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ABSTRACT 
 
 

Assessment of Red Blood Cell Membrane Fatty Acid Composition in Relation to Dietary Intake 

in Patients Undergoing Cardiac Catheterization 

 
by 
 

Nicole Litwin 
 

 
 
Red blood cells (RBC) have been shown to mediate plaque development seen in coronary artery 

disease (CAD). This study determined whether differences in RBC fatty acid (FA) composition 

were related to CAD risk. FAs were extracted from RBCs of 38 individuals who have undergone 

cardiac catheterization, 9 of whom had obstructive CAD, and analyzed via gas chromatography. 

Ferric reducing ability of plasma (FRAP) assay was used to determine oxidative stress. Food 

frequency questionnaires were used to correlate RBC omega-3 FA to daily intake of omega-3 

FA.  No correlation was found between RBC content and intake of omega-3 FA. FRAP values 

and RBC FA composition did not differ between the 2 groups with exception of the saturated 

FA, palmitic acid (p=0.018). These results suggest that RBC FA composition may differ between 

individuals with or at risk for CAD. Additional research is needed to validate this biomarker as a 

predictor of CAD.  
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CHAPTER 1 

INTRODUCTION 

 

Background 

Coronary artery disease (CAD), also called coronary heart disease (CHD) and is used 

interchangeably hereafter, is a general term that describes all causes of heart disease 

characterized by narrowing of blood vessels that supply the heart.1 CAD is currently the leading 

cause of death and morbidity for both men and women worldwide.1 CAD occurs when plaque 

accumulates in coronary arteries and is primarily caused by atherosclerosis, which is described as 

the development of atherosclerotic plaque in the vascular wall that accrues and produces 

ischemic conditions by insufficient blood flow or by rupturing, forming a thrombus, and 

occluding the lumen of the vessel.1 Atherosclerotic plaque can be described as unstable or 

vulnerable, suggesting a high risk of rupture that leads to thrombus formation, thus increasing 

heart attack and stroke risk.1 Vulnerable plaque is characterized by lesions with a thin, fibrous 

cap, few smooth muscle cells, macrophages, and a large lipid core that is composed of 

cholesterol, lipids, and dead foam cell remnants.1,2  

 Instability of plaque is dependent upon the thinning of its fibrous cap, enlargement of the 

lipid core, and high inflammatory content from macrophage infiltration2-4, all of which increase 

the risk of intraplaque hemorrhage and rupture.3, 4 When intraplaque hemorrhage occurs, red 

blood cells (RBC) enter the atherosclerotic lipid core of the plaque, which results in an increase 

of cholesterol accumulation due to the large amounts of (free) cholesterol contained in RBC 

membranes.2, 3,4 RBC membranes are 1.5-2.0 times richer in cholesterol than any other cell in the 

human body and approximately 40% of its cell weight is composed of lipids.2 Cholesterol 

 10 



concentration in RBC membranes reflects lipid profile over a long period of time; therefore, it is 

plausible that the cholesterol content of RBC membranes is an index of plasma cholesterol 

concentrations reflective of the lipids consumed over the last several months.2 The RBC with its 

lipid-rich membrane can contribute to the cholesterol found in atherosclerotic plaque due to the 

high cholesterol content exceeding that of all other cells.2 Thus, it can be postulated that most of 

the free cholesterol found in atherosclerotic plaque that can lead to plaque instability in CAD is 

derived from the RBC membrane.2  

 Moreover, atherosclerotic plaque growth and stability/instability depends on plasma lipid 

composition determined by dietary fatty acid intake.5 It is well known that consumption of 

different dietary fatty acids influences the risk and progression of cardiovascular diseases. 

Numerous epidemiological studies have shown that high intakes of saturated fatty acids are 

associated with an increased risk of CHD, while increased consumption of polyunsaturated fatty 

acids (PUFA) are associated with a reduced risk and CHD protection.4, 5,6 Recently, it has been 

acknowledged that distinguishing the lipid composition of RBC membranes can be used as an 

additional risk factor for CHD.6 The RBC membrane fatty acid composition is becoming more 

preferred than plasma fatty acids because RBC fatty acids reveal long-term dietary fats 

consumed and is not affected by recent dietary fat intake.6,7  

The analysis of RBC membrane fatty acid composition is essential in establishing a 

patient’s RBC fatty acid profile in relationship to CAD risk based on dietary patterns. The RBC 

fatty acid profile will indicate saturated, polyunsaturated, and monounsaturated fatty acid 

concentrations that can be used to determine ratios between saturated vs. unsaturated fats, 

MUFA vs. PUFA and omega-6 PUFA vs. omega-3 PUFA. The amounts of omega-6 and omega-

3 PUFA in the RBC membrane are particularly important due to their synthesis of eicosanoids.8 
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For instance, a high amount of omega-6 PUFA in the diet shifts the body’s physiological state to 

one that exhibits characteristics of its respective eicosanoids, resulting in increases of blood 

viscosity, vasospasms, and vasoconstriction.8 On the other hand, increasing omega-3 fatty acids 

in the diet produces higher amounts of eicosanoids that are less potent inducers of inflammation, 

blood vessel constriction, and coagulation, thus providing cardiovascular protection.8 

Determining the fatty acid composition of the RBC membrane can establish a patient’s typical 

lipid pattern based on dietary intake and can be used as a complementary diagnostic tool for 

monitoring the progression of CAD in a safe, noninvasive manner to help detect imbalances of 

fatty acids. This novel, diagnostic tool can aid in the selection and evaluation of dietary 

intervention therapies in clinical settings.  

 

Purpose 

The purpose of this study was to determine if differences in RBC membrane fatty acid 

composition are correlated with CAD and cardiac conditions such as coronary artery bypass 

grafts and coronary artery stents that are commonly used to treat CAD. The RBC membranes of 

these patients contain a fatty acid composition indicative of the typical lipids consumed during 

the lifespan of the RBC, which is usually about 3 - 4 months. Evidence has shown that RBCs 

play an important role in the development of atherosclerotic plaque seen in CAD. Instability of 

atherosclerotic plaque is driven by the accumulation of cholesterol derived from RBC 

membranes’ high cholesterol content determined in part by plasma lipid composition, which is 

influenced by dietary intake. Because RBC fatty acid composition reflects long-term lipid 

consumption, discovering a significant difference between case and control groups may indicate 

a role for the analysis of RBC membrane in evaluating predictive risks of CAD. It is our intent to 
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use this tool in future experiments to determine if we can identify patients (<30 years of age) 

who are at risk and may benefit from dietary intervention (i.e. early changes in diet to avoid 

cardiac procedures to correct blockages).      

 

Research Questions 

1. Do patients with CAD have different RBC membrane fatty acid composition and dietary 

patterns (based on food frequency questionnaire results) than age-matched patients who 

have had a cardiac catheterization but without any identified blockages?  

 

2. What are the characteristic body mass index (BMI), age, sex, family history, and other 

anthropometrics/demographics of patients with blockages and those not showing a 

blockage after cardiac catheterization? 

 

3. Will level of oxidative stress differ between patients with blockages and those not 

showing a blockage after cardiac catheterization? 

 

Hypotheses 

Hypothesis (1): There will be a significant difference in the RBC fatty acid composition and 

dietary consumption of omega-3 PUFA between patients who had blockages identified during 

cardiac catheterization and those who did not have blockages identified.   
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Hypothesis (2): The level of oxidative stress will be significantly different between patients who 

had blockages identified during cardiac catheterization and those who did not have blockages 

identified.   
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CHAPTER 2 

REVIEW OF LITERATURE 

 

In recent years, extensive research has been conducted on the metabolism of 

polyunsaturated fatty acids (PUFA), particularly omega-6 and omega-3 fatty acids, due to their 

essentiality in the human diet. Long-chain omega-6 and omega-3 PUFA are considered essential 

fatty acids (EFA) because humans, like all mammals, cannot synthesize them within the body, 

nor are the fats interconvertible; therefore, they must be obtained through the diet.8 The 

physiological effects of PUFA are distinct from the more abundant saturated and 

monounsaturated fatty acids (MUFA) found in today’s Western diet. Saturated and 

monounsaturated fatty acids can be synthesized in mammalian tissues from glucose or amino 

acid precursors.10 However, this does not typically occur in humans consuming a Western diet 

because the majority of dietary fat intake is from saturated, monounsaturated, and trans fatty 

acids.10 Fatty acids in general provide a source of energy, while only a proportion of EFA are 

used as an energy source due to their biological functions that include stimulation of growth, 

maintenance of skin and hair growth, regulation of cholesterol metabolism, lipotropic activity, 

maintenance of reproductive performance, and other physiologic and pharmacologic 

effects.11 EFA also help maintain membrane integrity and an optimal level of unsaturation in 

tissue lipids.11 

Omega-6/Omega-3 PUFA Ratio 

In the Western diet consumption of PUFA contributes about 7% of total energy intake 

and 19-22% of energy intake from fat in the average adult diet.12 Although this is within the 

recommended intake for men and women, consumption of omega-6 fatty acids greatly exceeds 
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that of omega-3 fatty acids.12 This is of great importance due to the role that omega-3 fatty acids 

play in normal growth and development of several organs (e.g. heart, brain, reproductive organs) 

and the prevention and management of coronary heart disease, hypertension, type 2 diabetes, 

arthritis, other inflammatory and autoimmune diseases, and cancer.9 In addition, the ratio of 

omega-6 and omega-3 fatty acids in the Western diet is notably different from the fatty acid 

profile and overall fat content seen during prehistoric times. Based on estimates from studies of 

Paleolithic nutrition (40,000 – 45,000 years ago), a time in which humans evolved and genetic 

profiles were established, it is apparent that humans evolved consuming a diet that is 

significantly lower in saturated and trans fatty acids than today’s modern diet.8 The early human 

diet contained equal quantities of omega-6 to omega-3 fatty acids (ratio of 1:1), whereas the 

current Western diet contains excessive amounts of omega-6 fatty acids and almost deficient 

amounts of omega-3 fatty acids. For example, today’s ratio of omega-6 to omega 3 fatty acids (n-

6: n-3) is found to be at 15-30:1 or as much as 100:1.8 This marked shift in the ratio of the 2 EFA 

is due to a decrease in fish consumption and industrial production of cereal feeds for livestock 

that are rich in omega-6 fatty acids and poor in omega-3 fatty acids, thereby leading to 

production of meat rich in omega-6 PUFA and poor in omega-3 PUFA. The same is also true for 

eggs, vegetable oil, cultivated vegetables, and cultured fish.8 Due to industrialization, omega-6 

fatty acid consumption increased at the expense of omega-3 fatty acids.8, 12 This imbalance of 

omega-6 to omega-3 fatty acids represents excessive amounts of omega-6 PUFA (i.e. high n-6: 

n-3) that can promote the pathogenesis of several chronic diseases including cardiovascular 

disease, obesity, cancer, and autoimmune and inflammatory diseases.8 On the other hand, 

increased amounts of omega-3 PUFA in the diet (i.e. low n-6: n-3) can promote a suppressive 
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effect against chronic diseases.8 The optimal ratio of n-6: n-3 in the diet is thought to be about 

4:1.8 

Dietary Sources and Metabolism 

 Currently, linoleic acid (LA; 18:2n-6) is the major PUFA consumed in the United States, 

compromising 84-89% of total PUFA energy intake in diets of the adult population.12 Omega-6 

PUFA are represented by linoleic acid that can be found in vegetable oils such as corn, safflower, 

peanuts, and soybeans. Omega-3 PUFA are represented by α-linolenic acid (ALA, 18:3 n-3) that 

can be found in flaxseed and flaxseed (linseed) oil, chia seed, perilla seed, walnuts, and canola 

(rapeseed) oil.8 The intake of omega-3 fatty acids in the U.S. is about 1.6 g/d or 0.7% of total 

PUFA energy intake.12 Of this, ALA accounts for 1.4 g/d, while only 0.1 – 0.2 g/d comes from 

EPA (20:5n-3) and DHA (22:6n-3) 12,13 EPA and DHA are predominantly found in oily fish (e.g. 

mackerel, tuna, halibut, herring, salmon) and commercial fish oil products that are prepared from 

processing body fat of oily fish.10,13 EPA and DHA are also found in high proportions in the oils 

extracted from liver of other fish species such as cod.10  However, the current average daily 

intake of EPA and DHA combined in a typical Western diet is only about one fish serving every 

10 days, which is approximately 0.15% of total dietary fat intake.14 On the other hand, major 

sources of ALA in the U.S. diet appear to be from vegetable oils, primarily canola and soybean 

oils that are greatly enriched with both omega-6 and omega-3 fatty acids.12,14 Although some 

amount of ALA can be further metabolized to longer chain fatty acids such as DHA and EPA 

after ingestion, this remains to be minimal (<5%) and controversial.13,14 Similarly, LA can be 

converted into a longer chain fatty acid metabolite, arachidonic acid (AA; 20:4n-6). Both 

conversions depend on the concentration of omega-6 and omega-3 fatty acids in the diet and may 

be further limited by aging and certain disease conditions.14 
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LA, ALA, and their long-chain, highly unsaturated derivatives are important structural 

components of practically all cell membranes within the human body.9 After ingestion, LA and 

ALA are selectively distributed between triglycerides, adipose tissue stores, and tissue structural 

lipids.8 PUFA are oxidized more rapidly after ingestion compared to saturated and 

monounsaturated fatty acids. However, the long-chain PUFA derived from LA and ALA are 

spared from oxidation.11 These fatty acids, if preformed before becoming present in the diet, are 

incorporated into phospholipids of tissues almost 20 times more efficiently than they are 

incorporated after synthesis from dietary LA and ALA.11 When ingested EPA and DHA from 

dietary sources replaces omega-6 fatty acids, especially AA, in the membranes of almost all 

cells, but particularly in the membranes of platelets, erythrocytes, neutrophils, monocytes, and 

hepatocytes.8 Therefore, the PUFA composition of cell membranes is greatly dependent on 

dietary intake.  

Eicosanoid Synthesis 

 The respective derivatives of LA and ALA can be metabolized into bioactive eicosanoids 

such as luekotrienes, prostaglandins, thromboxanes, lipoxins, and other hydroxy fatty 

acids. 8,14 Eicosanoids derived from AA are proinflammatory, proaggregatory, and 

prothrombotic, whereas eicosanoids derived from EPA are anti-inflammatory and inhibit platelet 

aggregation. 8,14 With that being said, the ratio of omega-6 to omega-3 fatty acids, or more 

specifically the absolute amounts of omega-3 fatty acids in the diet, may be crucial in the 

prevention of multiple disease states.8 This is due to competition between the 2 essential fatty 

acids for elongation/desaturation pathways for production of their respective derivatives, thereby 

resulting in increased synthesis of their eicosanoids.8, 14 Additionally, a high intake of dietary LA 

interferes with the desaturation and elongation of ALA, while excessive amounts of dietary trans 
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fatty acids interferes with the desaturation and elongation of both ALA and LA.8 As a result the 

relative amount and availability of AA, EPA, and DHA is diminished for further metabolism.8  

Due to the excessive amounts of omega-6 fatty acids in the Western diet, the body’s 

physiological state shifts to one that exhibits the characteristics of AA-derived eicosanoids that 

increase blood viscosity, vasospasms, and vasoconstriction and decrease bleeding time.8 

Eicosanoid metabolic products from AA are biologically active in small quantities, but if formed 

in large amounts, they contribute to the formation of thrombi and atheromas, which indicates that 

dietary AA and LA can increase the risk of cardiovascular disease in individuals who consume 

excessive amounts of omega-6 fatty acids.8,9 AA is typically the principal precursor for 

eicosanoid synthesis because the membranes of most cells contain larger amounts of AA when 

compared to LA and EPA.10  Various phospholipase enzymes, primarily phospholipase A2, can 

release AA in cell membranes and subsequently leave free AA to act as a substrate for 

cyclooxygenase-2 (COX-2) after stimulation of platelets and endothelial cells.15 COX-2 

stimulates thromboxane A2, a potent promoter of platelet aggregation, and prostacyclin I2 

(PGI2), a potent inhibitor of platelet aggregation.15 Free AA can also act as a substrate for 

lipoxygenase enzymes that form 4-series leukotrienes (LT) that regulate the production of 

proinflammatory cytokines. For example, LT-B4 enhances production of tumor necrosis factor 

(TNF)-α, interleukin (IL)-1, IL-6, and interferon (IFN)-γ. So, overall, AA gives rise to a range of 

mediators some of which have opposing effects, but the general physiological effect is governed 

by the concentration of those mediators, timing of production, and sensitivities of target cells to 

their potent effects.10  

The amount of AA in membrane phospholipids of platelets and endothelial cells can be 

reduced by distinctive mechanisms of long-chain omega-3 fatty acids, especially EPA. 15 
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Increased availability of omega-3 fatty acids from regular fish consumption or fish oil 

supplementation would thereby result in a decreased amount of substrate available for synthesis 

of eicosanoids from AA. This would also result in a decreased production and concentration of 

thromboxane A2 (inducer of platelet aggregation and vasoconstriction) and proinflammatory 

cytokines produced by LTB4. 
15 EPA/DHA can also be released from cell membrane 

phospholipids by the action of phospholipase A2 and also act as a substrate for COX-2. 

