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ABSTRACT

In molecules, electronic state transitions can occur via quantum coupling of the states.

If the coupling is due to the kinetic energy of the molecular nuclei, then electronic

transitions are best represented in the adiabatic frame. If the coupling is instead

facilitated through the potential energy of the nuclei, then electronic transitions are

better represented in the diabatic frame. In our study, we modeled these latter

transitions, called “nonadiabatic transitions.” For one nuclear degree of freedom,

we modeled the de-excitation of a diatomic molecule. For two nuclear degrees of

freedom, we modeled the de-excitation of an ethane-like molecule undergoing cis-

trans isomerization. For both cases, we studied the dependence of the de-excitation

on the nuclear configuration and potential energy of the molecule.

We constructed a numerical model to solve the time-dependent Schrödinger Equa-

tion for two coupled wave functions. Our algorithm takes full advantage of the sparse-

ness of the numerical system, leading to a final set of equations that is solved recur-

sively using nothing more than the Tridiagonal Algorithm.

We observed that the most effective de-excitation occurred when the molecule

transitioned from a stable equilibrium configuration to an unstable equilibrium con-

figuration. This same mechanism is known to drive fast electronic transitions in the

adiabatic frame. We concluded that while the adiabatic and diabatic frames are

strongly opposed physically, the mathematical mechanism driving electronic transi-

tions in the two frames is in some sense the same.
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1 Introduction

Molecular physics as a subject studies the structure and the dynamics of molecules.

The positions of the atomic nuclei comprising the molecule relative to one another

defines a “nuclear configuration” that specifies a shape for the molecule. We are

concerned with the physical laws that dictate the evolution of this shape with time.

In physics, motion is often determined by a “potential energy surface.” For a

molecule, we can associate with every nuclear configuration a potential energy. In this

way, a potential energy (PE) surface is defined over the nuclear configuration space.

But let us also note that for any nuclear configuration, there are infinitely many ways

that the electrons surrounding the nuclei can be configured. In particular, a discrete

or “quantized” set of possible electronic configurations or “states” accompanies every

possible nuclear configuration. Each electronic state has its own characteristic energy;

the lowest-energy state is called the ground state, the second-lowest-energy state is

called the first excited state, and so on. It follows that not one but an infinite set

of potential energies is associated to every nuclear configuration. In this way, the

internal, or nuclear, motion of a molecule is guided not by one but rather an infinite

set of PE surfaces– one for every electronic state. This infinite family of PE surfaces

is called a potential energy (PE) landscape.

The configuration of a molecule is given by a quantum state function or “wave

function,” whose square magnitude gives the probability density for observing the

molecule to have a particular configuration. The wave function evolves in the PE

landscape of the molecule. Under certain assumptions, it is possible to split the wave

function so that for every surface in the PE landscape, some fraction of the wave
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function evolves on that surface. These fractions of the wave function, however, do

not evolve independently. More generally, it is possible to study the evolution of

a molecule on a single PE surface if we assume that the electrons of the molecule

occupy a single, fixed electronic state. But in reality, it is possible for a wave function

to transition from one surface to another, thanks to the quantum coupling of states

via nuclear kinetic energy and potential energy. Therefore, the distribution of the

wave function over the surfaces in the landscape changes with time. When a wave

function transitions from one surface to another in this way, it is called an “electronic

state transition.” When most of the wave function lies on the lowest surface in the

landscape, then it is most probable that the electrons of the molecule will be observed

in the ground state. In this case, we say that the molecule is in the ground state.

Otherwise, the molecule is excited.

An electronic state transition can occur if the molecule radiates energy. Such

a transition does not directly depend on the PE landscape itself; such a transition

can happen at any nuclear configuration. Non-radiative transitions are more in-

teresting. Such a transition occurs due to quantum coupling, as described above.

Non-radiative transitions are interesting because their probability depends on the

geometry or “shape” of the PE landscape. They are more likely at some nuclear

configurations than at others. Therefore, the shape of the PE landscape governs both

the shape of the molecule as well as its electronic energy. Since the internal motion

of a molecule is faster on a lower surface (by conservation of energy), it follows that

the speed of internal motion is related to the shape of the molecule. In fact, there

are often special points in a PE landscape that act as “funnels” through which a
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wave function can transition very quickly; these points are optimal configurations for

fast state transitions. These “funnels” are actually points at which two PE surfaces

intersect. Such a topology commonly characterizes the PE landscapes of biologi-

cal molecules that must quickly transition to the ground state in order to maintain

homeostasis. More generally, understanding molecular dynamics in the setting of a

PE landscape is foundational to a strong theoretical understanding of chemistry as a

whole. In our study, we are interested in the dependence of internal motion and state

transitions on the shape of the PE landscape of a molecule [1].

1.1 The Adiabatic and Diabatic Frames

Consider any polyatomic molecule, and let xi and Xj be the positions of the ith

electron and jth nucleus respectively. Let x be the list of the electron positions and

X the list of nuclear positions. Then, we denote the molecular wave function at time

t as Ψ(x,X, t). The molecular wave function evolves according to the time-dependent

Schrödinger Equation:

i~
∂

∂t
Ψ(x,X, t) = [T̂N(X) + UN(X) + Ĥe(x,X)]Ψ(x,X, t), (1)

where T̂N is the total nuclear kinetic energy (KE) operator, UN is the nuclear potential

energy (PE) function due to nucleus-nucleus repulsion, and Ĥe is the electronic part

of the molecular Hamiltonian. The nuclear KE operator is given by

T̂N(X) =
∑

i

− ~
2

2Mi

∂2

∂X2
i

,
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whereMi is the mass of the ith nucleus and ∂k

∂Xk

i

denotes the sum of the kth derivatives

with respect to the components of Xi. The electronic Hamiltonian is given by

Ĥe(x,X) = T̂e(x) + Ue(x) + Ue,N (x,x),

where T̂e is the total electronic KE operator, Ue is the PE function due to electron

repulsion, and Ue,N is the PE function due to electron-nucleus attraction. We are

primarily interested in the evolution of the shape (or nuclear configuration) of the

molecule and would therefore like an evolution equation for the nuclear part of the

molecular wave function. It is possible to simplify Equation (1) by assuming that the

electrons occupy an energy eigenstate. This simplification can be made in one of two

settings– the adiabatic frame, and the nonadiabatic (or diabatic) frame.

For the adiabatic frame, let ψn(x,X) be the nth electronic energy eigenstate given

that the nuclei have configuration X. Note that the nuclear configuration X is treated

as a parameter in ψn. Thus, the energy eigenvalue En associated with ψn is a function

of X:

En(X) = 〈ψn(x,X)|Ĥe(x,X)|ψn(x,X)〉,

where the bracket is taken over x. The set of eigenfunctions {ψn} forms a basis (or

frame) for the space of molecular wave functions. In particular, we can write

Ψ(x,X, t) =
∑

n

χn(X, t)ψn(x,X), (2)

where χn is the nuclear wave function given that the electrons occupy the nth elec-

tronic energy eigenstate. Substituting Equation (2) into Equation (1) and simplifying,

we obtain an evolution for the mth nuclear wave function χm in the adiabatic frame:

i~
∂

∂t
χm(X, t) = (T̂N + UN + Em)(X)χm(X, t) +

∑

n

Lmn(X)χn(X, t), (3)
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where L is the non-adiabaticity matrix with entries

Lmn =
∑

i

− ~
2

2Mi

(

2〈ψm|
∂

∂Xi

|ψn〉
∂

∂Xi

− 〈ψm|
∂2

∂X2
i

|ψn〉
)

. (4)

Let V A
m (X) = (UN +Em)(X). This is called the mth adiabatic PE surface, and it acts

as an effective PE function for the nuclear wave function. The set of all adiabatic PE

surfaces is called the adiabatic PE landscape. In addition to the nuclear KE operator

and effective PE function, Equation (3) includes additional derivative coupling terms

given by the off-diagonal entries of L.

For the diabatic frame, we assume the stronger condition that the electronic eigen-

states are in some sense independent of the nuclear configuration. Choose any par-

ticular nuclear configuration X0 and let φn(x) = ψn(x,X
0) for all n. The set of

eigenfunctions {φn} also forms a basis (or frame) for the space of all molecular wave

functions. In particular, we can write

Ψ(x,X, t) =
∑

n

χn(X, t)φn(x), (5)

where χn is the nuclear wave function given that the electrons occupy the nth energy

eigenstate. Given that the φn are orthonormal and Ψ is normalized, the probability

for observing the molecule in the nth electronic eigenstate is 〈χn(X) | χn(X)〉. This

implies the identity
∑

n

〈χn | χn〉 = 1. (6)

Substituting Equation (5) into Equation (1) and simplifying, we obtain an evolution

equation for the mth nuclear wave function χm in the diabatic frame:

i~
∂

∂t
χm(X, t) = T̂Nχm(X, t) +

∑

n

V D
mn(X)χn(X, t), (7)

14



where V D is the diabatic PE matrix with entries

V D
mn(X) = V A

m (X0) + 〈φm(x)|[UN(X) + Ue,N (x,X)− UN(X
0)− Ue,N (x,X

0)]|φn(x)〉.

