Reliability Generalization of the Alcohol Use Disorders Identification Test.

Chandni Patel
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Diagnosis Commons, and the Substance Abuse and Addiction Commons

Recommended Citation

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
Reliability Generalization of the Alcohol Use Disorders Identification Test

A thesis

presented to

the faculty of the Department of Psychology

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Arts in Psychology

by

Chandni Patel

August 2008

Alan Shields, Ph.D., Chair

Jodi Polaha, Ph.D.

Jon Webb, Ph.D.

Keywords: AUDIT, Reliability Generalization, Reliability, Alcohol Use Disorders
ABSTRACT

Reliability Generalization of the Alcohol Use Disorders Identification Test

by

Chandni Patel

The Alcohol Use Disorder Identification Test (AUDIT) is a brief screening instrument for assessing alcohol use problems among adults. This instrument is widely used and continued evaluation of its psychometric performance is needed. Reliability and validity are the primary psychometric characteristics of interest when evaluating psychological instruments. The focus of the present study is on reliability, which reflects the consistency or repeatability of the scores produced by a given instrument. Using meta-analytic methods, results showed that approximately 65% of previously published studies using the AUDIT did not appropriately report reliability estimates. Among the remaining studies, weighted reliability estimate centered on .81 (SD = .07) suggesting that the AUDIT generally produces scores of adequate reliability for most research purposes. Multiple regression equations showed that, among a variety of sample and methodological characteristics, the standard deviation of scores was the only statistically significant predictor of the variability in AUDIT score reliability estimates.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>5</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>2. ALCOHOL USE DISORDERS</td>
<td>8</td>
</tr>
<tr>
<td>Alcohol Abuse</td>
<td>9</td>
</tr>
<tr>
<td>Alcohol Dependence</td>
<td>10</td>
</tr>
<tr>
<td>Alcohol Screening Measures</td>
<td>10</td>
</tr>
<tr>
<td>3. PSYCHOMETRIC PROPERTIES OF SCORES PRODUCED BY AN INSTRUMENT</td>
<td>13</td>
</tr>
<tr>
<td>Reliability</td>
<td>13</td>
</tr>
<tr>
<td>Reliability Defined</td>
<td>14</td>
</tr>
<tr>
<td>Reliability Indices</td>
<td>15</td>
</tr>
<tr>
<td>Inter-Rater Reliability</td>
<td>15</td>
</tr>
<tr>
<td>Test-Retest Reliability</td>
<td>16</td>
</tr>
<tr>
<td>Parallel-Forms Reliability</td>
<td>16</td>
</tr>
<tr>
<td>Internal Consistency Reliability</td>
<td>17</td>
</tr>
<tr>
<td>Importance of Reliability</td>
<td>17</td>
</tr>
<tr>
<td>Reliability as a Property of Scores</td>
<td>18</td>
</tr>
<tr>
<td>Reporting Reliability</td>
<td>19</td>
</tr>
<tr>
<td>Reliability Generalization</td>
<td>20</td>
</tr>
<tr>
<td>4. THE PRESENT STUDY</td>
<td>26</td>
</tr>
<tr>
<td>5. METHOD</td>
<td>27</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Data Collection</td>
<td>27</td>
</tr>
<tr>
<td>Criteria for Including Studies in Literature Review</td>
<td>27</td>
</tr>
<tr>
<td>Criteria for Excluding Studies in RG Data Analysis</td>
<td>27</td>
</tr>
<tr>
<td>Coding Studies</td>
<td>27</td>
</tr>
<tr>
<td>Criterion Variable</td>
<td>28</td>
</tr>
<tr>
<td>Predictor Variables</td>
<td>28</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>31</td>
</tr>
<tr>
<td>6. RESULTS</td>
<td>32</td>
</tr>
<tr>
<td>7. DISCUSSION</td>
<td>36</td>
</tr>
<tr>
<td>Limitations</td>
<td>38</td>
</tr>
<tr>
<td>8. CONCLUSION</td>
<td>40</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>42</td>
</tr>
<tr>
<td>VITA</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reliability Generalization Studies in the Published Empirical Literature by Year of Publication</td>
<td>22</td>
</tr>
<tr>
<td>2. Descriptive Statistics for Reliability Coefficients and Predictor Variables (Total N of 57 Samples Yielded 44,356 Respondents)</td>
<td>34</td>
</tr>
<tr>
<td>3. Summary Results from Hierarchical Regression Analyses</td>
<td>35</td>
</tr>
<tr>
<td>4. Comparison of RG Reliability of Alcohol Screening Instruments</td>
<td>41</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

The focus of this paper is on the reliability of scores produced by the Alcohol Use Disorders Identification Test (AUDIT) (Saunders, Aasland, Babor, De la Fuente, & Grant, 1993) across various measurement circumstances. Reliability generalization (RG) is a meta-analytic method used to evaluate the reliability of scores produced by an instrument across different studies (Thompson, 1999) and, therefore, provides a framework for evaluating reliability in the present study. A strength of the RG method is that it can evaluate score reliability estimates obtained from a population of studies as opposed to a single study. Because of this, it has become a popular data analytic approach when evaluating the psychometric properties of scores produced by psychological instruments (Vacha-Haase, Henson, & Caruso, 2002).

Using RG, Shields and Caruso (2003) evaluated the reliability of scores produced by the AUDIT. Their analyses, based on 24 studies, indicated that, relative to score reliability, the AUDIT is appropriate for most research purposes (e.g., .80 or higher) with a reported median internal consistency estimate of .81. Because practitioners tend to demand higher reliability estimates (e.g., .90 or higher), however, Shields and Caruso encouraged the cautionary use of the instrument when used in clinical situations and when making clinical decisions on individual patients. Though generally capable of generating reliable scores, considerable variability within AUDIT score reliability estimates was reported in this study (range = .59 to .91) and this indicates that at times the AUDIT can and will produce scores of inferior reliability. In order to better understand this variability in reliability estimates, the predictor variables of score variability, sample age, sample gender, and whether or not the sample was from a clinical
population were related to it. After controlling for score variability, no sample characteristic was a statistically significant predictor of score reliability.