However, the products produced, 5-series leukotrienes (LTB5), thromboxane A3, and 

prostacyclin PGI3, have a different structure and potency from those produced from AA. 15 For 

instance, TXA3 is a weaker platelet aggregator and vasoconstrictor, and LTB5 is a weaker 

inducer of inflammation.9,15 EPA also leads to increased concentrations of PGI3, leading to an 

overall increase in total prostacyclin by increasing PGI3 without decreasing PGI2 

concentrations.9 This is of particular importance because both PGI2 and PGI3 are active 

vasodilators and inhibitors of platelet aggregation. Overall, EPA suppresses the production of 

AA-derived eicosanoids while increasing the production of EPA-derived eicosanoids that are 

less potent inducers of inflammation, blood vessel constriction, and coagulation, and thus 

promoting a less thrombotic environment that offers cardiovascular protection.10, 14,15 

Cardiovascular Effects of Omega-3 Fatty Acids: CHD Evidence Explained 

 Furthermore, several lines of evidence (epidemiological, mechanistic, and clinical trials) 

support that omega-3 PUFA, particularly EPA and DHA, exhibit cardio-protective effects and 

may reduce the risk of cardiovascular diseases (CVD). 16 The evidence appears to be the 

strongest for reduced mortality from coronary heart disease (CHD) and stroke.17 For instance, 3 

large scale studies, the Gruppo-Italiano per lo Studio della Sopravvivenza (GISSI)-Prevenzione 

Trial18, 19, the Dietary and Reinfarction Trial (DART) 20, and the Japan EPA Lipid Intervention 
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Study (JELIS) 21, have all shown that EPA and DHA from oily fish and EPA alone significantly 

reduce the risk of cardiac death without affecting the risk of nonfatal coronary events (i.e. 

myocardial infarction, unstable angina). Because of these and other notable findings, the 

American Heart Association currently recommends that patients with known CHD consume at 

least 1 g/d of EPA and DHA, while individuals without known CHD consume at least 2 servings 

per week  (500 mg/d EPA + DHA) of oily fish to reduce the risk of cardiovascular diseases.13, 22 

 Initial efforts to understand the mechanisms by which omega-3 fatty acids reduce risk of 

death from CHD focused on their modulation of classic, modifiable CHD risk factors (e.g. high 

blood cholesterol and triglyceride levels, high blood pressure, overweight and obesity, diabetes 

and prediabetes, smoking, physical inactivity, unhealthy diet, and stress).23, 24 However, lowering 

of serum triglycerides and cholesterol and blood pressure did not explain the observed reductions 

in risk of sudden cardiac death.24 Experimental data from animal and cellular studies 

investigating mechanisms behind which omega-3 fatty acids exhibit their protective effects 

suggest that the main effect of these fatty acids are mediated from antiarrhythmic properties. 15, 24  

Antiarrhythmic Effects 

Studies in rats and marmoset monkeys performed by Pepe and Mclennan25 and 

McLennan et al.26 have shown that long-chain omega-3 fatty acids provide a direct, protective 

effect on the heart itself. For instance, marmoset monkeys who were fed diets containing tuna 

fish oil, compared to sunflower oil, showed a reduction in inducible cardiac arrhythmias and also 

an increased omega-3 fatty acid level in the myocardial membrane (12.6%-31.3%, p < 0.0001), 

indicating incorporation of omega-3 PUFA into heart tissue.26 Similarly, in dog models of 

ventricular tachyarrhythmia, infused omega-3 fatty acids (100 mg EPA/kg BW/d for 8 weeks) 
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decreased the incidence and severity of arrhythmias during coronary artery occlusion, while 

animals in the control group developed ventricular tachycardia or ventricular fibrillation after 

occlusion.27 The EPA group also showed a significant increase in omega-3/omega-6 ratio, in 

myocardial and platelet cell membranes (p < 0.01).27  By incorporating more omega-3 fatty acids 

into cardiac membranes, reduction of the omega-6/omega-3 fatty acid ratio can be achieved, thus 

shifting the myocardium from a proarrhythmic state to an antiarrhythmic state.28 However, the 

exact mechanisms of antiarrhythmic effects of omega-3 PUFA have yet to be clearly established. 

It has been proposed that these specific mechanisms have a direct stabilizing effect of omega-3 

fatty acids on the myocardium itself.13 There are many proposed mechanisms of antiarrhythmic 

effects of omega-3 PUFA29, but perhaps the most extensively studied mechanisms are the 

modulation of ion channels and modification of heart rate variability.  

Ion Channels  

Antiarrhythmic effects may be mediated from ion channels that underlie the excitation of 

myocytes in the ventricular myocardium.22 The presence of omega-3 fatty acids in 

cardiomyocyte membrane phospholipids has been found to reduce electrical excitability and 

modulate the activity of specific ion channels (e.g. sodium, potassium, calcium) in the 

sarcolemma, despite low concentrations.15, 30 Investigations using isolated cardiac myocytes in 

neonatal rats revealed that when arrhythmogenic toxins were added to the myocyte perfusate to 

induce tachycardia, contracture, and fibrillation, the addition of EPA before toxins were added 

prevented tachyarrhythmia, and after toxins were added immediately terminated 

arrhythmias.31 These antiarrhythmic actions occurred with both omega-6 and omega-3 PUFA, 

specifically, LA, AA, ALA, EPA, and DHA. However, LA and AA were considered inconsistent 

because in one-third of the tests they either had no antiarrhythmic action or induced violent 
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arrhythmias due to cyclooxygenase metabolites of AA.31 When cyclooxygenase inhibitors were 

added with AA to the perfusate, antiarrhythmic effects were similar to those of EPA and DHA.31 

Actions of omega-3 fatty acids change the electrophysiology of the myocyte by 

hyperpolarizing the resting membrane potential and increasing the electrical threshold for 

opening of the fast-acting sodium ion channel.31, 32 Both effects require an increase in the 

electrical stimulus to elicit an action potential and prolong the refractory period of the 

myocyte.30, 31 This is thought to occur from omega-3 fatty acids ability to inhibit the conductance 

of voltage-dependent sodium ion channels in the myocyte sarcolemma.30-32 It also occurs from 

inhibition of L-type calcium ion channels in which arrhythmias are induced by excessive 

cytosolic Ca2+ fluctuations that result in delayed after-potentials, thus triggering a fatal cardiac 

arrhythmia. 30, 31, 33 The ability of omega-3 PUFA to inhibit the L-type calcium ion current 

prevents excessive cytosolic Ca2+ fluctuations and the likelihood of an arrhythmia to occur. 31, 

33 Overall, it has been claimed that the combined effects on these 2 ion channels by long-chain 

omega-3 fatty acids promotes electrical stability in the cell and thereby prevents cardiac 

arrhythmias. 15, 30-33 

Heart Rate Variability  

In addition to their antiarrhythmic effects on ion channels, long-chain omega-3 fatty acids 

can influence heart rate variability that may exhibit antiarrhythmic effects through the autonomic 

nervous system. More importantly, reduced heart rate variability is a strong predictor of cardiac 

arrhythmias and sudden cardiac death, especially in patients with a previous myocardial 

infarction (MI). 14,22 A high intake of omega-3 PUFA has been associated with an increased heart 

rate variability in survivors of MI and in healthy men.34, 35 Christensen et al.34 demonstrated that 
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improved heart rate variability is positively correlated with the content of omega-3 PUFA in cell 

membranes (primarily DHA) of post-MI patients who consumed one fatty fish meal per week. 

The same group also reported similar findings in healthy male subjects who received 

supplementation of 2.0 or 6.6 g/d omega-3 PUFA for a 12-week period, which resulted in an 

increased heart rate variability.35 However, a beneficial effect on heart rate variability was only 

seen in men with low heart rate variability before dietary supplementation. This was due to the 

increase of DHA concentration in cell membranes, revealing a dose-dependent effect of omega-3 

PUFA on heart rate variability.35 Results from both studies indicated that the effects of omega-3 

PUFA on heart rate variability are indeed antiarrhythmic and suggest that regular intake of 

omega-3 fatty acids, whether from fish consumption or supplementation, do have a protective 

effect against sudden cardiac death (SCD). 34, 35 Both studies also demonstrated that DHA might 

potentially be the principal omega-3 fatty acid that provides protection against cardiac 

arrhythmias.34, 35 

Prevention of Sudden Cardiac Death 

Clearly, evidence from experimental trials demonstrates that omega-3 fatty acids may 

reduce the risk of CHD mortality and sudden cardiac death (SCD). This is of particular interest 

because ventricular arrhythmias are implicated in 80-90% of SCD.22 It has been shown that 

victims of SCD possess a lower content of omega-3 PUFA in their coronary arteries compared to 

controls, which is consistent with evidence on antiarrhythmic mechanisms of omega-3 fatty acids 

shown in various animal and in vitro studies. 30-34, 36 A review of primary and secondary 

prevention trials evaluating effects of dietary intake and total mortality conducted by 

Mozaffarian37 revealed that all of these studies concluded that moderate consumption of fish or 

fish oil (1-2 servings/week of fatty fish or 250-500 mg EPA+DHA) substantially reduces the risk 
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of CHD death and SCD. A pooled analysis reported that modest consumption compared to no 

consumption results in a 36% lower risk of CHD death with little additional benefit associated 

with higher intakes.37 The strength, consistency, and magnitude of the dose-response in each 

investigation are undoubtedly significant.   

Ventricular Arrhythmias 

The prominent reduction in SCD risk further contributes to the vast amount of evidence 

that omega-3 fatty acids are indeed antiarrhythmic and may prevent fatal ventricular arrhythmias 

in high-risk patients. Because SCD is often the result of a ventricular arrhythmia, implantable 

cardio-defibrillators (ICD) are commonly being used in patients who have already experienced a 

life-threatening ventricular tachycardia/ventricular fibrillation (VT/VF) event.22 This prompted 

several investigations to evaluate the beneficial effects of omega-3 fatty acids for secondary 

prevention in patients with high-susceptibility to recurrent cardiac arrhythmias. 

A randomized control trail conducted by Raitt et al.38 consisted of 200 patients with ICDs 

due to recent episodes of VT/VF events. Patients were randomly assigned to receive 1.8 g/d of 

fish oil (72% n-3 from EPA/DHA) or a placebo (olive oil) and were followed up for 2 years with 

monthly clinic visits for the first 3 months and every 3 months thereafter.38 RBC membrane 

levels of omega-3 fatty acids in patients assigned to the fish oil increased significantly from 4.7% 

at baseline to 6.8% at 1 month and continued to increase to 8.3% at 3 months, with no significant 

change after that (p <0.01). 38 Patients assigned to the placebo group had no significant change in 

RBC omega-3 fatty acid levels during the 24-month period. Unexpectedly, patients assigned to 

the fish oil group had greater incidence of ICD therapy for VT/VF compared to the placebo 

group at 6, 12, and 24 months after randomization (46%, 51%, 65% for fish oil and 36%, 41%, 

59% for placebo, respectively). 38 Recurrent episodes of VT/VF were more common in patients 
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randomized to receive fish oil supplementation (p <0.01). 38 The discovery in this study that fish 

oil did not reduce the risk of VT/VF suggests that omega-3 PUFA may be proarrhythmic in this 

particular population and is contrary to the evidence suggesting antiarrhythmic properties of 

omega-3 fatty acids. 

On the other hand, the Fatty Acid Anti-Arrhythmia Trial (FAAT) 39 included 400 patients 

with an ICD who had either a history of sustained VT/VF or syncope with sustained VT/VF in 

the past 12 months. Patients were randomized to either 4 g fish oil (2.6 g EPA/DHA) or 4 g olive 

oil capsules daily for a 12-month period. The fish oil supplementation group had a trend toward a 

prolonged time to the first ICD event or death/adverse event from any cause (risk 

reduction=28%, p = 0.057) compared to the placebo group.39 After inclusion of therapies for 

possible episodes of VT/VF, the risk reduction became significant at 31% (p = 0.033). 39 

However, noncompliance was high among patients (35%) so a separate analysis was conducted 

on patients who stayed within compliance for 11 months, which yielded a greater risk reduction 

of 38% (p = 0.034). 39 The antiarrhythmic benefits seen in this trial suggests that omega-3 fatty 

acids may be an alternative to antiarrhythmic drugs for reducing recurrent VT/VF episodes in 

patients with ICD, thereby preventing risk of fatal cardiac arrhythmias in those at high risk.39 

The Study on Omega-3 Fatty Acids and Ventricular Arrhythmia (SOFA) 40 had a total of 

546 patients with ICD who had a sustained VT/VF episode within the last 12 months and 

randomly received either a 2 g/d fish oil (900 mg EPA/DHA) or 2 g/d placebo (high oleic acid 

sunflower oil) for approximately one year. After follow-up, 75 patients (27%) of the fish oil 

group and 81 patients (30%) in the placebo group experienced an appropriate ICD intervention 

for VT/VF episodes.40 In a subgroup analysis of patients who previously had a MI before study 

start date (n = 342) there was a tendency toward a longer event-free in the fish oil group 
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compared with the placebo (p = 0.13). 40 Of this subgroup 47 patients (28%) in the fish oil group 

reached the primary endpoint (ICD intervention) compared to 61 patients (35%) in the placebo 

group, indicating a slight beneficial effect.40 

 Overall, the Raiit38 and SOFA40 trials did not find strong evidence of a protective effect 

of omega-3 PUFA intake from fish oil supplements against ventricular arrhythmias in patients 

with ICDs. Although the Raiit38 trial raised the possibility that fish oil may be proarrhythmic, the 

SOFA40 trial did not discover any proarrhythmic properties of fish oil supplements in high-risk 

patients. The inconsistency between results of these 3 studies suggests that omega-3 fish oil 

supplementation may or may not possess antiarrhythmic properties in different patient 

populations. The 2 trials (FAAT39 and SOFA40) that found greater protective effects of fish oil in 

post-MI patients against arrhythmia are consistent with findings in other studies18-20 and suggest 

that the benefit of fish oil might be confined to patients with prior MI. Data from these trials can 

also be interpreted as evidence that habitual intake of fish oil supplements in patients with ICDs 

and recurrent ventricular arrhythmias should not be recommended.38     

Intermediate Chain Omega-3 Fatty Acids and Ventricular Arrhythmias   

A large amount of research has been conducted on long-chain omega-3 fatty acids, while 

supporting evidence on intermediate chain omega-3 fatty acids and cardiac arrhythmia risk is 

less established.16, 22 A direct benefit of antiarrhythmic effects of intermediate chain omega-3 

fatty acids, particularly ALA, is largely from epidemiological data.16 For instance, only 2 large-

scale, observational studies have specifically examined the association between ALA intake and 

SCD.  In the Health Professional Follow-up Study, consisting of 45,722 men, ALA intake was 

not significantly associated with risk of SCD, but a relationship was seen when long-chain 
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omega-3 PUFA (i.e. EPA/DHA) intakes were low (<100mg/d). 41 This suggests that intermediate 

chain omega-3 fatty acids from plant sources may decrease SCD risk in men when intake of 

long-chain omega-3 fatty acids are low, which may potentially have significant relevance in 

populations with low consumption or availability of fatty fish.41 However, it was concluded that 

the antiarrhythmic effects of EPA and DHA might predominate due to their association with a 

40-50% lower risk of SCD.41  

 On the other hand, in the Nurses’ Health Study, ALA intake was inversely associated 

with risk of SCD among 76,763 women even after controlling for other dietary fats including 

long-chain omega-3 fatty acids.42 Women in the highest 2 quintiles of ALA intake had a 38-40% 

lower SCD risk than compared to those in the lowest quintile. This inverse association suggests 

that ALA may influence cardiovascular risk through effects on arrhythmogenesis and fatal 

ventricular arrhythmias that may be due to the conversion of ALA to EPA and DHA (although 

limited) because both have known anti-arrhythmic effects.42 The contradictory findings of these 

particular studies raise the possibility that associations between intermediate-chain omega-3 fatty 

acids and cardiac arrhythmias/SCD may differ between men and women, but further research is 

needed.  