(8)

The diagonal entries V D
mm are called diabatic PE surfaces. The set of all diabatic

PE surfaces is called the diabatic PE landscape. The off-diagonal terms are the

diabatic coupling PE terms. Since the operator in brackets in Equation (8) is a scalar

function, the brackets are symmetric with respect to the indeces m and n. That is,

the PE matrix V D is symmetric. Although the adiabatic frame is physically more

intuitive and relies on weaker assumptions regarding the electronic states, we see

that the Schrödinger Equation for the nuclear wave function is significantly simpler

in the diabatic frame (Equation (7)) than in the adiabatic frame (Equation (3)). In

particular, the coupling terms in Equation (4) act as derivative operators, while the

coupling terms in Equation (8) are multiplicative.

The simplest setting to study electronic state transitions is a two-state PE land-

scape. In this setting, we assume the existence of exactly two distinct electronic

eigenstates φ1 and φ2. We call φ1 the electronic ground state and φ2 the electronic

excited state. The associated nuclear functions are the ground state (nuclear) func-

tion χ1 and the excited state (nuclear) function χ2. The diabatic PE landscape has

two PE surfaces, V D
11 and V D

22 , and there is a single coupling term V D
12 . Thanks to the

coupling term, the evolution of one nuclear wave function has an immediate influence

on the evolution of the other. Consider, for example, the initial condition χ1(X) = 0.

Equation (6) then implies 〈χ2 | χ2〉 = 1. That is, the molecule is initially excited.

But with time, it is possible that the evolution of χ2 can cause χ1 to attain nonzero
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values by virtue of the coupling term. This process is electronic de-excitation, or

state transition; since 〈χ1 | χ1〉 is the probability of observing the molecule in the

electronic ground state, its increase implies de-excitation. We refer to the quantity,

G = 〈χ1 | χ1〉, (9)

as the ground state population. An interesting result relating to electronic de-

excitation is the following: A nuclear configuration X satisfying the system


















V D
11 (X) = V D

22 (X)

V D
12 (X) = 0

also satisfies V A
1 (X) = V A

2 (X), or equivalently E1(X) = E2(X). Such a nuclear

configuration is called a point of coincidence. In other words, a nuclear configura-

tion at which the diabatic PE surfaces intersect is a point of electronic degeneracy.

Such points of coincidence or electronic degeneracy are important in molecular dy-

namics, as they act as “funnels” through which the excited state function χ2 can

smoothly transition from the upper PE surface to the lower PE surface. This process

of electronic de-excitation is more efficient and complete, since now both χ1 and χ2

correspond to the electronic ground state φ1 [1].

For our study, we are interested in modeling the time evolution of a nuclear wave

function in the diabatic frame. We describe a numerical scheme for implementing

Equation (7) computationally. There exists a simple recursive method to model the

incidence of a one-dimensional wave function on a potential barrier [2], and we extend

this method to the more complicated situation of a molecule with two nuclear degrees

of freedom evolving in a PE landscape with two PE surfaces. Our method involves
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the discretization of functions into finite vectors and linear operators into square

matrices. Instead of using matrix inversion, we produce a recursive method that

takes maximum advantage of the sparseness of the square matrices. While large-scale

computational models have been constructed to simulate real molecular complexes,

our study differs from this in one important way: The aim of our study is not to

provide a realistic simulation of complicated molecular dynamics. Rather, our aim

is to understand the most basic physical implications of Equation (7). In particular,

our aim is to understand how the probability of an electronic de-excitation depends

on the internal shape (or nuclear configuration) of the molecule and more generally

on the structure of the PE landscape. To reach this end, we construct a model with

enough complexity for studying the motion of nuclei and electronic state transitions,

but also with enough simplicity that causal relationships are not blurred by additional

third-party factors. Concretely, we study how the evolution of a nuclear wave function

(provided an initial condition) varies with a set of parameters specifying the shapes of

the PE surfaces comprising the PE landscape. The “evolution” is recorded in the form

of expectation values of various observables computed at regular time increments.

Our study consists of three main phases: the one-dimensional single-state case, the

one-dimensional two-state case, and the two-dimensional two-state case.

1.2 The One-Dimensional Single-State Case

In Phase 1, we model the internal nuclear motion of a diatomic molecule. We assume

that the PE landscape for the molecule comprises a single PE surface; we assume

that there is a unique electronic eigenstate φ such that the molecular wave func-

17



tion is Ψ(x,X, t) = χ(X, t)φ(x), where χ is the nuclear wave function. Under this

assumption, the PE matrix in Equation (8) reduces to a scalar function V .

Let M1 and M2 be the masses of the nuclei, and X1 and X2 be their positions.

Since we are only interested in the internal motion of the molecule, we keep track

only of the distance between the two nuclei and not their absolute positions (hence,

the system is one-dimensional). Define the coordinate

X =

√
2µ

~
(|X1 −X2| −X0), (10)

where µ = M1M2

M1+M2

is the reduced mass andX0 is the equilibrium inter-nuclear distance.

Then, X = 0 is the equilibrium configuration, X < 0 is a compressed configuration,

and X > 0 is a stretched configuration. Further, under Equation (10), the KE

operator transforms as
∑

i

− ~
2

2Mi

∂2

∂X2
i

→ − ∂2

∂X2
.

Letting T̂ and V̂ be the KE and PE operators respectively, the nuclear Hamiltonian

is given by

Ĥ = T̂+ V̂ = − ∂2

∂X2
+ V (X). (11)

The evolution of the nuclear wave function is then given by the Schrödinger Equation:

∂

∂t
χ(X, t) = −iĤχ(X, t). (12)

We are primarily interested in the general shape of the nuclear wave function and its

evolution with time. For this reason, we let ~ = 1 in Equation (12) for convenience.

For the initial wave function at time t = 0, we use a Gaussian wave packet of the

form

χ(X, 0) = e−AX2

, (13)
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where A is a model parameter for which various values are tested. The wave function

is normalized before it is used.

We do not compute the electronic eigenstates for the molecule, and so we do

not use Equation (8) to derive an expression for the PE function V . Instead, we

simply assume a form for the PE function that we think is reasonable and that we

are interested in modeling. We select the Morse potential, which models the vibration

and dissociation of a diatomic molecule (Figure 1). We use a Morse potential of the

form

V (X) = 10(1− e−0.1X)2. (14)

Since X effectively tracks the vibration of the molecule, we refer to X as the “vibronic

coordinate”.

As the wave function evolves, we collect data at regular time intervals in the

form of expectation values of various physical observables, including: the vibronic

coordinate, momentum, kinetic energy, potential energy, and total energy.

1.3 The One-Dimensional Two-State Case

In Phase 2, we consider the same diatomic molecule from Phase 1, and we use the same

coordinate X (given by Equation (10)) to track the motion of the molecule. But we

now extend the PE landscape to comprise two PE surfaces. Let V1(X) and V2(X) be

the lower and upper PE surfaces respectively, and let V12(X) be the coupling potential.

We are then assuming the existence of two orthonormal electronic eigenstates φ1 and

φ2 such that the molecular wave function is given by

Ψ(X, t) = χ1(X, t)φ1(X) + χ2(X, t)φ2(X),

19



−5 5 10 15 20 25 30

5

10
Ed

X

V

Figure 1: Plot of the Morse PE function V (X). The horizontal asymptote of V (X) is the

dissociation energy Ed.

where χ1 and χ1 are the ground and excited (nuclear) state functions respectively.

That is, the nuclear wave function χ generalizes to the vector

χ(X, t) =

[

χ1(X, t)
χ2(X, t)

]

. (15)

Similarly, the Hamiltonian generalizes to the matrix

Ĥ =

[

Ĥ1 Ĥ12

Ĥ21 Ĥ2

]

=

[

1 0
0 1

]

T̂+

[

V̂1 V̂12

V̂12 V̂2

]

(16)

=

[

T̂+ V1(X) V12(X)

V12(X) T̂+ V2(X)

]

, (17)

where T̂ = − ∂2

∂X2 . This is in accordance with Equation (7). The evolution of the

wave function χ is still given by Equation (12).

