature. Vacuum distillation was carried out to purify the 

brominated product 4. 

 

Scheme 8: Bromination of Nafion monomer (ii: Br2, 0 oC to r.t.) 
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Coupling Reaction 

    In acidic medium, brominated nafion monomer 4 is comparably stable. At high 

temperature, the brominated nafion monomer does not only react with aryl sulfonyl amide but 

will be attacked by weak based catalysed water and form the hydrolysed product. The 

nucleophilicity of sulfonyl amide’s –SO2NH2 is increased too when catalysed by an organic 

base, diisopropyl ethylene amine (DIEA). 

 

Scheme 9: Coupling Reaction of 2-Nitro-4-(trifluoromethyl)benzene Sulfonylamide with 

Brominated Nafion Monomer [(iii': N, N-Diisopropylethylamine, dry CH3CN, 80 oC for 

3days; Column Chromatography), (iii: HCl, Acetone, Cs2CO3, at 70 oC for 30mins)]  

    In this SN2 reaction, the hydrolysis product 6 as seen in Figure 9 can be greatly reduced by 

carrying out the reaction at extremely dry conditions with dry reagents and/or using extra 

amount of brominated nafion monomer 4. Therefore, the stoichiometry requires 1 mole of 
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sulfonyl amide to 1.02 mole of nafion monmer. It was to allow enough bromianted nafion 

monomer to react with the aryl sulfonyl amide. 

 

Figure 9: Possible Hydrolysis By-product from Coupling Reaction. 

The crude coupling product was sticky due to its DIEAH counterion. The purification 

process was carried out with column chromatography first to remove the excess starting 

material amide and then acidification and recrystallization with Cs2CO3 were used to remove 

the hydrolysis impurity. 

In a previously synthesized diazonium PFSI zwitterionic monomer [46], the 19F NMR 

spectrum showed two peaks for Fa at δ -115 ppm, and δ -117ppm. The structure is shown in 

Figure 10. It was argued that the two peaks could be attributed to either the hydrolysis of the 

brominated nafion monomer or two diastereotropic fluorine atoms. 

 

Figure 10: Structure of Coupling Product of the novel diazonium PFSI Zwitterionic 

monomer. 

But according to the 19F NMR spectrum of the coupling product 5, there is only one peak 

for Fa. It was suggested that either hydrolysis product 6 could be removed via column 

chromatography and recrystallization or there was no diasterotropic fluorine atom present in 

the compound’s structure. Also, the debromination occurred with an appearance of the 

trifluorovinyl ether peaks at δf-113ppm, δg-121 ppm, and δg' -135 ppm in the 19F NMR 

spectrum.  
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The possible but inconclusive mechanism as seen in scheme 10 is through a free radical 

debromination that could have been facilitated by heating at about 70 oC employing the 

strong Cs2CO3 base to precipitate the coupling product 5. 

 

Scheme 10: Possible Debromination Mechanism 

 

Reduction Reaction 

  The reduction of the aromatic nitro compounds is one of the widely used methods for the 

preparation of the corresponding aromatic amines. Many reducing agents have been outlined 

in literatures [47]. The reduction of the nitro group can be achieved through various reagents 

such as: Fe/HCl or Fe/Acetic Acid, Zn/NaOH, Sn/HCl, Fe/ArOH, catalytic hydrogenation 

using Ni, Pd/C and PtO2, sodium polysulfide, NaBH4/Pt-Ni, and so on. Selecting which type 

of reagents to use is the contains limitation, ranging from harsh reaction condition, 

destruction of most sensitive functional groups, high cost and/or water-sensitivity, non- 

chemoselectivity in the reduction reactions [48].  
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  Due to the perfluoro-vinyl ether group of the coupling product 5, the use of Fe/HCl/H2 gas 

in ultra-sound sonicator at room temperature was employed. Iron was chosen because it was 

fairly cheap and readily available. The reaction mechanism is shown in scheme 11 [63]. 

 

 

Scheme 11: Mechanism for reduction of Aromatic nitro-compounds 

  The reduction was carried out at room temperature because perfluorovinyl ether will react 

with acid at high temperature. Also the ultra-sound sonicator can help initiate the reduction 

reaction by removing the metal surface impurities [49]. 