  Although some animal studies have shown potential antiarrhythmic effects of plant-

based omega-3 fatty acids43-45, clinical trials have yet to support this evidence in humans.16 Few 

randomized, dietary intervention trials have been able to reach firm conclusions on ALA intake 

in regards to sudden cardiac death and/or arrhythmias. The Lyon Diet Heart Study46 and Indo-

Mediterranean Diet Heart Study47 reported significant reductions in SCD in patients consuming 

an ALA-rich diet (50-70%, p = 0.015, respectively), but these studies have several limitations 

such as uncertainty of whether high intake of ALA is solely responsible for SCD reductions, 
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inability to precisely determine ALA intake, flaws in methodology, etc.46, 47 Randomized trails 

regarding ALA supplementation in patients have also yet to provide consistent and conclusive 

results.16  

Coronary Artery Bypass Graft 

Coronary artery bypass grafts (CABG) are commonly used as a treatment alternative for 

CAD management when previous therapies have failed. However, there is little evidence 

regarding omega-3 PUFA supplementation as a secondary prevention therapy after surgical 

intervention. This is a contrast to the wealth of literature suggesting benefits from omega-3 

PUFA supplementation in individuals with known CAD.48 A large-scale (n=610), randomized 

controlled trial called the Shunt Occlusion Trail (SOT) 49 was one of the first efforts to 

investigate the effect of omega-3 PUFA supplementation in patients undergoing CABG. Patients 

were assigned to receive either 4 g of fish oil or to the control group, while continuing anti-

thrombotic medications (aspirin or warfarin). The primary endpoint of the study was one-year 

graft patency, which is the likelihood that the graft remains open and free of significant stenosis 

and/or occlusion.49 It was found that omega-3 PUFA supplementation significantly reduced the 

occurrence of vein graft occlusion. An inverse relationship between serum phospholipid omega-3 

fatty acids and vein graft occlusion was also observed.49  

In addition, a recent cohort study conducted by Benedetto et al..48 investigated the impact 

of omega-3 PUFA supplementation after CABG. The researchers discovered that omega-3 

PUFA supplementation was independently associated with a reduced risk of repeat 

revascularization and overall mortality in patients with poor left ventricular function.48 Of 

interest, the significant reduction in those with poor ventricular function supports the 
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antiarrhythmic actions of omega-3 PUFA.48 The general tendency exhibited toward reduced rates 

of recurring revascularization in those treated with omega-3 fatty acids proposed that omega-3 

PUFA may have a protective role in graft and native coronary vessels.48 Above all, results from 

both of these studies strongly support the use of omega-3 PUFA supplementation as a 

cardiovascular medical therapy in patients undergoing and/or after CABG.48, 49  

Anti-Inflammatory Effects and Atherosclerotic Plaque Progression and Vulnerability 

 It has recently been acknowledged that the well-documented anti-inflammatory effects of 

omega-3 fatty acids might also play a role in acute cardiovascular events. 15 Inflammation is 

known to contribute to the development and progression of atherosclerosis. Therefore, the anti-

inflammatory effects of omega-3 fatty acids could help modify progression of the disease by 

decreasing the inflammatory activity and environment associated with atherosclerosis. 15 The 

atherosclerotic process begins when plaque develops in the vascular wall and with time accrues 

and produces ischemic conditions from insufficient blood flow or by rupturing, forming a 

thrombus and occluding the lumen of the vessel.1 Atherosclerotic plaque can be described as 

vulnerable or unstable, suggesting a high risk of rupture, which leads to thrombus formation, 

thereby increasing risk for myocardial infarction (MI) and stroke.1 Vulnerable plaque is 

characterized by lesions with a thin, fibrous cap, few smooth muscle cells, increased amount of 

macrophages, and a large lipid core that is composed of cholesterol, lipids, and dead foam cell 

remnants.1,2 

 When atherosclerotic plaque ruptures, the plaque is exposed to a highly prothrombotic 

environment of the vessel lumen, triggering an acute inflammatory event. The instability of 

plaque is dependent upon the thinning of its fibrous cap, enlargement of the lipid core, and high 

inflammatory content from macrophage infiltration2-4, all of which increase the risk of 
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intraplaque hemorrhage and rupture.3, 4 When intraplaque hemorrhage occurs, red blood cells 

(RBC) enter the atherosclerotic lipid core of the plaque, resulting in an increase of cholesterol 

accumulation due to the large amounts of free cholesterol contained in RBC membranes.2-4 RBC 

membranes are 1.5-2.0 times richer in cholesterol than any other cell in the human body and 

approximately 40% of its cell weight is composed of lipids.2 Because RBCs cannot synthesize 

lipids de novo nor esterify cholesterol, the majority of lipids found within the membrane 

originate from an exchange with plasma lipoproteins.50 Tziakas et al..2 and references therein, 

indicated that there are several mechanisms responsible for the transfer of plasma cholesterol to 

RBCs such as the free cholesterol content in lipoprotein particles, number and distance of 

transfer sites on RBC membranes, structure and composition of RBC membrane, especially 

sphingomyelin content due to its molecular attraction for cholesterol and its proposed ability to 

“trap” unesterfied cholesterol within a particular membrane site. With that being said, the 

cholesterol concentration in RBC membranes must reflect an individual’s lipid profile over a 

long period of time. Therefore, it is plausible that the cholesterol content of RBC membranes is 

an index of plasma cholesterol concentrations indicative of the lipids consumed over the last 

several months.2 The RBC with its lipid-rich membrane can contribute to the cholesterol found in 

atherosclerotic plaque due to the high cholesterol content exceeding that of all other cells.2 Thus, 

it can be postulated that most of the free cholesterol found in atherosclerotic plaque is derived 

from RBC membranes and can lead to plaque instability as seen in patients with CAD.2 

 It has been well established that long-chain omega-3 PUFA can decrease postprandial 

and fasting plasma triglyceride concentrations.15 It has also been shown that long-chain omega-3 

fatty acids from dietary fish oil reduces atherosclerosis in rhesus monkeys51, pigs52, and rabbits53 

due to combination of lipid-lowering effects and decreased inflammation.10, 15 As previously 
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mentioned, omega-3 PUFA have showed significant results on reduction of SCD 22, 37 even in the 

absence of lipid reduction.19 On the other hand, omega-6 PUFA, particularly linoleic acid, has 

been demonstrated to promote inflammation that could contribute to plaque instability with 

excessive intake.54  

PUFA Incorporation into Atherosclerotic Plaque 

 If PUFA are to affect plaque instability then they must be incorporated into the lipid 

membranes and other components of the atherosclerotic lesion itself. A study by Rapp and 

colleagues55 demonstrated for the first time that dietary omega-3 fatty acids are rapidly 

incorporated into the lipid classes of advanced atherosclerotic lesions. Study participants had 

obstructive atherosclerosis and consumed fish oil for 1-16 weeks (6-120 days) before scheduled 

peripheral vascular surgery. It was discovered that concentrations of omega-3 PUFA (EPA and 

DHA) in plaques removed at surgery were much higher than those removed in plaques from the 

control group.55 EPA and DHA accounted for more than 80% of the omega-3 fatty acid 

accumulation in the cholesterol ester fraction of plaque. The total mean of omega-3 PUFA in the 

cholesterol ester was 4.9 ± 3.1% in plaques of the fish-oil fed group, a 350% difference 

compared to controls (p <0.001). 55 Incorporation of DHA and EPA appeared to be linear over 

time, unlike plasma in which the initial increase was found to be exponential until it reached a 

steady state around 3 weeks of supplementation.55 It was also discovered that the accumulation 

of omega-3 fatty acids in phospholipids increased with the length of the feeding period, resulting 

in 8.8% of total fatty acids incorporated into phospholipids, compared to 1.8% for controls 

(490% difference). 55 Total saturated fatty acids reduced from 17.2% to 13% in the plaques of 

fish-oil fed patients (p <0.005). Plasma concentrations revealed a significant decrease in omega-6 

PUFA, primarily linoleic acid, in both cholesterol esters and phospholipid fractions (p <0.001) 
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with a simultaneous increase in omega-3 fatty acids.55 In general, these initial data suggest that 

atherosclerotic plaque steadily accumulated omega-3 fatty acids from plasma became more 

polyunsaturated after fish oil supplementation. It was evident that EPA and DHA replaced 

saturated fatty acids within the cholesterol ester and triglyceride fractions and replaced MUFA in 

the phospholipid fraction of the lipid bilayer within the lesions.55 As a result, the unsaturation 

index of the lipid classes within the plaques greatly increased, which may possibly affect 

membrane fluidity.55 Because lipid composition of the atherosclerotic lesion determines the 

characteristic state of the plaque (liquid-crystalline, crystalline, oil-droplet)56, it may be plausible 

that omega-3 PUFA supplementation can alter the plaque’s physical state and increase fluidity of 

plaque cellular components and infiltrating lipoproteins from plasma,55, 56 all of which further 

contribute to nonfatal and fatal cardiovascular event reduction as a result of enhanced plaque 

stability associated with increased intake of omega-3 PUFA.  

 Although these are indeed novel findings, several limitations exist within the Rapp 

investigation. Most notably, there were inconsistency with types of atherosclerotic plaques 

(carotid, aortic, iliac, femoral) within the patient group and patients were receiving a very high 

dose of fish oil (16-21 g/d EPA & DHA). A dosage this high compared to the average 

consumption of EPA and DHA in Western diets (<0.3 g/d) 12 can be considered unrealistic for 

habitual intake.  Also by comparison, secondary prevention trials 18-21, 47, 57 that demonstrate 

cardio-protective effects provide ≤ 1.8 g/d EPA & DHA, an amount considerably less than the 

dosage used in the Rapp investigation. This suggests that an excessive dosage of fish oil is not 

needed to obtain cardiovascular protection. In addition, these substantial limitations associated 

with the Rapp investigation prompted Thies and colleagues58 to investigate whether moderate 

consumption of omega-3 PUFA would result in DHA/ EPA incorporation into atherosclerotic 
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plaque lipids resulting in improved plaque stability and if intake of sunflower oil would result in 

omega-6 PUFA incorporation into atherosclerotic plaque lipids resulting in reduced plaque 

stability. Plaque morphology and degree of macrophage infiltration determined the patients’ 

plaque stability of carotid arteries. Patients were randomized to receive control oil (80:20 blend 

of palm and soybean oil), sunflower oil (3.6 g/d), or fish oil (1.4 g/d) for a mean duration of 42 

days in all groups.58 Over the period studied, researchers concluded that sunflower oil 

supplementation (40% increase in daily consumption) did not result in increased incorporation 

into carotid plaques, therefore not leading to altered plaque stability.58  

 On the other hand, it was also observed that at a modest dose of supplementation, long-

chain omega-3 PUFA are readily incorporated into atherosclerotic plaque lipids, while 

simultaneously lowering plasma triglyceride concentrations.58 EPA incorporation into plaque 

lipids, particularly phospholipids, was noted to be linear with time.58 This indicates that even at a 

modest level, incorporation of omega-3 PUFA can happen within a short time, suggesting that 

stability can be enhanced in atherosclerotic plaques even at an advanced stage of 

atherosclerosis.58 Plaque morphology measures also indicated that the fish-oil group had more 

stable plaque, characterized by a well-formed fibrous cap, rather than thin inflamed caps as seen 

in the other 2 groups.58 Thies et al.58 attributed the differences between groups to higher EPA and 

DHA concentration in plaque lipids, indicating that these particular fatty acids play a key role in 

establishing plaque vulnerability. Plaques from the fish oil group were less infiltrated with 

macrophages, suggesting that the primary effect of fish oil on plaque inflammation and 

instability might involve modulation of macrophage aggregation and function.58 
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Clinical Implications  

Findings from both Rapp55 and Thies58 propose significant clinical relevance in 

progression of the atherosclerotic disease process. Both studies indicate that plaque stability is 

the primary determinant of rupture and thrombosis-mediated acute coronary events rather than 

the exact degree of atherosclerosis.55, 58 Acute coronary events, also known as acute coronary 

syndromes (ACS), have not only been attributed to the lumen narrowing from disease 

progression but also from the rupture or erosion of atherosclerotic plaques with superimposed 

thrombus formation.2 Plaque rupture with superimposed thrombosis accounts for 60-75% of all 

ACS (unstable angina, myocardial infarction).2  The stabilization of carotid plaques through 

omega-3 PUFA supplementation can decrease ACS and risk of neurological events (e.g. stroke, 

TIA, cerebral aneurysm) in those with advanced atherosclerosis.55, 58 Likewise, fewer 

macrophages in carotid plaques can also decrease the frequency of neurological 

events.58,59 Therefore, it is logical to postulate that the effects of fish oil can inhibit the 

development of plaque instability in both advanced disease and early atherosclerosis.58 These 

effects could also apply to lesions throughout the vasculature including coronary arteries58, 

further elucidating the mechanisms behind which fish oil exhibits such a strong, protective effect 

against fatal MI. 18-21, 47,57 

Moreover, this proposes additional clinical significance of the mechanisms behind which 

RBC membranes contribute to the progression of atherosclerosis and plaque instability. 

Cholesterol accumulation during atherosclerotic lesion progression is a principal contributing 

factor in plaque vulnerability.5, 60 The substantial amount of cholesterol within RBC membranes 

has been recognized to contribute to the amount of free cholesterol within the necrotic lipid core 

of atherosclerotic lesions. 2,61 It has been demonstrated that during plaque progression of an 
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atherosclerotic lesion, (fatty streaks to intermediate plaque to advanced plaque) free cholesterol 

concentration significantly increases over time.62  

The source of RBCs within coronary lesions is provided by leaky immature blood vessels 

that surround the plaque.50 After an intraplaque hemorrhage occurs, RBCs rapidly enter the 

plaque, accumulating free cholesterol and expanding the necrotic core. This increase in free 

cholesterol is associated with lesion instability.5, 50 Moreover, the hemorrhaging within the 

plaque also leads to excessive macrophage infiltration, which further contributes to the instability 

of the plaque via interactions between free cholesterol and macrophages in the necrotic core.5, 50 

Increased free cholesterol content in macrophages may promote macrophage apoptosis and lead 

to increased foam cell production, a key event in the destabilization of atherosclerotic 

plaque.2 The release of RBCs into the lesion from the thinned, fibrous cap also contributes to 

plaque instability by promoting an inflammatory cascade mediated by a variety of mechanisms, 

including hemoglobin toxicity, cholesterol crystallization, and cytokine release from RBC 

membrane receptors.2 Recent studies associating ACS with increased RBC membrane 

cholesterol and interleukin-8 content support the role of RBC in plaque vulnerability and 

atherosclerosis progression.2 Inverse relationships have also been shown between EPA content in 

plaque phospholipids and plaque inflammation and instability, suggesting that the more EPA 

there is within the plaque, the more stable it is.63 Supplementation of omega-3 PUFA ethyl esters 

has been shown to result in fewer foam cells within the plaque and lower T-cell content related 

to increased content of EPA. Such observations indicate that EPA may exclusively play a key 

role in reducing inflammation and stabilizing atherosclerotic plaque.63 In general, the higher the 

oxidative stress/inflammation and concentration of cholesterol within the plaque, the more likely 

an ACS event will occur.  
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Red Blood Cell Membrane Fatty Acid Composition 

Red Blood Cell Fatty Acid Patterns and Acute Coronary Syndrome  

 The observation of higher cholesterol content in RBC membranes of patients with ACS 

compared to those with stable CAD, demonstrated by Tziakas et al.2, proposes a significant 

association between clinical instability and RBC membrane cholesterol content. However, the 

association between long-chain omega-3 PUFA and risk of nonfatal cardiac events remains 

controversial. For instance, results from a cohort study consisting of only women64 indicated that 

higher fish intake is significantly associated with reduced risk of MI, while a study of only men65 

had no relationship between fish intake and MI risk. Although significant reductions in sudden 

death have been observed through EPA/DHA supplementation19 and increased fish 

consumption20, significant impact on MI risk was not observed during these treatments. 

However, recent evidence has shown that a diminished RBC level of EPA and DHA (% of total 

fatty acids) identifies patients at an increased risk for nonfatal CHD events.66 A 20% difference 

in EPA and DHA content was found between ACS cases and controls and those within the 

lowest quartile for EPA/DHA content had a 3-fold increase of ACS compared to those with the 

highest level of EPA/DHA content.66 Even after controlling for several ACS risk factors (lipid 

levels, BMI, alcohol use, DM, HTN, MI, family history of CAD, smoking habit, 

statin/antiplatelet drug use, education level), this biomarker remained a significant predictor of 

case status.66 

 A similar study investigated whether RBC fatty acid pattern discrimination between case 

and control groups would supplement the predictive value of standard CHD risk factors from the 

widely used Framingham Risk Score (age, sex, total cholesterol, HDL cholesterol, HTN, DM, 
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smoking status). 67, 68 Surprisingly, it was discovered that only 2 factors, HDL cholesterol and 

smoking habit, were significantly related to ACS case status.68 It was also found that ten FA were 

significantly related to ACS case status; however, 2 FA (eicosadienoic acid; trans oleic/elaidic 

acid) were directly related, while the remaining 8 FA were inversely related with odds for ACS 

case status.68 These remaining FA included both parent omega-6 and omega-3 PUFA and their 

derivatives (except EPA), the MUFA palmitoleic acid, and the saturated fatty acid, stearic acid. 