For the initial wave function, we use a purely excited Gaussian wave packet of the

form

χ(X, t) =

[

χ1(X, 0)
χ2(X, 0)

]

=

[

0

exp−5X2

]

. (18)
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The wave function is normalized in accordance with Equation (6) before it is used.

As in Phase 1, we do not compute expressions for the studied PE functions. In-

stead, we choose expressions for the PE functions that we are interested in studying.

We let the ground state PE function be the Morse potential that encourages equi-

librium. Let the excited state PE function have a form that encourages molecular

expansion and dissociation. Let the coupling potential be a Gaussian that is strongest

at the equilibrium configuration (Figure 2). The PE functions are chosen to have the

forms

V1(X) = A(1− e−0.1X)2 (19)

V2(X) = B − 10

1 + e−0.1X
(20)

V12(X) = Ce−D(X−E)2 , (21)

where A,B,C,D,E are positive model parameters. Note that since V12(X) > 0 for

all X, there is no point of electronic degeneracy.

We monitor the expectation values of the same observables listed for Phase 1. We

additionally monitor two more observables: the force defined in terms of a potential

gradient, and the ground state population given by Equation (9).

1.4 The Two-Dimensional Two-State Case

In Phase 3, we consider a molecule with two nuclear degrees of freedom. In particular,

we consider a molecule that can be constructed by attaching “appendages” to the ends

of a diatomic molecule. In this way, the original diatomic molecule acts as an axis

around which the appendages can rotate. This introduces a second dimension in
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Figure 2: Plots of the Morse potential V1(X), the repelling potential V2(X), and the coupling

potential V12(X) for the case (A,B,C,D,E) = (10, 20, 10, 0.1, 0).

which the molecule can twist. A unique configuration of the molecule is specified by

the vibronic coordinate X, which relates to the length of the diatomic axis, and the

torsion angle θ about the axis, −π ≤ θ ≤ π.

Let V1(X, θ) and V2(X, θ) be the two PE surfaces comprising the two-state PE

landscape, and let V12(X, θ) be the coupling PE function. In this two-state system,

the nuclear wave function is the vector

χ(X, θ, t) =

[

χ1(X, θ, t)
χ2(X, θ, t)

]

, (22)

and the Hamiltonian takes the form

Ĥ =

[

Ĥ1 Ĥ12

Ĥ21 Ĥ2

]

=

[

1 0
0 1

]

(T̂X + T̂θ) +

[

V̂1 V̂12

V̂12 V̂2

]

(23)

=

[

T̂X + T̂θ + V1(X, θ) V12(X, θ)

V12(X, θ) T̂X + T̂θ + V2(X, θ)

]

, (24)

where T̂X and T̂θ are the KE operators with respect to X and θ. Since we are again

interested only in the shape of the nuclear wave function as it evolves, we assume that
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the molecule has a moment of inertia about its axis corresponding to the variable X

such that the total KE operator takes the form

T̂ = T̂X + T̂θ = − ∂2

∂X2
− ∂2

∂θ2
. (25)

The evolution of the wave function is then given by The Schrödinger Equation in two

dimensions:

∂

∂t
χ(X, θ, t) = −iĤχ(X, θ, t). (26)

For the initial wave function, we use a purely excited Gaussian wave packet. For

the wave function to be periodic with respect to the torsion angle θ, we require the

boundary condition

χ(X,−π, t) = χ(X, π, t), for all X, t (27)

We let the initial wave function have the form

χ(X, θ, 0) =

[

χ1(X, θ, t)
χ2(X, θ, 0)

]

=

[

0

e−5(X−X0)2−5(|θ−θ0+π|−π)2

]

, (28)

where X0 and θ0 are model parameters, with the restriction 0 ≤ θ0 ≤ π. The initial

wave function is defined so that it attains its maximum value with respect to θ at

θ = θ0 and its minimum value at θ = θ0 − π. The initial wave function is normalized

before it is used.

We choose expressions for the PE functions that model the example of cis-trans

isomerization. Let θ = 0 correspond to the cis configuration of the molecule. Then,

θ = ±π corresponds to the trans configuration. We define the ground state PE

function V1 such that in the ground state, the cis configuration (θ = 0) is stable and

the trans configuration (θ = ±π) is unstable. In contrast, we define the excited state
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PE function V2 such that in the excited state, the cis configuration is unstable and

the trans configuration is stable. Thus, V1 encourages the molecule to twist into the

cis configuration, and V2 encourages the molecule to twist into the trans configuration

(Figure 3a). Additionally, both V1 and V2 are defined so that the vibration of the

molecule along the axis of torsion is harmonic. We let the coupling potential V12 be

independent of the torsion angle and depend linearly on X (Figure 3b). Thus, we let

the PE functions have the forms

V1(X, θ) = 0.1X2 + 5(1− cos θ). (29)

V2(X, θ) = 0.1X2 + 10− 5(1− cos θ). (30)

V12(X, θ) = X. (31)

Note that the surfaces V1 and V2 are completely symmetric with respect to one an-

other. In particular, V1(X, θ + π) = V2(X, θ) for all X, θ. Note also that V1
(

0, π
2

)

=

V2
(

0, π
2

)

and V12
(

0, π
2

)

= 0. Thus, the molecular configuration (X, θ) =
(

0, π
2

)

is a

point of electronic degeneracy [1].

The physical observables for which we monitor expectation values include: the

vibronic coordinate, absolute torsion angle, kinetic energy, potential energy, total

energy, vibronic force (along the axis of torsion), torque (force with respect to the

absolute torsion angle), and ground state population.
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tial V2(0, θ) as functions of θ. These

are angular profiles of V1 and V2 for
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tial V2(X, 0), and coupling potential

V12(X, 0) as functions of X. These

are profiles of V1, V2, and V12 for

θ = 0.

Figure 3: Plots of some sectional curves of the PE functions.
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2 Methodology

Our numerical model for the time evolution of a nuclear wave function is based on the

recursive method proposed by Lösch [2]. This involves the discretization of functions

into finite vectors and linear operators into square matrices. Further, it involves

the application of the Crank-Nicolson method to the time-dependent Schrödinger

Equation in order to derive its Cayley form. This leads to a tridiagonal system of

difference equations that can be easily solved numerically. We implement our model

in the programming language FORTRAN.

2.1 The One-Dimensional Single-State Case

Consider a diatomic molecule whose nuclear configuration is specified by the coordi-

nate X given in Equation (10). Define χ(X, t) to be the nuclear wave function at time

t. Let V (X) be the effective nuclear PE curve in which the wave function evolves.

Recall that the Hamiltonian is given by Equation (11) and that the evolution of χ is

given by Equation (12).

The construction of our numerical model begins with the discretization of space

and time. Let ∆X and ∆t be the sizes of the space step and time step respectively. We

approximate the infinite space interval by a suitably large but finite interval [X1, X2],

X1 < 0 < X2. We denote the discretized wave function and PE function at the jth

space step and nth time step by χn
j and Vj:

χn
j = χ(X1 + j∆X,n∆t). (32)

Vj = V (X1 + j∆X). (33)
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At a fixed time n, χn and V are vectors with components χn
j and Vj respectively.

Using the central difference approximation for the second derivative, the action of

the discretized Hamiltonian on the discretized wave function yields a vector Ĥχn

with components

[Ĥχn]j = −
(

χn
j+1 − 2χn

j + χn
j−1

(∆X)2

)

+Vjχ
n
j

=
−χj−1 + (2 + (∆X)2Vj)χ

n
j − χn

j+1

(∆X)2
. (34)

The discretized time-dependent Schrödinger Equation takes the form

∆χn

∆t
= −iĤχn,

yielding the difference equation

∆χn = −i∆tĤχn. (35)

Applying Equation (35) to χn and χn+1, each for a time ∆t
2
, yields the equations

∆χn = − i∆t
2

Ĥχn. (36)

∆χn+1 = − i∆t
2

Ĥχn+1. (37)

Let α = i∆t
2

for brevity. Using a forward difference for Equation (36) and a backward

difference for Equation (37), we get

χn+ 1

2 − χn = −αĤχn.

χn+1 − χn+ 1

2 = −αĤχn+1.

Adding these two equations and regrouping terms, we arrive at the Cayley approxi-

mation for the Schrödinger Equation:

(1 + αĤ)χn+1 = (1− αĤ)χn. (38)
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Note that the exact solution to Equation (12) is χ(X, t) = exp(−iĤt)χ(X, 0), where

the operator exp(−iĤt) is defined in terms of its Taylor expansion. The Cayley

operator

Ĉ = (1 + αĤ)−1(1− αĤ)

is a good approximation to exp(−i∆tĤ). Note also that Ĉ is unitary, so that Equation

(38) preserves the norm of the wave function.