Data analyzed in Shields and Caruso (2003) were based on studies published up to the year 2000. Since that publication, an additional 172 studies using the AUDIT have been published in the empirical literature. The aim of the present study is to replicate the method used in Shields and Caruso to update the AUDIT RG findings. Results will be of immediate use to both clinicians and researchers interested in using the AUDIT.
CHAPTER 2

ALCOHOL USE DISORDERS

Alcohol use disorders are among the most commonly occurring mental disorders in the United States and are associated with significant personal and societal costs (Goetzel, Hawkins, Ozminkowski, & Wang, 2003). Currently, alcohol use disorders rank as the fifth most costly mental health condition among one sample of employers in the United States (Goetzel et al.). Rice (1990) calculated the total economic cost of alcohol abuse and dependence as US$98.6 billion for 1990 and this figure nearly doubled in less than 10 years (Harwood, Fountain, & Livermore, 1998). Though preventable, it is clear that alcohol use disorders impose a staggering economic burden on society.

In addition to this economic cost, people with alcohol use disorders engage in behaviors that have adverse effects on themselves and those around them. For example, the risk of mortality is increased among adolescents and young adults who engage in problem drinking (e.g., from violence, driving under the influence, and suicide; Windle, 2003). Acute physiological problems (e.g., coronary heart disease, stroke, hypertension, liver cirrhosis, and certain cancers) can also arise as a result of these disorders (National Institute on Alcohol Abuse and Alcoholism [NIAAA], 2000).

Alcohol use disorders typically start in adolescence and the intensity of the disorder tends to peak between the ages of 20-30 (Tartar & Vanyukov, 1994). The course of alcohol use disorders is marked by periods of remission and relapse, with longer abstinence rates after treatment (Rohde, Lewinsohn, Kahler, Seeley, & Brown, 2001). However, research indicates that only a small percent of people with the disorder actually seek treatment and among those who do not seek treatment, the tendency to stop drinking is typically preceded by a crisis and followed
by weeks of abstinence before a relapse (Saunders, Zygowicz, & D’Angelo, 2006). Alcohol use disorders can be diagnosed at two levels: abuse and dependence (APA, 2000). Alcohol dependence is more severe than abuse and leads to cognitive, behavioral, and physiological symptoms; alcohol abuse affects one of these areas and, in most cases, is a precursor to dependence (APA).

Alcohol Abuse

According to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision (DSM-IV-TR) (American Psychiatric Association, 2000) alcohol abuse is a pattern of problem drinking resulting in significant impairment or distress. There are four criteria for the disorder: failure to fulfill major obligations as a result of excessive drinking; recurrent use of alcohol in physically hazardous situations; legal problems arising from excessive alcohol use; and persistent interpersonal or social problems caused by continued alcohol use.

The DSM-IV-TR states that alcohol abuse is expected to develop in people who have recently started using alcohol, and that the abuse may progress into dependence. The idea that alcohol abuse is an early sign of alcohol dependence has been supported by Ridenour, Cottler, Compton, Spitznagel, and Cunningham-Williams (2002). However, this study used retrospective data and this may have influenced the results. Newcomb, Galaif, and Locke (2001) did not find support for the progression of alcohol abuse to dependence. Participants in the study who had abused alcohol were more likely to be in remission 4 years later than to be diagnosed with alcohol dependence. Some factors that predict poor prognosis of alcohol abuse include younger age at onset of drinking, heavy episodic drinking, family history of alcohol abuse, and being single, divorced, or separated (Grant, Stinson, & Harford, 2001).
Alcohol Dependence

According to the DSM-IV-TR, alcohol dependence is a longstanding pattern of problem drinking that leads to clinically significant impairment or distress. People diagnosed with alcohol dependence meet the criteria for alcohol abuse but must also meet three of the following criteria over a 12-month period: tolerance (a need for increased amounts of alcohol to reach intoxication or achieve the desired effect); withdrawal (having physical symptoms as a result of not drinking alcohol for a certain period of time); consumption of larger amounts of alcohol over a longer period of time; persistent desire to cut down or control drinking habits; large amounts of time spent trying to obtain alcohol; and physical and psychological effects due to continued long-term use.

Alcohol Screening Measures

The goal of alcohol screening is to identify people with an alcohol use disorder or to identify people who are at high risk for developing an alcohol use disorder (Carey & Teitelbaum, 1996). In this way, these individuals can be referred directly to treatment or for additional assessment. Self-report is the most common method of assessment used for alcohol use problems, including alcohol screening (Maisto & Connors, 1990). Though alcohol screening can be accomplished via physiological tests and chemical biomarkers (e.g., blood alcohol content and carbohydrate deficient transferrin), studies have demonstrated that self-reports are often better indicators of alcohol use problems and, moreover, are more efficient and cost-effective tests (Alte, Luedemann, Rose, & John, 2004). The most commonly used self-report alcohol screening instruments include measures such as the AUDIT, the Michigan Alcoholism Screening Test (MAST) (Selzer, 1971), the CAGE (Mayfield, McLeod, & Hall, 1974), the Alcohol Use Inventory (AUI) (Horn, Warnberg, & Foster, 1990), and the Substance Abuse
Subtle Screening Inventory-3 (SASSI) (Miller, 1985). A detailed evaluation of all these measures is beyond the scope of this review; only the AUDIT will be discussed in detail.

The AUDIT (Babor, Higgins-Biddle, Saunders, & Monteiro, 1992) is a brief alcohol screening tool that requires approximately 2 minutes to administer and approximately 3 minutes to score (Knight, Sherritt, Harris, Gates, & Chang, 2003). Developed by the World Health Organization for use in primary care settings, the AUDIT was validated on primary health care patients in six countries (Australia, Bulgaria, Kenya, Mexico, Norway, and United States of America) as a screening tool for harmful drinking patterns in the general population (Babor et al.). More specifically, the primary objective of the AUDIT is to identify people with hazardous drinking behaviors (i.e., they have an increased risk of harm to themselves and others), harmful drinking behaviors (i.e., drinking behavior has adverse effects on them physically and mentally), and or alcohol use disorders (as specified in the *DSM-IV-TR*).