 

Scheme 12: Reduction of the coupling product (iv: Hydrogen gas, Iron powder, Sonication, 

dry CH3OH, r.t.) 

  The first trial of reduction using three equivalents of iron powder to the aromatic nitro 

compound yielded some impurities that were thought to be inter/intra molecular species of 

the reduced product as seen in Figure 11. And the protonated aryl –NH3
+ would be converted 
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back to –NH2 after basifying with 10% NaOH. But the impurities persisted according to the 

1H NMR spectrum.  

 

Figure 11: Possible inter/intra molecular interactions occurring with the reduced product 7 

  Another hypothesis is the presence of the intermediates as see in scheme 13 [50]. Due to 

the similar polarity of the impurities and the product, purification via column 

chromatography failed. 

 

Scheme 13: The Hydroxylamine, azoxy and azo compounds intermediates. 

  The second trial was conducted with excess iron powder (7:1 of the Fe powder to coupling 

product) at the same reaction conditions as the first trial. Although the reaction was 

completed according to 1H and 19F NMR spectra, the purification of the product by vacuum 

filtration failed. The possible reason is that the brown jelly like product formed with the 
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excess iron. The optimal reaction condition was finally established with the ratio 5:1 of iron 

powder and the coupling product 5 in the presence of HCl and methanol mixture for about 2 

days promoted by sonication as in scheme 12. 

Diazotization 

 Diazonium reactions are usually performed by converting primary amine using nitrous 

acid HNO2 (HONO) to form the diazonium salts [51]. Although small diazonium compounds 

are susceptible to explosion, the big diazonium compounds are comparably stable [51]. The 

HNO2 can be produced by reacting sodium nitrite with aqueous mineral acid. The actual 

diazotization reagent is the nitosonium ion, NO+ and this is formed in situ. The reaction 

mechanism is shown in scheme 14 [52]. 

 

Scheme 14: Diazotization of 1o Aromatic Amines mechanism. 

 For this reaction, conc. HCl was first tried but failed because of the poor solubility of the 

reduced product 7. Therefore, conc. H2SO4 was used to carry out the reaction.  The reason is 

that H2SO4 is a very polar liquid with dielectric constant 100 [52]. And thus, it is a better 

solvent to dissolve the polar reduced product 7 for this reaction. This reaction requires low 

activation energy, so it was carried out at low temperature of about 0-5 oC. Although the 
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reaction can be quite slow at low temperature, if it is done at higher temperatures, it will lead 

to the decomposition of the nitrous acid (HONO) because HONO is not stable at room 

temperature [53].  

 

Scheme 15: Synthesis of the diazonium compound (v: HCl, NaNO2, 0 oC). 

 

 

 

 

 

 

 

 

 

 

 



33 
 

CHAPTER 3 

EXPERIMENTAL   

General Considerations 

NMR Spectroscopy 

1H and 19F NMR spectra were measured on a Joel JNM-ECP 400 MHz FT NMR 

spectrometer using CD3CN as solvent. Chemical shifts are reported in parts per million 

(ppm), and the coupling constants are reported as a ‘J’ value in Hz. 1H NMR chemical shifts 

were referenced against TMS. 19F NMR chemical shifts were referenced against a CFCl3 

external standard. The splitting patterns of resonance were described as singlet (s), doublet 

(d), triplet (t), quartet (q), and multiplet (m). 

The NMR spectra were measured using 1-2 mmol/L concentrations of the solutions 

(unless indicated otherwise) and small amounts of CFCl3 gas in an appropriate deuterated 

solvent for 19F NMR only. 

Infra-red Spectroscopy 

The infrared spectra were recorded on the Shimadzu 1R Prestige-21 FTIR spectrometers. 

Solid samples were prepared as fine powder. Unless indicated otherwise, samples were a 

minimum of 99.5% pure by 1H and 19F NMR. IR spectra were scanned from 4000 cm-1 to 

450 cm-1 and reported in wavenumbers (cm-1) with intensity abbreviations: vs (very strong), 

s (strong), m (medium), w (weak), and vw (very weak). 