We simplify Equation (38) further by performing a variable substitution [2]. Define

the vector

ζ = χn + χn+1. (39)

Performing the substitution χn+1 = ζ − χn in Equation (38) yields

(1 + αĤ)(ζ − χn) = (1− αĤ)χn.

Distributing the operator on the left side,

(1 + αĤ)ζ − (1 + αĤ)χn = (1− αĤ)χn.

Moving the second term on the left side to the right, we obtain

(1 + αĤ)ζ = (1− αĤ)χn + (1 + αĤ)χn

= (1− αĤ+ 1 + αĤ)χn

= 2χn.

As χn is known, our goal is to solve for ζ. Once this is done, we obtain χn+1 using

Equation (39). We therefore arrive at a set of difference equations that allow us to
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find χn+1 given χn:

(1 + αĤ)ζ = 2χn. (40)

χn+1 = ζ − χn. (41)

This set of equations is not to be solved simultaneously but instead as a loop running

over n. The wave function evolves in time via this recursive loop. Note that ζ is

redefined when solved from Equation (40) in every recurrence.

Using Equation (34), the above equations can be stated more explicitly as

−βζj−1 + [1 + β(2 + (∆X)2Vj)]ζj − βζj+1 = 2χn
j (42)

χn+1
j = ζj − χn

j , (43)

where β = α
(∆X)2

, and where one equation is looped over all j before proceeding to

the next equation or the next value of n. Notice that Equation (42) is a tridiagonal

linear system (indexed by j). This system can be easily and efficiently solved using

the Tridiagonal Algorithm– a simple Gaussian elimination (or equivalently, an LU

factorization) that takes advantage of the sparsity of the system [3].

2.2 The One-Dimensional Two-State Case

We proceed to extend the above method to the more general case of a PE landscape

with two PE surfaces given by V1 and V2 and a coupling potential given by V12.

Recall that the wave function χ(X, t) and the Hamiltonian Ĥ generalize to a vector

and matrix given by Equations (15) and (17) respectively. With these generalizations,
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Equation (38) takes the form

([

1 0
0 1

]

+ α

[

Ĥ1 Ĥ12

Ĥ21 Ĥ2

])[

χn+1
1

χn+1
2

]

=

([

1 0
0 1

]

− α

[

Ĥ1 Ĥ12

Ĥ21 Ĥ2

])[

χn
1

χn
2

]

,

where χn
1 and χn

2 are the discretized ground state and excited state wave functions.

This matrix equation is equivalent to the linear system

(1 + αĤ1)χ
n+1
1 + αV̂12χ

n+1
2 = (1− αĤ1)χ

n
1 − αV̂12χ

n
2 . (44)

αV̂12χ
n+1
1 + (1 + αĤ2)χ

n+1
2 = −αV̂12χ

n
1 + (1− αĤ2)χ

n
2 , (45)

where we used the fact that Ĥ12 = Ĥ21 = V̂12.

Due to the coupling term appended to each equation, Equations (44) and (45)

are no longer tridiagonal systems. To handle this increase in complexity, we propose

a scheme that is analogous to the application of the Alternating Direction Implicit

(ADI) Method to two-dimensional diffusion equations [3]. Essentially, our strategy is

to forward the wave function one state at a time; while forwarding one state, we hold

the other fixed. Our scheme exploits the fact that for small enough ∆t, χn
1 ≈ χn+1

1

and χn
2 ≈ χn+1

2 . First, while forwarding the ground state function χn
1 to χn+1

1 , we

assume that χn
2 is constant for one forward time step. Second, while forwarding the

excited state function χn
2 to χn+1

2 , we assume that χn+1
1 is constant for one backward

time step. To implement this scheme, we approximate χn+1
2 by χn

2 in Equation (44),

and we approximate χn
1 by χn+1

1 in Equation (45). These approximations yield

(1 + αĤ1)χ
n+1
1 + αV̂12χ

n
2 = (1− αĤ1)χ

n
1 − αV̂12χ

n
2 .

αV̂12χ
n+1
1 + (1 + αĤ2)χ

n+1
2 = −αV̂12χ

n
1 + (1− αĤ2)χ

n+1
2 .
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Moving the coupling terms to the right side, we get

(1 + αĤ1)χ
n+1
1 = (1− αĤ1)χ

n
1 − 2αV̂12χ

n
2 . (46)

(1 + αĤ2)χ
n+1
2 = −αV̂12χ

n
1 + (1− 2αĤ2)χ

n+1
2 . (47)

Just as we did to simplify Equation (38) to Equation (40), we perform the substitu-

tions

ζi = χn
i + χn+1

i , i = 1, 2

to simplify Equations (46) and (47) to arrive at a simpler set of difference equations

through which we can loop in order to find χn+1 given χn:

1

2
(1 + αĤ1)ζ1 = χn

1 − αV̂12χ
n
2 . (48)

χn+1
1 = ζ1 − χn

1 . (49)

1

2
(1 + αĤ2)ζ2 = χn

2 − αV̂12χ
n+1
1 . (50)

χn+1
2 = ζ2 − χn

2 . (51)

Like Equations (40) and (41), these four equations are solved in the fashion of a loop

running over n. Note that when we get to Equation (50) in the loop, χn+1
1 is known

thanks to the preceding equations. Thus, the right sides of Equations (48) and (50)

are known vector quantities, and their left sides are equivalent to the left side of

Equation (40). Therefore, Equations (48) and (50) are tridiagonal systems that can

be easily solved using the Tridiagonal Algorithm.
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2.3 The Two-Dimensional Two-State Case

We proceed to generalize the above method to the case of a PE landscape that consists

of two-dimensional surfaces. The functions χ, V1, V2, and V12 now depend on two

nuclear degrees of freedom– the vibronic coordinate X and the torsion angle θ.

We discretize the intervals for X and t in the same way as in the one-dimensional

case. We discretize the interval [−π, π] for the new coordinate θ such that the angular

step size is also ∆X. Then, the values of the wave function and PE functions at the

(i, j)th space step (i.e., at the ith step in X and jth step in θ) and nth time step are

denoted and given by

[χ1]
n
i,j = χ1(X1 + i∆X,−π + j∆X,n∆t). (52)

[χ2]
n
i,j = χ2(X1 + i∆X,−π + j∆X,n∆t). (53)

[V1]i,j = V1(X1 + i∆X,−π + j∆X). (54)

[V2]i,j = V2(X1 + i∆X,−π + j∆X). (55)

[V12]i,j = V12(X1 + i∆X,−π + j∆X). (56)

For a fixed time step n, we define χn
1 , χ

n
2 , V1, V2, and V12 to be the matrices with

entries indexed by i, j and are listed above. The actions of the partial KE operators

T̂X and T̂θ on a discretized wave function χn return matrices T̂Xχ
n and T̂θχ

n with

32



entries given by

[T̂Xχ
n]i,j =

−χn
i−1,j + 2χn

i,j − χn
i+1,j

(∆X)2
. (57)

[T̂θχ
n]i,j =

−χn
i,j−1 + 2χn

i,j − χn
i,j+1

(∆X)2
. (58)

(59)

The discretized Hamiltonian Ĥ is then obtained by combining the discretized KE and

PE operators together in accordance with Equation (24).

Since we are still considering a two-state PE landscape, Equations (46) and (47)

are valid even in two dimensions. But due to the more complicated KE operator

T̂ = T̂X+T̂θ, Equations (46) and (47) are not tridiagonal systems in two dimensions.

Therefore, further simplification of Equations (46) and (47) is required. We use the

ADI method for two-dimensional diffusion problems [3]. In Equation (46), we forward

χn
1 to χn+1

1 while holding χn
2 fixed. In the ADI method, we forward χn

1 to χn+1
1 in

two half-steps, with χ
n+ 1

2

1 as the intermediate wave function. Thus, Equation (46)

transforms into a set of two equations:

[

1 +
1

2
α(T̂X + T̂θ + V̂1)

]

χ
n+ 1

2

1 =

[

1− 1

2
α(T̂X + T̂θ + V̂1)

]

χn
1 − 2

(

1

2
α

)

V̂12χ
n
2

(60)

[

1 +
1

2
α(T̂X + T̂θ + V̂1)

]

χn+1
1 =

[

1− 1

2
α(T̂X + T̂θ + V̂1)

]

χ
n+ 1

2

1 − 2

(

1

2
α

)

V̂12χ
n
2 ,

(61)

where the Hamiltonian Ĥ1 is made explicit, and α = i∆t
2

is replaced with 1
2
α due to

the half-step. For Equation (60), we can approximate T̂Xχ
n
1 by T̂Xχ

n+ 1

2

1 and T̂θχ
n+ 1

2

1

by T̂θχ
n
1 . These approximations are valid for a small enough time step size ∆t. For
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Equation (61), we can approximate T̂θχ
n+ 1

2

1 by T̂θχ
n+1
1 and T̂Xχ

n+1
1 by T̂Xχ

n+ 1

2

1 .