Item selection for the AUDIT was based on daily alcohol intake, frequency of consuming six or more drinks per drinking episode, and the ability to discriminate hazardous and harmful drinkers (Saunders et al., 1993). There are 10 questions in the AUDIT and each response receives a score of 0 to 4, resulting in a Total scale score ranging from 0 to 40 where higher scores are more indicative of alcohol use problems (Aertgerts et al., 2000). A score of eight is often used as a cut-off for high risk of an alcohol use disorder (Knight et al., 2003). In addition to the Total scale score, the AUDIT assesses alcohol use across three domains including how much and how often a person drinks (Consumption scale), how dependent he or she is on alcohol (Alcohol Dependence Symptoms scale), and how adverse the consequences are as a result of his or her drinking (Negative Consequences scale) (Aertgerts et al.; Reinert & Allen, 2002).
Since the development of the AUDIT several short versions, modifications for different populations, and translations into other languages have also been created. The instrument is reportedly a preferred measure for assessing use problems because it is brief, focuses on current drinking behaviors, and was derived from an international sample of primary care patients (Allen, Reinert, & Volk, 2001). The AUDIT is used internationally in clinical settings as well as for research purposes (Selin, 2003). Indeed, since its development the AUDIT has been reported in over 200 studies appearing in the empirical literature.
CHAPTER 3

PSYCHOMETRIC PROPERTIES OF SCORES PRODUCED BY AN INSTRUMENT

The psychometric properties of reliability and validity are usually evaluated before psychological instruments, including screening tools, can be endorsed for use and there are many statistical methods available to researchers to ensure that these qualities are satisfactory (e.g., Cook & Campbell, 1979; Grimm & Yarnold, 1995, 2000; Kazdin, 1992; Keppel, 1991). Validity can be briefly described as the extent to which scores from an instrument measure the intended construct, while reliability is the extent to which scores from a measurement are consistent or repeatable. While each can be considered uniquely from the other, they are highly related. For example, test scores can be reliable but not valid but they cannot be valid yet unreliable. That is, reliability is a necessary albeit insufficient prerequisite for validity. The remainder of the discussion focuses on the property of reliability; however, we again acknowledge that validity and reliability are closely related.

Reliability

Reliability plays an important role in the professional lives of psychologists, yet aspects of it may not be well understood (Li, Rosenthal, & Rubin, 1996). Indeed, this notion may contribute to the current trend of underreporting reliability indices in the alcohol screening literature (Miller, Shields, Campfield, Wallace, & Weiss, 2007; Shields & Caruso, 2003, 2004) and larger published literature (e.g., Kieffer, Reese, & Thompson, 2001; Meier & Davis, 1990; Vacha-Haase, Henson, & Caruso, 2002; Whittington, 1998). In order to explain the concept of reliability, the following three sections will define and interpret reliability, describe the reliability indices, and explain the importance of reliability.
Reliability Defined

Reliability is broadly defined as the consistent measurement of a particular construct under different measurement conditions. In other words, measurements are reliable if the scores obtained are not affected by random variables in the testing situation. This idea can be represented through Lord and Novick’s (1968) classical measurement theory which posits that observed scores (the respondent’s actual score obtained on an instrument) are made up of a true score and a certain amount of random error. The true score is a theoretical score and defined as the average score an examinee would obtain if she or he was assessed on a given test an infinite number of times. Measurement error is defined as the difference between a true score and an observed or actual score and can be a result of random or systematic error. Random error from various sources causes the true score to fluctuate. Sources of random error include testing procedures (e.g., time allotted to each examinee) and test setting (e.g., room temperature) as well as examinee characteristics (e.g., examinee’s level of energy or mood). Systematic error, on the other hand, reflects consistent inaccuracies in the test setting or the measurement. An example of systematic measurement error is loud noises or distractions outside the testing room that affect all examinees. The true score and the random error together make up the observed or actual score. Thus,

\[\text{Observed score} = \text{true score} + \text{error}. \]

The reliability coefficient represents variability in the observed score that is due to true or actual individual differences in the observed scores (e.g., a reliability coefficient of .75 indicates that 75% of the variability in scores is from actual differences between the examinees, whereas 25% is from random error).
Score reliability estimates will change as a measure is administered to different samples, partially as a function of the score variance in a given group. Variance (σ^2) is a measure of dispersion that represents the difference between each observed score and the average of the observed scores. As mentioned above, the observed score consists of a true score and an error score. Therefore, observed variance consists of a true score variance and an error score variance.

Classical test theory interprets reliability in terms of the ratio of true score variance to observed score variance. The reliability coefficient will typically range from 0 to 1, where the value of 0 indicates an absence of reliability and the value of 1 indicates perfect reliability and no error variance in observed scores. Measures usually generate scores that have a varying degree of reliability and not scores that are completely unreliable or completely reliable. There are no strict guidelines regarding the acceptability or unacceptability of a particular reliability coefficient. Yet, current standards suggest a minimum score reliability of .70 for the early stage of measure development, .80 for basic research purposes, and .90 when important clinical decisions are being made (Nunnally & Bernstein, 1994).

Reliability Indices

The degree of error within the scores of an instrument is measured by a variety of reliability indices. These indices evaluate the unique sources of random error within the scores of a given construct. There are four common estimates of reliability reported in empirical studies: inter-rater reliability, test-retest reliability, parallel-forms reliability, and internal consistency reliability, and each measures a different type of error.

Inter-Rater Reliability

In some instances, two or more researchers are measuring the same construct. Each researcher records information or carries out measurements independently. Random error can
occur in this situation as each researcher may focus on difference aspects of the construct and
inter-rater reliability estimates can quantify this random error. The researchers would make
observations or measurements according to a pre-established protocol. A correlation coefficient
is calculated with the following equation that quantifies the strength of the relationship between
each observer’s ratings,

\[
\text{Total Agreements} / (\text{Total Agreements} + \text{Total Disagreements})
\]

The inter-rater reliability is high if the different raters make similar observations or
measurements. Empirical studies generally use the kappa coefficient to estimate inter-rater
reliability because it accounts for random chance agreement (i.e., the likelihood that the
researchers agree by chance).

Test-Retest Reliability

If a construct is relatively stable (i.e., it does not tend to naturally vary over time), an
instrument should produce consistent scores from one measurement occasion to the next. Test-
retest reliability estimates evaluate the degree to which an instrument yields similar results from
one testing occasion to the next. Constructs such as intelligence and personality are thought to
remain stable over time and should produce high test-retest reliability estimates, even over long
periods of time (e.g., a year). This reliability index accounts for random error that may arise from
the different testing conditions and represents the error of interest in test-retest reliability
methods.

