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Abstract  

Vanadium is commonly used as an agent to make tools rust-resistant. As a transition 

metal, it can be used as a catalyst due to its ability to change oxidation states. VO(HEDTA)
-1

, a 

complex of the vanadyl ion, VO
2+

 and HEDTA (N-(2-Hydroxyethyl)ethylenediamine-N,N’,N’-

triacetic acid) was readily formed. This complex containing vanadium in the +4 oxidation state 

was reacted with hydrogen peroxide to form a vanadate complex. This vanadate complex was 

formed as a first step in simulating the vanadate(V)-dependent haloperoxidases in marine algae, 

a yet uncharacterized reaction. Electron absorption spectroscopy (UV-Vis) was used to observe 

the oxidation of V(IV) in the complex to V(V) through the color change of the complex from 

blue to yellow. This color change was observed through the formation of a peak at 450nm. By 

changing the initial concentrations of VO(HEDTA)
-1

, hydrogen peroxide, and hydronium ion, 

the change in absorbance at 450nm during the first minutes of the reaction was correlated with 

time to determine the initial rates for each reactant. Using this method, a rate equation for the 

reaction was determined. The rate of reaction was determined to be first order with respected to 

VO(HEDTA)
-1

 and H2O2, and 1/2 order with respect to H
+
. This half-order indicates that the 

hydronium ion is engaged in a reversible reaction. The involvement of hydroxyl radicals 

produced by the reaction, as shown by the effect of free radical scavengers to inhibit the reaction 

was also studied. 

 

Introduction 

 Vanadium is most often used industrially for its corrosion and shock resistance. It is 

added to steel alloys in order to improve them for work in the automotive and aircraft industry.
1
 

Because of its neutron resistance, it is also useful for applications of nuclear chemistry, used in 



the creation of tubing for the nuclear power industry.
1
 Vanadium, in the form of vanadium(V) 

oxide (V2O5), is used as an industrial catalyst for the formation of sulfuric acid through the 

conversion of sulfur dioxide to sulfur trioxide.
2
  Vanadium chemistry is unique in that it can 

access all four oxidation states from +2 to +5. A derivative of V2O5, NH4VO3 can be reduced 

with zinc and acid to form the vanadyl ion, VO(H2O)5
2+

, in aqueous solution.
3
 The vanadyl ion, 

commonly represented as VO
2+

, can be further reduced to V(III) and V(II).
3
 The different 

oxidation states of vanadium in these reactions produce differently colored solutions (Figure 1). 

Color changes between oxidation states are visible in the reaction of VO(HEDTA)
-1

 with H2O2, 

the blue solution (V(IV)) becoming yellow (V(V)) over the course of the reaction.  

 

Figure 1. Oxidation states of vanadium from +5 to +2 (left to right).
4
 

 Vanadium is the second most abundant transition metal in sea water. This is due to the 

abundance of vanadium in marine algae, which, through their use of vanadate-dependent 

haloperoxidases (VHPOs), catalyze the oxidation of halide ions by H2O2.
5
 There are numerous 

halogenated natural products in marine algae that require oxidation in order to be used as 

electrophilic intermediates.
6
  Hydrogen peroxide is used to convert a halide ion (X

-
) to a 

hypohalite (—OX), such that it is equivalent to an electrophilic X
+
.
6
 These molecules are 

necessary for certain biological pathways in marine algae such as chemical defense and 



signaling.
6
 Haloperoxidases are responsible for this halogenation, which often comes without a 

change in oxidation state for the vanadium center of the enzyme, as would occur with the use of 

the heme enzyme.
6
 This property, along with the high tolerance of VHPOs for organic solvents 

and high temperatures, ability to halogenate specifically, and oxidation capability in the absence 

of halides has brought a great amount of attention to VHPOs.
7,8

 These abilities have generated 

interest for pharmaceutical applications as biocatalysts.
9
 The kinetics of the formation of 

peroxycomplexes with vanadium have not been fully studied, with the focus being generally on 

characterization of the structural properties of these complexes. The aim of this research is to 

determine the kinetics of the formation of a vanadate(V) complex from the HEDTA complex of 

vanadyl (IV), VO(HEDTA)
-1

, possibly serving as a model system for understanding the 

mechanism of VHPOs. Because the oxidation of vanadyl complexes to vanadate is a one electron 

oxidation and the reduction of hydrogen peroxide is a two electron reduction, it is important to 

characterize the mechanism of this reaction in order to fully understand the biological pathways 

in these organisms. 

 Reactions of transition metals with H2O2 often lead to the formation of hydroxy and 

peroxy free radicals. These reactions are referred to as Fenton reactions, after the man who 

studied them, Henry John Horstman Fenton.
10

 These reactions were characterized based on the 

reaction of iron(II) and iron(III) and H2O2 (Figure 2).  