Notice that the approximations we want to make in the second half-step (i.e., to

Equation (61)) are complementary to the approximations in the first half-step (i.e.,

to Equation (60)). This is to maintain the intinsic symmetry between T̂X and T̂θ in

the limit ∆t → 0. Making all of these approximations and gathering terms of like

time steps, Equations (60) and (61) transform to

[

1 +
1

2
α(T̂X + T̂X + V̂1)

]

χ
n+ 1

2

1 =

[

1− 1

2
α(T̂θ + T̂θ + V̂1)

]

χn
1 − αV̂12χ

n
2 .

[

1 +
1

2
α(T̂θ + T̂θ + V̂1)

]

χn+1
1 =

[

1− 1

2
α(T̂X + T̂X + V̂1)

]

χ
n+ 1

2

1 − αV̂12χ
n
2 .

We can apply the ADI method to Equation (47) in the same way as we did for

Equation (46). In this way, we obtain a set of difference equations from which we can

solve for χn+1 given χn:

[

1 + α

(

T̂X +
1

2
V̂1

)]

χ
n+ 1

2

1 =

[

1− α

(

T̂θ +
1

2
V̂1

)]

χn
1 − αV̂12χ

n
2 . (62)

[

1 + α

(

T̂θ +
1

2
V̂1

)]

χn+1
1 =

[

1− α

(

T̂X +
1

2
V̂1

)]

χ
n+ 1

2

1 − αV̂12χ
n
2 . (63)

[

1 + α

(

T̂X +
1

2
V̂2

)]

χ
n+ 1

2

2 =

[

1− α

(

T̂θ +
1

2
V̂2

)]

χn
2 − αV̂12χ

n+1
1 . (64)

[

1 + α

(

T̂θ +
1

2
V̂2

)]

χn+1
2 =

[

1− α

(

T̂X +
1

2
V̂2

)]

χ
n+ 1

2

2 − αV̂12χ
n+1
1 . (65)

As usual, this set of equations is solved as a loop running over n. Therefore, the right

sides to all four equations are known matrix quantities. Since the operators T̂X and

T̂θ are on opposite sides in each equation, Equations (62) and (64) are tridiagonal

systems that can be easily solved using the Tridiagonal Algorithm. Because of the

periodic boundary condition given by Equation (27), Equations (63) and (65), which
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have T̂θ operating on their left sides, are not purely tridiagonal systems. Rather,

they are cyclic tridiagonal systems. These systems are easily solved by applying the

Sherman-Morrison Formula to a simple perturbation of a purely tridiagonal system

[3].

2.4 Normalization and Expectation Values

Both the normalization of the initial wave functions and the computation of expecta-

tion values utilize the Dirac bracket. We must therefore define the Dirac bracket for

discretized arguments. The computation of expectation values additionally requires

the discretization of the operators corresponding to the observables we want to mon-

itor. We discretize the bracket and the operators for relevant observables first in one

dimension and then in two dimensions.

2.4.1 In One Dimension

Let f ,g be vectors resulting from the discretization of two arbitrary wave functions

f(X) and g(X) respectively. Then, the Dirac bracket of f and g is given by the

trapezoidal sum

〈f ,g〉 =
∑

j

1

2
(f ∗

j gj + f ∗
j+1gj+1)∆X, (66)

where fj, gj are the indexed entries of f and g respectively.

The discretized initial wave function χ0 is then normalized by scaling χ0 so that

it satisfies

〈χ0 | χ0〉 = 1. (67)

Again, the methods described in the preceding sections ensure a unitary evolution
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of the wave function, so that the wave function is approximately normalized for all

time.

For both the single-state and two-state cases, we are interested in the following

observables: the vibronic coordinate X̂, momentum p̂, kinetic energy T̂, potential

energy V̂, and total energy Ĥ. The action of the vibronic coordinate and momentum

operators on the wave function return vectors with the following entries respectively:

[X̂χn]j = (X1 + j∆X)χn
j . (68)

[p̂χn]j = −
i(χn

j+1 − χn
j−1)

2∆X
. (69)

The actions of the KE operator is defined in accordance with Equation (34). If q is

one of X̂, p̂, or T̂, then the expectation value of q in the single state case at the nth

time step is simply

〈q〉 = 〈χn | q | χn〉, (70)

and the expectation value of q in the two-state case is

〈q〉 = 〈χn
1 | q | χn

1 〉+ 〈χn
2 | q | χn

2 〉. (71)

For any arbitrary discretized PE function V, the action of the PE operator V̂ on

the wave function returns a vector with entries

[V̂χn]j = Vjχ
n
j .

For the single-state case, the expectation value of V̂ satisfies Equation (70). For the

two-state case, the expectation value of V̂ takes a more complicated form due to the

coupling potentials:

〈V̂〉 = 〈χn | V̂1χ
n
1 + V̂12χ

n
2 〉+ 〈χn

2 | V̂12χ
n
1 + V̂2χ

n
2 〉. (72)

36



For both the single-state and two-state cases, the total energy expectation value is

given by

〈Ĥ〉 = 〈T̂〉+ 〈V̂〉. (73)

For the two-state case, we additionally monitor the force F̂. For any arbitrary

discretized PE function V, the action of the corresponding force operator F̂ (which

is the negative gradient of V) on the wave function returns a vector with entries

[F̂χn]j = −
(Vj+1 −Vj−1)χ

n
j

2∆X
. (74)

In this way, let F̂1, F̂2, F̂12 be the force operators corresponding to the PE operators

V̂1, V̂2, and V̂12 respectively. Then, the force expectation value is given by

〈F̂〉 = 〈χn | F̂1χ
n
1 + F̂12χ

n
2 〉+ 〈χn

2 | F̂12χ
n
1 + F̂2χ

n
2 〉. (75)

Finally, for the two-state case, we monitor the ground state population, which at

the nth time step is given by

G = 〈χn
1 | χn

1 〉. (76)

2.4.2 In Two Dimensions

Let f ,g be matrices resulting from the discretization of two arbitrary wave functions

f(X, θ) and g(X, θ) respectively. Then, the Dirac bracket of f and g is given by the

rectangular sum

〈f | g〉 =
∑

i,j

f ∗
ijgij(∆X)2, (77)

where fij, gij are the indexed entries of f and g respectively. The discretized initial

wave function χ0 is normalized by scaling the matrix χ0 such that it satisfies Equa-
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tion (67). By unitarity of our evolution method, the norm of the wave function is

conserved.

We are interested in the following observables: the vibronic coordinate X̂, absolute

torsion angleθ̂, kinetic energy T̂, potential energy V̂, total energy Ĥ, vibronic force

F̂, torque τ̂ , and ground state population G. The actions of X̂ and θ̂ on the wave

function χn return matrices that have entries

[X̂χn]i,j = (X1 + i∆X)χn
i,j . (78)

[θ̂χn]i,j = | − π + j∆X|χn
i,j . (79)

We monitor the absolute torsion angle (as given above) instead of the usual signed

torsion angle because we are not interested in the direction in which the molecule

twists but only in the extent to which the molecule twists away from the cis con-

figuration. In this way, θ̂ = 0 and θ̂ = π sharply correspond to the cis and trans

configurations respectively. The action of the KE operators T̂X and T̂θ are defined

by Equations (57) and (58). The total KE operator is simply T̂ = T̂X + T̂θ. The

expectation values of X̂, θ̂, and T̂ are given by Equation (71).

For any arbitrary discretized PE function V, the actions of the PE operator V̂

and the corresponding force and torque operators F̂ and τ̂ on the wave function χn

return matrices with entries

[V̂χn]i,j = Vi,jχ
n
i,j

[F̂χn]i,j = −
(Vi+1,j − Vi−1,j)χ

n
i,j

2∆X

[τ̂χn]i,j = −
sgn(i)(Vi,j+1 − Vi,j−1)χ

n
i,j

2∆X
, (80)
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where sgn(i) = 1 if −π + i∆X ≥ 0 and sgn(i) = −1 otherwise. The torque is defined

to be positive if it forces the molecule to twist away from the cis configuration,

and negative otherwise. We define the torque in this way because again we are not

concerned with the direction of twisting but only with the extent of twisting away

from the cis configuration and towards the trans configuration. The PE and force

expectation values are then given by Equations (72) and (75) respectively, and the

torque expectation value is given analogously as

〈τ̂〉 = 〈χn
1 | τ̂1χn

1 + τ̂12χ
n
2 〉+ 〈χn

2 | τ̂12χn
1 + τ̂2χ

n
2 〉. (81)

The total energy expectation value is given by Equation (73), and the ground state

population is given by Equation (76).
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3 Results

All figures in this section (Figures 4–13) are presented at the end of the section.