Gas Chromatography-Mass Spectrometer 

GC-MS were recorded on Shimadzu GCMS-QP2010 Plus GC system spectrometer. The 

samples were prepared by dissolving 1 mg of the solid samples in 1 mL of acetone. 
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Thin Layer Chromatography  

Thin Layer Chromatography (TLC) was conducted using UV active silica gel plates in 

suitable solvents. The readout was carried out under UV lamp. 

Glass Vacuum System 

The distillation, drying, sublimation, purge, and trap procedures for volatile compounds 

were carried out on a glass vacuum line. This high vacuum line system as seen in Figure 12 

having several stop cocks alongside connected to a diffusion pump is equipped with Teflon. 

It consists of two manifolds where one manifold is for the vacuum and the other is for the 

nitrogen gas. A good vacuum of about 10-4-10-7 torr can be achieved.  

 

Fig. 12: Line Diagram of 2- manifolds glass vacuum line. Used with permission [54]. 

Purification of Solvent and Experimental Practice 

The starting materials: p-nitro benzene sulfonyl chloride Nafion Monomer 

(FSO2CF2CF2OCF2CF(CF3)OCF=CF2) were commercially bought from sources and used as 

received unless indicated otherwise. All the reactions were performed in glassware unless 
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indicated otherwise. Air or moisture sensitive compounds were used in a dry box under 

nitrogen. Solvents were dried by heating at elevated temperatures under vacuum. 

Synthesis of 2-Nitro-4-trifluoro benzene sulfonyl amide 

In a typical procedure, (2.0 grams, 6.9 mmoles) of 2-nitro-4-benzene sulfonyl chloride was 

added to a 100 mL round bottom flask equipped with a stir bar. Then 30 mL of Ammonia 

hydroxide (28-30%) and 22.65 mL of acetonitrile were added to the round bottom flask. The 

solution was refluxed at about 100 oC overnight. The acetonitrile was removed by rotary 

evaporator. The crude product was vacuum filtered with 3 X 15 mL of water. The product 

was then vacuum dried overnight. TLC using the 1:1 hexane to acetone revealed two spots 

with Rf values of 0.38 and 0.67 (product).  The final product (1.47 g, 79.1%) was obtained as 

a yellow solid after it was recrystallized with acetonitrile and water as solvents. 

 

19F NMR (400 MHz; CD3CN; ppm):  δa  -62.42 (3F,s).   

1H NMR (400 MHz; CD3CN; ppm): δA 8.21 (1H, s), δB 8.27 (1H, d), δC 8.10 (2H, d), JBC = 6 

Hz, δD 6.24 (2H, s). 

IR (νmax/cm-1): 3363.86m (NH), 1537s and 1329s (NO), 1161.15s and 1138s (S=O).        

m/z: 254(M+, 100%), 206, 75, 64, 50. 
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Synthesis of FSO2CF2CF2OCF(CF3)CF2OCFBrCF2Br 

In a typical procedure, the Nafion monomer FSO2CF2CF2OCF2CF(CF3)OCF=CF2 (5.0 

grams, 11.14 mmloes) was added into a 50 ml round bottom flask equipped with a stir bar 

and placed in an ice bath at 0oC. Then bromine (1 mL, 19.49 mmoles) was added slowly 

using a pressure-equalizing funnel over the course of 2 hours. Excess Bromine was 

determined as a reddish colour stayed for 30 minutes. The excess bromine remained in the 

funnel and as the reaction was allowed to continue overnight in the presence of light, some 

bromine vaporized and was made available as Br2 encouraging some free radical reaction. 

 The excess bromine was reduced by slowly adding 5% NaHSO3 solution until the reddish 

color disappeared. A separatory funnel was used to obtain the organic layer that remained at 

the bottom by washing three times with 5 mL DI water. Na2SO4 was added to dry the product 

that was later distilled at 100 ºC under dynamic high vacuum. A percent yield of 70.9% (4.89 

grams) was obtained. 

 

19F NMR (400 MHz; CD3CN; ppm): δa-110.76 (2F, m), δb -72.35 (2F, m), δc -143.4 (1F, m), 

δd -77.87 (3F, qm), δe -79.05 (2F, AB pattern multiplet), δf -72.61 (1F, m), δg-64.18 (2F, d), 

δh 45.88 (1F, s). 

