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ABSTRACT 

The Synergistic Effects of Methylphenidate on the Behavioral Effects of Nicotine 

by  

Kristen K. Leedy 

One of the most common childhood disorders, attention-deficit hyperactivity disorder (ADHD) 

places individuals at a higher risk for nicotine (NIC) dependence. Approximately 37.2% of 

individuals with ADHD currently smoke compared to the 18.3% of individuals with no record of 

mental illness. Methylphenidate (MPH; Trade name Ritalin) is the most commonly prescribed 

treatment for ADHD. Research regarding the synergistic effects of MPH and NIC, however, is 

divided. Some research indicates that MPH may enhance susceptibility to NIC effects, whereas 

other studies report that MPH may inhibit sensitization to NIC. The present study examines the 

effects of pre-exposure to MPH (1.0 mg/kg) on the behavioral effects of NIC (0.5 mg/kg) in 

adolescent male and female Sprague-Dawley rats. We used behavioral sensitization and 

conditioned place preference (CPP) on animals postnatal day (P)28-50; this is defined as 

adolescence in rats. For behavioral sensitization, results revealed a significant interaction 

between day of testing, drug pre-exposure, and adolescent drug treatment (p = .004). On the 

other hand, CPP results revealed a significant interaction between adolescent drug treatment and 

drug pre-exposure (p = .031). Findings suggest that pre-exposure to MPH reduces behavioral 

sensitization to NIC during adolescence.  In addition, results indicate that MPH enhances NIC 

CPP in adolescent male and female rats, suggesting that MPH may enhance the rewarding effect 

of NIC.  

 Keywords: Methylphenidate, Nicotine, Ritalin, Conditioned Place Preference, 

Adolescence, Sensitization 



 
 

2 
 

DEDICATION 

  I would like to dedicate this thesis to my mentor, Dr. Russell Brown, for his supervision 

and guidance throughout this project. I have to thank everyone over in the Brown lab for 

volunteering their time and efforts. Without your support I could not have accomplished this 

endeavor. Thank you so much for believing in me and helping me fulfill my dreams. In addition, 

this project would not have been possible without Elizabeth Cummins-Freeman, the light at the 

end of my undergraduate tunnel. I grew not just as a researcher, but as a person under your 

supervision.   

 This thesis is also dedicated to my boyfriend, Dakota. I could not have asked for more 

support and love than you have already shown me. Thank you for being there for me through all 

of the sleepless nights and fast-approaching deadlines. Finally, I would also like to dedicate this 

thesis to my family; thank you for always giving me a place to come home to.  

 

 

 

 

 

 

 

 

 

 

 



 
 

3 
 

ACKNOWLEDGEMENTS 

 I have to thank Dr. Russell Brown and Elizabeth Cummins-Freeman for their suggestions 

and comments during this entire process. I would also like to thank Daniel Peterson and Seth 

Kirby for their advice and support while presenting my thesis. Without the help of these 

individuals, I would not be here today. I would also like to thank the Ronald E. McNair program 

for believing in me and supporting my work and growth. Thank you, Michelle and Dinah, for 

seeing something in me then.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4 
 

INTRODUCTION 

Compared to those without psychiatric disorders, individuals with ADHD are at a higher 

risk for smoking (Lambert & Hartsough, 1998; Molina & Pelham, 2003; Milberger et al., 1997; 

McClave et al., 2010). About 2.5 - 4% of the adult population is affected by ADHD (Kessler et 

al., 2006; McClave et al., 2010; Simon et al., 2009). In an analysis of findings from the National 

Health Interview Survey, McClave et al. (2010) reported that 37.2% of individuals with ADHD 

currently smoke compared to the 18.3% of individuals with no record of mental illness. Previous 

research indicates that a greater proportion of individuals with ADHD start smoking at a younger 

age and experience greater difficulty quitting in comparison to individuals without ADHD 

(Humfleet et al., 2005; Lee, Humphreys, Flory, & Glass, 2011; McLernon & Kollins, 2008). The 

National Comorbidity Survey Replication study reported that ADHD, in regards to childhood 

externalizing disorders, was one of the strongest predictors of nicotine use/dependence in 

adulthood (Glantz et al., 2009). Although research has failed to determine why individuals with 

ADHD are more likely to smoke, some researchers posit that these individuals may be self-

medicating their symptoms (Gehricke et al., 2007; Khantzian, 1997; Milberger et al., 1997). This 

supposition has been supported by research indicating that the nicotine patch and nicotinic 

agonists do alleviate certain ADHD symptoms (Gehricke et al., 2006, 2009; Levin et al., 1996; 

Wilens et al., 1999, 2006).  