3.1 The One-Dimensional Single-State Case

In Phase 1 of our study, we are interested in the dynamics of a wave packet (Equation

(13)) in a Morse potential (Equation (14)). Recall that

χ(X, 0) = e−AX2

V (X) = 10(1− e−0.1X)2,

where A is a model parameter, and Ed = 10 is the dissociation energy. In our

numerical implementation, we use the interval [X1, X2] = [−50, 450] with space step

size ∆X = 0.005 and time step size ∆t = 0.0025. We model two possible cases: 1)

The energy expectation value is less than the dissociation energy (〈Ĥ〉 < Ed), and 2)

the energy expectation value is greater than the dissociation energy (〈Ĥ〉 > Ed). We

model the two cases by using A = 4 and A = 16, respectively. For both cases, the

energy expectation value is 〈Ĥ〉 = A. We observe that total energy is conserved with

time, indicating that our model is reasonable (Figures 4c and 4f). In both cases, we

observe that 〈X〉 increases with time; i.e., the diatomic molecule is expanding. Given

the 4-fold difference in energy between the two cases (4 vs. 16), we observe a 4-fold

difference in 〈X〉 between the two cases at time t = 50 (30 vs. 120) (Figures 4a and

4d). Thus, greater energy directly leads to greater expansion. For both cases, the

momentum expectation value is positive and on average decreasing; this is consistent

with the molecular expansion that we observe (Figures 4b and 4e). Moreover, the
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kinetic energy in Case 2 at t = 50 is significantly greater than the kinetic energy in

Case 1, increasing the contrast in molecular expansion between the two cases (Figures

4c and 4f). Therefore, the difference in energy between the two cases with respect

to the dissociation energy has reasonable consequences. More generally, we conclude

that our model for the one-dimensional single-state case is reasonable.

3.2 The One-Dimensional Two-State Case

In Phase 2, we extend the model from phase 1 by introducing a second PE surface

as well as a coupling potential. We use the wave packet given by Equation (18) and

the PE functions given by Equations (19)–(21):

χ1(X, 0) = 0

χ2(X, 0) = e−5X2

V1(X) = A(1− e−0.1X)2

V2(X) = B − 10

1 + e−0.1X

V12(X) = Ce−D(X−E)2 ,

where A,B,C,D,E are model parameters. We use the interval [X1, X2] = [−50, 250]

with space step size ∆X = 0.002 and time step size ∆t = 0.001. We test a total of

nine cases; the sets of values for the model parameters used for each case are listed

in Table 1.

We take Case 1 to be a standard against which we compare the other cases. For

each parameter except A, we test a value less than the standard and a value greater

than the standard, giving us eight cases in addition to Case 1. We are primarily
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Case A B C D E

1 10 20 15 0.1 0
2 10 15 15 0.1 0
3 10 25 15 0.1 0
4 10 20 5 0.1 0
5 10 20 25 0.1 0
6 10 20 15 0.01 0
7 10 20 15 1 0
8 10 20 15 0.1 −5
9 10 20 15 0.1 5

Table 1: List of the model parameter values used for each case of Phase 2.

concerned with the dynamics of the ground state population G and its dependence

on the five model parameters characterizing the relative shapes of the PE functions.

We monitor these dynamics over the time interval [0, 6].

In Case 1, the ground state population oscillates with time with a constant fre-

quency and a diminishing amplitude, leading to an asymptotic limit of the ground

state population (Figure 5a). Since the coupling potential facilitates state transition

in both directions (both de-excitation and excitation), the oscillations are expected.

Recalling that a sufficiently energetic molecule expands in the Morse potential (by

Phase 1), and noting that the strictly decreasing upper PE surface V2 clearly forces a

molecule to expand, it follows that an overall molecular expansion is expected in this

PE landscape. But since the coupling potential V12(X) diminishes with X > 0, and

since the molecule expands with time, then coupling weakens with time. Therefore,

we expect the amplitude of the ground state population to diminish, consistent with

observation. The trend of the ground state population relates to the force expectation

value. We observe that the force expectation value 〈F̂〉 oscillates with the frequency
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as does the ground state population, and its amplitude also diminishes. However, the

force attains a local maximum value only when the ground state population attains a

local minimum value, and vice versa (Figure 5). This reflects an opposition between

the lower and upper PE surfaces; since the lower PE surface V1(X) produces a neg-

ative force (for X > 0) while the upper PE surface V2(X) produces a positive force,

an increase in the ground state population implies a decrease in the expected force,

and vice versa. Finally, as the molecule expands, the slopes of both PE surfaces as

well as the coupling potential tend to 0, and this explains the diminishing amplitude

of the expected force.

The general trend of the ground state population observed in Case 1 (i.e., damped

oscillation) is also observed in Cases 2–7. We are therefore primarily concerned with

three parameters that largely characterize the trend of the ground state population

G: 1) the first maximum (or initial amplitude) GA of G, 2) the frequency (or inverse

period) Gν of G, and 3) the asymptotic limit GL of G. We proceed to examine the

effect of each of the five model parameters on the ground state population.

The first parameter (A) is the dissociation energy in the Morse potential V1.

Increasing A from 5 to 10 to 15 has little to no effect on the dynamics of the ground

state population (the cases A = 5 and A = 15 are not listed in Table 1). That is,

all three cases are equivalent to the standard case. Therefore, G is not sensitive to

varying A on [5, 15]. We expect that the dissociation energy becomes significant only

once the molecule expands to a considerable size. But recall that in the single-state

case, little expansion occurs on the time interval [0, 6] (By Phase 1, Figures 4a and

4d). Hence, the weak dependence ofG on A suggests that the ground state population
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varies on a time scale much smaller than the time for molecular dissociation (Compare

the time scales used in Phase 1 vs Phase 2, i.e., [0, 50] vs [0, 6]).

The second parameter (B) directly modulates the vertical off-set of the upper PE

surface V2. We observe that if B is increased, then the frequency Gν of G increases

but the initial amplitude GA and asymptotic limit GL both decrease (Figures 5a and

6). Since GA and GL decrease, we conclude that raising the upper PE surface leads to

weaker coupling and hence to a less efficient electronic de-excitation. In other words,

to facilitate a strong de-excitation, a low upper PE surface is preferred.

The third parameter (C) is the central maximum of the Gaussian coupling poten-

tial V12. We observe that if C is increased, then all three of GA, Gν , and GL increase

(Figures 5a and 7). Clearly then, given that a molecule is initially excited, a stronger

coupling potential leads to a stronger and more effective electronic de-excitation. In

particular, the asymptotic ground state population GL gets closer to 50% (equilibrium

between the two states) as C is increased. The observed effect of C is also consistent

with the effect of B in the following sense: It is possible that raising the upper PE

surface effectively lowers the coupling potential (i.e., V2 and V12 “compete” with each

other in the diabatic Schrödinger Equation). If this is the case, then it clearly follows

that raising the upper PE surface weakens coupling and hence de-excitation.

The fourth parameter (D) controls the width of the Gaussian coupling potential

V12; a greater value of D produces a narrower coupling potential. We observe that

if D is increased, then GA and Gν both decrease. Moreover, the rate at which the

amplitude diminishes increases (Figures 5a and 8). The last observation is consistent

with expectation; as the molecule expands with time, the coupling potential dimin-
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ishes. Clearly, a narrower coupling potential diminishes more rapidly. Finally, notice

that GL increases if D is increased from 0.1 (Figure 5a) to 1 (Figure 8b). Expecting

that GL → 0 as D → ∞ (since the coupling potential vanishes), it follows that there

exists a value of D for which GL is locally maximum. Thus, the width of the coupling

potential is critical in optimizing de-excitation.

The fifth and final parameter (E) is the location at which the coupling potential

is centered.