Synthesis of 4-CF3-2-NO2PhSO2N(M)SO2CF2CF2OCF(CF3)CF2OCF=CF2 

In a typical procedure, 1.025 grams (1.64 mmoles) of the brominated nafion monomer, 

0.43 grams (1.61mmoles) of the 2-nitro-4-trifluorobenzenesulfnoyl amide were added into a 

three-necked round bottom flask equipped with a stir bar and two rubber septa in a dry box. 

Then 10 mL of acetonitrile and 15 mL of diisopropyl ethylamine (DIEA) were injected into 
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the closed flask. The solution was refluxed for 3 days at 100° C in a closed system. The 

reaction was monitored with TLC in 1.5:1 acetone to hexane, which revealed three spots with 

an Rf values of 0.70, 0.64 and 0.29. The solvent was removed by rotate evaporator. The crude 

coupling product was then recrystallized with 1 gram of Cs (6.50 mmoles) in 3 mL of water 

and 20 mL of acetone at 70 oC for 20 minutes.  The 1.5:1 ratio of acetone to hexane was used 

to run through the column to remove the hydrolysis by-product. The amber solid product 

(1.66 grams, 74 %) was obtained after removing the solvent and drying under dynamic high 

vacuum for overnight. M represents such as Cs+, DIEAH+.  

 

19F NMR (400 MHz; CD3CN; ppm): δa -115.43 (2F, m), δb -77.53.0 (2F, m), δc -144.58 (1F, 

m), δd -79.21 (3F, qm), δe -83.96 (2F, AB pattern multiplet), δf -113.05 (1F, d), δg -121.17 

(1F, q). δg’-135.79(1F, q) δh-62.43 (3F, qm) 

1H NMR (400 MHz; CD3CN; ppm):  δA 8.00 (1H, s), δB 8.28 (2H, d), δC 7.98 (2H, d) JBC = 6 

Hz.  

IR (νmax/cm-1): 1541.12s and 1323.17m (NO), 1138vs (CF2), 1064vs, 1122.57vs and 

1288.45w (S=O). 

Synthesis of 4-CF3-2-NH2-PhSO2N(M)SO2CF2CF2OCF(CF3)CF2OCF=CF2 

In a typical procedure, 0.25 grams (.217 mmoles) of the coupled product and 0.07 grams 

(1.37 mmoles) of iron powder were added to a 50 ml one-necked round bottom flask 

equipped with a stir bar. And then, 20 mL of methanol and 1 mL of HCL were added to the 

round bottom flask subsequently. The flask was equipped with a septum, a needle, and a H2 

gas filled balloon. The reaction was run at room temperature in ultrasound sonicator for 2 
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days.  TLC was used to monitor the reaction in 1.5:1 acetone to hexane, which revealed one 

spot with an Rf value of 0.09. The excess iron powder was filtered out by vacuum filtration. 

The organic portion was extracted out with 3x 10 mL of ethyl acetate from water. Finally, the 

brown purified product (0.36 grams, 73%) was obtained after removing solvent again by 

rotate evaporator and drying with dynamic high vacuum for 4 hours. M represents Cs+ and 

other cations, such as DIEAH+. The product is very sticky. It also contains impurity 

CH3COOCH2CH3.  

 

19F NMR (400 MHz; CD3CN; ppm) δa -116.85 (2F, m), δb -78.88 (2F, m), δc -145.73 (1F, m), 

δd -80.20 (3F, qm), δe -85.14 (2F, AB pattern multiplet), δf -113.79 (1F, d), δg -122.50 (1F, q). 

δg’-136.90(1F, q) δh-63.41 (3F, qm) 

1H NMR (400 MHz; CD3CN; ppm): δA 7.05 (1H, s), δB 7.79 (2H, d), δC 6.89 (2H, d) JBC = 6 

Hz, δD 5.5 (2H, s) 

IR (νmax/cm-1):3431.36m and 1635.64s (NH), 1325.17m and 1076.28vw (S=O), 1232.51s and 

1132.21vs (CF2). 