The FA with the greatest impact was linoleic acid and is expected because it is the most 

abundant EFA in the diet.68 These findings indicated that identification of RBC-FA patterns 

discriminate ACS cases from controls better than standard risk factors, resulting in substantial 

improvement in prediction of nonfatal cardiac events compared to traditional CHD risk factors 

(i.e. Framingham Risk Factor). 68 A recent case-control study from Park et al.69 in patients with 

nonfatal MI supports the greater ability of RBC-FA profiles for ACS risk identification.   

Omega-3 Index  

 The use of RBC membrane fatty acid (FA) content has become increasingly used as a 

biomarker because it reflects both dietary intake and metabolism processes.68 It is becoming 

more preferred than plasma fatty acids because RBC FA reveal long-term dietary fats consumed 

and is not affected by recent dietary fat intake.6, 7 RBC membranes also reflect the amount of 

omega-3 PUFA incorporated into cardiac membrane phospholipids, which proposes significant 

relevance of RBC FA composition because of the beneficial effects of omega-3 PUFA on 

cellular function arise from their actions on and within cell membranes.70  The recently coined 

“Omega-3 Index” determines the sum of EPA and DHA content in RBC membranes expressed 

as a percentage of total RBC FA and is significantly correlated with myocardial omega-3 PUFA 

content.70-72 Thus, the index is becoming more widely known as an additional risk factor for 
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CHD and SCD.70, 71 The researchers who developed the omega-3 index have proposed that a 

concentration of 8% offers the greatest degree of cardio-protection, while a value of ≤4% is 

associated with the highest risk for CHD death.70, 71 These proposed omega-3 index categories 

have been further supported by Block et al..66, which revealed that those in the ≥8% category are 

about 70% lower for ACS risk than those in the ≤4% category.  

 For fatal cardiac events, such as primary cardiac arrest, Siscovick et al..73 determined 

whether dietary intake and RBC EPA and DHA content were associated with risk of cardiac 

arrest. It was found that an inverse relationship of both dietary intake and RBC membrane levels 

of omega-3 PUFA with risk of primary cardiac arrest exist. For instance, the data showed that an 

intake of 5.5 g of omega-3 PUFA (one fatty fish meal per week) was associated with a 50% risk 

reduction and an RBC omega-3 level of 4.3% and 5% of total fatty acids was associated with a 

50% and 70% risk reduction, respectively.73 After multivariate adjustment, it was still shown that 

modest consumption of long-chain omega-3 PUFA and small increases (1-2% of total fatty 

acids) in omega-3 PUFA levels of RBC membrane are significantly associated with reduced risk 

for primary cardiac arrest.73  

 In the case of SCD, results from the Physician’s Health Study65 indicated that whole 

blood long-chain FA levels (i.e. percent of total FA as EPA/DHA/DPA) at baseline were an 

independent predictor of SCD risk. It was shown that men with levels in the highest quartile 

(6.87% average) had an 81% lower risk of SCD compared to those in the lowest quartile (3.58% 

average). 65 After controlling for other fatty acids and known confounders, the inverse 

relationship with subsequent risk of SCD remained statistically significant65, suggesting that the 

omega-3 index may be more informative than other established risk factors in the case of 

evaluating SCD risk in individuals with CHD.70 Collectively, findings from Siscovick et al.73, 
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Block et al.66 and Albert et al.65 support the use of Omega-3 Index (or biomarkers convertible to 

it) as an independent CHD risk factor in both nonfatal and fatal cardiac events. The evidence 

provided by these 3 studies constitutes the strong, predictive value of this biomarker for primary 

prevention of CHD. Unfortunately, not all studies evaluating the clinical utility of EPA and DHA 

biomarkers have found such positive results. Aarsetoey et al.74 did not confirm a mortality (e.g. 

all-cause and cardiac) benefit, despite an observed omega-3 index of >5.27% in patients with 

ACS.  Therefore, this study was unable to confirm the omega-3 index as a risk marker after an 

ACS event. Other omega-6 and omega-3 PUFA-based metrics have been proposed as prognostic 

risk markers of CHD such as the GRACE score75 and the Lands’ index76, but remain beyond the 

scope of this review.  

Factors Influencing Red Blood Cell Fatty Acid Composition 

 When evaluating long-chain omega-3 PUFA content of RBC, it is important to consider 

factors that influence the incorporation of EPA and DHA into RBC membranes. Sands et al.77 

investigated whether gender, age, body mass index (BMI), ethnicity, smoking status, and 

presence of diabetes had an effect on RBC EPA and DHA independent of fish intake. All of the 

factors, except gender, ethnicity, and smoking status proved to be independent predictors of RBC 

EPA and DHA content.77 The average RBC EPA and DHA content in this sample of individuals 

(n=163) was 4.9%, which is close to the high-risk omega-3 index category for cardiac death.77 It 

was found that with every additional 10 years of age, RBC EPA and DHA content increased by 

0.5 units. Itomura et al.78 and Gudbyarnason79 demonstrated similar associations of increased 

RBC EPA and DHA content with age in humans and animals, respectively. An increase in BMI 

(3 numerical values) was found to decrease EPA and DHA proportions by 0.3 units, suggesting 

that higher BMI values result in lower omega-3 PUFA content in RBC membranes.77 Presence of 
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diabetes was associated with a 1.13-unit decrease in RBC EPA and DHA, while sex was not 

demonstrated to be a determinant of RBC EPA and DHA.77 With regards to dietary intake, it was 

shown that for every monthly serving of tuna or other fatty, nonfried fish consumed, RBC EPA 

and DHA content increased by 0.24 units.77 This suggests that consuming more long-chain 

omega-3 PUFA can easily and quickly increase the omega-3 index; thereby, emphasizing the 

relationship between this biomarker and dietary intake.71, 77  

 Another influential factor to consider is physical activity status. Itomura et al.78 reported 

an inverse association with physical activity and RBC EPA and DHA content. Mechanisms 

behind this association are not precisely understood but may be attributable to catabolism of EPA 

and DHA for production of energy when physical activity is increased.78 Although both Sands et 

al.77 and Itomura et al.78 found that smoking was not associated with reduced levels of EPA and 

DHA in RBC membranes, lower levels of omega-3 PUFA in RBC of smokers have been 

observed.65 Non-Caucasian ethnicity was found to not be of significant predictive value of RBC 

EPA and DHA content, while Caucasian descent remained a significant predictor. This may be 

attributable to that Caucasian Americans are less likely to consume fish than other ethnicities.77  

Diagnostic Implications 

 Based on the vast amount of literature previously discussed, the use of RBC membrane 

FA composition appears to be an ideal biomarker for risk of death from CHD. Because RBCs 

have a rather long lifespan (90-120 days), the fatty acid profile is considered a better indicator of 

long-term fatty acid intake compared to the intermediate lifespan (3 weeks-3 months) of platelet 

or plasma lipids.64, 80 Typically, plasma or serum samples are more commonly analyzed for 

assessment of an individual’s fatty acid status (e.g. total cholesterol, LDL, HDL, triglyceride) 
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because the fatty acid composition of plasma reflects recent dietary fat intake.80 Although, RBC 

and plasma fatty acids are both reliable to use for evaluating cardiac fatty acid status, it is vital to 

consider which biomarker provides the best quantitative estimate of dietary intake. 64, 81 Sun et 

al.64 reported that correlations between omega-3 PUFA and trans fatty acid content and 

corresponding dietary intake measured by validated questionnaires are stronger for RBC than for 

plasma. It has also been proposed that omega-3 PUFA in RBC are more strongly correlated with 

intake than adipose tissue, in which fatty acids have an estimated half-life of 480 days.64 These 

findings indicate that RBC may be considered a superior alternative to plasma and adipose tissue 

measurements when evaluating the relationship of dietary intake and RBC FA composition.  

Fortunately, Harris and von Schacky71 have summarized the potential advantages of RBC 

membranes as biomarkers for omega-3 PUFA intake.70, 71 Clinical information obtained from 

measuring RBC FA composition can not only impact CHD prevention but also the prevention 

and treatment of inflammatory diseases, degenerative diseases, autoimmune disorders, and other 

medical conditions that could benefit from assessing fatty acid balance/imbalances.7  

Food Frequency Questionnaire: Validity and Reliability 

 In addition to a direct measurement of fatty acid intake from blood or tissue specimens, 

an indirect measure such as food-frequency questionnaires (FFQ) and diet records, should be 

used to help relate and confirm reported findings. Currently, there are several biomarker-

validated PUFA FFQ measures, all of which consists of more than 100 questionnaire items. This 

prompted Sublette and colleagues to develop a brief dietary assessment of omega-3 PUFA-

containing foods because the majority of omega-3 PUFA comes from a limited array of food 

sources. 82 Based on the National Cancer Institute’s Diet History Questionnaire, Sublette et al.82 

developed a 21-item questionnaire that included items assessing common types of fish and 
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seafood consumed, as well as walnuts, flaxseeds, flaxseed oil, cod liver oil, and canola oil over 

the past 6 months. The FFQ also included items addressing specific types and dosage of omega-3 

PUFA supplements.82 Frequency of intake for both food and dietary supplements is assessed on 

each item with ranges of never to number of times each month, week, and day. An algorithm was 

also developed to determine individual intakes of long-chain omega-3 fatty acids (ALA, EPA, 

DHA) to account for portion size, consumption frequency, sex and average omega-3 PUFA 

content of food choices.82  

 While determining validity of the questionnaire, it was discovered that FFQ responses of 

EPA/DHA intake were significantly correlated with EPA/DHA plasma levels of study 

participants.82 For example, reported nonintake of DHA appeared to be an accurate indicator of 

low plasma DHA levels. ALA intake estimated from the FFQ, however, was not correlated with 

plasma ALA levels, indicating that this questionnaire may not adequately predict ALA intake. 

Sublette et al.82 indicated that this particular finding remains consistent with other reports of no 

to moderate correlations of FFQ-estimated ALA intake with plasma and RBC levels.82 This 

suggests that both medium and long-term biomarkers (i.e. plasma and RBC, respectively) may 

not be beneficial in validating dietary intake of ALA.  

 The significant association of estimated DHA and EPA intake from FFQ items with a 

plasma biomarker supports the validity of this tool in assessing long-chain omega-3 PUFA 

intake.82 Because EPA and DHA content of RBC has been highly correlated with plasma 

measures of EPA and DHA, this particular FFQ can also be used with RBC biomarkers.70 The 

brief and inexpensive nature of this instrument supports its beneficial use in clinical settings. On 

the other hand, several limitations exist with self-reported measures including bias, subjectivity, 

education level, dependence upon accuracy of memories, and willingness to report details of 
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diet.64 These effects must be considered when implementing FFQ results for correlation with 

biomarkers of fatty acid intake.  

FRAP Assay Implications 

An additional screening tool that may propose clinical significance in individuals with CHD 

is the measurement of total antioxidant, or reducing, power of plasma. The test, developed by 

Benzie and Strain83, determines the ferric reducing ability of plasma (FRAP) by using 

antioxidants as reductants in a redox-linked colorimetric method. Antioxidants within the body 

serve as a means to minimize oxidative stress damage by inhibiting generation of harmful 

reactive oxygen species (ROS), destroying potential oxidants, and scavenging free radicals.83 The 

purpose of the FRAP assay is to detect a change in absorption when the ferric form of iron (Fe 

3+) reduces to ferrous form (Fe 2+) (emitting a strong blue color; Fe 2+/TPTZ), representing the 

reducing power of electron-donating antioxidants within the plasma reaction mixture.83  

 The need for FRAP assays in individuals diagnosed with CHD is supported by several 

studies reporting significant associations between CVD risk and increased oxidative stress 

related to antioxidant deficiency, susceptibility to lipoprotein oxidation, and degree of obesity.83, 

84 In particular, the rate of lipoprotein oxidation proposes great concern because it results in 

diminished levels of PUFA (mostly long-chain omega-3 PUFA) from free radicals attacking 

double bonds within lipid membranes, while also reducing RBC antioxidant content (i.e. Vitamin 

E, beta-carotene, CoQ10, etc.).84 Therefore, a decrease in both the degree of unsaturation and 

antioxidant levels of RBC membranes is anticipated. Additional damaging effects on the RBC 

membrane include decreased membrane fluidity, decreased membrane-bound enzyme activity, 

tissue hypoxia, and alterations in membrane structure.84 It has also been reported that high 

cholesterol content of RBC membranes in overweight and obese individuals may also contribute 
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to the increased rate of lipid oxidation.84 For instance, cholesterol increases within RBC, 

platelets, and leukocytes have been shown to cause enhanced production of oxygen-free radicals. 

Because RBCs contain a high amount of oxygen, it provides a convenient environment for 

cholesterol to exert its pro-oxidant reactions.84 Therefore, it is of interest to investigate the level 

of antioxidant defense and oxidative stress to evaluate whether FRAP assay has the clinical 

utility to assist in prevention and treatment of CHD, as well as obesity.  

Conclusion 

 It is evident that omega-6 and omega-3 PUFA play a vital role in cardiovascular health. 

Deficiencies and imbalances of these essential nutrients as well as PUFA composition within cell 

membranes pose a significant risk for development of CVD. Evidence strongly suggests that 

increasing intake of long-chain omega-3 PUFA reduces the risk of cardiovascular mortality. 

Mechanisms through which omega-3 PUFA reduce cardiac mortality include modulation of 

eicosanoids8, 10,14,15; reductions of arrhythmias25-27, 29,38-40,42,43-45, ischemia-reperfusion injury43, 

serum triglyceride levels15, 58, platelet aggregation and thrombosis8, 14,15; increased heart rate 

variability34, 35, and stabilization of atherosclerotic plaque through decreased inflammation2, 

15,55,58. Incorporation of PUFA into membrane phospholipids is particularly important because it 

determines the fatty acid composition of that specific membrane.2 RBC FA profiles have become 

a new approach to evaluate dietary intake of PUFA in relation to CHD risk.6 Measurements of 

PUFA in RBC membranes provide a long-term reflection of intake over the past several months 

because it is not affected by recent fat intake and has a longer lifespan than that of plasma.2 

Omega-3 PUFA content in RBCs has been highly correlated with dietary intake of EPA and 

DHA and is a significant and independent predictor of CHD.66,65,70-73,77 The prognostic and/or 

diagnostic value of this modifiable risk marker can lead to new dietary and clinical 
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recommendations for CHD prediction and treatment. Combining this biomarker with another 

measurement of PUFA intake such as a self-reported questionnaire can help clinical investigators 

focus on particular foods consumed within prior months to further correlate RBC FA 

composition with dietary intake. An additional tool to enhance clinical applicability of RBC FA 

composition is the ferric reducing ability of plasma (FRAP) to determine level of oxidative stress 

and whether antioxidant therapy may be beneficial in CHD disease treatment/prevention.  
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CHAPTER 3 

MATERIALS AND METHODS  

 

Subjects 

Selection of Cases and Controls  

 Subjects were recruited from the East Tennessee State University Heart Clinic, an 

affiliate of James H Quillen College of Medicine Division of Cardiology. Inclusion criteria for 

case subjects included cardiac catheterization within past 3 months of study start date (June 

2013); signs of obstructive CAD (standard definition: 50% left main or left main equivalents or 

70% of other coronary arteries) or any past history of CABG or coronary stent placement; and 

≥30 years of age. Participants who were also ≥ 30 years of age, received cardiac catheterization 3 

months prior to study start date, but did not show evidence of CAD (<10% stenosis) were 

selected for the control group. Exclusion criteria for both case and control groups include known 

history of CAD, CABG, or coronary stent placement and <30 years of age. A total of 39 subjects 

were included in this study through random selection of medical records or selection of patients 

through scheduled walk-ins. Of the 39 participants, 3 individuals have had previous 

catheterizations more than 5 years ago that resulted in either negative or mild findings; therefore, 

these individuals were included in total sample. One participant was excluded due to incomplete 

information, resulting in a total sample size of 38 participants. The case group consisted of 9 

participants with a significant finding of CAD during catheterization. The remaining 29 

participants did not have significant findings during catheterization and were included in the 

control group. All study subjects provided written informed consent for the study procedures. 
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The study was approved by the Institutional Review Board of East Tennessee State University’s 

Office of Research and Sponsored Programs (Appendix A). 

   

Food Frequency Questionnaire 

A food frequency questionnaire (FFQ) designed by Sublette et al.82 was given to each 

study participant immediately after enrollment. Permission was received from ME Sublette for 

use of the survey for inclusion in this study (Appendix B). The FFQ consisted of 21 items 

assessing the average omega-3 PUFA intake over the past 6 months and took participants 

approximately 5 minutes to complete. Items in the FFQ included specific questions on omega-3 

PUFA-containing foods and omega-3 PUFA supplements. The FFQ survey can be found in 

Appendix A. Intakes of ALA, DHA, and EPA were individually calculated according to an 

algorithm taking into account portion size, frequency of consumption, sex, and average omega-3 

PUFA content of the participant’s food choices. Self-reported measures of age, sex, ethnicity, 

smoking status, and physical activity level were also obtained from each participant after 

completion of FFQ. History of CAD, Diabetes Mellitus, plasma lipid profile, height, and weight 

were obtained from each participant’s medical records. From these records, patient’s body mass 

index (BMI) was calculated for each study participant.  