In Case 1 (the standard case), the coupling potential is centered at the equilibrium

configuration (E = 0). We observe that if the coupling potential is displaced by 5 units

in either direction (E = ±5), thenGA, Gν , andGL all decrease dramatically compared

to E = 0. Further, the amplitude of oscillation is no longer strictly decreasing (Figure

5a and 9). This reflects the narrowness of the initial Gaussian wave function. Using

E = ±5, the coupling potential V12(0) at X = 0 is too small to facilitate a strong state

transition while the wave function is still near X = 0. Since the molecule expands

(i.e., 〈X〉 increases), we expect that the coupling potential centered at E = 5 will be

effective once the wave function reaches it. But surprisingly, the coupling potential

is no more effective at E = 5 than it is at E = −5. On the contrary, the frequency

Gν is less at E = 5 than it is at E = −5 (Figure 9). This may reflect either the slow

expansion of the molecule or possibly even the dispersion of the wave function as it

evolves.
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3.3 The Two-Dimensional Two-State Case

In Phase 3, we consider a molecule that can both stretch and twist. Thus, the PE

surfaces are two-dimensional. Recall that the initial wave packet is given by Equation

(28) and the PE functions are given by Equations (29)–(31):

χ1(X, θ, 0) = 0

χ2(X, θ, 0) = e−5(X−X0)2−5(|θ−θ0+π|−π)2

V1(X, θ) = 0.1X2 + 5(1− cos θ)

V2(X, θ) = 0.1X2 + 10− 5(1− cos θ)

V12(X, θ) = X,

whereX0, θ0 are model parameters. We use the interval [X1, X2]×[θ1, θ2] = [−10, 10]×

[−π, π] with space step size ∆X = 0.002π and time step size ∆t = 0.005. We consider

four cases, i.e., we consider four configurations (X0, θ0) at which the initial Gaussian

wave packet can be centered. For each, we study the dynamics of the molecule in

terms of absolute torsion angle, ground state population, and torque. The model

parameter values used for each case are listed in Table 2.

Case X0 θ0
1 0 0
2 0 π

2

3 0 π

4 10 π
2

Table 2: List of the model parameter values used for each case in Phase 3.

In Cases 1–3, the molecule is on average neither stretched nor compressed along
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its torsion axis (X0 = 0). In Case 1, the molecule is initially in the cis configuration

(θ0 = 0). But since the molecule is initially excited (i.e., on the upper PE surface),

it is unstable in the cis configuration. As time passes, we observe that θ̂ increases;

i.e., the molecule twists away from the cis configuration and towards the trans con-

figuration. Eventually, θ̂ fluctuates about θ ≈ π
2
, suggesting that the molecule settles

into an average state that does not strongly prefer either the cis configuration or the

trans configuration over the other (Figure 10a). The angular motion of the molecule

relates to the trend of the ground state population. As time passes, the ground state

population increases and then fluctuates near G = 0.45 (Figure 10b). Since the lower

PE surface forces the molecule towards the cis configuration while the upper PE sur-

face forces the molecule towards the trans configuration, a ground state population

of G = 0.45 is consistent with the observation that the molecule is not significantly

more inclined towards either the cis or trans configurations. The trend of the torque

expectation value is consistent with that of the ground state population, and this is

analogous to the relationship between the force expectation value and ground state

population in the one-dimensional case. That is, τ̂ attains a local maximum value

only when G attains a locally minimum value, and vice versa. This reflects the op-

position of the two PE surfaces, in the sense that the lower PE surface produces a

negative torque, while the upper PE surface produces a positive torque. Overall,

τ̂ decreases and converges towards a positive value (Figure 10c). This is consistent

with the increase of G and the ultimate value G = 0.45 < 0.5 (i.e., more of the wave

function follows the upper PE surface).

In Case 2, the molecule is initially half-way between the pure cis and trans con-
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figurations (θ0 =
π
2
). But since the molecule is initially excited, it initially prefers the

trans configuration. Note that the initial configuration of the molecule is also a point

of electronic degeneracy. As time passes, θ̂ fluctuates roughly about θ = π
2
(Figure

11a). This is similar to the eventual trend of θ̂ in Case 1 (Figure 10a). However, at

time t = 0.5, the maximum torsion angle in Case 2(θ̂ = 1.85) exceeds the maximum

torsion angle in Case 1 (θ̂ = 1.7). This is a consequence of the bias of the initial

molecule to the trans configuration on the upper PE surface. Eventually, however,

the molecule is not strongly biased to either the cis or trans configurations. This is

consistent with the trends of both the ground state population (Figure 11b) and of

the torque expectation value (Figure 11c). We observe that the ground state popula-

tion exhibits fluctuations that are not present in Case 1. This suggests an increased

coupling action in some sense near the point of electronic degeneracy. Recalling from

the one-dimensional case that an efficient electronic de-excitation requires a low upper

PE surface and analogously that an efficient electronic excitation requires a low lower

PE surface, it follows that an efficient de-excitation occurs to the right of the point of

electronic degeneracy and that an efficient excitation occurs to the left. This explains

the fluctuations we see about θ = π
2
. Nevertheless, it is interesting that the contrast

between Case 1 and Case 2 is not dramatic. It therefore seems that fast transitions

that supposedly occur at points of electronic degeneracy cannot be observed in the

diabatic frame.

In Case 3, the molecule is initially in the trans configuration (θ0 = π). Since the

molecule is excited, it is stable in the trans configuration. But despite its stability,

the molecule exhibits very interesting dynamics. As time begins to pass, the ground
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state population begins to increase (Figure 12b). But in the ground state, the trans

configuration is unstable. Therefore, the molecule begins to transition from a stable

state to an unstable state. Moreover, as time passes, the ground state population

fluctuates but maintains an overall increasing trend. The ground state population

eventually reaches G ≈ 0.6 > 0.5 (Figure 12b). This is in sharp contrast with Cases

1 and 2. This supports the recurring idea that molecular de-excitation is most effective

at a configuration where the upper PE surface takes a low value. Notice further that

at the configuration (X, θ) = (0, π), the lower PE surface attains its global maximum

(V1 = 10) and the upper PE surface attains its global minimum (V2 = 0). We

therefore conclude that a state transition is most effective when transitioning from a

PE minimum (i.e., stable equilibrium) on one surface to a PE maximum (i.e., unstable

equilibrium) on another surface. Since we are ultimately more likely to observe the

molecule in the ground state (G ≈ 0.6) and since the lower PE surface forces the

molecule to move towards the cis configuration, it is reasonable to observe that the

torsion angle θ̂ eventually leans closer toward the cis configuration; we observe that

θ̂ attains a minimum of θ̂ ≈ 1 (Figure 12a). Further, it is also reasonable that the

expected torque on the molecule is ultimately negative (τ̂ ≈ −0.5), since the molecule

ultimately prefers the cis configuration (Figure 12c).

In Case 4, the molecule is initially stretched (X0 = 10) and is between the cis

and trans configurations (θ0 =
π
2
). Since the molecule is stretched, the action of the

coupling potential is much more significant. Since the molecule is initially excited, it

initially prefers the trans configuration. This explains the slight bias of the expected

torsion angle towards the trans configuration (Figure 13a). As time passes, the ground
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state population exhibits a trend like that generally seen in the one-dimensional case;

the ground state population oscillates with an amplitude that diminishes and leads to

the asymptotic limit G ≈ 0.5 (Figure 13b). That is, the molecule prefers neither the

cis nor the trans configuration. The rapid decay of the amplitude reflects the weaken-

ing of the coupling potential as the molecule relaxes from its stretched configuration.

The expected torque is consistent with the ground state population as in previous

cases. We observe that the torque diminishes and vanishes with time (Figure 13c),

which is consistent with the asymptotic limit GL = 0.5. Case 4 reminds us that in

addition to the right shapes for the two PE surfaces, a strong coupling potential is

also essential for an effective state transition.
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ordinate expectation value

against time for Case 2

(A = 16).
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Figure 4: Plots of expectation values for both cases considered in Phase 1.
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Figure 5: Plots of the ground state population and the force expectation value against time

for Case 1 (the standard case) in Phase 2.
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(a) For Case 2 (B = 15 < 20).
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(b) For Case 3 (B = 25 > 20).

Figure 6: Plots of the ground state population against time for two different values of the

parameter B in Phase 2. The standard value is B = 20 used in Case 1 (Figure (4a)).

0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
ro

un
d 

st
at

e 
po

pu
la

tio
n 

(a
.u

.)

Time (a.u.)

(a) For Case 4 (C = 5 < 15).

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

G
ro

un
d 

st
at

e 
po

pu
la

tio
n 

(a
.u

.)

Time (a.u.)

(b) For Case 5 (C = 25 > 15).

Figure 7: Plots of the ground state population against time for two different values of the

parameter C in Phase 2. The standard value is C = 15 used in Case 1 (Figure (4a)).
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(a) For Case 6 (D = 0.01 < 0.1).
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(b) For Case 7 (D = 1 > 0.1).

Figure 8: Plots of the ground state population against time for two different values of the

parameter D in Phase 2. The standard value is D = 0.1 used in Case 1 (Figure (4a)).
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(a) For Case 8 (BE = −5 < 0).
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(b) For Case 9 (E = 5 > 0).

