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Abstract 

 

 

Candida albicans is an opportunistic pathogen that is present in the normal flora 

in a majority of individuals.  One key factor in C. albicans virulence is the ability to 

change its morphology from yeast to an elongated or hyphal form.  The regulation of 

this morphogenesis relies in part upon quorum sensing (QS) molecules.  C. albicans 

often exists as part of a mixed culture alongside other fungi and bacteria and is 

influenced by their presence as well as the presence of QS molecules that they 

produce.  It has previously been demonstrated, using haploinsufficient mutants, that a 

library screen of Candida albicans can be utilized to identify genetic elements involved 

in response to bacteria.2  In this study, a library of diploid homozygous transcriptional 

regulator knockout (TRKO) mutants were screened to identify strains capable of forming 

hyphae in the presence of Pseudomonas aeruginosa, Staphylococcus aureus, and 

Escherichia coli.  We identified three strains that showed increased hyphae 

development compared to wild type C. albicans.  The strains identified had deletions of 

the transcriptional regulating genes Orf19.3928, Orf19.2842 (GZF3), and Orf19.3865 

(RFX1).4  These strains were tested for alterations of filamentation in liquid media, and 

biofilm formation.  All three strains showed increased rates of biofilm formation 

compared to the wild type.  Orf19.3928 showed altered response to farnesol, a marked 

in biofilm formation and no inhibition of filamentation when farnesol was present in liquid 

media.  The GZF3 deletion strain showed enhanced filamentation with all three bacterial 
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species while the RFX1 deletion strain showed increased filamentation only with E. coli 

and S. aureus.  In spent media, GZF3 showed slight increases in filamentation in E. coli 

and S. aureus while RFX1 had moderate increases in filamentation in E. coli and S. 

aureus and slight increases with P. aeruginosa. 
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Introduction 

 

Candida species are eukaryotic, unicellular yeast, in the Family Saccharomyce-

taceae.  They are commonly isolated from humans and often exists as a part of our 

natural flora in the mouth, gastrointestinal tract, and female genitourinary tract.15  In 

recent years it has been reported that Candida species are the fourth most common 

nosocomial infection8 , which may be in part due to the rise in the use of broad spectrum 

antibiotics.23,15  Many species of Candida are not pathogenic, however several are able 

to cause disease in humans (Table 1).  One species, C. albicans, causes the majority of 

infections and may be present in the oral cavity of up to 75% of the population.13  

Candida that exists as part of our natural flora usually does not cause disease due to 

competition with the many other commensal organisms that exist in our microbiome.  

The use of broad spectrum antibiotics, while effectively eliminating the desired target 

organism responsible for disease, may also unintentionally eliminate aspects of our 

natural flora that help to control the levels of C. albicans.23,15  This can lead to 

overgrowth of C. albicans which can then establish an opportunistic infection.  These 

opportunistic infections are seen more often in nosocomial settings and in immune 

compromised individuals such as premature infants, or those with AIDS, or diabetes.8 

Candidiasis 

Candida infections can be separated into two categories: superficial infections 

and systemic infections.  Superficial infections are usually mild and self-limiting and are 

often seen in the mucous membranes of the mouth or genitourinary tract, causing 
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thrush and vulvovaginal candidiasis.13 The less common systemic infections, or 

candidemia, are much more severe and are more likely to occur in hospital settings due 

to invasive procedures such as catheter placement.7  Systemic infections are also more 

common in those with compromised immune systems, although individuals with normal 

immune responses can also develop Candida infections.    Candidemia mortality rates 

have been reported to be more than 35%, with C. albicans species causing more than 

45-68% of all candidemia.7,17  The ability of C. albicans to cause disease in such a wide 

spectrum of the population makes it important to understand factors that contribute to its 

virulence. 