 

Figure 2. Fenton reaction of iron and hydrogen peroxide
11

 

Fenton reactions are important in biochemical contexts not only because the reduction of iron 

from Fe(III) to Fe(II) is critical in biological systems, but also due to the creation of reactive 



oxygen species (ROS). The formation of ROS leads to the damage of many biomolecules and 

biomolecular systems. These molecules are also the driving force of iron redox cycling, however, 

and vital to the generation of necessary iron concentration in biological systems.
10

 The formation 

of the V(V) product in this research possibly occurs through a Fenton-like reaction, the H2O2 

present in the reaction breaking into its free radical constituents and driving the reaction. 

 

Materials and Methods 

Preparation of VO(ClO4)2 

 Solutions of VOSO4 (0.2500 M, 6.324 g in 100 mL) and Ba(ClO4)2 (0.2500 M, 9.753g in 

100 mL) were combined in a double replacement reaction to form VO(ClO4)2. 

VOSO4 (aq) + Ba(ClO4)2 (aq)  VO(ClO4)2 (aq) + BaSO4 (s) 

 The precipitate of BaSO4 was separated through vacuum filtration with a fine glass filter to 

obtain a solution of VO(ClO4)2 with a concentration of 0.0825M. UV-Vis spectrometry was used 

to obtain a spectrum of the solution. 

Preparation of VO(HEDTA)
-1

 

 HEDTA (0.9183g) was added to 40 mL of the 0.0825M solution of VO(ClO4)2 along 

with 9.9 mL of 1M NaOH and 5 mL 0.1M KNO3 for ionic strength to produce a 19.3mM 

solution of VO(HEDTA)
-1

.  

VO(ClO4)2 (aq) + HEDTA (s) + 3 NaOH (aq)  VO(HEDTA)
-1

 (aq) + H2O 

Perchloric acid was added to adjust the VO(HEDTA)
-1

solution to a pH of ~2.7. UV-Vis 

spectrometry was used to obtain a spectrum of the solution. 

  



Reaction of H2O2 with VO(HEDTA)
-1

 

 Hydrogen peroxide (0.088M) was prepared by diluting 1 mL of 30% solution (0.88 M) to 

10 mL. Aliquots of 0.2 mL of this diluted H2O2 were added to 25 mL of the solution of 

VO(HEDTA)
-1

 and UV-Vis spectrometry was used to obtain spectra of the reaction at various 

times from 0 to 90 min (0 to 5400 sec). 

Determination of Rate Equation through Initial Rate Reactions 

 The concentrations of H2O2 and H
+
 (with the use of HClO4) were changed in the reaction 

of H2O2 and VO(HEDTA)
-1

. Concentrations of H2O2 in the VO(HEDTA)
-1

 reaction solution 

were 1.725mM (0.5 mL of 0.088M), 1.386mM (0.4 mL of 0.088M), 1.043mM (0.3 mL of 

0.088M), 0.698mM (0.2 mL of 0.088M), and 0.351mM (0.1 mL of 0.088M). Adjusting acid 

concentration, the reaction was run at varying pH: 3.213, 2.667, 2.5, 1.999, and 1.504. The first 5 

minutes of these reactions were monitored at 450 nm with UV-Vis spectrometry. 

Addition of Free Radical Scavengers 

 Ethanol and sodium formate were added to the reaction of H2O2 and VO(HEDTA)
-1

 such 

that their concentrations were 0.2090M (0.5 mL of 20.65M) and 0.1786M (0.306 g, 4.5 mmol in 

25 mL), respectively. UV-Vis spectrometry was used to obtain spectra of the reaction at various 

times from 0 to 90 min (0 to 5400 sec).  

 

  



Results and Discussion 

Preparation of VO(ClO4)2 

 

Figure 3. UV-Vis spectrum of VO(ClO4)2   

The absorbance spectrum of VO(ClO4)2 (Figure 3) showed a peak at 770 nm, indicating 

the presence of VO(IV). A similar peak, at 775 nm, was also in the spectrum of VO(HEDTA)
-1

 

(Figure 4). A secondary peak was also visible in the spectrum of VO(HEDTA)
-1

 at 584 nm. This 

peak was present in the VO(ClO4)2 plot as a shoulder at 625 nm. These peaks indicate a d-d 

transition in the d
1
 electron of V(IV). In a perfectly octahedral ion, there would only be one 

transition with the d electron (
2
T2g  

2
Eg); the symmetry of this ion is slightly less than 

octahedral, however, leading to a second transition and causing a second peak, corresponding to 

the 
2
Bxy  

2
Bx2-y2 transition. The presence of a shoulder is consistent with the C4v symmetry of 

the vanadyl ion, which causes splitting of the 
2
T2g and 

2
Eg levels by the lower symmetry.

12,13
  

The VO(HEDTA)
-1

 spectrum has a fully formed secondary peak because the complex has lower 
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symmetry than that of VO(ClO4)2, approximately C2v.
12