  

Laboratory Methods 

Blood Collection  

After enrollment and completion of FFQ, blood samples were collected from participants 

into a 5-mL EDTA vacutainer. Within 48 hours after withdrawal, the whole blood sample was 

then transported to the Human Nutrition and Dietetics Research laboratory at the ETSU 
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Valleybrook campus. A fasting state of participants at the time of blood collection was not 

required for the study.  

Plasma Separation 

Immediately upon arrival to the laboratory, blood samples were centrifuged at 4000 rpm 

for 10 minutes at room temperature.  The resulting supernatant (upper fraction of EDTA tube) is 

composed of plasma and was drawn off via Pasteur pipette then transferred to a 3 mL glass 

amber vial. These vials were stored at -30° C until further analysis. The remaining blood sample 

(lower fraction) was then reconstituted with equal parts saline solution (0.9% NaCl), briefly 

vortexed to disrupt the RBC pellet, and centrifuged for 5 minutes (@ 4000 rpm). The colorless 

and clear supernatant layer was removed and discarded and the washing procedure was repeated 

3 times.  

Isolation of Red Blood Cells and Extraction of Lipids 

 Lipid extraction and methylation of RBC was accomplished by modifying the simplified 

procedure developed by Kang and Wang (2005). The final-washed RBC pellet was resuspended 

in 25-μL saline solution (0.9% NaCl) and briefly vortexed (≈60 sec). One hundred μL of RBC 

were extracted and transferred to a clear, 150 mm x 16 mm screw-top test tube with phenolic, 

Teflon-lined screw caps. This step was performed twice to produce duplicate samples. RBC were 

directly methylated by adding 2 mL of hexane (Optima; BP2615; Fisher Scientific, Fair Lane, 

NJ, USA) and 2 mL of boron triflouride-methanol solution (B1252; Sigma-Aldrich, St Louis, 

MO, USA), vortexed until RBC were well mixed, and heated for 1 hour at 100° C in a heating 

block to generate fatty acid methyl esters (FAME) from the RBC membrane phospholipid. The 

methylated fatty acid solution was then cooled to room temperature. A total of 1.5 mL of 
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deionized distilled water (DDW) was added to the test tube, vortexed for about 60 seconds, and 

centrifuged at 4000 rpm for 1 minute. The upper hexane layer was extracted, transferred to a 

new, clear test tube, and dried under nitrogen in a heated water bath (50° C). After evaporation, 

FAME were resuspended in 250 μL of hexane and transported to a 1.5 mL amber glass 

autosampler vial. A low volume insert (300 μL; (National; Fisher Scientific, Fair Lane, NJ, 

USA) was added to each vial to assist in the autoinjection of the sample to the gas 

chromatograph. Five μL of C-17 internal standard (1:9 hexane dilution; (Nu-Chek Prep, Inc., 

Elysian, MN, USA) was also added to each insert within the vials and stored at -30° C until 

further analysis.  

Analysis of Fatty Acids 

 FAMEs were analyzed by flame ionization gas chromatography (GC) (Shimadzu GC-

2010; Shimadzu Corporation, Kyoto Japan) using a capillary column (Zebron ZB-WAX, 30 m 

length, 0.25 mm i.d., 0.25 μm film thickness; Phenomenex, Torrance, CA, USA). Column 

conditions included the carrier gas (helium) flow rate of 30 mL/min and a temperature program 

of a constant temperature ramp (2°C/min) at an initial temperature of 160°C, held for 5 min; 

170°C held for 8 minutes; 180°C held for 10 minutes; 190°C held for 15 minutes; 200°C held for 

15 minutes; and final oven temperature of 210°C held for 20 minutes. Additional instrument 

conditions included: total run time of 100 min; autosampler injection volume of 1 μL; flame 

ionization detector (FID) temperature of 255°C; injector port temperature of 250°C; hydrogen 

flow rate of 40 mL/min; and air flow rate of 400 mL/min.  Individual peaks were identified by 

comparison with known standards (Nu-Chek Prep, Inc., Elysian, MN, USA) that were designed 

to mimic RBC FA composition. Individual FA were quantified as a percent of total area under 
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the peak. The internal standard (ISTD) was included with each GC run for adjustment of fatty 

acid time signatures.  

FRAP Assay 

 Frozen plasma samples were defrosted to room temperature. Total antioxidant capacity 

was measured using FRAP assay adapted from the Benzie and Strain method.83 The FRAP 

reagent was prepared fresh before each series of measurements so that it contained 200 mL 

acetate buffer, (300mM, pH 3.6), 20 mL TPTZ solution (O.062 g TPTZ in 20 mL 40mM HCl), 

20 mL FeCl3 solution (0.2748 g FeCl3-6H20 in 50 mL DDW), and 24 mL DDW. A 20-μL 

aliquot of plasma was added to 60 μL DDW and 1000 μL FRAP reagent, vortexed, and 

incubated at room temperature for 4 min. The absorbance was determined at 593 nm against a 

blank consisting of 1000 μL FRAP reagent and 80 μL DDW. This procedure was performed in 

triplicate for each study participant. Calibrations were set at a standard curve using a series of 

standards from diluting 1 mM ferrous sulphate solution (0.278 g FeSO4 7 H20 in 1 liter DDW). 

The series of dilutions included concentrations of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mM. FRAP 

values for each serum sample was determined by UV-visible spectrophotometer (BioMate 3S; 

Thermo Scientific, Waltham, MA, USA). An average FRAP value was determined for each 

study participant from the triplicate serum samples measured. These individual FRAP values 

were then averaged to determine an overall mean for each case status group.  

 

  

 51 



Statistical Analysis 

Descriptive statistics as well as all subsequent analyses were performed in SPSS version 

21 (IBM Corp., Armonk, NY, USA). General linear models (GLM) were constructed for all 

statistical analyses. To determine if individual FRAP values differed between case status, BMI 

and current tobacco use were used as covariates in the model because current literature suggests 

that these factors are associated with increased oxidative stress .84-87 Although evidence exists 

associating other patient characteristics such as age88, hypercholesterolemia84, diabetes85, and 

hypertension89, 90 with an increase in oxidative stress, these variables were not included as 

covariates due to limited sample size. The GLMs conducted for individual RBC fatty acids were 

performed using only case status as a factor/treatment effect to determine significance between 

cases and controls. Covariates were not used in the GLMs predicting individual fatty acids by 

case status because some fatty acids were found in RBC membranes of only a few individuals. 

GLMs were also performed predicting overall levels of fatty acid types and fatty acid ratios 

based on case status after adjusting for BMI and dyslipidemia. These 2 covariates were chosen 

for the models due to evidence suggesting that overweight/obesity (BMI > 25) and dyslipidemia 

are major contributors to risk of CHD.91, 92 In order to determine the association between RBC 

omega-3 fatty acid content and FFQ daily omega-3 fatty acid consumption, a GLM was 

constructed using the overall average omega-3 content from food sources self-reported in the 

FFQ as a covariate. A p value of <0.05 was considered statistically significant for all analyses. 

 

  

 52 



CHAPTER 4 

RESULTS 

 

Patient Characteristics 

Of the 38 participants for whom patient characteristics were obtained, 2 participants 

failed to respond to all of the questions inquiring about demographics and CVD risk factors (e.g. 

status of diabetes was not indicated and family history was not known due to adoption), and 7 

participants did not have lipid profile information. Consequently, descriptive statistics reflect 

samples of varying size as shown in Table 1. Ethnicity and race were excluded from the 

demographics due to lack of ethnic diversity in the 2 groups. Average BMI of the control group 

was 31.45 ± 1.49 and 31.49 ± 2.11 for the case group, indicating a nonsignificant difference in 

height and weight between the 2 groups. However, based on BMI value both groups were 

considered moderately obese (Obesity Class 1: 30-34.9). A BMI value of >25 and physical 

inactivity is considered a CHD risk factor and was included in the analysis of patient 

characteristics. Although physical activity did not significantly differ between case and controls, 

frequency and duration of physical activity for participants who reported that they are currently 

physically active were included for additional information. Presence of diabetes was more 

prominent in the control group compared to the case group. Current tobacco use, family history 

of CAD, hypertension, and dyslipidemia was higher in the case group compared to controls, 

despite the lower sample size. Total and LDL cholesterol did not significantly differ between the 

cases and controls; however, HDL cholesterol was significantly lower, while triglycerides were 

significantly higher in the case group compared to the controls. In addition, primary reasons for 

cardiac catheterization of both case and control groups included ST-elevation myocardial 
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infarction (STEMI) (n=2), non-ST-elevation myocardial infarction (NSTEMI) (n=5), abnormal 

stress (n=15), unstable angina (n=1), chest pain (n=11), cardiomyopathy (n=1), and severe mitral 

regurgitation (MR) (n=1). 
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Table 1: Characteristics of Study Participants 

 Control Case 
Demographics   

Age (yrs), (mean ± SEM), n  59 ± 2, 29 53 ± 3, 9 
Gender, n (%) 

Male 
Female 

 
14 (48.3%) 
15 (51.7%) 

 
6 (66.6 %) 
3 (33.3%) 

CVD Risk Factors    
Family Hx of CAD, n (%) 

Yes 
No 

 
19 (65.5%) 
10 (34.4%) 

 
7 (87.5%) 
1 (12.5%) 

Diabetes Mellitus, n (%) 
Yes 
No 

 
8 (27.5%) 

21 (72.5%) 

 
1 (12.5%) 
7 (87.5%) 

Hypertension, n (%) 
Yes 
No 

 
19 (65.6%) 
10 (34.4%) 

 
6 (66.6%) 
3 (33.3%) 

Dyslipidemia, n (%) 
Yes  
No 

 
15 (51.7%) 
14 (48.2%) 

 
6 (66.6%) 
3 (33.3%) 

Current Tobacco Use, n (%) 
Yes 
No 

 
7 (24.1%) 

22 (75.9%) 

 
6 (66.6%) 
3 (33.3%) 

BMI > 25, n (%) 
 Yes 
No 

 
23 (79.3%) 

6 (20.7%) 

 
8 (88.9%) 
1 (11.1%) 

Physical Activity, n (%) 
Yes  
No 

 
Frequency 

Once/wk 
Twice/wk 

3 times/wk 
>4 times/wk 

 
Duration 

<30 min/d 
30-45 min/d 
60-90 min/d 

<90 min/d 

 
18 (62.1%) 
11 (37.9%) 

 
 

1 (5.5%) 
4 (22.2%) 
6 (33.3%) 
7 (38.9%) 

 
 

3 (16.7%) 
7 (38.9%) 
3 (16.7%) 
5 (27.7%) 

 
5 (55.5%) 
4 (44.4%) 

 
 

0 
1 (20%) 
2 (40%) 
2 (40%) 

 
 

2 (40%) 
2 (40%) 

0 
1 (20%) 

Lipids   
Cholesterol (mg/dL), (mean ± SEM)  161.6 ± 9.7 166.1 ± 11.6 

HDL (mg/dL), (mean ± SEM)  40.5 ± 1.8 34.7 ± 2.6 
LDL (mg/dL), (mean ± SEM)  94.08 ± 8.7 96.3 ± 10.9 

Triglycerides (mg/dL), (mean ± SEM) 142.1 ± 16.6 193 ± 30.4 
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Red Blood Cell Fatty Acid Composition 

 Fatty acid composition for cases and controls is shown in Table 2. Each individual fatty 

acid is expressed as average percent area under the total chromatogram. An overall average of 

saturated, MUFA, and PUFA of both case and control groups is also shown in Table 2 in 

addition to ratios between each fatty acid type. The GLM analyses did not indicate significant 

difference of individual fatty acids by case status with the exception of palmitic acid (16:0) (p = 

0.018), as depicted in Figure 1. Table 2 also illustrates the results of GLMs predicting individual 

fatty acid levels by case status. F-ratios and degrees of freedom for all models can be found in 

Appendix A. EPA (22:4, n-3), nervonic acid (24:1, n-9), and lignoceric acid (24:0, saturated) 

were found in very few individuals (n=1; n=2; n=3, respectively); therefore, these fatty acids 

were excluded from the analyses due to lack of statistical power. GLM analyses predicting 

average levels of fatty acid types and fatty acid ratios by case status did not indicate significant 

treatment effect; however, the model predicting average omega-6 content in RBC membranes 

found a marginally nonsignificant effect of case status (p = 0.079), while BMI and dyslipidemia 

were significant covariates (p = 0.014; p = 0.009). The overall corrected model for average 

omega-9 RBC content was marginally nonsignificant (p = 0.089). The majority of the explained 

variance was associated with BMI as a covariate (p = 0.018). The results of all the corrected 

GLMs can be found in Appendix B. Figure 2 depicts the average omega-6 PUFA content of RBC 

membranes in case and control status.  
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Table 2: Fatty acid profiles of RBC membranes for controls and cases1

 
 

  

*p-value is significant at <0.05 
1 Fatty acids are expressed by average area under the peak and reported as mean ± SEM; n. 

Fatty Acids  Controls  Cases p-value 
Myristic, 16:0 2.38 ± 1.12; 14  4.23  ± 3.25; 4  0.498 
Palmitic, 16:0 24.51  ± 0.47; 29 21.78  ± 1.29; 9 0.018* 

Palmitoleic ,16:1 2.92 ± 0.39; 26   4.51 ± 1.6; 9 0.171 
Stearic, 18:0  21.76  ± 0.48; 29 22.08  ± 0.73; 9 0.407 

Oleic,18:1 14.57 ± 0.32; 29 13.91 ± 0.83; 8 0.379 
Linoleic, 18:2 12.94 ± 0.49; 29 12.05 ± 0.76; 9 0.373 

DGLA, 20:3 5.16 ± 3.89; 2 0.696 ± 0; 1  0.626 
Arachidonic, 20:4 19.25 ± 0.51; 29  20.18 ± 1.42; 8 0.448 

EPA, 20:5 - 2.56 ± 0; 1 - 
Adrenic, 22:4 3.45 ± 0.34; 26 4.12 ± 0.33; 9 0.294 

DPA, 22:5, n-3 0.82 ± 0.24; 2 1.43 ± 0.21; 4 0.151 
Lignoceric, 24:0  0.96  ± 0.16; 3 - - 

DHA, 22:6  1.92 ± 0.39; 8 2.28 ± 1.24; 2  0.719 
Nervonic, 24:1 1.94 ± 0.26; 2 - - 

Fatty Acid Types & 
Ratios 

Controls (n = 29) Cases (n = 9) p-value 

Saturated 18.92 ± 0.80 19.53 ± 1.50 0.961 
n-9 PUFA 13.71 ± 0.56 13.81 ± 0.74 0.089 
n-7 PUFA 2.62 ± 0.39 3.06 ± 1.25 0.200 
n-6 PUFA 12.38 ± 0.50 11.08 ± 0.80 0.006* 

n-3 PUFA 0.54 ± 0.18  0.72 ± 0.32 0.557 
Saturated: Unsaturated 0.81 ± 0.07 0.91 ± 0.12 0.798 

MUFA: PUFA 1.30 ± 0.05 1.22 ± 0.18 0.464 
n-6: n-3 2.63 ± 0.875 4.06 ± 1.79  0.581 
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Figure 1: Average RBC palmitic acid content by control and case status 
 
 

 
 
Figure 2: Average RBC omega-6 fatty acid level by control and case status 
 
 

Food Frequency Questionnaire Responses 
 

 The overall average omega-3 content from EPA, DHA and ALA reported in the FFQ was 

0.19 ± 0.06 g/d and 0.15 ± 0.06 g/d for the controls and cases, respectively. Table 3 further 

describes the content of each individual omega-3 PUFA as determined by FFQ responses. 
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Portion size for gender was included in the calculation of the daily consumption of omega-3 fatty 

acids. The GLM analyzing case and control differences in average RBC omega-3 content with 

the average FFQ-estimated omega-3 intake as a covariate did not indicate a significant 

association (p = 0.524). This relationship between these variables is depicted in Figure 3. The 

regression line is not indicated in Figure 3 because the GLM analysis indicates that the 

regression line does not significantly differ from a null (empty) model.  Figure 4 depicts the fish 

consumption for cases and controls that were self-reported in the questionnaire. Figure 5 depicts 

the percentage of each case group in categories of self-reported fish consumption frequency in 

the past 6 months. Figure 6 depicts the self-reported consumption of walnuts and flaxseeds for 

cases and controls. Figure 7 depicts the frequency of consumption for those who reported intake 

of walnuts in the past 6 months. Figure 8 depicts the usage and consumption of canola oil, 

flaxseed oil, and cod liver oil self-reported in the FFQ for cases and controls. Figure 9 depicts 

the frequency of consumption for those who reported intake of canola oil in the past 6 months. 