Parallel-Forms Reliability

Parallel-forms reliability is estimated by administering a measurement tool to a sample
and then on a separate occasion administering a different version of the same tool to the same
sample. In other words, this estimate is the correlation of scores obtained from two separate
measures of the same construct that are thought to be equivalent. Random errors due to the characteristics of the measurements can be quantified with this reliability estimate.

Internal Consistency Reliability

Internal consistency reliability coefficients estimate the correlation among different items within the same scale. Therefore, a high internal consistency coefficient indicates that the items are measuring the same construct and a low correlation indicates error within the instrument (i.e., the items may not measure the same construct). Common measures of internal consistency reliability are the split-half method (Spearman, 1910), the Kuder-Richardson method (Kuder & Richardson, 1937), and Cronbach’s coefficient alpha (Cronbach, 1951).

Importance of Reliability

Attenuation theory (Lord & Novick, 1968) suggests that the correlation between observed scores is lower than the correlation between corresponding true scores. This is so because the correlation between observed scores is attenuated by unreliability of scores obtained from the measurement. For example, if a particular alcohol screen measure generated score X and a measure of depression generated score Y, their observed correlation is attenuated or lower than their true score correlation. The difference between an observed correlation and a true score correlation is due to the less than perfect reliability of scores produced by the two measures. This unreliability of measures of alcohol use, X, and depression, Y, may lead researchers to incorrectly conclude that the two variables are unrelated (Type II error; failing to identify a significant relationship where one exists). Further, the unreliability of scores generated by X and Y may reduce the observed correlation such that even clinically significant relationships go undetected. Thus, undetected and unsystematic errors in measurement lead to unreliable test scores, and unreliable test scores can significantly interfere with a researcher’s power to draw
Accurate conclusions about the relationships among events, variables, and concepts. This fact has often led to the conclusion that 'reliability precedes validity.'

Reliability as a Property of Scores

Reliability is recognized as a property of scores because reliability coefficients change as the use of the measurement or testing condition changes (Feldt & Brennan, 1989; Strube, 2000; Thompson, 1994, 1999; Wilkinson, 1999). In other words, reliability is not a property of a test as is often assumed but rather a property of scores generated by a test, which, as noted, can be influenced by multiple and various methodological and subject characteristics. Thompson noted, however, that researchers often fail to recognize this important aspect of reliability. While not a novel concept, its importance is severely understated. It is important to the extent that scores from samples with different characteristics (such as differing diagnostic groups, ages, or gender representation) can and will differ with respect to reliability.

Despite this knowledge, both researchers and practitioners frequently refer to tests as being reliable (or unreliable) or that a particular test is more reliable than another. While this may appear to be a semantic issue, Thompson (1994) stresses that referring to a test as reliable or not is simply incorrect and can have deleterious effects on scholarly thinking. For example, researchers often claim that an instrument is reliable without providing any reliability coefficients generated from the current data set (cf. Vacha-Haase et al., 2002). The negative consequence of this is that researchers incorrectly reinforce that reliability is a property of instruments. Furthermore, researchers are unaware of what sample characteristics will alter reliability coefficients and it makes it difficult for other researchers to compare reliability coefficients obtained from their own data sets.
Reporting Reliability

As it becomes clear that reliability is a property of scores and not tests, guidelines on reporting reliability estimates are being created. Thompson (1994) has stated that authors interested in submitting articles to the Educational and Psychological Measurement journal must follow the principle of reliability as a property of scores. He has specifically stated that referring to a test as reliable will be considered unacceptable and that authors should report reliability coefficients of the scores from the given instrument.

More recently, the Task Force on Statistical Inference (TFSI), brought together by the Board of Scientific Affairs of the American Psychological Association (APA), created guidelines on reporting statistics. They state that reliability is not a property of tests but rather a property of scores; furthermore, authors should provide reliability coefficients of scores obtained during research even if the study is not psychometric in nature because these estimates are important for assessing effect size (Wilkinson & the APA/TFSI, 1999).

Even though the importance of reporting reliability estimates in research has been stressed, the empirical literature to date appears to lack these data. For example, Vacha-Haase et al., (2002) reviewed over 20 studies that independently evaluated score reliability reporting practices for various measures and found that reliability was underreported in these studies. Among all the measures under evaluation (n =28), less than 25% of the studies on specific measures reported reliability information based on current data and there was great variability in the status of reliability reporting between studies (range = 0%-71%). Meier and Davis (1990) have reported similar findings on reliability reporting in the Journal of Counseling Psychology (JCP). In 1967, only 5% of studies reported reliability measures. Although, this percentage increased to 23% in 1987, reporting practices are still low. Kieffer et al. (2001) reported that
among articles published in JCP from 1988 to 1997, 43.9% of studies adequately reported reliability, 15.9% cited previously reported reliability estimates, and 40.2% did not mention reliability at all. Reviews of other journals have yielded similar results (Thompson & Snyder, 1998; Whittington, 1998).

However, more recent reviews have indicated some improvement in reliability reporting practices. O’Rourke (2004) found that approximately 68% of studies on the Center for Epidemiologic Studies Depression Scale reported reliability coefficients for the current data set. Ross, Blackburn, and Forbes (2005) estimate nearly 50% of articles published on the Patterns of Adaptive Learning Survey Goal Orientation Scales contain reliability data from the current samples. Hellman, Fuqua, and Worley (2006) reported that approximately 90% of articles discussing the Survey of Perceived Organizational Support provided reliability estimates from current data. These later findings are perhaps indicative of improved reliability reporting practices in the empirical literature.

Reliability Generalization

The term Reliability Generalization (RG) was introduced by Vacha-Haase (1998) as a meta-analytic procedure and is an extension of the validity generalization technique proposed by Schmidt and Hunter (1977) and Hunter and Schmidt (1990). There are two main objectives of RG studies: 1) to identify the typical reliability coefficients of scores obtained from a given instrument's measurements; 2) to recognize the variability among reliability scores and characterize the sources of this variance that predict or explain variation across samples and administration protocols.

Like other meta-analytic procedures, published studies are used as the units of analysis in an RG and means, standard deviations, and other descriptive statistics are computed for the
reliability coefficients across studies. Within RG studies, reliability coefficients are the dependent variable of interest and features of the studies and samples that best predict variation in these reliability coefficients are investigated.