Figure 9: Plots of the ground state population against time for two different values of the

parameter E in Phase 2. The standard value is E = 0 used in Case 1 (Figure (4a)).
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Figure 10: Plots of the torsion angle, ground state population, and torque for a molecule

in Case 1 of Phase 3.
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Figure 11: Plots of the torsion angle, ground state population, and torque for a molecule

in Case 2 of Phase 3.
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Figure 12: Plots of the torsion angle, ground state population, and torque for a molecule

in Case 3 of Phase 3.
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Figure 13: Plots of the torsion angle, ground state population, and torque for a molecule

in Case 4 of Phase 3.
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4 Discussion

In principle, the evolution of a molecule can be treated as a quantum-mechanical

many-body problem. But such a treatment is not practical. Instead, we cast the

molecular wave function in either one of the adiabatic or nonadiabatic (i.e., diabatic)

frames. Both frames allow for a simpler study of the two fundamental aspects of a

molecule as it evolves– its nuclear and electronic configurations. The nuclear wave

function encodes the nuclear configuration and electronic state in which we can ex-

pect to observe the molecule. We were interested in understanding the relationship

between the nuclear and electronic configurations– How does the probability of a state

transition depend on the molecular structure? In particular, we were interested in

the dynamics of the ground state population for an initially excited molecule. We

studied the dependence of these dynamics on the PE landscape in the diabatic frame.

We constructed a numerical model for the evolution of the nuclear wave function

in the diabatic frame. For a single-state one-dimensional landscape (Phase 1), the

evolution scheme takes the form of a simple tridiagonal system that is solved recur-

sively. For a two-state landscape (Phase 2) and a two-dimensional landscape (Phase

3), we extended our model using the ADI method. This method allowed us to pre-

serve the recursive and tridiagonal structure of our evolution scheme. In this way,

our model remains very simple and takes complete advantage of matrix sparseness.

In each phase of the study, we analyzed the numerical predictions of our model and

concluded that they were physically meaningful. Therefore, the numerical scheme

that we outlined carries the potential to describe trends and relationships existent in

real physical systems.
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There are a number of results that deserve further exposition and discussion. First,

we recall the result from Phase 2 that there exists a width of the coupling potential

for which the ultimate ground state population assumes a local minimum. Since

we expect the ultimate ground state population to vanish as the coupling potential

width vanishes, we reasoned that there exists a coupling potential width for which

the ultimate ground state population assumes a local maximum. That is, in general

terms, it is possible for a molecule to have a PE landscape whose geometry guarantees

a greater ground state population limit during de-excitation, as compared to other

very similar PE landscapes. This is significant because it supports the idea that

biological molecules have PE landscapes whose geometries locally optimize overall

de-excitation for the purposes of maintaining homeostasis.

Second, we recall the result from Phase 2 that the ground state population of a

diatomic molecule depends weakly on the dissociation energy of the lower PE sur-

face. We explained this with the observation that the dynamics of the ground state

population for a diatomic molecule occur on a time scale much smaller than that

for molecular dissociation. However, we saw that both the frequency of oscillation

and over all decay rate of the ground state population vary with the shape of the

PE landscape. In particular, given sufficiently weak but broad coupling, it may be

possible to have the ground state population vary on a time scale comparable to that

for molecular expansion. In this case, the dissociation energy may become significant.

Here, we recall a result from Phase 3 whose interpretation suggests that raising the

lower PE surface boosts the ultimate ground state population. If this holds for the di-

atomic molecule in Phase 2, then it follows that raising the dissociation energy of the
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lower PE surface will increase the ultimate ground state population. In other words,

under sufficiently weak and broad coupling, a strongly bound diatomic molecule is

more likely to be in the ground state than is a more weakly bound molecule with the

same initial conditions.

Third, we recall the result from Phase 3 that in the diabatic frame, the transition

to the ground state population during cis-trans isomerization is not faster at the

point of electronic degeneracy θ = π
2
. We had concluded that the diabatic frame is

incapable of detecting fast transitions at such points. However, it may be possible to

explain why this is the case: Since the adiabatic and diabatic frames are complete

orthonormal basis sets, there exists a unitary transformation mapping one frame onto

the other. Assuming that the basis sets are real-valued, the unitary transformation

from the diabatic frame to the adiabatic frame is a rotation matrix W given by the

tensor product of the basis sets:

W (X) =

[

〈ψ1(x,X) | φ1(x)〉 〈ψ1(x,X) | φ2(x)〉
〈ψ2(x,X) | φ1(x)〉 〈ψ2(x,X) | φ2(x)〉

]

,

where the brackets are taken over x. Note that W (X0) is the identity matrix. If X0

is chosen to be the point of electronic degeneracy, then we expect the transformation

from the diabatic frame into the adiabatic frame at a configuration X far from X0

to be nontrivial. Given that Cases 1 and 2 in Phase 3 have very similar ground state

populations in the diabatic frame, the nontrivial rotational transformation into the

adiabatic frame by W for both Case 1 and Case 2 implies that the ground state

populations in the two cases will be different. In other words, the observation that

Cases 1 and 2 are similar in the diabatic frame may, in fact, be an indication that

Cases 1 and 2 are very dissimilar in the adiabatic frame. This opens the possibility
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that the results we obtained in Phase 3 are indirectly reflecting the occurrence of a

fast transition at the point of electronic degeneracy in the adiabatic frame.

Fourth and finally, we recall the result from Phase 3 that the transition to the

ground state was most effective at the nuclear configuration where the lower PE

surface attains its maximum value and the upper PE surface attains its minimum

value. Thus, although we did not observe a fast transition at the point of electronic

degeneracy in the diabatic frame, there is another special configuration at which we

did observe a fast transition (Case 3 in Phase 3). This is a very important conclusion

because it reveals a feature common to the adiabatic and diabatic frames. In both

frames, a fast electronic transition from one PE surface to another is most effective at

a nuclear configuration that is stable and minimally energetic on the first PE surface

but that is unstable and highly energetic on the second PE surface. In the case of the

adiabatic frame, it turns out that these special configurations are precisely the points

of electronic degeneracy. But as we observed, this is not the case in the diabatic frame.

Despite the common fundamental feature that the two frames share, the frames still

differ in some respect. This difference, however, seems to be the result of a more

fundamental difference between the geometries of the adiabatic PE landscape and

diabatic PE landscape. In the adiabatic PE landscape, the upper PE surface is never

below the lower PE surface (V A
1 (X) ≤ V A

2 (X) for all X). This simply follows from

the definitions of ground state energy and excited state energy. Consequently, in the

adiabatic frame, a nuclear configuration at which the lower PE surface is maximum

and the upper PE surface is a minimum is at best a tangential intersection point of

the two surfaces, i.e., a point of electronic degeneracy. In contrast, if we transform
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the adiabatic PE landscape into the diabatic frame (by applying W−1(X)), then

in the resulting diabatic PE landscape, it is possible for the upper PE surface to

fall below the lower PE surface at some configurations (V D
1 (X) > V D

2 (X) for some

X). This was indeed the case for the diabatic PE landscape used in Phase 3. In

this case, the lower PE surface is not necessarily at its maximum (or the upper PE

surface is not necessarily at its minimum) at the intersection points between the two

PE surfaces. That is, in the diabatic PE landscape, an intersection point is not

necessarily tangential. It follows that in the diabatic frame, fast transitions do not

necessarily occur at points of electronic degeneracy but might instead occur at some

other special nuclear configuration, just as we observed in Phase 3.

Mathematically, the efficiency of a transition is determined by the competition of

the PE surfaces with the coupling term in the Schrödinger Equation. From a purely

mathematical perspective, electronic degeneracy plays no role in the efficiency of state

transitions per se. Electronic degeneracy is important only in the context of physics.

That is, since the adiabatic frame is “physically more meaningful” than its diabatic

counterpart, and since fast transitions occur at points of electronic degeneracy in the

adiabatic frame, we can say that electronic degeneracy is important for fast transitions

in the context of physics. Our study simply provides the insight that this is not

mathematically necessary. In conclusion, our numerical model allowed us to study

basic molecular dynamics in the diabatic frame, and in our study we learned that the

adiabatic and diabatic frames are in some ways mathematically similar but physically

different.
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5 Future Work

We would like to extend our numerical model to the case of a molecule with three

nuclear degrees of freedom. We would also like to numerically construct the unitary

transformation from the diabatic frame into the adiabatic frame. This would allow

us to transform our results into the adiabatic frame, and it would be interesting

to interpret the dynamics of the ground state population in the adiabatic setting.

Finally, we would like to study the effects of an artificial “sink” for kinetic energy in

the ground state. Such a sink would influence the system to prefer the ground state.

This could possibly model the mechanism for fast homeostatic de-excitations in large

biomolecular complexes.
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