Differences in frequency of flaxseeds, flaxseed oil, and cod liver oil consumption between the 

cases and controls were not calculated due to a low number of responses. It was found that 

17.2%  (n=5) of the control group and 33.3% (n=3) of the case group reported use of omega-3 

PUFA/fish oil supplements, as depicted in Figure 10. The use of the dietary supplements was not 

included in the estimated daily food consumption of omega-3 PUFA due to repeated responses of 

uncertain supplement brand and dosage among participants.  

Table 3: Average ALA, EPA, DHA consumed as reported in FFQ 
 
Omega-3 PUFA Control (n=29) Case (n=9) 

ALA, 18:3 g/d 0.41 ± 0.18 0.30 ± 0.14 
EPA, 20:5 g/d 0.58 ± 0.17 0.02 ± 0.01 

DHA, 22:6 g/d 0.15 ± 0.03 0.06 ± 0.03 
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Figure 3: Correlation between average RBC omega-3 content and average FFQ omega-3 
consumption by control and case status 
 

 
 
Figure 4: Fish consumption reported in FFQ for control and case status 
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Figure 5: Frequency of fish consumption in past 6 months reported in FFQ by control and case 
status 
 

 
 
Figure 6: Walnut and flaxseed consumption reported in FFQ for control and case status 
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Figure 7: Frequency of walnut consumption in the past 6 months reported in FFQ for control 
and case status 
 

 
 
Figure 8: Canola oil, flaxseed oil, and cod liver oil consumption reported in FFQ for control 
and case status 
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Figure 9: Frequency of canola oil consumption in past 6 months reported in FFQ by control and 
case status 
 

 
 
Figure 10: Omega-3 supplement usage reported in FFQ for control and case status 
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FRAP Assay 

A total of 39 FRAP assays were conducted. The average concentration of FRAP values 

for the control group (n=29) was 0.594 ± 0.019 μmol/L, while the average FRAP value for the 

case group (n=9) was 0.659 ± 0.489 μmol/L (mean ± SEM). The overall corrected model for 

predicting FRAP value by case status with BMI and current tobacco use as covariates was found 

to be nonsignificant (p = 0.390). Additional model statistics of FRAP can be found in Appendix 

B. Figure 11 depicts the average FRAP value by case status.  

 

 
 
Figure 11: Average FRAP value by control and case status 
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CHAPTER 5 

DISCUSSION 

 

Red Blood Cell Fatty Acids and Dietary Intake 
 
  It is clear that deficiencies and imbalances of saturated fatty acids, MUFA, and PUFA 

within the diet and composition of cell membranes propose a significant risk for development of 

cardiovascular diseases. The recent suggestion of fatty acid composition within the RBC 

membrane as an additional CHD risk factor brings into question the nature of the differences of 

fatty acid profiles between those with and at risk for CAD. In the present study, 6 particular fatty 

acids (palmitic, 16:0; palmitoleic, 16:1; stearic, 18:0; oleic, 18:1; linoleic, 18:2; arachidonic, 

20:0; and adrenic acid, 22:4) were found in the RBC membranes of all participants. Additionally, 

these fatty acids were the most abundant fatty acids in RBC membranes of cases and controls, as 

indicated by considerably greater percent area under the peak. However, the majority of fatty 

acids present in RBC membranes, with the exception of palmitic acid (16:0, saturated), did not 

differ significantly between case and control groups. It is still of interest to acknowledge the 

amount of each fatty acid present in RBC membranes despite a nonsignificant correlation with 

case status. For instance, MUFA such as oleic acid (18:1, n-9) have previously been shown to 

increase the risk of acute nonfatal MI69 and other ACS events66. Similarly, RBC palmitoleic acid 

(16:1, n-7) has been reported as having a positive relationship with CAD.93 Inverse relationships 

with ACS case status with increasing RBC levels of palmitoleic and stearic acid (18:0, saturated) 

have also been observed.68 Due to the limited sample size of this study, it is unclear whether the 

lack of association between RBC fatty acids (except palmitic) and CAD risk are representative of 

the population or a result of limited statistical power.  
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 The significance of the correlation between RBC palmitic acid and case status indicated 

that a decreased level of this saturated fatty acid was associated with CAD. This finding is 

opposite of the long-standing dietary recommendation that limiting saturated fat is essential in 

preventing CVD. Until recently the association of saturated fat and CHD has remained 

unquestioned. The majority of clinical trials investigating the relationship of reduced saturated 

fat and CHD risk have been achieved by increasing the amount of replacement nutrients such as 

MUFAs or PUFAs.94 Therefore, the positive effects of clinical trials may be inaccurate due to the 

confounding effects of these replacement nutrients. Additionally, relatively few single-nutrient 

clinical trials have investigated the relationship between reducing saturated fat intake and 

CHD.95 A meta-analysis from 21 epidemiologic studies, as well as a subgroup analysis among 15 

of those studies, did not find a significant association with saturated fat intake and risk for CHD, 

stroke, or CVD.94 This nonsignificant association of saturated fat and CVD was further 

supported by another systematic review.95 It should also be taken into consideration the relative 

amount of saturated fatty acids compared to the amount of unsaturated fatty acids present in the 

RBC membrane. Although a nonsignificant correlation was seen with case status and ratio of 

saturated to unsaturated fatty acids, previous findings have shown an inverse association with 

CHD risk when amount of PUFA were higher than that of saturated fat.96 A larger sample size of 

the present study is needed to determine whether overall saturated fat content and/or saturated to 

unsaturated fatty acid ratios are indeed different between those with and at risk for CAD.  

The relatively ample amount of linoleic acid (18:2, n-6) present in both case and control 

groups was not of surprise due to the abundance of this EFA in the Western diet. 12, 68 However, 

it was of considerable surprise that ALA (18:3, n-3) was not present in RBC membranes of all 

study participants. This may be due to the immediate metabolism of this EFA to longer-chain 
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omega-3 PUFA and if ALA is stored within cell membranes it is primarily stored as DHA (22:6, 

n-3). 42 With that being said, DHA was present in both cases and controls, which lends a possible 

explanation for the absence of ALA in RBC membranes. Blood levels of ALA would thereby be 

dependent on recent dietary consumption. Therefore, RBC membranes may not provide an 

accurate representation of ALA intake because they reflect long-term dietary fat consumption. 

Findings from a recent systematic review95 did not support an association between dietary ALA 

and CHD, which are inconsistent with previous reports of reduced risks of SCD. 20, 42, 97  

Moreover, reports of association with CHD risk and the principal omega-6 PUFA, 

linoleic acid, remain inconsistent.68, 69 The RBC content of the most abundant omega-6 fatty 

acids, linoleic (18:2) and arachidonic acid (20:4), found in the present study did not provide 

evidence for a relationship with CAD. However, the overall average of omega-6 PUFA had a 

marginally nonsignificant effect on case status, suggesting that individuals who do not have 

CAD were consuming more omega-6 fatty acids in their diet. This finding further supports the 

large body of literature that suggests higher intakes of omega-6 PUFA reduce the risk for CHD.98 

There have been recent arguments based on the assumption that reducing intake of linoleic acid 

should reduce arachidonic acid content in tissues, thereby reducing the inflammatory potential of 

a high omega-6 intake and result in a lower risk for CHD.98 However, there is limited evidence 

that linoleic acid exhibits a direct proinflammtory and proatherogenic effect in humans.98 Higher 

intakes of omega-6 PUFA have been reported as safe and to reduce intake to lower than the 5-

10% of energy intake recommendation may be more likely to increase rather than decrease the 

risk for CHD.98 

Similarly, omega-3 fatty acids have been largely shown to reduce the risk of CHD, 

atherosclerotic disease progression and cardiac events including mortality, nonfatal MI, and 
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nonfatal stroke.13 The omega-3 fatty acids present in the RBC membrane of cases and controls, 

DHA (20:6) and EPA (20:5), and overall omega-3 fatty acid content were found to be 

nonsignificant indicators of case status. Although the content of DHA was slightly higher in the 

case group and EPA was only present in the RBCs of cases, the limited sample size in this study 

hinders the ability to provide sufficient evidence for a strong relationship with CAD. Previous 

reports have indicated that the amount of long-chain omega-3 fatty acids (EPA+DHA) in RBC 

membranes decrease with an increasing BMI value independent of reported fish intake77 and 

current tobacco use65. It was also found that the case group had a higher n-6: n-3 ratio than the 

controls (4.06 ± 1.79 vs. 2.63 ± 0.875), indicating that the case group was consuming more 

omega-6 fatty acids compared to omega-3 fatty acids. The optimal ratio of n-6: n-3 is 

recommended to be 2-4:18,12 which suggests that both the case and control groups were 

consuming the optimal amount of these EFA. This indicates why the ratio of n-6: n-3 PUFA was 

not considered a significant predictor of case status. This finding was of particular surprise due to 

reports that 60% of the adult population consume an n-6: n-3 ratio of 8-12:1.12 Moreover, it is 

important to note that many individuals were excluded from the n-6: n-3 ratio analyses due to 

lack of omega-3 PUFA in their RBC membranes. This indicates that majority of this population 

are indeed deficient in omega-3 PUFA, a finding that is consistent with the lack of omega-3 fatty 

acids and overabundance of omega-6 fatty acids found in the Western diet.8, 12 A larger scale 

study is needed to determine whether these results are representative of this target population or 

a consequence of limited sample size. 

In addition, a nonsignificant correlation was found between RBC omega-3 fatty acid 

content and self-reported intake of omega-3 fatty acids regardless of case status. This may be due 

to an inaccurate representation of daily omega-3 intake of participants because use of omega-3 
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fatty acid supplementation was excluded.  The FFQ used in this study has shown significant 

correlations of EPA and DHA intake and their respective mean plasma levels, but not for ALA 

intake and plasma levels.82 Although in the present study the use of this FFQ was used to 

correlate dietary intake of EPA, DHA, and ALA with RBC content of these omega-3 FA, rather 

than plasma, it should still remain of consideration that this questionnaire may not effectively 

estimate ALA intake. Previous studies have shown similar findings of no99 or modest100 

correlations with FFQ-estimated ALA intake and RBC ALA composition. However, few studies 

have indicated that dietary assessments provide reasonable estimates of EPA and DHA content 

in RBC membranes.64, 77 Sun et al.64 suggested that obtaining a long-term measure of omega-3 

PUFA intake through use of repeated FFQs can further strengthen correlations with RBC omega-

3 fatty acids by reducing self-reported bias. It is important to note that even accurate self-

reported intake of omega-3 PUFA does not reflect inter-individual differences in fatty acid 

metabolism that may affect RBC membrane FA levels.80 Despite these limitations, this FFQ 

provides a representation of dietary sources of omega-3 PUFA commonly consumed in this 

population, which may guide dietary recommendations for increasing omega-3 PUFA intake in 

this specific age, culture, and Southern Appalachian region.  

It was also found that this particular population was consuming well below the 

recommended daily intakes of ALA and EPA+DHA. The control group was reportedly 

consuming 0.4 g/d ALA and 0.1 g/d EPA and DHA combined, while the case group was 

consuming 0.3 g/d ALA and 0.04 g/d EPA+DHA. Both groups were consuming well below the 

Acceptable Macronutrient Distribution Range (AMDR) for ALA, which is estimated to be 0.6 – 

1.2% of energy intake (based on a 2000-calories diet) or about 1.3 – 2.7 g/d ALA.13 The AMDR 

for ALA is designed as a guideline for healthy individuals to consume omega-3 fatty acids with 
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the intent to prevent EFA deficiency. The upper range of the AMDR corresponds to the amount 

of ALA commonly consumed in the US and should not be considered as an upper limit of this 

EFA. It has been suggested that the tolerable upper limit of ALA is 6.7 g/d.12, 13 The exceedingly 

low intake of ALA observed in this study may be attributable to the infrequent consumption of 

walnuts, canola oil, flaxseeds, and flaxseed oil as reported in the FFQ.  

Recommendations for healthy individuals (those without CHD) are 0.3 – 0.5 g/d 

EPA+DHA; however, average intake of EPA+DHA in the US is only 0.1 – 0.2 g/d.13 This 

indicates that the reported consumption of EPA+DHA in the control group is representative of 

average long-chain omega-3 PUFA intake in the Western diet and US adult population. It has 

also been recommended by the American Heart Association (AHA) that individuals without 

CHD consume fatty fish (salmon, tuna, mackerel, etc.) at least twice per week and include foods 

and oils rich in ALA (flaxseeds, walnuts; canola, flaxseed, and soybean oils). 13 It was found that 

majority of the control group 31% (n=9) was consuming fish rich in omega-3 PUFA only 2-3 

times/month, while only 22% (n=2) was meeting the twice per week recommendation. For 

individuals with CHD, AHA dietary recommendations include consuming about 1 g 

EPA+DHA/d, preferably from fatty fish.13 The Food and Drug Administration (FDA) has 

recommended an upper limit of EPA+DHA intake of 3 g/d.101  

In this study none of the individuals within the case group reported that they were 

consuming fatty fish twice per week, while most of the individuals (67%, n=6) reported 

consuming once/month or less in a 6-month period. This finding explains the minimal amount of 

EPA+DHA consumed per day among the case group. Again, this may not be a true 

representation of EPA+DHA consumed among the case group because use of omega-3 

supplements was excluded. However, it does provide an accurate representation of daily 
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DHA+EPA intake solely from food sources and suggests that this target population cannot 

consume the recommended 1g/d EPA+DHA through diet alone. Thus, individuals with CHD 

may benefit greatly from consuming an omega-3 fatty acid supplement, especially for those who 

have limited access to fish, limited financial means to purchase fish, fish allergens, or those who 

simply do not consume fish.  

Anthropometrics and Lifestyle Behaviors 

It was discovered that family history, hypertension, dyslipidemia, current tobacco use, 

and a BMI value of 25 or greater were more prominent CVD risk factors in the case group 

compared to the controls. With the exception of BMI and dyslipidemia, these CVD risk factors 

were not used to predict case status due to the vast amount of literature indicating that these 

factors largely contribute to the development of heart disease. However, these factors were used 

as a means to determine whether major CVD risk factors are indeed representative of individuals 

with CAD. The higher prevalence of family history, hypertension, dyslipidemia, tobacco use, 

and overweight/obesity (BMI > 25) of those with CAD in this study supports the clinical utility 

of risks factors in evaluating increased risk(s) for heart disease.  

The more prevalent CVD risk factors seen in the case group are considered to be 

modifiable risk factors except for family history, which is considered nonmodifiable (i.e. cannot 

be treated or controlled). Modifiable CVD risk factors include both lifestyle behaviors that can 

be changed as well as diseases and conditions that can be treated with diet, exercise, and/or 

medicine.1 According to a recent report from the World Health Organization (in collaboration 

with the World Heart Federation and World Stroke Organization), modifiable risk factors that 

contribute to the leading causes of death from CHD included tobacco use (9%), increased blood 

glucose levels (6%), physical inactivity (6%), and overweight/obesity (5%).102 Recently the 
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AHA has developed a model of ideal cardiovascular health as a means to reduce the current 

AHA diet and nutrition guidelines to promote cardiovascular health and risk reduction.103 This 

concise model contains 4 lifestyle behaviors that promote optimal cardiovascular health such as 

tobacco avoidance, maintenance of a healthy body weight (BMI <25), participating in regular 

physical activity, and adhering to a healthy diet.103 Adopting all 4 of these lifestyle behaviors has 

been shown to result in an 80% risk reduction from all-cause mortality and protect against 

CHD.104 This significant risk reduction was achieved when study participants maintained these 

ideal behaviors for 7.6 years.104 It was also discovered that tobacco avoidance played the most 

substantial role in mortality and CHD risk reduction when compared to the other lifestyle 

behaviors.104 For instance, the survival rate of participants who smoked and adopted 2 or more 

behaviors remained significantly lower than nonsmoking, sedentary, and obese participants.104 

This particular finding further contributes to evidence suggesting that tobacco avoidance 

prolongs life expectancy.104 Similarly, the higher prevalence of tobacco users observed in the 

case group of the present study demonstrates how tobacco usage is indeed a strong predictor of 

optimal cardiovascular health.  