Methylphenidate (MPH) is the most widely prescribed treatment for cases of ADHD in 

children and adults (Findling & Dodgin, 1998; Goldman, Genel, Bezma, & Slanetz, 1998; Zito, 

Sater, dosReis, Gardner, Boles, & Lynch, 2000). However, despite its widespread use, Urban and 

Gao (2013) found that MPH may cause impairments in prefrontal functioning and neural 

plasticity. In addition, Maier et al. (2013) reported that ADHD medications are used by students 
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to enhance cognitive performance, with MPH being the most commonly used. Abusing 

stimulants such as MPH has serious implications; psychostimulants have been found to 

significantly alter neuron functioning and transmission, increasing extracellular levels of 

dopamine (DA), serotonin, and norepinephrine (Angelucci et al., 2009). Calipari and Jones 

(2014) reported that MPH abuse may cause changes in the DA system, eventually leading up to 

the abuse of other addictive substances. 

Even though research indicates that children and adults respond differently to MPH 

(Torres-Reveron & Dow-Edwards, 2005), in recent years there has been a significant increase in 

MPH prescriptions for ADHD (Olfson, Gameroff, Marcus, & Jensen, 2003; Safer, Zito, & Fine, 

1996; Zito et al., 2000). Acting as a stimulant, MPH increases pre-synaptic dopamine release 

while simultaneously blocking dopamine reuptake (Volkow, Fowler, Wang, Ding, & Gatley, 

2002). Some research suggests that ADHD may result from problems with dopamine transporter 

(DAT) availability (Cheon et al., 2003; Dougherty et al., 1999; Krause, 2008; Krause et al., 

2000). MPH blocks DAT, which is believed to be how MPH essentially treats ADHD symptoms 

(Krause et al., 2000). Our lab has shown that MPH upregulates the DAT (Cummins et al., 2013). 

Reports have shown that MPH should cause a reduction in smoking behaviors if the 

medication (as opposed to nicotine) reduces ADHD symptomology (Winhusen et al., 2010). In 

support of these findings, some research has suggested that stimulants, such as MPH, may act as 

an aid to smoking cessation. Monuteaux et al. (2007) found promising results while examining 

the efficacy of buproprion as an adult smoking cessation aid in ADHD children. Although 

bupropion is already a smoking cessation aid, results did suggest that other stimulants may be 

effective as well. Additional support for this was found by Hammerness et al. (2013) in an open-

label, long-term clinical trial of extended-release MPH in adolescents diagnosed with ADHD. 
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Results indicated that 10 months of treatment, on average, was correlated with a low rate of 

cigarette smoking. In fact, this rate was similar to individuals without ADHD as well as 

individuals under treatment for their ADHD (Hammerness et al., 2013).  

However, some research has suggested that MPH increases smoking behaviors even in 

individuals without ADHD. Rush et al. (2005) and Vansickel et al. (2007, 2009) demonstrated 

that non-ADHD individuals saw an increase in smoking when treated with MPH. In these 

studies, individuals treated with at least one dose of MPH saw an increase in cigarette puffs in 

comparison to the placebo group (Rush et al., 2005; Vansickel et al., 2007, 2009). Other studies 

have demonstrated that MPH can elicit a change in preference for cigarettes over money (Stoops 

et al., 2011). Therefore, there appears to be some disagreement in the literature as to whether 

MPH actually blunts the rewarding effects of nicotine or changes the brain’s reward system, 

making it vulnerable. 

The present study examined the effect of pre-exposure to MPH on the behavioral effects 

of NIC. We focused our research on the vulnerable developmental period of adolescence; in rats 

this is defined in postnatal days (P) ranging from P28 to 50 (Spear, 2000; Laviola et al., 2003). 

We used two behavioral tests: behavioral sensitization and conditioned place preference (CPP). 