Vacha-Haase (1998) also provided the first example of an RG study through examining score reliability of the Bem Sex Role Inventory. In this evaluation, it was reported that only 13.8% of studies provided reliability estimates from the data at hand, while 18.9% of studies induced reliability by report of previous estimates and 67.3% made no mention of reliability. Furthermore, this evaluation of studies demonstrated that the reliability of scores can be predicted by various sample and method characteristics (Vacha-Haase). Vacha-Haase, through this RG, demonstrated the importance of recognizing reliability as a property of scores rather than measures, as reliability coefficients tended to widely vary across the 87 samples.

Once Vacha-Haase (1998) established the usefulness of RG studies, Educational and Psychological Measurement (Thompson, 2000) dedicated a section to RG. In this special section three RG studies were highlighted: the reliability of the Beck Depression Inventory (Yin & Fan, 2000), the “Big Five Factors” of personality (Viswesvaran & Ones, 2000), and the NEO Personality Scales (Caruso, 2000). These studies further supported the usefulness of viewing reliability in terms of scores by recording significant variability in score reliability estimates, and they also stressed the increased need for reporting reliability estimates. Since that time, we have identified a total of 43 studies using RG methods to evaluate literally dozens of instruments. These studies are listed in Table 1.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Instrument Assessed</th>
</tr>
</thead>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Source</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
</table>

CHAPTER 4
THE PRESENT STUDY

As discussed above, it is clear that research on the reliability estimates of scores produced by alcohol screening instruments is generally lacking. In part, this may be attributed to the lack of reliability findings appropriately reported in the empirical literature. The AUDIT is an increasingly common tool and used with many different samples and this makes it important to establish the reliability of the scores taken from these diverse samples. The primary aim of this project is to improve the psychometric understanding of the AUDIT, and the results can be used to give healthcare providers an enhanced empirical foundation to refer to when using these measures. This was accomplished by applying the meta-analytic technique of RG to the AUDIT. The primary objectives of this study were to: (1) describe the typical reliability of scores from the AUDIT and (2) explore the methodological and sample characteristics associated with AUDIT score reliability. We also characterize the reliability reporting practices among these published studies using the AUDIT.
CHAPTER 5

METHOD

Data Collection

A literature search was conducted among published studies found in the American Psychological Association’s PsychINFO and the National Library of Medicine’s PubMed databases. These searches were not limited to a specific year, but rather spanned from earliest to latest available; however, the search was limited to articles published in peer-reviewed journals in English. The key words searched for included alcohol use disorder identification test and AUDIT. A manual bibliography search was also conducted among all the obtained articles. Articles included in this review span the years 1991 through February 2008.

Criteria for Including Studies in the Literature Review

Only studies using the AUDIT, or one of its revised versions, were included in the analysis. Studies that report reliability coefficients from their present sample were considered for inclusion in the RG.

Criteria for Excluding Studies in the RG Data Analysis

Studies that did not report AUDIT score reliability data based on the data at hand were excluded from the RG analysis. Additionally, studies found in more than one database (e.g., PUBMED and PsycINFO) were included in these analysis only once.

Coding Studies

Data coding was based on a scale from one to five. A study is coded as a one if the abstract mentions the AUDIT but the study cannot be located (e.g., it is a rare publication). When a study is coded as a two, it indicates that the study is not an empirical article (e.g., review article, meta-analysis, or commentary). Studies that are coded as three do not contain reliability
information of any kind (e.g., reliability induction by omission). Similarly, a study is coded as a four if the study mentions reliability but provides no direct empirical support (e.g., the article mentions that the “AUDIT is reliable” but provides no reliability estimates to support this claim) or if the study mentions reliability and provides a reliability estimate from previous research (e.g., reliability induction by report). Lastly, a study is scored as a five when the study reports an AUDIT reliability coefficient that is based on the data obtained in that study. It is the studies coded as a five that are analyzed in the RG study.

Criterion Variable

The criterion variable or dependent variable of interest in reliability generalization studies is typically a numeric index of reliability. Internal consistency reliability estimates are commonly reported in studies; therefore, this study used these estimates as the criterion variable. Coefficients of internal consistency were recorded as reported in the obtained empirical study (e.g., .85).

Predictor Variables

This study also examined methodological and sample characteristics possibly influencing the reliability of scores produced by the AUDIT. Although there is a wide range of potential factors that could contribute to the variance found within score reliability estimates, the number and type of predictor variables that can be coded are limited by their availability within the literature. Consistent with previous RGs of alcohol screening tools, the following predictor variables were investigated in the present study and more fully described below: score variability, sample age, sample gender composition, ethnicity of the sample, and sample type.

Score variability can demonstrate tremendous predictive power as regards score reliability (e.g., Caruso, Witkiewitz, Belcourt-Dittloff, & Gottlieb, 2001). This is consistent with
classical test theory (e.g., Lord & Novick, 1968) which can show that if error variance remains constant and observed score variance increases, then true score variance must increase to exactly the same extent (cf., Henson, 2001). Therefore, the ratio of true score variance to total variance, the reliability, also must increase. Without its inclusion as a predictor variable, variability in score reliability that is really due to increases in observed score variability may be erroneously attributed to other predictor variables. For this reason, the standard deviation of measure scores are included as a predictor variable.

Research has demonstrated that alcohol use disorders are prevalent and an important source of social and health care related problems and mortality in both the elderly (Adams, Magruder-Habib, Trued, & Broome, 1992; Adams, Yuan, Barbariaik, & Rimm, 1993; Smith-Black, Rabins, & McGuire, 1998) and children (Reinherz, Giaconia, Rose, Lefkowitz, & Pakiz, 1993). Brief alcohol screening measures have been used in studies of older adults (e.g., Joseph, Rasmussen, Ganzini, & Atkinson, 1997) and are becoming more widely used in studies of younger populations (e.g., Chung et al., 2000; Thom, Herring, & Judd, 1999) because most adolescent specific alcohol screening measures are long and relatively cumbersome. Given the wide age-range in populations that have been administered the AUDIT, it is important to determine if the instrument can generate reliable scores among different age groups. To this end, average sample age will be used as a predictor variable within this RG.