Species Frequency Morphology Ploidy 

C. albicans 68% Yeast, Pseudohyphae, Hyphae Diploid 

C. glabrata 11.3% Yeast, Pseudohyphae Haploid 

C. tropicalis 7.2% Yeast, Pseudohyphae, Hyphae Diploid 

C. parapsilosis 6.0% Yeast, Pseudohyphae Diploid 

C. krusei  2.4% Yeast, Pseudohyphae Diploid 

C. guilliermondii 0.7% Yeast, Pseudohyphae Haploid 

C. lusitaniae 0.6% Yeast, Pseudohyphae Haploid 

C. kefyr  0.5% Yeast, Pseudohyphae ND* 

C. famata  0.2% Yeast, Pseudohyphae Haploid 

C. inconscipua 0.2% Yeast, Pseudohyphae ND* 

C. rugose 0.2% Yeast, Pseudohyphae Haploid 

C. dubliniensis 0.2% Yeast, Pseudohyphae, Hyphae Diploid 

C. norvengesis 0.1% Yeast, Pseudohyphae ND* 

Table 1. Pathogenic Candida species.17 

Candida species, their frequency observed as human pathogens, possible morphologies, and genetic 

organization. 

*--Not Determined 
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Virulence 

In order to cause disease C. albicans relies upon several virulence factors 

including adhesins, invasins, secreted proteases and hydrolytic enzymes.13  Another 

important virulence trait that C. albicans possesses is the ability to undergo a change in 

its morphology from a unicellular yeast to a hyphal or pseudohyphal form in response to 

environmental 

changes (Figure 1).  

There are a number 

of environmental 

conditions that have 

been found to 

induce hyphal 

formation including 

starvation, the 

presence of serum or N-acetylglucosamine, increased CO2 levels, and pH above 7.13  

Morphogenesis is also controlled by the presence of quorum sensing molecules.8  This 

polymorphism is key to the organism’s virulence and it has been shown that when C. 

albicans is “locked in” to either the yeast or hyphal forms by genetic manipulation that its 

virulence is decreased.8  However, recent evidence has also shown that hyphal 

formation is co-regulated along with other virulence factors, so it is difficult to say for 

certain which factor is causing the decrease virulence.19 

Hyphae or pseudohyphae contribute to virulence by invading the host tissues 

and destroying macrophages.15  Another important virulence factor is the ability of C. 
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albicans to form biofilms on the tissues of the host organism or on implanted medical 

devices.8, 12  Biofilms are microbial communities that form on either natural or abiotic 

surfaces.21  They have organized structures and can consist of either a single microbial 

species or a mixture of microbes surrounded by an extracellular matrix.21  Cells that are 

able to form biofilms often show increased resistance to environmental stress, 

antimicrobial agents, and host immune responses.13 C. albicans biofilms consist of both 

the yeast and hyphal forms of the organism as well as an extracellular biofilm matrix 

composed mainly of β 1,3-glucan (Figure 2).8,13  In many situations C. albicans forms 

mixed biofilms with other potential pathogenic organisms and is often co-isolated along 

with these bacteria in nosocomial settings, especially from implanted medical devices.12   
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Quorum Sensing 

The control of C. albicans  morphogenesis has been found to be affected, at 

least in part, by quorum sensing (QS) molecules.  There are several possible chemicals 

that have been identified as possible 

QS molecules in C. albicans including 

phenylethyl alcohol, tryptophol, 

morphogenic autoregulatory substance (MARS), tyrosol, and farnesol.8  Of these 

compounds, farnesol (Figure 3) seems to play one of the most crucial roles and is 

responsible for inhibiting hyphal formation, and much research has been conducted to 

determine its mechanism of action.  As cell density increases, the amounts of farnesol 

eventually reach a threshold at which the yeast-hyphal transition is inhibited.8, 13  

Farnesol levels also play a vital role in the ability of C. albicans to form biofilms through 

its control of hyphal initiation.  Cells grown at high farnesol concentrations show less 

attachment to surfaces and lower levels of biofilm formation.20  Farnesol may, however, 

increase disseminated infection by leading to the release of planktonic yeast cells from 

a mature biofilm.20   Farnesol has also been shown to have strong antibacterial and 

antifungal properties and likely plays a role in cross-kingdom interactions.1 

Candida-Bacterial Interactions 

C. albicans often forms mixed biofilms and is co-isolated with other 

microorganisms.  It is also estimated that >20% of bloodstream infections of Candida 

also involve a secondary bacterial infectious agent; therefore, the interactions that occur 

with other microbes must also be considered.19  Some of these interactions between 

microorganisms appear to be mutualistic while others can be antagonistic.  In some 
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instances direct cell contact is needed to influence the other organism, while in others 

they affect each other indirectly, through competition for nutrients, or by secretion of 

molecules such as toxins or QS molecules.19  Many species of bacteria have been 

shown to inhibit filamentation by the production of QS molecules including: 