Behavioral sensitization is a behavioral test of the augmented motor response that occurs with 

repeated intermittent exposure to a drug. CPP is a behavioral test of the associative effects of 

drugs. The present experiment also utilized a clinically relevant dose of MPH (1.0 mg/kg; 

Devilbiss & Berridge, 2008) that results in brain plasma levels relevant to the MPH-medicated 

ADHD population. In addition, we employed a dose of nicotine (NIC; 0.5 mg/kg) that has been 

shown to produce both behavioral sensitization and CPP (Kelley & Rowan, 2004; Justo et al., 

2010; Fanous, Lacagnina, Nikulina, & Hammer, 2011). Regarding sensitization, a significant 
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increase in dopamine release and activation of the mesolimbic dopamine projections occurs after 

chronic psychostimulant exposure (Boileau et al., 2006); the locomotor activity that results can 

be measured from horizontal and vertical movements, which indicate psychomotor sensitization 

(Tirelli, Laviola, & Adriani, 2003; Fanous et al., 2011). Unlike behavioral sensitization, CPP is a 

behavioral paradigm that allows researchers to test the rewarding effects of drugs in rodents. 

METHODS 

Subjects. Male and female adolescent Sprague-Dawley rats were used as subjects and 

raised in the Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) accredited animal colony at East Tennessee State University. All animals were 

given food and water ad libitum and housed in a climate controlled vivarium on a 12 hour on/off 

light dark cycle. All behavioral testing was conducted during the light cycle. All procedures were 

approved by the ETSU Committee on Animal Care which is consistent with the NIH Guide on 

Care and Use of Animals. 

Drug pre-exposure. On P28, drug pre-exposure began and continued throughout the 

remainder of the experiment. Animals were ip administered daily with either MPH (1.0 mg/kg) 

or SAL in the morning at approximately 8 am; animals were randomly assigned to each group. 

This dosing regimen was chosen because it mimics the average MPH prescription; there are five 

days “on,” two days “off,” designed to be consistent with school day dosing in humans. 

Behavioral testing began on P42 in two different sets of animals; one group was tested on 

behavioral sensitization and the other was assessed using the CPP paradigm. 

Behavioral Sensitization. On P42, behavioral sensitization began with habituation. For 

three consecutive days, each animal was ip injected with SAL and placed into the locomotor 

arena after a 10 minute delay. The purpose of the delay was to allow for proper drug distribution 
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before testing. Activity counts were then recorded for 10 minutes using Any Maze behavioral 

scanning software (Stoelting Co., Wood Dale, IL). This software superimposes a virtual grid 

onto the locomotor arena, while keeping track of the number of “grid-breaks” the animal makes. 

Here our dependent measure was activity counts; essentially, the number of grid-breaks is 

analogous to level of activity. On P45, NIC (or SAL) treatment began. Animals were ip injected 

with either SAL or NIC (0.5 mg/kg). After a 10 minute delay, each animal’s activities were once 

again recorded for 10 minutes. All animals were behaviorally tested in a (72 cm/side) square 

locomotor arena and allowed to move around freely.    

  Conditioned Place Preference (CPP). For behavioral testing on the CPP paradigm, a 

different set of animals was used to examine the effects of pre-exposure to MPH on the reward-

aspect of the drug. The CPP apparatus used was a three-chambered wooden box; the center 

compartment was painted solid gray, while the outer two compartments are distinct from one 

another. Each compartment was the same size (90 cm/side), but unique in tactile surface and 

visual appearance. In addition, the gray compartment had wooden flooring; the remaining two 

contexts had either wire mesh or metal dowel rod flooring with either black/white horizontal or 

vertical stripes on the walls. These three contexts were separated by removable dividers. The 

difference in environmental contexts allows the animal the ability to distinguish between 

contexts and associate one with the rewarding effect of a drug such as NIC. Again Any Maze 

behavioral scanning software was used to track animal movements, but here the main focus was 

how much time the animal spent in the context paired with NIC as compared to SAL controls on 

the post-conditioning test. The dependent measure was calculated by subtracting the percent of 

time spent in the paired context during pre-test from the percent of time spent in the paired 
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context during the post-test. Time spent in the middle compartment was not considered time 

spent outside the paired context. 

 Two initial preference tests were conducted P42-43 with the dividers removed. The 

average time spent in each compartment was recorded, revealing any natural preferences, and 

animals were conditioned against their natural preference. After determining initial preferences 

by averaging performance on these two initial preference tests, conditioning began on P44 and 

occurred every day; each animal received a session in the morning and one later in the afternoon. 

Animals were given either NIC or SAL ip and were placed into the locomotor arena after a 10-

minute delay for a 10 minute test. For conditioning, dividers were inserted into the apparatus and 

each animal was assigned to their unpaired context in the morning session and administered 

SAL. During the afternoon sessions, animals were assigned to their paired context and 

administered NIC or SAL depending on group assignment. Conditioning occurred every 

consecutive day for eight days from P44-50. On P51, a post-conditioning preference test was 

conducted; this test was identical in procedure to the initial pre-conditioning preference tests. 