In addition, the higher prevalence of physical activity observed in the control group 

demonstrates the importance of participating in regular physical activity in regards to 

cardiovascular health. The lower prevalence of physical activity present in the case group may 

also explain why the cases had higher BMI values and were classified as overweight/obese. It 

was also discovered that the case group had higher plasma levels of LDL-cholesterol and 

triglycerides suggesting that the case group may be consuming a diet higher in saturated fat and 

cholesterol. The control group had higher HDL-cholesterol levels compared to the case group, 

which may be attributable to the higher prevalence of physical activity reported among the 
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controls. However, it should be taken into consideration that additional factors could affect LDL, 

HDL and triglyceride levels such as age, gender, and genetics, all of which are nonmodifiable.1 

As expected, it was found that individuals with CAD exhibited more CVD risk factors 

compared to individuals who were at risk for heart disease. The majority of risk factors present 

in the case group are modifiable, which lends promise that diet education and nutritional 

counseling may help individuals with CAD, as well as those at risk for CAD, in this Southern 

Appalachian region to establish healthier habits for improving cardiovascular health. Focusing 

on the 4 ideal lifestyle behaviors recommended by the AHA can not only lower the risk for 

CHD104 and cardiac death105 but also death from all causes104, which may increase the motivation 

of individuals to adopt these lifestyle modifications.  

 

Oxidative Stress 

 FRAP assay was chosen in this study to determine total antioxidant capacity between the 

2 groups as a means to evaluate level of oxidative stress. FRAP assay has been considered a 

reliable and reproducible measurement of overall ability to resist oxidative damage via increased 

antioxidant levels in nonprotein samples (i.e. plasma). 106 Surprisingly, higher FRAP values were 

found in the case group compared to controls, indicating a greater antioxidant capacity in those 

with CAD. Based on the literature, higher FRAP values have also been reported in case groups 

rather than controls for a variety of different disease states.106-109 Increased levels of FRAP can 

be explained by uric acid because uric acid has been shown to account for 60% of FRAP values 

seen in fresh human plasma.83, 108 Thus, uric acid may interfere with the results of this study 

producing false positive readings of total antioxidant capacity in both cases and controls. Using a 

total antioxidant measurement in which uric acid is not confounded in the results should produce 

 73 



a more reliable and valid measure of oxidative stress.110 It was hypothesized that oxidative stress 

would be a significant predictor of case status due to the higher BMI values and smoking 

prevalence among cases compared to controls and the high-inflammatory component associated 

with CHD.  

 

Strengths and Limitations 

 Strengths of this study include detailed fatty acid analysis and clinical applicability due to 

the significance of palmitic acid and case status and the marginally nonsignificant association of 

omega-6 PUFA content with case status. Additional strengths include representation of usual 

omega-3 PUFA intake of individuals (>30 years) with and at risk for CAD in this Southern 

Appalachian region. This study also contributes to the growing body of literature assessing 

potential for RBC FA profiles as a predictive tool for CAD and provides methodology for 

standardization for future clinical use of RBC FA analysis.  In addition, potential limitations 

should also be considered. Small sample size, particularly of the case group, limits the certainty 

of the statistical analyses in this study. A lack of incentive to provide study participants may 

have hindered the ability to acquire a larger sample size. Self-reporting bias likely limits the 

accuracy of the FFQ results as well as the omission of amount of omega-3 PUFA supplements 

being consumed. Even in the absence of reporting bias, inter-individual differences in digestion, 

absorption, genetic, and lifestyle factors result in varied RBC fatty acid levels in relation to 

dietary intake. Also, the FFQ only evaluated omega-3 PUFA intake. Dietary intakes of other 

fatty acids were not assessed and could have been correlated with RBC FA composition. It is 

possible that FRAP assay is confounded by uric acid content in plasma. Limited sample size 

prevented the use of additional covariates in the FRAP statistical model, despite their indication 
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in the literature. Future studies need to address the limitations to validate the oxidative stress 

level and RBC membrane FA composition as a clinical predictor of CAD risk.  

 

Conclusion 

In conclusion, analysis of RBC membrane FA composition shows promise as a novel 

predictive tool in the clinical setting. Substantial differences were found in levels of the saturated 

fat, palmitic acid (16:0) and the overall content of omega-6 PUFA between individuals with and 

at risk for CAD. This suggests that there is indeed a plausible relationship between the use of this 

biomarker and CAD risk. It is evident that this biomarker reflects both fatty acid metabolism and 

cellular composition. However, dietary intake of omega-3 PUFA was not associated with content 

of omega-3 PUFA in RBC FA profiles of individuals with and at risk for CAD. It may be of 

interest to evaluate whether dietary intake of other fat types and individual fatty acids are 

correlated with their respective RBC membrane levels. Surprisingly, oxidative stress was not 

significantly associated with CAD, which may likely be due to uric acid in fresh human plasma. 

The assay used in this study to measure total antioxidant capacity may not have been an accurate 

predictor of oxidative stress levels in both cases and controls. 

It is important to note that the data in the present study are preliminary. As a means to 

reach the entire projected sample size (n=100), data collecting will continue and may further 

substantiate the results found in the present study. It is intended to correct some of the limitations 

that were apparent in this study such as using a measure of oxidative stress in which uric acid is 

not confounded in the results. For instance, future analyses will likely utilize thiobarbituric acid 

reactive substances (TBARS), which should circumvent confounding effects of uric acid in the 

plasma and provide a more reliable, quantitative measure of oxidative stress. Previous studies 
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have shown relation between elevated levels of TBARS and CVD risk factors in individuals with 

stable CAD.111 This particular evidence suggests that using TBARS as a measure of oxidative 

stress may have predictive value as a clinical biomarker in evaluating CAD risk as well as the 

possible need for antioxidants in the treatment of CAD.111 Some limitations regarding the use of 

the FFQ will still remain including the dependence on accuracy of participants’ memories and 

willingness to report details of diet. As a means to limit errors or confusion and to help prompt 

for more accurate responses from participants, a nutrition professional will be present when 

FFQs are given to participants in the future. This may also help eliminate the difficulty 

participants were having in remembering the specific brand and dosage of fish oil supplements. 

Additionally, when a larger sample size is achieved, the use of additional covariates in statistical 

models can be permitted, which may increase the predictive power of the model by reducing the 

effect of confounding variables.  

The implications of this preliminary research contribute to the field of nutrition and 

dietetics by demonstrating an opportunity for registered dietitians (RDs) to participate in 

emerging clinical research evaluating the future use of biomarkers that can easily be assessed by 

RDs in health care settings. The efforts of this research not only provides an example of 

nontraditional roles of RDs but also the potential for RDs to advocate their profession, capability 

and expertise to develop clinical research questions and apply science-based evidence in the 

clinical setting. Overall, this study succeeded in finding characteristic differences in diet and 

lifestyle behaviors of individuals with and at risk for CAD. Analysis of RBC membrane FA 

composition may represent a more reliable measure of fatty acid intake and metabolic processes 

that can aid in choosing effective dietary intervention therapies based on disease status. Future 

studies of greater sample size are needed to validate this biomarker as a predictor of CAD in 
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individuals who are at risk and may benefit from dietary interventions to modify RBC FA 

profiles.  

 

 

 

 

  

  

  

 77 



REFERENCES 

1. Mahan KL, Escott-Stump S. Krause's food & nutrition therapy. 12th ed. St. Louis, 
Missouri: Saunders, Elsevier Inc.; 2008 

2. Tziakas DT, Chalikias GK, Stakos D, Boudoulas H. The role of red blood cells in the 
progression and instability of atherosclerotic plaque. International Journal of Cardiology. 
June 2010; 142(1): 2-7.  

3. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable 
plaque. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010; 30: 1282-1292.  

4. Sudheedran S, Chang CC, Deckelbaum RJ. N-3 vs. saturated fatty acids: effects on the 
arterial wall. Prostaglandins Leukot Essent Fatty Acids. 2010; 82(4-6): 205-209.  

5. Felton CV, Crook D, Davies MJ, Oliver MF. Dietary polyunsaturated fatty acids and 
composition of human aortic plaques. The Lancet. 1994; 344(8931): 1195-6.  

6. Lausada NR, Boullon S, Boullon F, Tacconi De Gomez Dumm IN. Erythrocyte 
membranes, plasma and atherosclerotic plaque lipid pattern in coronary heart disease. 
Medicina. 2007; 67(5).  

7. Jackson JA, Riordan HD, Hunnunghake R, Meng X, Sarwar Y. Red blood cell membrane 
fatty acids as a diagnostic test. Journal of Othromolecular Medicine. 1997; 12(1): 20-22.  

8. Simopoulos, AP. The importance of the omega-6/omega-3 fatty acid ratio in 
cardiovascular disease and other chronic diseases. Experimental Biology & Medicine. 
2008; 233(6): 674-688.  

9. Simopoulos AP. Essential fatty acids in health and chronic disease. The American 
Journal of Clinical Nutrition. 1999;70(suppl):560S-569S.  

10. Calder PC, Grimble RF. Polyunsaturated fatty acids, inflammation and immunity. 
European Journal of Clinical Nutrition. 2002; 56(3): S14-S19.  

11. Sardesai VM. Nutritional role of polyunsaturated fatty acids. J Nutr. Biochem. 1992; 
3:154-166.  

12. Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, 
Zhao G, Etherton TD. Polyunsaturated fatty acids in the food chain in the United States. 
Am J Clin Nutr. 2000;71(suppl):179S-188S.  

13. Kris- Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, 
and cardiovascular disease. Circulation. 2003;106: 2747-2757. 

14. Lee KW, Lip GYH. The role of omega-3 fatty acids in secondary prevention of 
cardiovascular disease. Q J Med. 2003;96: 465-480.  

 78 



15. Calder PC. N-3 fatty acids and cardiovascular disease: evidence explained and 
mechanisms explored. Clinical Science. 2004;107: 1-11.  

16. Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau 
J. n-3 fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit 
cardiovascular disease outcomes in primary and secondary prevention studies: a 
systematic review. Am J Clin Nutr. 2006; 84(1): 5-17. 

17. Lindberg M, Saltvedt I, Sletvold O, Bjerve KS. Long-chain n-3 fatty acids and mortality 
in elderly patients. Am J Clin Nutr. 2008; 88:722-9.  

18. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty 
acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. 
Lancet. 1999; 354(9177): 447-455.  

19. Marchioli R, Barzi F, Bomb E, Chieffo C, Di Gregorio D, Di Mascio R, Franzosi MG, 
Geraci E, Levantesi G, Maggioni AP, Mantini L, Marfisi RM, Mastrogiuseppe G, 
Mininni N, Nicolosi GL, Santini M, Schweiger C, Tavazzi L, Togoni G, Tucci C, 
Valagussa F. Early protection against sudden death by n-3 polyunsaturated fatty acids 
after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per 
lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenione. Circulation. 
2002; 105: 1897-1903 

20. Burr ML, Fehily AM, Gilbert JF, Rogers S, Holiday RM, Sweetnam PM, Elwood PC, 
Deadman NM. Effects of changes in fat, fish, and fiber intakes on death and myocardial 
reinfarction: Diet and Reinfarction Trial (DART). Lancet. 1989;2: 757-761.  

21. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y , Saito Y , Ishikawa Y, et al.. 
Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic 
patients (JELIS): A randomized open-label, blinded endpoint analysis. Lancet 2007; 369: 
1090 – 1098. 

22. London B, Albert C, Anderson ME, Giles WR, Van Wagoner DR, Balk E, Billman GE, 
Chung M, Lands W, Leaf A, McAnulty J, Martens JR, Costello RB, Lanthrop DA. 
Omega-3 fatty acids and cardiac arrhythmias: prior studies and recommendations for 
future research: a report from the National Heart, Lung, and Blood Institute and Office of 
Dietary Supplements  Omega-3 Fatty Acids and Their Role in Cardiac Arrhythmogenesis  
Workshop. Circulation.  2007; 116e: 320e-e335. 

23. Nelms M, Sucher KP, Lacey K, Roth SL. Nutrition therapy and pathophysiology: 2nd ed. 
Wadsworth, Inc. 2011.  

24. Harris WS, Sands SA, Windsor SL, Ali HA, Stevens TL, Magalski A, Porter CB, Borkon 
AM. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: 
correlation with erythrocytes and response to supplementation. Circulation. 2004; 
110:1645-1649.  

 79 



25. Pepe S, McClennan PL. Dietary fish oil confers direct antiarrhythmic properties on the 
myocardium of rats. J. Nutr. 1996; 126:34-42.  

26. McLennan PL, Bridle TM, Abeywardena MY, Charnock JS. Comparative efficacy of n-3 
and n-6 polyunsaturated fatty acids in modulating ventricular fibrillation threshold in 
marmoset monkeys. Am J Clin Nutr. 1993; 58(5): 666-669.  

27. Kinoshita I, Itoh K, Nishida-Nakai M, Hirota H, Otsuji S, Shibata N. Antiarrhythmic 
effects of eicosapentaenoic acid during myocardial infarction – enhanced cardiac 
microsomal (Ca(2+)-Mg2+)-ATPase activity. Jpn Circ J. 1994;58:903-912. 

28. Cheng JWM, Santoni F. Omega-3 fatty acid: a role in the management of cardiac 
arrhythmias? Journal of Alternative & Complementary Medicine. 2008;14(8): 965-974. 

29. Nair SSD, Leitch JW, Falconer J, Garg ML. Prevention of cardiac arrhythmia by dietary 
(n-3) polyunsaturated fatty acids and their mechanism of action. J Nutr. 1997;127(3): 
383-393.  

30. Leaf A, Kang JX, Xiao YF, Billman GE. Clinical prevention of sudden cardiac death by 
n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish 
oils. Circulation. 2003; 107: 2646-2652.  

31. Kang JX, Leaf A, Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. 
Am J Clin Nutr. 2000;71(suppl): 202S-207S.  

32. Xiao YF, Kang JX, Morgan JP, Leaf A. Blocking effects of polyunsaturated fatty acids 
on Na+ channels of neonatal rat ventricular myocytes. Proc Natl Acad Sci USA. 1995;92: 
11000-4.  

33. Xiao Y-F, Gomez AM, Morgan JP, Lederer WJ, Leaf A. Suppression of voltage-gated L-
type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat cardiac 
myocytes. Proc Natl Acad USA. 1997; 94:4182-7.  

34. Christensen JH, Korup E, Aaroe J, Toft E, Moller J, Rasmussen K, Dyerberg J, Schmidt 
EB. Fish consumption, n-3 fatty acids in cell membranes, and heart rate variability in 
survivors of myocardial infarction with left ventricular dysfunction. The American 
Journal of Cardioology. 1997;79(12): 1670-1673.  

35. Christensen JH, Christensen MS, Dyerberg J, Schmidt EB. Heart rate variability and fatty 
acid content of blood cell membranes: a dose response study with n-3 fatty acids. Am J 
Clin Nutr. 1999;70(3): 331-337.  

36. Luostarinena R, Boberg M, Saldeen T. Fatty acid composition in total phospholipids of 
human coronary arteries in sudden cardiac death. Atherosclerosis. 1993; 99(2): 187-93.  

37. Mozaffarian D. Fish and n-3 fatty acids for the prevention of fatal coronary heart disease 
and sudden cardiac death. Am J Clin Nutr. 2008; 87(suppl): 1991S-6S.  

 80 



38. Raitt MH, Connor WE, Morris C, Kron J, Halperin B, Sumeet SC, McClellan J, Cook, J, 
MacMurdy K, Swenson R, Connor SL, Gerhard G, Kraemer DF, Oseran D, Marchant C, 
Calhoun D, Schnider R, McAnulty J. Fish oil supplementation and risk of ventricular 
tachycardia and ventricular fibrillation in patients with implantable defibrillators: a 
randomized controlled trial. JAMA. 2005;293(23): 2884-2891.  

39. Leaf A, Albert CM, Joesphson M, Steinhaur D, Kluger J, Kang JX, Cox B, Zhang H, 
Schoenfeld D: Fatty Acid Antiarrhythmia Trial Investigators. Prevention of fatal 
arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation. 2005; 112: 
2762-2768.  

40. Brouwer IA, Zock PL, Camm AJ, Bocker D, Hauer RNW, Wever EFD, Dullemeijer C, 
Ronden JE, Katan MB, Lubinski A, Buschler H, Schouten EG.; the SOFA Study Group. 
Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable 
cardioverter defibrillators: the study on omega-3 fatty acids and ventricular arrhythmia 
(SOFA) randomized trial. JAMA. 2006; 295(22): 2613-2619.   

41. Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, Siscovick DS, Rimm EB. 
Interplay between different polyunsaturated fatty acids and risks of coronary heart 
disease. Ciculation. 2005; 111:157-164.  

42. Albert CM, Kyungwon O, Whang W, Manson JE, Chae CU, Stampfer MJ, Willett WC, 
Hu FB. Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary 
heart disease. Circulation. 2005; 112:3232-3238.  

43. Ander BP, Weber AR, Rampersad PP, Gilchrist JSC, Pierce GN, Lukas A. Dietary 
flaxseed protects against ventricular fibrillation induced by ischemia-reperfusion in 
normal and hypercholesterolemic rabbits. J. Nutr. 2004; 134(12):3250-3256. 

44. McClennan PL, Dallimore JA. Dietary canola oil modifies myocardial fatty acids and 
inhibits cardiac arrhythmias in rats. J. Nutr. 1995; 125:1003-1009.  