Pseudomonas aeruginosa, Lactobacillus rhamnosus, Saccharomyces 

boulardii,  Burkholderia cenocepacia, Xanthomonas campestris, Acinetobacter 

baumannii, Salmonella enterica Serovar Typhimurium, and Streptococcus mutans.19   

Pseudomonas aeruginosa is often co-isolated with C. albicans from the lungs of 

cystic fibrosis patients, the wounds of burn victims, and from catheter-related biofilms.19  

Hyphal formation is inhibited by QS molecules 3-oxo-C12 homoserine lactone (HSL) 

and dodecanol produced by Pseudomonas.5,19  Pseudomonas has also been shown to 

destroy hyphae by forming a biofilm on the hyphal filaments, restricting their growth and 

causing death of the hyphal cell.5,16  It has also been found that C. albicans has an 

antagonistic effect on P. aeruginosa.  Farnesol, the secreted QS moledule produced by 

C. albicans inhibits swarming motility and impacts the synthesis of PQS in P. 

aeruginosa which is needed for the synthesis of pyocyanin, an importance virulence 

factor that is toxic to C. albicans.10,21 (Figure 4).  This dual relationship likely is reflective 

of the fact that farnesol concentrations increase with cell density, so inhibition of PQS is 

probably not seen in many infections because the cell concentration is initially low.  

In oral bacteria it has been shown that the production of trans-2-decenoic acid 

produced by S. mutans inhibits filamentation while AI-2 produced by S. gordonii 

stimulates filamentation and biofilm production.19  Another organism that has been 

shown to alter the morphology of C. albicans is E. coli.  It has been reported that the 
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presence of E. coli lipopolysaccharide (LPS) is detected directly by C. albicans and 

results in an increase in hyphae formation, contributing to C. albicans virulence.12,17  It 

has also been reported that prior colonization with E. coli enhances adhesion of C. 

albicans to bladder mucosa.16,21   

In laboratory settings, E. coli  appears to inhibit hyphal formation in growing C. 

albicans colonies, as do the other bacterial species S. aureus and P. aeruginosa.2  The 

degree of inhibition varies among these different species and the mechanisms involved 

are still not completely understood.  Better understanding of these cross- kingdom 

interactions is important and may lead to new ways to prevent or treat these infections. 

 

 

Figure 4. P. aeruginosa and C. albicans interactions. 

Complex interactions seen between P. aeruginosa and C. albicans involving QSMs 
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Recently, research has been conducted in order to identify genes involved in 

cross-kingdom interactions between C. albicans and bacterial species.  In a study by 

Fox et al., a haploinsufficient C. albicans mutant library was screened to identify genes 

involved in the regulation of hyphae production in the presence of P. aeruginosa, 

Staphylococcus aureus, and E. coli.2  In this current study, a deletion library of C. 

albicans genes involved in transcriptional regulation was screened in order to identify 

mutants capable of producing hyphae in the presence of the same bacterial strains.  

These three bacterial strains were chosen because they are often co-isolated along with 

Candida albicans and identification of genes with altered morphologies in the presence 

of all three bacteria would more likely indicate that the gene is involved in a global 

response to bacteria.  Colony morphology was examined to identify genes causing 

alterations in C. albicans morphology resulting in abnormal colony appearance.  The 

genes identified were subjected to filamentation tests in liquid media, and biofilm 

formation assays to investigate how these genes influenced interactions between C. 

albicans and the bacterial species. 
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Materials and Methods 

 

Strains 

Diploid C. albicans transcriptional regulator knockout mutants (TRKO) 

constructed by Homann, et. al.6  were obtained from the Fungal Genetics Stock 

Center.14  Freezer stocks were inoculated into liquid YPD and grown overnight for 

further testing. Wild type C. albicans SC5314 was used as a control microorganism.  

The three bacterial strains used were E. coli (ATTC#33922), P. aeruginosa 

(ATTC27853), and S. aureus (ATTC#25923).   