Synthesis of 4-CF3-2-N2
+ PhSO2N-SO2CF2CF2OCF (CF3)CF2OCF=CF2) 

In a typical procedure, 0.15 grams (0.237 mmoles) of debromination product, 0.173 grams 

(2.275 mmoles) of NaNO2, and 3 ml of H2SO4 were added in a 50 ml round bottom flask 

equipped with a stir bar. The solution was stirred for 2 hours in the ice bath and then poured 

into ice before vacuum filtration. The final purified product (0.044g, 56%) was obtained after 

drying under dynamic vacuum line for 8 hours. 
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19F NMR (400 MHz; CD3CN; ppm): δa -115.32 (2F, m), δb -77.89 (2F, m), δc -144.23 (1F, 

m), δd -78.50 (3F, qm), δe -83.73 (2F, AB pattern multiplet), δf -112.44 (1F, d), δg -120.80 

(1F, q). δg’-135.52 (1F, q) δh -62.75 (3F, qm) 

1H NMR (400 MHz; CD3CN; ppm): δA 8.94 (1H, s), δB 8.64 (1H, d), δC 8.54(1H, d) JBC = 6 

Hz.   

IR (νmax/cm-1): 2301.08w (N N), 1337s, 1283w and 1076vs (S=O), 1147vs (CF2) 
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CHAPTER 4 

CONCLUSION 

One new perfluoro alkyl sulfonyl (PFSI) diazonium zwitterions monomer was synthesized 

and characterized. This can permit a new path to designing synthetic schemes for other 

diazonium zwitterions or providing opportunities to graft this monomer (which could be 

further subjected to polymerization) to the nanoporous carbon/Pt catalyst via the diazonium 

salt either by electrochemical reduction or thermal decomposition. This will afford the 

formation of a covalent carbon-carbon bond proposed for the PEM Fuel Cell. This is believed 

to increase the commercialization of the PEM fuel cells. 

The extra peak found at -117ppm in the synthesis of the novel diazonium PFSI 

zwitterionic monomer as stated earlier is the hydrolysis product and can be eliminated during 

the recrystallization step. The debromination of the protected per fluoro vinyl ether was 

perceived to have occurred via heating during the recrystallization of the crude coupling 

product that shortened the overall reaction scheme. Additional recrystallization experiments 

will be performed on different synthesized coupling products to support this hypothesis.  
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APPENDICES 

APPENDIX A: GC-MS Chromatogram of compound 2 
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APPENDIX B1: 19F NMR Spectrum of compound 2, 400MHZ, CD3CN 
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APPENDIX B2: 19F NMR Spectrum of compound 4, 400MHZ, CD3CN  
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APPENDIX B3: 19F NMR Spectrum of compound 5, 400MHZ, CD3CN  
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APPENDIX B4: 19F NMR Spectrum of compound 7, 400MHZ, CD3CN  
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APPENDIX B5: 19F NMR Spectrum of compound 8, 400MHZ, CD3CN  
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APPENDIX C1: 1HNMR spectrum of compound 2, 400MHz, CD3CN 

 

 

APPENDIX C2: Expanded 1HNMR spectrum of compound 2, 400MHz, CD3CN 
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APPENDIX C3: 1HNMR spectrum of compound 5, 400MHz, CD3CN 

 

 

APPENDIX C4: Expanded 1HNMR spectrum of compound 5, 400MHz, CD3CN 

 



56 
 

APPENDIX C5: 1HNMR spectrum of compound 7, 400MHz, CD3CN 

 

 

APPENDIX C6: Expanded 1HNMR spectrum of compound 7, 400MHz, CD3CN 
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APPENDIX C7: 1HNMR spectrum of compound 8, 400MHz, CD3CN 

 

 

APPENDIX C8: Expanded 1HNMR spectrum of compound 8, 400MHz, CD3CN 
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APPENDIX D1: FTIR spectrum of compound 2 
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APPENDIX D2: FTIR spectrum of compound 5 
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APPENDIX D3: FTIR spectrum of compound 7 
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APPENDIX D4: FTIR spectrum of compound 8 
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