A review of the literature pointed to the paucity of gender-specific analyses found in alcohol screening validation studies (Bradley, Boyd-Wickizer, Powell, & Burman, 1998). A meta-analysis performed in the same report found that alcohol screening measures can perform differently among women and men (Bradley et al.). Therefore, gender is included as a predictor variable and coded as proportion of the sample that is female.
A gap exists in our knowledge of the performance of alcohol screening measures among minority populations (Steinbauer, Cantor, Holzer, & Volk, 1998). Researchers have made great strides in addressing this problem (e.g., Cherpitel, 1998; Cherpitel & Clark, 1995; Volk, Steinbauer, Cantor, & Holzer, 1997), but little is known about the overall reliability of scores on alcohol screening measures among these populations. Therefore, ethnicity will be used as predictor variable to begin drawing conclusions about the usefulness of the AUDIT across ethnic minority groups. This variable will be coded as proportion of the sample that is identified as non-white.

Alcohol use disorders and alcohol use are common problems in a wide variety of psychiatric and health care environments (Galanter, Castaneda, & Ferman, 1988; Moore et al., 1989). These settings can provide vital opportunities for health care professionals to intervene with alcohol problems at potentially early stages of development. However, the empirical literature suggests that alcohol screening is not routinely applied and alcohol use disorders go under-identified (Duszynski, Nicto, & Valente, 1995; Wolford et al., 1999). One possible explanation for this lack of use is that health care professionals are not aware of which measures to use with certain populations. The AUDIT was designed for use among primary care patients though is used among clinical and non-clinical samples alike. In order to better understand how the AUDIT performs among samples of different populations, sample type will also be used as a predictor variable. It will be dummy-coded as clinical (1) and non-clinical (2) sample type. Clinical sample type represents any sample that was assessed in a mental or medical health treatment location (e.g., primary care, emergency room, psychiatric facility, substance use treatment center).
Data Analysis

Characterizing the typical reliability of AUDIT scores can be accomplished via traditional descriptive statistics. We reported the mean, median, standard deviation, and range of internal consistency reliability estimates obtained from the empirical literature. Data analytic methods within the general linear model are often employed to accomplish the second goal of RG, to investigate associations between study and sample characteristics and score reliability. In this way, variation in reliability estimates can be systematically explored for their controlling factors. Specifically, simple correlations and multiple regression and correlation equations were used to evaluate the relationship between the predictor variables and AUDIT score reliability. Because score variability is directly related to score reliability under certain basic assumptions, a hierarchical analysis with score variability entered in Model 1, and the other predictor variables entered as a block in Model 2 was employed within the multiple regression approach.
CHAPTER 6

RESULTS

The literature search resulted in 295 studies reporting use of the AUDIT. This suggests that the AUDIT is a widely used AUD screening instrument. Fourteen articles (4.8%) were review papers, letters to the editor, or nonempirical reports. The majority of articles (n = 194, 65.7%) did not report reliability at all. Twenty-eight (9.5%) articles reported reliability from a past study. Fifty-nine (20%) studies reported reliability based on the sample used in the report.

Some studies reported more than one reliability coefficient. For example, they reported reliability coefficients for different age groups, modes of administration, and males and females. This resulted in 94 samples available for further analysis. Some studies reported reliability using a different version of the AUDIT (e.g. AUDIT-C) and some significantly altered the wording of the instrument– these were not included in the sample for analysis, and the sample size was reduced to 68 studies. Another cut was made for studies that reported a reliability coefficient other than internal consistency (the focus of this study) and this resulted in 57 samples that were used in the present RG analyses.

Table 2 provides descriptive statistics for all the variables examined, of particular interest are the statistics for score reliability. The unweighted mean reliability estimate for scores from the AUDIT was .82 (SD = .07) and the weighted mean reliability estimate was .81 (SD = .05) indicating that the AUDIT generally produces scores with adequate reliability. When compared to the conventional cut-off values for reliability estimates (Nunnally & Bernstein, 1994), the mean reliability estimates here meet the cut-off for research purposes (.80) but do not meet the cut-off for clinical purposes (.90). The median is slightly higher than the mean due to the modest
negative skew of the distribution of reliability coefficients. The range (.59 to .97) indicates that
there is a substantial degree of variability in the reliability of AUDIT scores.

The factors that may predict variability in reliability coefficients were first analyzed using
a bivariate correlation. These results are also presented in Table 2. The relationship between the
variability of scores obtained on the AUDIT (standard deviation) and score reliability was
statistically significant, \(r(43) = .688, p = .000 \). This suggests that as score variability increases
score reliability also increases. According to classical test theory, if observed score variance
increases the true score variance should also increase by the same amount. As a result the ratio of
ture score variance to total score variance (reliability) must also increase. The relationship
between the type of sample (clinical or not clinical) and score reliability was also statistically
significant, \(r(57) = .447, p = .000 \). Score reliability increases when the AUDIT is used in
clinical samples. This supports the intended use of the AUDIT which was as an AUD screening
tool for use in primary care settings.
Table 2

Descriptive Statistics for Reliability Coefficients and Predictor Variables (total N of 57 samples yielded 44,356 respondents)

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>M</th>
<th>Mdn</th>
<th>SD</th>
<th>Range</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unweighted score reliability (α)</td>
<td>57</td>
<td>.819</td>
<td>.830</td>
<td>.07</td>
<td>.59 - .97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted score reliability (α)<sup>a</sup></td>
<td>57</td>
<td>.805</td>
<td>.810</td>
<td>.05</td>
<td>.59 - .97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictor variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Scores</td>
<td>52</td>
<td>7.41</td>
<td>6.32</td>
<td>4.10</td>
<td>2.00 – 23.4</td>
<td>.259</td>
<td>.064</td>
</tr>
<tr>
<td>SD of Scores</td>
<td>43</td>
<td>5.73</td>
<td>5.80</td>
<td>2.35</td>
<td>.30 – 12.32</td>
<td>.688</td>
<td>.000</td>
</tr>
<tr>
<td>Average age</td>
<td>43</td>
<td>33.76</td>
<td>36.4</td>
<td>9.93</td>
<td>16.4 – 53.4</td>
<td>.122</td>
<td>.435</td>
</tr>
<tr>
<td>Proportion non-white</td>
<td>26</td>
<td>.35</td>
<td>.20</td>
<td>.34</td>
<td>.02 – 1.00</td>
<td>.345</td>
<td>.085</td>
</tr>
<tr>
<td>Proportion female</td>
<td>55</td>
<td>.40</td>
<td>.44</td>
<td>.25</td>
<td>0 – 1.00</td>
<td>-.121</td>
<td>.378</td>
</tr>
<tr>
<td>Total sample size</td>
<td>57</td>
<td>778.18</td>
<td>287</td>
<td>1492.82</td>
<td>33 – 8686</td>
<td>-.102</td>
<td>.452</td>
</tr>
<tr>
<td>Sample type<sup>b</sup></td>
<td>57</td>
<td>.56</td>
<td>-</td>
<td>.50</td>
<td>0 – 1.00</td>
<td>.447</td>
<td>.000</td>
</tr>
</tbody>
</table>

r = PCC between unweighted score reliability and identified predictor variables.