Media, and growth conditions 

The yeast strains were cultured on Yeast Peptone Dextrose (YPD) media (20g 

dextrose, 20g peptone, 10g yeast extract, 20g bacto agar in 1L dH2O) at 30° C 

overnight.  The bacterial strains were maintained on Luria Broth (LB) medium (10g 

tryptone, 10g NaCl, 5g yeast extract, 20g bacto agar in 1L dH2O) at 37°C.  For 

filamentation testing Medium 199 (9.5g M199, 18.7g Tris Buffer, 18g bacto agar, 25 mg 

Arganine, pH7.5 in 1L dH2O) was utilized.    Farnesol was prepared weekly in ethanol 

and was added to M199 at a 300 μM concentration. 

Screen for filamentous mutants 

The library of TRKO mutants were individually spot replicated with two centimeter 

spacing onto YPD, M199, or M199 plates pre-coated with bacterial lawns from fresh 

culture grown overnight at  37° C with shaking.  The YPD plate served as a positive 
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control for growth and negative control for filamentation and was grown at 30° C for 48 

hours.  The M199 plates were incubated at 37° C and were observed at 5-7 days.  The 

plates were observed under light microscopy for filamentation.  The screen was 

repeated twice and knockouts that consistently showed filamentation with all three 

bacterial species were identified. 

Filamentation in liquid media 

The TRKO mutants identified as filamentous with bacteria in the library screen 

were tested for filamentation in liquid media.  The strains were grown aerobically 

overnight in liquid YPD at 30° C with shaking, harvested by centrifugation, washed three 

times with sterile dH2O and counted with a hemocytometer.  Pre-warmed M199 was 

inoculated with 5x105 cells/mL with four conditions: M199 with no bacteria, and M199 

with overnight growth of E. coli, S. aureus, and P. aeruginosa.  The C. albicans strains 

were incubated for 3 hours at 37° C, were centrifuged to concentrate the cells, and a 

morphology assessment was performed with a light microscope.  The filamentation 

assay was also performed utilizing spent media.  M199 containing overnight bacterial 

growth were centrifuged for 8 minutes at 8,000x g and the media was then aspirated, 

leaving pelleted bacteria.  Centrifugation was then repeated, along with aspiration, to 

ensure removal of the maximum amount of bacterial cells.  The spent media was then 

inoculated with the C. albicans strains at 5x105 cells/mL and were incubated for 3 hours 

at 37° C and were observed for cell morphology.  A filamentation assay was also 

performed with 300 μM Farnesol present in the M199. Farnesol was added to the pre-

warmed M199 media and was then inoculated with C. albicans strains at 5x105 
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cells/mL.  These cultures were incubated at 37° C for 3 hours and morphology was 

assessed. 

Biofilm formation 

To assess for biofilm formation the method described by Peeters, et. al. was utilized.18  

Briefly, a 96 well plate was prepared by placing 100μL 5% Fetal Bovine Serum (FBS) 

into each well and was refrigerated overnight. The yeast to be tested was inoculated 

into liquid YPD and was grown overnight at 30° C with shaking.  The cells were isolated 

via centrifugation, washed three times with sterile water and counted with a 

hemocytometer.  A serial dilution of the cells (1x105, 1x104, 1x103, 1x102) was then 

prepared in pre-warmed M199. 

After removal of the FBS, the diluted cells were placed into the 96 well plate in 

triplicate and were incubated at 37°C for 90 min to allow cells to adhere.  At the end of 

the 90 minute period the M199 was removed and the wells were gently washed with 

100μL sterile water to release any unadhered cells, then 150μL of sterile, pre-warm M-

199 was added to each well.  The plates were wrapped with parafilm and incubated at 

37°C for 48 hours.  At the end of the 48 hour period the M199 was removed from the 96 

well plate with a vacuum tip.  In order to remove any unadhered, planktonic cells each 

well was gently washed with 100μL sterile water.  The cells were then fixed by adding 

100μL ethanol to each well for 10 minutes.  After 10 minutes the ethanol was removed 

with the vacuum tip and the plate was allowed to air dry for 20 minutes.  The remaining 

adhered cells in the biofilm were stained with 0.0076% crystal violet for 15 min.  The 

stain was removed with vacuum tip.  150μL 33% acetic acid was placed into each well 

and absorbance was measured at 590 nm.  This biofilm procedure was repeated to test 
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biofilm formation in the presence of farnesol by adding pre-warmed M199 containing 

300 μM farnesol to the wells following cell adhesion. 
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Results 

Identification of three transcriptional regulators by a homozygous deletion 

screen. 