 This symmetry approximation is 

confirmed by the work of Balhausen and Gray through their work on the VO(H2O)5 and 

VO(enta) complexes.
12

 The VO(HEDTA)
-1

  solution remains stable over time, but the solution of 

VO(ClO4)2 changes color over time, the solution becoming more green and the wavelength of 

the primary peak lowering. At pH values above 3.5, the VO(HEDTA)
-1

 solution changes in color 

in a similar manner, the primary spectra peak shifting to a higher energy. 

 

Preparation of VO(HEDTA)
-1

 

 

Figure 4. UV-Vis spectrum of VO(HEDTA)
-1
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Reaction of H2O2 with VO(HEDTA)
-1

 

 

Figure 5. UV-Vis spectra of the reaction between H2O2 and VO(HEDTA)
-1

 at: 0, 2, 4, 6, 8, 10, 

12, 16, 20, 24, 28, 35, 42, 50, 60, 70, 80, and 90 min. 

After adding H2O2, a series of spectra (Figure 5) were collected over the 90 minute 

duration of the reaction, showing a decrease in the intensity of the peak at 770 nm and the 

formation of a peak at 450 nm. These results indicate the reaction of the V(IV) ion in the reaction 

solution and the formation of a product with the V(V) ion present. This peak is characteristic of a 

monoperoxy complex of V(V), and the product is assumed to be such a complex. These spectra 

also show an isosbestic point at 570 nm, indicating that no side or intermediate reactions were 

occurring.  
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Determination of the Rate Equation 

 

Figure 6. Determination of the order with respect to VO(HEDTA)
-1

  

The order of the reaction with respect to VO(HEDTA)
-1

 was calculated from the 

absorbance data for the complex and H2O2. This was performed by taking the natural log of the 

difference between the absorbance value for 90 min and the absorbance value for each individual 

time point at 450 nm. The graphical representation of this equation (Figure 6) exhibited a linear 

correlation, indicating that the order with respect to VO(HEDTA)
-1

 is first order. Because the 

experiments were all performed with H2O2 as the liming reactant and VO(HEDTA)
-1

 in excess, it 

can be assumed that the order of the reaction does not change during the course of the 

experiment and that hydrogen peroxide reacted completely. 

 Having determined that the reaction was first order for VO(HEDTA)
-1

, Beer’s Law could 

be used to determine the maximum molar absorptivity for the V(V) product. Because 

VO(HEDTA)
-1

 was first order in the rate equation, the change in the concentration of 
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VO(HEDTA)
-1

 over the course of the reaction was equal to the change of the concentration of 

the V(V) product. Using the change in absorbance for the V(IV) reactant at 775 nm and its 

known molar absorptivity of 20.7, the molar extinction coefficient, ε450, of VO(HEDTA)
-1

 was 

calculated.   

𝐴 =  𝜀𝑏𝑐 

∆[𝑉𝑂(𝐻𝐸𝐷𝑇𝐴)−1] = ∆[𝑉(𝑉)𝑝𝑟𝑜𝑑𝑢𝑐𝑡] =
∆𝐴

𝑏𝜀𝑚𝑎𝑥
 

𝜀𝑚𝑎𝑥 =
∆𝐴450

∆𝐶𝑉𝑂(𝐻𝐸𝐷𝑇𝐴)−1
=

0.8188

0.00286
= 286.30 𝐿 𝑚𝑜𝑙−1𝑐𝑚−1  

 

Initial Rate Experiments 

 

Figure 7. Absorbance at 450 nm for H2O2 trials at varying concentrations 

In order to determine the order with respect to H2O2, initial rates of the reactions were 

measured by analyzing the first ten minutes of each reaction for the initial linear slope (Figure 7). 

The changes in absorbance per time unit between 0 and 2 minutes were determined and 

correlated against the concentration of H2O2 for each trial, again obtaining linear correlation 
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(Figure 8). When other correlations were used, a linear plot was not obtained. These results 

indicate that the reaction was first order with respect to H2O2. 

 

Figure 8. Determination of the order with respect to H2O2 by correlating slope of the initial rates 

for each trial against the concentration of that trial 

 

Figure 9. Slope of the initial rates for each acid trial correlated against the concentration of H
+
 of 

that trial 
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Knowing from Hima Patel’s research that pH had an effect on the reaction between 

VO(HEDTA)
-1

 and H2O2, the order with respect to acid concentration must be determined to 

obtain a full rate equation.
14

 This order was determined through the use of initial rate reactions. 