^aWeighted by sample size.

^bSample type was coded as clinical (1) and non-clinical (0).

The factors that may predict variability in reliability coefficients were then analyzed using multiple regression. Table 3 presents these results. Reliability coefficients were regressed onto the predictor variables using a hierarchical regression. Score variance was entered into the model first. Mean scores, mean age, proportion non-white, proportion of females, and whether or...
not the sample was clinical were entered as a block into the second model. In model 1, as expected, score variability predicted a statistically significant and large amount of this variance in score reliability: $R^2 = .22 \ (F(1, 19) = 5.34, p < .05)$, Adjusted $R^2 = .178$. When the other predictor variables were entered in Model 2, none of them was statistically significant: $R^2 = .382$ (R^2 change $= .163 \ (F$ change $5, 14) = .738, p = .607$, Adjusted $R^2 = .118$). Results from model 2 suggest that, taken together, factors such as age, ethnicity, and gender do not appreciably affect the reliability of scores from the AUDIT and that the AUDIT may be used with a sample of men and women with different ethnicities who are from different age groups. This is also consistent with the original design of the instrument.

Table 3

Summary Results from Hierarchical Regression Analyses

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>β</th>
<th>SE</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of scores</td>
<td>.011</td>
<td>.469</td>
<td>.005</td>
<td>2.312</td>
<td>.032</td>
</tr>
<tr>
<td>Model 2b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of scores</td>
<td>.010</td>
<td>.433</td>
<td>.010</td>
<td>1.004</td>
<td>.333</td>
</tr>
<tr>
<td>Average scores</td>
<td>-.006</td>
<td>-.471</td>
<td>.005</td>
<td>-1.193</td>
<td>.253</td>
</tr>
<tr>
<td>Average age</td>
<td>.001</td>
<td>.201</td>
<td>.002</td>
<td>.639</td>
<td>.533</td>
</tr>
<tr>
<td>Proportion nonwhite</td>
<td>.022</td>
<td>.141</td>
<td>.039</td>
<td>.569</td>
<td>.579</td>
</tr>
<tr>
<td>Proportion female</td>
<td>-.099</td>
<td>-.320</td>
<td>.127</td>
<td>-.778</td>
<td>.450</td>
</tr>
<tr>
<td>Sample typec</td>
<td>-.006</td>
<td>-.053</td>
<td>.035</td>
<td>-.183</td>
<td>.858</td>
</tr>
</tbody>
</table>

aModel I variance explained in reliability coefficients: $R^2 = .22; F(1, 19) = 5.34, p = .032$.

bModel II variance explained in reliability coefficients: $R^2 = .38; F(6, 14) = 1.44, p = .266$.

cSample type was coded as clinical (1) and non-clinical (0).
CHAPTER 7
DISCUSSION

The use of the AUDIT has been increasing as can be seen from the number of studies found in the present literature search. Indeed, the number of published studies using the AUDIT has more than doubled since the previous RG on the instrument (Shields & Caruso, 2003). The AUDIT is a widely used alcohol screening instrument and the descriptive statistics from this RG indicate that scores on the AUDIT are generally reliable. The values of .82 and .83 for the unweighted mean and median score reliability indicate adequate proportions of true score variance for research purposes. However, the variability of internal consistency estimates (range = .59 to .97) shows that the AUDIT will not always produce reliable scores. The reliability coefficients found here are similar to those found earlier in Shields and Caruso (.79 and .81 respectively). Because of this, conclusions drawn from the previous study can be supported.

More specifically, in situations where important clinical decisions or diagnoses have to be made the AUDIT should be used with caution and preferably in addition to other instruments. However, researchers using the AUDIT among groups in a research setting can be confident in its use among a variety of samples.

In general, the descriptive statistics on the predictor variables in the present study are comparable to those from Shields and Caruso (2003). Score variability across the two studies is similar (5.73 and 5.3), with a broader range found in the present study (12.02 versus 9.9). This broader range of scores may also impact the score reliability and may lead to the increase in reliability coefficients found in the present study compared to the previous study. The average age of participants in the present analysis is slightly lower in the current study (33.7 versus 36.1) but the range of average age is similar across the two studies (16.4 to 53.4 versus 16.5 to 53.0).
Sample characteristics of gender (40% women versus 38% women) and sample type (clinical or nonclinical; 56% clinical versus 58% clinical) are also similar across the two studies. This indicates that the AUDIT, despite being designed for use among adult clinical samples is being administered in non-clinical settings and among adolescents as well.

As expected, the results of the regression analyses replicated what was found in Shields and Caruso (2003) and clearly indicated that score variability was most predictive of score reliability. As discussed, classical test theory (Lord & Novick, 1968) does explain this relationship between score variability and variance in score reliability; if observed score variance increases then true score variance must increase by to the same extent. Reliability is the ratio of true score variance to total score variance and, therefore, must also increase.

In contrast to AUDIT score variability, the other predictor variables evaluated in the present study did not significantly predict variability in AUDIT score reliability. While this suggests that these variables do not impact AUDIT score reliability, it is possible that the variability in score reliability can be predicted by these variables indirectly. For example, it may be the case that women produce less variable AUDIT mean scores than do men. In this way, score variability moderates the impact that sex has on AUDIT score reliability. These potential moderating effects reflect one interesting area of future research. Nevertheless, the fact that no other predictor variable examined here accounted for variance in score reliability above and beyond that accounted for by score variability alone can tentatively be considered a positive characteristic of the AUDIT. This pattern of results also replicates what was found in Shields and Caruso (2003) and suggests that the AUDIT apparently produces equally reliable scores across different age groups, genders, ethnicities, and sample types, once score variability is accounted for. In addition to the predictor variables analyzed in Shields and Caruso, the present study
included ethnicity in the regression analyses. Ethnicity is not a statistically significant predictor of reliability of scores obtained from the AUDIT and, as mentioned above, is indicative of the use of the AUDIT in a diverse sample.