 In order to identify genetic elements involved in response to the presence of the 

bacteria or their secreted products we first performed a library screen of the TRKO 

mutants.  The library and the control (SC5314) strains were individually spot replicated 

onto YPD, M199, and M199 with bacterial lawns.  The bacterial strains chosen included 

both Gram positive and Gram negative organisms known to share similar host 

environments to C. albicans.  The fresh lawns on the M199 plates established a 

competitive environment with the C. albicans and would resemble interactions of the 

host environment.  The YPD plate served as a negative control for filamentation and 

was incubated at 30° C, those strains that were observed to be filamentous after 48 

hours were removed from the screen.  The M199 plate at 37° C was used as a control 

for filamentation and those strains that did not show filamentation after 5-7 days were 

eliminated from the screen.  In total, 364 strains were evaluated and we identified 5 

(1.4%) strains as potential candidates for further study as being filamentous in the 

presence of all three bacterial species.  Four of the strains consisted of duplicate 

deletions of identical genes (Orf19.3928,GZF3) while the fifth was a gene for which a 

second independent transcription factor deletion was not available (RFX1).  Figure 5 

shows representative colony morphologies seen in the YPD control as well as on M199 

for both wild type organisms and those found to be filamentous with all three bacteria.  
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On YPD at 30° C the wild type organisms show typical yeast-type colony morphology 

with smooth rounded edges.  In contrast, the M199 plate at 37° C shows hyphae 

extending from the colony into the surrounding media.  In the presence of bacteria, 

hyphal formation is inhibited in the wild type strains and the colonies lack hyphal 

filaments protruding from the colonies.  The TRKO strains identified in our screen 

exhibited hyphal growth in the presence of all three bacterial species.  

 

 

Figure 5. Colony Morphology observed on solid media. 
Observed colony morphology of mutant strains showing hyphal extension increases in bacterial presence 
compared to the wild type.  Strains denoted with –X or –Y are independent isolates of the same gene 
deletion identified from this screen. 
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Filamentation in Liquid media 

In addition to the ability to filament on solid media, we tested the ability of the genetic 

mutants to filament in liquid media.  C. albicans mutants were grown overnight and 

inoculated at 5x105 concentration into M199 at 37°C to induce hyphae formation.  The 

TRKO mutants were tested in M199 in three conditions: M199 with overnight bacterial 

growth of P. aeruginosa, S. aureus, and E. coli; Spent M199 (overnight bacterial growth 

with cells removed); and M199 with 300 μM farnesol.  We found that the gene deletion 

of Orf19.3928 showed enhanced filamentation in liquid when cultured alongside E. coli 

and S. aureus, but showed filamentation rates similar to the wild type when cultured 

with P. aeruginosa.  The GZF3 deletion strain showed enhanced filamentation with all 

three bacterial species while the RFX1 deletion strain showed increased filamentation 

only with E. coli and S. aureus.(Figure 6)  In spent media, GZF3 showed slight 

increases in filamentation in E. coli and S. aureus while RFX1 had moderate increases 

in filamentation in E. coli and S. aureus and slight increases with P. aeruginosa.(Figure 

7)  When exposed to farnesol, GZF3 still displayed hyphae formation while RFX1, 

Orf19.3928 and the wild type did not.  
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Figure 6. Filamentation in the presence of bacteria in liquid media. 
Increased in filamentation rates in deletion strains when compared to the wild type. Strains 

denoted with –X or –Y are independent isolates of the same gene deletion identified from this 

screen.  
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Figure 7. Filamentation in spent media. 
Some increases in filamentation rates in deletion strains when compared to the wild type. Strains 

denoted with –X or –Y are independent isolates of the same gene deletion identified from this 

screen.   
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Biofilm Formation 

We were able to determine the ability of each TRKO strain to form biofilms in M199 with 

and without the presence of farnesol over a 48 hour period.  Following growth the 

biofilms were washed, fixed, and stained.  Optical Density (OD) analysis was performed 

at 560 nm and we found that all of the strains identified showed increased biofilm 

formation with and without the presence of farnesol.  RFX1 showed a marked increase 

over the other strains when farnesol was not present, but was reduced greatly with the 

addition of farnesol.  While in the presence of farnesol Orf19.3928 showed the highest 

biofilm formation, which is in agreement with the finding that filamentation was seen in 

liquid media with farnesol. (Figure 8, 9) 
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Figure 8. Biofilm formation without farnesol. 
Biofilm formation of mutants compared to wild type, showing increased formation by all mutant strains. 
Strains denoted with –X or –Y are independent isolates of the same gene deletion identified from this 

screen. 
 