Dividers are once again removed and animals receive SAL ip 10 minutes before being tested for 

10 minutes.   

RESULTS 

 In regards to behavioral sensitization, we were unable to find any sex differences, so we 

collapsed across the factor of sex. A three-way ANOVA revealed a significant three-way 

interaction between drug pre-exposure x adolescent drug treatment x day of testing (p = .004). At 

day one of testing, no significant differences were found among treatment groups; therefore, 

acute NIC treatment did not change locomotor activity regardless of MPH pre-exposure (see 

Figure 1). However, at day 9 SAL-NIC animals displayed the highest activity counts in 
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comparison to all other groups besides MPH-SAL. These animals demonstrated behavioral 

sensitization to NIC. Compared to SAL-NIC animals, NIC animals pre-exposed to MPH actually 

showed a decrease in locomotor activity at day 9. These results suggest that pre-exposure to 

MPH reduces behavioral sensitization to NIC in male and female adolescent rats compared to 

controls. In other words, MPH appears to reduce the behavioral activating effects of NIC. 

 

Figure 1. Activity counts are represented as a function of day of testing and drug condition (** 

indicates group is greater than MPH-NIC and SAL-SAL, p < .05; * indicates group is greater 

than SAL-SAL, p < .05). 

 For analysis of CPP, we again collapsed across the factor of sex after discovering no sex 

differences. A two-way ANOVA revealed a significant interaction between drug pre-exposure 

and adolescent drug treatment (p = .031). In comparison to other groups, animals pre-exposed to 

MPH and treated with NIC displayed the greatest preference for the context paired with NIC (see 

Figure 2). In addition, SAL pre-exposed animals displayed nicotine CPP in that this group 

displayed a significant preference as compared to SAL-treated controls. The results suggest that 
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pre-exposure to MPH may enhance NIC CPP in adolescent male and female rats compared to 

controls. Essentially, MPH appears to enhance the reward aspect of NIC. 

 

Figure 2. The percent time difference spent in the paired context on the pre and post-

conditioning preference tests is presented as a function of condition (** indicates MPH-NIC 

group is significantly greater than all other groups, p < .05; * indicates SAL-NIC is greater than 

SAL-SAL and MPH-SAL, p < .05). 

DISCUSSION 

 At a clinically relevant dose, MPH appears to reduce behavioral sensitization to NIC in 

adolescent male and female rats. Thus, we failed to support our original hypothesis that pre-

exposure to MPH would enhance the behavioral effects of NIC. On the other hand, we also 

demonstrated that pre-exposure to MPH enhances NIC CPP in male and female adolescent rats. 

This supports our original hypothesis that MPH would enhance NIC CPP in adolescent male and 
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female rats. This finding suggests that MPH enhances the reward aspect of NIC. Unfortunately, 

due to a fairly low number of males, we were required to further generalize our findings and 

exclude sex differences from our final analyses. Preliminary data from our lab has suggested that 

females are affected more robustly by this synergistic relationship. Also of interest, we 

demonstrated NIC CPP in a non-biased CPP procedure, the first instance of NIC CPP outside a 

biased paradigm.   

 Future research should continue to tease apart these complex findings; although the 

research is divided, it is not necessarily inconsistent. The high count of locomotor activity in 

animals pre-exposed to MPH is likely a result of an increase in stereotypic behaviors. 

Stereotypies are inappropriate, repetitive behaviors that serve no real biological purpose or 

function (Garner, 2005; Turner, 1997); an increase in stereotypic behavior and hyperlocomotion 

is indicative of increased dopamine activity (Creese and Iversen, 1974; Kelley et al., 1975; 

Kelley & Iversen, 1976; Lucot et al., 1980). Wallace, Gudelsky, and Vorhees (1999) 

demonstrated that repeated high-dose administration of methamphetamine increased stereotypic 

behaviors and increased the release of DA. The animals in sensitization are likely displaying 

MPH-induced stereotypy as a response to increased DA activity in the brain.  

 Finally, MPH has been shown to affect neurotrophic factors, such as brain-derived 

neurotrophic factor (BDNF; Brown et al., 2012). BDNF is found throughout the brain and plays 

a direct role in neuronal growth, function, and development (Reichardt, 2006). MPH may 

increase levels of BDNF in the brain, affecting brain areas that mediate drug reinforcement. This 

in turn, could result in an increased DA response. 
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