Limitations

Whenever a meta-analytic study is conducted the results must be considered in a light of potential bias. A “file-drawer” problem (Rosenthal, 1979) exists because studies of a higher quality are more likely to be written, submitted, and accepted for publication compared to studies of a poorer quality. File-drawer studies are a problem because the psychometric properties of unpublished studies may differ from the psychometric properties of published studies. Therefore, it is possible that the reliability coefficients examined here are slightly higher than those that would have been found if all studies using the AUDIT could be obtained. This conclusion is drawn under the assumption that non-published studies contain AUDIT scores of lower reliability than those of published reports.

Fifty-nine (20%) of the 295 studies using the AUDIT reported a reliability estimate based on the data gathered for that particular study. This shows a 4% increase in psychometric reporting practices since Shields and Caruso (2003), in which 16.3% of studies using the AUDIT reported reliability estimates based on the data gathered for that particular study. This reflects an overall improvement in the reliability reporting practices in the AUDIT literature. However, even with this increase in reliability reporting over the last few years, it is still significant to note that 80% of the studies did not appropriately report reliability estimates and this may limit the generalizability of these findings. If the missing reliability estimates were not reported because of low values, the present results might be an overestimate of AUDIT score reliability across samples. However, because the studies were published, we can speculate that the scores were of
adequate reliability, and the present results may provide a good estimate of the average reliability across samples.

Specific to RG, the only information that was needed for a study to be included in the analyses was reliability of scores, variability in scores, and sample characteristics such as average age, gender, ethnicity, and whether the sample consisted of a patient group. The fact that 80% of the studies using the AUDIT did not report this information indicates that researchers can improve their reporting of psychometric information. Despite explicit recommendations to report these data (Thompson, 1994; Wilkinson & APA/TFSI, 1999), published reports still frequently do not contain psychometric estimates of instruments or other relevant descriptive data. Nonetheless, as recommended by Wilkinson and the APA/TFSI “authors should provide reliability coefficients of the scores for the data being analyzed even when the focus of their research is not psychometric” (p. 596).
CHAPTER 8
CONCLUSION

The results obtained here should not be interpreted as the reliability of scores obtained from the AUDIT. Instead, with regards to AUDIT score reliability, the findings support the use of the instrument for most research purposes. However, the authors encourage the use of additional instruments and caution when using it for clinical diagnosis or other important clinical decisions. Table 4 compares the mean reliability coefficients of several alcohol screening measures obtained through RG studies. Again, with regards to score reliability, the AUDIT performs as well or better than the other commonly used tools. The one exception is the Michigan Alcoholism Screening Test (MAST) which produced scores of similar reliability. Nevertheless, the AUDIT is a 10 item instrument while the MAST contains 25 items. The reduced burden of answering 15 fewer items on the AUDIT with the expectation that the scores will be equally reliable is a compelling reason to use the AUDIT. In conclusion, the AUDIT continues to meet its objective as a widely useful alcohol screening tool and these findings support the use of the AUDIT with a wide variety of populations regardless of age, gender, or ethnicity. Furthermore, the AUDIT was created for use in primary care settings and the results here indicate that it can and should continue to be used in this way.
Table 4

Comparison of RG Reliability of Alcohol Screening Instruments

<table>
<thead>
<tr>
<th>Measure</th>
<th>Objective</th>
<th>No. Items</th>
<th>No. of Studies in RG</th>
<th>RG Reliability</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIT</td>
<td>Screen for excessive drinking and in particular to help practitioners identify people who would benefit from reducing or ceasing drinking.</td>
<td>10</td>
<td>24</td>
<td>.79</td>
<td>.1</td>
</tr>
<tr>
<td>AUDIT</td>
<td></td>
<td>10</td>
<td>59</td>
<td>.82</td>
<td>.07</td>
</tr>
<tr>
<td>CAGE</td>
<td>Lifetime alcohol use screening instrument for clinical populations.</td>
<td>4</td>
<td>13</td>
<td>.74</td>
<td>.09</td>
</tr>
<tr>
<td>MAC/MAC-R</td>
<td>A personality based indicator of substance abuse problems.</td>
<td>49</td>
<td>23</td>
<td>.47</td>
<td>.1</td>
</tr>
<tr>
<td>BMAST</td>
<td>Brief version of the original MAST, used to assess alcohol problems in the general population.</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAST</td>
<td>Assess alcohol problems in the general population.</td>
<td>25</td>
<td>32</td>
<td>.82</td>
<td>.1</td>
</tr>
<tr>
<td>SMAST</td>
<td>Short version of the original MAST, used to assess alcohol problems in the general population.</td>
<td>13</td>
<td>16</td>
<td>.79</td>
<td>.1</td>
</tr>
</tbody>
</table>

\(a\)AUDIT: Shields and Caruso (2003).
\(b\)AUDIT: reliability from current study.
\(c\)CAGE: Shields and Caruso (2004).
\(d\)MacAndrew Alcohol Scale/MacAndrew Alcohol Scale-Revised (MAC/MAC-R): Miller, Shields, Campfield, Wallace, Weiss (2007).
\(e\)Brief Michigan Alcoholism Screening Test (BMAST): Shields, Howell, Potter, Weiss (2007) an independent reliability estimate for the BMAST was not reported due to insufficient reliability reporting in the empirical literature.
REFERENCES

References marked with an asterisk (*) indicate studies included in the meta-analysis

VITA

CHANDNI PATEL

Personal Data: Date of Birth: July 19, 1984

Place of Birth: Gaborone, Botswana

Marital Status: Single

Education: B.S. Psychology, Kennesaw State University, Kennesaw, Georgia 2006

M.A. Clinical Psychology, East Tennessee State University, Johnson City, Tennessee 2008

Professional Experience: Graduate Assistant, East Tennessee State University, Department of Psychology, 2006 – 2008

Intern, Frontier Health, Fall 2007

Intern, Sullivan County Sheriff’s Office, Spring 2008