 

Figure 9. Biofilm formation in the presence of farnesol. 
Biofilm formation of mutants compared to wild type, showing increased formation with mutant strains, 

especially Orf19.3928. Strains denoted with –X or –Y are independent isolates of the same gene deletion 

identified from this screen. 
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Discussion 

 

In recent years, research has revealed how important the microbiome that exists 

within our body is to maintain normal function and prevent disease.  Imbalances in our 

microbiome have been shown to lead to decreases in our natural immunity and 

increased risk of infection.  The natural flora of our bodies not only provides a 

preventative measure against disease but restoring the balance of microbes in our flora 

can also be used to treat some infections, such as C. difficile.3  A large part of 

understanding how our microbiome works to our benefit as well as contributes to 

disease is understanding how all of the organisms that exist in our microbiome interact 

with each other and with us.  The conversation between these organisms is complex 

and we are only beginning to understand a part of the communication that occurs. 

 Candida albicans is a part of the normal flora and normally its growth is restricted 

by the presence of other microbial species or their secreted products.  When patients 

are treated with broad spectrum antibiotics or are immune compromised these factors 

are diminished, which can lead to the establishment of an opportunistic C. albicans 

infection. 

 In C. albicans, it has been demonstrated that quorum sensing plays a role not 

only in communication from within the species but also for interspecies communication.  

Several genes have been identified to regulate filamentation in C. albicans such as 

TUP1, CPH1 and EFG1.1  In addition, genes have also been discovered that play a role 

in quorum sensing (QS) in C. albicans. For example, the gene CHK1 has been 
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identified as a key component in the response of the self-regulating QS molecule 

farnesol.9  The null mutant (chk1/chk1) and the revertant mutant (chk1/CHK1) both are 

able to filament in the presence of farnesol at low cell densities, while the wild type 

strain was inhibited by the farnesol.9     

While the mechanisms of hyphal formation and quorum sensing have been 

studied in depth, relatively little is known about the genetic factors that play a role in C. 

albicans interactions with bacteria.  Fox et. al. screened a haploinsufficient transposon 

insertion library of over 18,000 mutants and identified 107 known/predicted genes that 

were involved in Candida albicans/bacterial interactions.  The genes fell into several 

categories including genes related to enzymatic activity, transport, transcription, 

signaling, and adhesion.2   

The library screen completed in this study was much narrower in scope and 

utilized a library of diploid organisms consisting of only transcriptional regulator deletion 

mutants.  In this study we identified three total genes involved in bacterial interactions.  

The gene located at Orf19.3928 is uncharacterized as of yet.  The second gene 

Orf19.3865 has been identified as RFX1, a gene involved in DNA repair.4  Hao et. al., 

demonstrated that deletion of RFX2, a similar gene also involved in DNA repair, 

resulted in a mutant that was significantly more resistant to environmental stresses such 

as UV irradiation, heat shock, and ethanol.11  The third gene Orf19.2842 has been 

identified as GZF3, which encodes for a GATA-type transcription factor induced during 

oxidative stress.22  A common theme among the named genes that we identified in this 

study is that they have been found to be involved in response to stressful environments.  

Bacteria living in mixed microbial communities often secrete factors such as acidic 
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products or reactive oxygen species to impair the growth of other microbes.  Recent 

research has also shown that there is a possible link between quorum sensing and 

oxidative stress resistance, with farnesol providing protection against H2O2 and 

superoxide anion-generating agents.24  It is unclear how these genes identified may help 

protect C. albicans from bacterial competition or if they may be involved in response to 

QS molecules.  More research is needed to determine the possible mechanisms behind 

these interactions so that we can better understand how C. albicans communicates and 

regulates its morphology in mixed microbial communities. 
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