The correlation for zero and first orders for [H
+
] were not linear (Figure 9). A linear correlation 

was produced only by the graph of the slopes against the square root of the acid concentration 

indicating half order with respect to H
+
 (Figure 10). This indicates the presence of a Fenton-like 

reaction with vanadium instead of iron.  

1. VO
(IV)

(HEDTA)
-1

 + H2O2  VO
(V)

(HEDTA) + 
.
OH + OH

-1
 

2. VO
(V)

(HEDTA) + H2O2 ↔ VO
(V)

(O2)(HEDTA)
-2

 + 2H
+
 

3. VO
(IV)

(HEDTA)
-1

 + 
.
OH  VO

(V)
(HEDTA) + OH

-1
 

4. VO
(V)

(HEDTA) + H2O2 ↔ VO
(V)

(O2)(HEDTA)
-2

 + 2H
+
 

5. 2H
+
 + 2OH

-1
  2H2O 

The oxidation of V(IV) to V(V) is a one electron reduction. In order to fully reduce 

hydrogen peroxide into two hydroxyl ions, two electrons are required. This discrepancy causes a 

hydroxyl radical to be formed along with a hydroxyl ion. This free radical is necessary to 

complete the reaction (see below). The production of acid in the second step is reversible, 

meaning the concentration of acid both pushes the reaction towards the formation of the 

peroxyvanadium(V) complex as well causing the reaction to revert back to the original 

VO
(IV)

(HEDTA)
-1

. The reaction is pushed forward by the acid by pulling the hydroxyl ion 

produced from H2O2 to the product side of the equation, but the addition to acid of the vanadate 

product in the second step of the mechanism also pushes the reaction toward the formation of 

VO
(V)

HEDTA. The ultimate effect of acid to reduce the peroxyvanadate product to 



VO(HEDTA)
-1

 is confirmed by Tinga Cliford Oyombe Fon’s research on the decomposition of 

the V(V) product.
13

  

 

Figure 10. Determination of the order with respect to H
+
 by correlating slope of the initial rates 

for each trial against the concentration of that trial 

Addition of Free Radical Scavengers 

 

Figure 11. Comparison of absorbance at 450 nm with and without the addition of free radical 

scavengers 
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 The hydroxyl radical produced in the first step of the Fenton reaction is integral to the 

progress to the reaction. Free radical scavengers prevent the formation of free radicals in this 

reaction by preventing the reduction of H2O2. Because the formation of the free radical is 

necessary for the reaction to progress, the addition of a free radical scavenger into the reaction 

mixture causes the reaction to be slowed or halted. When a weak radical scavenger (ethanol) was 

used in the reaction, the peak at 450 nm did not begin to form until 20 minutes into the reaction 

and formed at a much lower rate than without any scavenger. This indicates that ethanol was able 

to prevent the reduction of H2O2, but not permanently. When sodium formate was added, the 

peak did not form at all, the reaction halted at absorbance 0.3 (Figure 11). The difference in these 

results indicates that formate is a more effective free radical scavenger than ethanol. This 

experiment also indicates that the hydroxyl radical is necessary for the reaction to proceed and 

the V(V) product to be formed due to the lack of the V(V) product peak at 450 nm. These results 

are confirmed by the results of A. J. Carmichael in reactions with vanadyl ion and H2O2.
15

 

 

Conclusions 

 This research has spectroscopically characterized the VO(HEDTA)
-1

 ion and determined 

the molar extinction for this species. It has also resulted in the characterization of the rate 

equation for the reaction of VO(HEDTA)
-1

 by hydrogen peroxide in acidic aqueous solution, and 

a tentative mechanism for this reaction is suggested.  

 𝑅𝑎𝑡𝑒 = 𝑘[𝑉𝑂(𝐻𝐸𝐷𝑇𝐴)−1][𝐻2𝑂2][𝐻+]1/2 

The half-order with respect to [H
+
] was also confirmed in the results of Hima Patel’s thesis.

14
 

The peroxyvanadium(V) complex slowly reduces back to the vanadyl ion, as characterized by 

Tinga Cliford Oyombe Fon.
13

 



More research should be conducted on the free radical formation of this reaction, 

especially with regard to the necessity of radicals to convert the V(IV) reactant into the V(V) 

product. Kinetic experiments over a wider range of concentrations will be needed to completely 

determine the rate equations for this reaction. The implications of this reaction with regard to 

both free radical production and the conversion of halides in the biological processes of marine 

algae should be considered with more depth. More investigation on the formation and 

identification of the final peroxyvanadium(V) complex should also be pursued. 
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