45. Billman GE, Kang JX, Leaf A. Prevention of sudden cardiac death by dietary pure 
omega-3 polyunsaturated fatty acids in dogs. Circulation. 1999; 99:2452-2457.  

46. Di Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, 
traditional risk factors, and the rate of cardiovascular complications, after myocardial 
infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99: 779-785.  

47. Singh RB, Dubnov G, Niaz MA, Ghosh S, Singh R, Rastogi SS, Manor O, Pella D, Berry 
EM. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in 
high risk patients (Indo-Mediterranean Diet Heart Study): a randomized single-blind trial.  
Lancet. 2002; 360(9344): 1455-1461.  

48. Benedetto U, Melina G, di Bartolomeo R, Angeloni E, Sansone D, Falaschi G, Capuano 
F, Comito C, Roscitano A. n-3polyunsaturated fatty acids after coronary artery bypass 
grafting. Ann Thorac Surg. 2011; 91: 1169-1175.  

 81 



49. Eritsland J, Arnesen H, Gronseth K, Fjeld NB, Abdelnoor M. Effect of dietary 
supplementation with n-3 fatty acids on coronary artery bypass grafts patency. Am J 
Cardiol. 1996; 77(1); 31-36.  

50. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula 
J. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a 
source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005; 25: 2054-2061. 

51. Davis HR, Bridenstine RT, Vesselinovitch D, Wissler RW. Fish oil inhibits development 
of atherosclerosis in rhesus monkeys. Arteriosclerosis. 1987; 7: 441-9.  

52. Weiner BH, Ockene IS, Levine PH, Vaudreuil C, Hoogasian JJ. Inhibition of 
atherosclerosis by cod liver oil in a hyperlipidaemic swine model. N Engl J Med. 1986; 
315: 841-6.  

53. Mortensen A, Fischer Hansen B, Fisher Hansen J, et al.. Comparison of the effects of fish 
oil and olive oil on blood lipids and aortic atherosclerosis in Wantanabe heritable 
hyperlipidaemic rabbits. Br J Nutr. 1998; 80: 565-73.  

54. Grimble RF. Dietary lipids and the inflammatory response. Proc Nutr Soc. 1998; 57: 535-
42.  

55. Rapp JH, Connor WE, Lin DS, Porter JM. Dietary eicosapentanoic acid and 
docosahexanoic acid from fish oil. Their incorporation into advanced human 
atherosclerotic plaques. Atheroscler Thromb Vasc Biol. 1991; 11: 903-911.  

56. Small DM, Shipley GG. Physical chemical basis of lipid deposition in atherosclerosis: the 
physical state of lipids helps to explain lipid deposition and lesion reversal in 
atherosclerosis. Science. 1975; 185: 222-29.  

57. Singh RB, Niaz MA, Sharma JP, et al.. Randomized double blind, placebo-controlled 
trial of fish oil and mustard oil in patients with suspected acute myocardial infarction: the 
Indian experiment of infarct survival. Cardiovasc Drugs Ther. 1997; 11: 85-91.  

58. Thies F, Garry JCM, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ. 
Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a 
randomized controlled trial. Lancet. 2003; 361: 477-85.  

59. Schumacher H, Kaiser E, Schnabel PA, Sykora J, Eckstein HH, Allenberg JR. 
Immunophenotypic characterization of carotid plaque: increased amount of inflammatory 
cells as an independent predictor for ischaemic symptoms. Eur J Vasc Endovasc Surg. 
2001; 21: 494-501.  

60. Kolodgie FD, Burke AP, Nakazawa G, Cheng Q, Xu Z, Virmani R. Free cholesterol in 
atherosclerotic plaques: where does it come from? Curr Opin Lipidol. 2007; 18: 500-7. 

61. Kolodgie FD, Gold HK, Burke AP, et al.. Intraplaque hemorrhage and progression of 
coronary atheroma. N Engl J Med. 2003; 349: 2316-25. 

 82 



62. Katz SS, Shipley GG, Small DM. Physical chemistry of the lipids of human 
atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and 
advanced plaques. J Clin Invest. 1976; 58: 200-11.  

63. Cawood AL, Ding R, Napper FL, Young RH, Williams JA, Ward MJA, Gudmundsen O, 
Vige R, Payne SPK, Ye S, Shearman CP, Gallagher PJ, Grimble RF, Calder PC. 
Eicosapentanoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is 
incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated 
with decreased plaque inflammation and increased instability. Atheroscolerosis. 2010; 
212(1): 252-9.  

64. Sun Q, Ma J, Campos H, Hankinson SE, Hu FB. Comparison between plasma and 
erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. J Clin 
Nutr. 2007; 86: 74-81.  

65. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willet WC, Ma J. Blood 
levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002; 
346(15): 1113-1118. 

66. Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in blood cell 
membranes from acute coronary syndrome patients and controls. Atherosclerosis. 2008; 
197: 821-828.  

67. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, et al.. Prediction of 
coronary heart disease using risk factor categories. Circulation. 1998; 97: 1937-1847.  

68. Shearer GC, Pottala JV, Spertus JA, Harris WS. Red blood cell fatty acid patterns and 
acute coronary syndrome. PLoS ONE. 2009; 4(5): e5444.  

69. Park Y, Lim J, Lee J, Kim S. Erythrocyte fatty acid profiles can predict acute non-fatal 
myocardial infarction. British Journal of Nutrition. 2009; 102: 1355-1361. 

70. Harris WS. The omega-3 index as a risk factor for coronary heart disease. Am J Clin 
Nutr. 2008; 87: 1997S-2002S.  

71. Harris WS & von Shacky C. The omega-3 index: a new risk factor for death from 
coronary heart disease? Prev Med. 2004; 39: 212-20.  

72. Harris WS, Sands SA, Windsor SL, Ali HA, Stevens TL, Magalski A, Porter CD, Borkon 
AM. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: 
correlation with erythrocytes and response to supplementation. Circulation. 2004; 110: 
1645-1649.  

73. Siscovick DS, Raghunathan TE, King I, Weinmann S, Wisklund KG, Albright J, 
Bovbjerg V, Arbogast P, Smith H, Kushi LH, Cobb LA, Copass MK, Psaty BM, 
Lemaitre R, Retzlaff B, Childs M, Knopp RH. Dietary intake and cell membrane levels of 
long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA. 
1995; 274: 1363-1367.  

 83 



74. Aarestoey H, Ponitz V, Grundt H, Staines H, Harris WS, Nilsen DWT. (n-3) fatty acid 
content of red blood cells does not predict risk of future cardiovascular events following 
an acute coronary syndrome. J. Nutr. 2009; 139: 507-513.  

75. Harris WS, Kennedy KF, O’Keefe Jr. JH, Spertus JA. Red blood cell fatty acid levels 
improve GRACE score prediction of 2-yr mortality in patients with myocardial 
infarction. Int J Cardiol. 2013; 168(1): 53-39.   

76. Lands WE. Long-term fat intake and biomarkers. Am J Clin Nutr. 1995; 61: 721S-725S.  

77. Sands SA, Reid KJ, Windsor SL, Harris WS. The impact of age, body mass index, and 
fish intake on the EPA and DHA content of human erythrocytes. Lipids. 2005; 40(4): 
343-347.  

78. Itomura M, Fujioka S, Hamazaki K, Kobayashi K, Nagasawa T, Sawazaki S, Kirihara Y, 
Hamazaki T. Factors influencing EPA+DHA levels in red blood cells in Japan. In vivo.  
2008; 22: 131-136.  

79. Gudbyarnason S. Dynamics of n-3 and n-6 fatty acids in phospholipids of heart muscle. J 
Intern Med. 1989; 225(Suppl. 1): 117-128.  

80. Rise P, Elgini S, Ghezzi S, Colli S, Galli C. Fatty acid composition if plasma, blood cells 
and whole blood: relevance for the assessment of the fatty acid status in humans. 
Prostaglandins, Leukotrienes, and Essential Fatty Acids. 2007; 76: 363-369.  

81. Metcalf RG, Cleland LG, Gibson RA, Roberts-Thomson KC, Edwards JRM, Sanders P, 
Stuklis R, James MJ, Young GD. Relation between blood and atrial fatty acids in patients 
undergoing cardiac bypass surgery. Am J Clin Nutr. 2010; 91: 528-534.  

82. Sublette ME, Segal-Issacson CJ, Cooper TB, Fekri S, Vanegas N, Galfalvy HC, Oquendo 
A, Mann J. Validation of a food frequency questionnaire to assess intake of n-3 
polyunsaturated fatty acids with and without major depressive disorder. J Am Diet Assoc. 
2011; 111: 117-123.  

83. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of 
“antioxidant power”: the FRAP assay. Analytical Biochemistry. 1996; 239: 70-76. 

84. Cazzola R, Rondanelli M, Russo-Volpe S, Ferrari E, Cestaro B. Decreased membrane 
fluidity and altered susceptibility to peroxidation and lipid composition in overweight and 
obese female erythrocytes. J Lipid Res. 2004; 45: 1846-1851.   

85. Keaney JF, Larson MG, Vasan RS, Wilson PWF, Lipinska I, Corey D, Massaro JM, 
Sutherland P, Vita JA, Benjamin EJ. Obesity and systemic oxidative stress: clinical 
correlates of oxidative stress in the Framingham study. Arterioscler Thromb Vasc Biol. 
2003; 23: 434-439.  

 84 



86. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, 
Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its 
impact on metabolic syndrome. J Clin Invest. 2004; 114(12): 1752-61.  

87. Morrow JD, Frei B, Longmire AW, Gaziano M, Lynch SM, Shyr Y, Strauss WE, Oates 
JA, Roberts LJ. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in 
smokers: smoking as a cause of oxidative damage. N Engl J Med. 1995; 332: 1198-1203.  

88. Rizvi SI, Jha R, Maurya PK. Erythrocyte plasma membrane redox system in human 
aging. Rejuvenation Research. 2006; 9(4): 470-474. 

89. Hirata Y, Satonaka H. Hypertension and oxidative stress. JMAJ. 2001; 44(12): 540-45. 

90. Ward NC, Croft KD. Hypertension and oxidative stress. Clin. Exp. Pharmacol. Physiol. 
2006; 33: 872-76.  

91. Alexander JK. Obesity and coronary heart disease. Am J Med Sci. 2001; 321(4): 215-224.  

92. Leon AS, Bronas UG. Dyslipidemia and risk of coronary heart disease: role of lifestyle 
approaches for its management. Am J Lifestyle Med. 2009; 3(4): 257-73. 

93. Matsumoto C, Matthan NR, Lichtensten AH, Gaziano JM, Djousse L. Red blood cell 
MUFAs and risk of coronary artery disease in the Physicians’ Health Study. Am J Clin 
Nutr. 2013; 98: 749-54. 

94. Siri-Tarino PW, Sun Qi, Krauss RM. Saturated fatty acids and risk of coronary heart 
disease: modulation by replacement nutrients. Curr Atheroscler Rep. 2010; 12(6): 384-
90.  

95. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence 
supporting a casual link between dietary factors and coronary heart disease. Arch Intern 
Med. 2009; 169(7): 659-669.  

96. Hu FB, Stampfer MJ, Manson JE, et al..: Dietary saturated fats and their food sources in 
relation to the risk of coronary heart disease in women. Am J Clin Nutr 1999, 70:1001–
1008 

97. de Lorgeril M, Renaud S, Mamelle N, et al.. Mediterranean alpha-linolenic acid–rich diet in 
secondary prevention of coronary heart dis  ease. Lancet 1994;343:1454–9.  

98. Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, Engler MM, 
Engler MB, Sacks F. Omega-6 fatty acids and risk for cardiovascular disease: a science 
advisory from the American Heart Association Nutrition Subcommittee of the Council on 
Nutrition, Physical Activity and Metabolism; Council on Cardiovascular Nursing; and 
Council on Epidemiology and Prevention. Circulation. 2009; 119: 902-907.  

99.  Olsen SF, Hansen HS, Sanstrom N, Jensen B. Erythrocyte levels compared with reported 
dietary intake of marine n-3 fatty acids in pregnant women. Br J Nutr. 1995; 73: 387-395.  

 85 



100. Parra M, Schnass L, Meydani M, Perroni E, Martianez S, Romieu I. Erythrocyte cell 
membrane phospholipid levels compared against reported dietary intakes of 
polyunsaturated fatty acids in pregnant Mexican women. Public Health Nutr. 2002; 5: 
931-37. Food and Drug Administration: Substance affirmed as generally recognized as 
safe: menhaden oil. Fed Regist. 1997; 30751-30757.  

101. Harsem NK, Braekke K, Staff AC. Augmented oxidative stress as well as antioxidant 
capacity in maternal circulation in preeclampsia. Eur J Obset Gynecol Reprod Biol. 2006; 
128: 209-215. 

102. World Health Organization (WHO). Global Atlas on Cardiovascular Disease Prevention 
and Control. Geneva, Switzerland: WHO; 2011.  

103. Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for 
cardiovascular health promotion and disease reduction: the American Heart Association’s 
Strategic Impact Goal through 2020 and beyond. Circulation. 2010;121(4):586-613.  

104. Ahmed HM, Blaha MJ, Nasir K, et al. Low-risk lifestyle, coronary calcium, 
cardiovascular events, and mortality: results from multi-ethnic study of atherosclerosis 
(MESA). Am J Epidemiol. 2013;178(1):12-21.  

105. Chiuve SE, Fung TT, Rexrode KM, et al. Adherence to a low-risk, healthy lifestyle and 
risk of sudden cardiac death among women. JAMA. 2011;306(1):62-69.  

106. Lodovici M, Bigagli E, Bardini G, Rotella CM. Lipoperoxidation and antioxidant 
capacity in patients with poorly controlled type 2 diabetes. Toxicol Ind Health. 
2009;25:337-341.  

107. Hetyey CS, Manczur F, Dudas-Gyorki Z, Reiczigel J, Ribiczey P, Vajdovich P, Voros K. 
Plasma antioxidant capacity in dogs with naturally occurring heart diseases.J Vet Med. 
2007;54: 36-39.  

108. Shirvani SS, Rasmi Y, Seyyed-Mohammadzad MH, Khosravifar F. Oxidative stress 
status in patients with cardiac syndrome X. ScienceAsia. 2012;38:136-140.  

109. Harma MI & Erel O. Are d-ROMs and FRAP tests suitable assays for detecting the 
oxidative status? Letters to the Editor/ Eur J Obset Gynecol Reprod Biol. 2006;127  

110. Libby P. Inflammtion and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83: 
456S-460S.: 271-275.  

111. Walter MF, Jacob RF, Jeffers B, et al. Serum levels of thiobarbituric acid reactive 
substances predict cardiovascular events in patients with stable coronary artery disease: a 
longitudinal analysis of the PREVENT study. J Am Coll Cardiol. 2004;44(10):1996-
2002. 

 
 

 86 



APPENDICES 
 
 

APPENDIX A: IRB Approval 

 

 

 

 87 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 88 



APPENDIX B: Permission Letter to Use Food Frequency Questionnaire 

 

 89 



APPENDIX C: Omega-3 Fatty Acid Food Frequency Questionnaire 

  

 90 



 

 
 

 91 



 

 

 

 92 



 

  

 93 



APPENDIX D: Results from General Linear Models 

Table 1B: Results of general linear models (GLM) predicting individual fatty acid levels by 
control and case status  
 
Fatty Acids F-Ratio df p-value 
Myristic 16:0 0.481 1 0.498 
Palmitic 16:0 6.091 1 0.018* 
Palmitoleic 16:1 1.960 1 0.171 
Stearic, 18:0  0.705 1 0.407 
Oleic, 18:1 0.793 1 0.379 
Linoleic, 18:2 0.815 1 0.373 
DGLA, 20:3  0.445 1 0.626 
Arachidonic, 20:4 0.590 1 0.448 
Adrenic, 22:4 1.137 1 0.294 
DPA, 22:5, n-3 3.132 1 0.151 
DHA, 22:6  0.139 1 0.719 
 
Table 2B: Results from GLMs predicting average fatty acid type and fatty acid ratios by case 
status adjusting for BMI and dyslipidemia as covariates. Statistics for the combined corrected 
model are reported.  
 

*p-value is significant at <0.05 
 
 
Fatty Acid Type/Ratio F-Ratio df p-value 

Saturated 0.097 3 0.961 
n-9 PUFA 2.361 3 0.089 
n-7 PUFA 1.634 3 0.200 
n-6 PUFA 4.952 3 0.006* 
n-3 PUFA 0.702 3 0.557 

Saturated: Unsaturated 0.338 3 0.798 
MUFA: PUFA 0875 3 0.464 

n-6: n-3† 0.662 3 0.581 

 
 
 
Table 3B: Results of GLM predicting FRAP value by case status 
 
 F-ratio df p-value 

FRAP 1.033 3 0.390 
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