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Electrical potentials exist across the membranes of nearly every cell type in the 

body.  In addition, excitable cells, such as neurons, myocytes and even some endocrine 

cells elicit electrochemical fluctuations, action potentials (AP), in the cell membrane to 

initiate cell-to-cell communication or intracellular processes.  The basis for the electrical 

potential is rooted within an array of complex interactions between monovalent ions and 

their associated membrane channels and transporters that regulate the flux of these 

charged species across the hydrophobic bilayer.  Here, an expansion of our recently 

published work [1] will serve to explore the modern concepts regarding the origin of the 

AP as well as to examine the mechanisms by which intracellular calcium ([Ca2+]i) is 

regulated within the HL-1 mouse cardiac myocyte.  

Basics of the Cardiac Action Potential in Sino-atrial Node Cells (SAN)  

In nerve and skeletal muscle namely two ionic channels are crucial for the 

production of an AP; these are the voltage-gated Na+ channels (VGSC) and the voltage-

gated K+ channels (VGPC). However, in cardiac myocytes, an ensemble of ionic 

channels contributes to the various characteristics of the AP. 

 



Fig1. (Above) Typical AP in ventricular and atrial cardiomyocytes. 

APs in ventricular and atrial myocytes can be defined in five distinct phases: phase 0 

(depolarization), phase 1 (partial repolarization), phase 2 (plateau), phase 3 

(repolarization), and phase 4 (resting potential).  The AP observed in SAN myocytes is 

markedly different from APs generated in other cardiac myocytes.  Automaticity or 

spontaneous depolarization is a hallmark characteristic of the SAN cells of the heart’s 

right atrium and these cells produce repetitive and rhythmic firing of APs that propagate 

to the working myocardium to elicit contraction and ultimately propel blood from the 

heart [6].   

 

 

 

Fig 2. (Above) AP displayed by SAN cells. 

SAN cells are differentiated from other cardiomyocytes inasmuch as they lack phases 1 

and 2 of the AP while rapid depolarization in phase 0 is is attributable to voltage-gated 



Ca2+ channels (VGCCs) and followed by a more gradual repolarization as the cell 

returns to its resting membrane potential (RMP).  Phase 3 or membrane repolarization, 

is initiated by the inactivation of VGCCs and by the gradual increase in the cell’s 

permeability to K+ ions.  Prior to reaching the RMP in phase 4, SAN pacemaker 

channels activate and begin to generate inward ionic flux.  In actuality, there is no true 

RMP for SAN cells given that pacemaker channels are activated by repolarization and 

thus oppose the increasing polar state.  As a consequence, SAN cells display a less 

negative RMP, approximately -65 mV while neurons and skeletal muscle reside in the -

90 mV range.  While functioning synchronously and rhythmically, pacemaker channels 

(see below: Sarcolemmal Currents in Pacemaking)  work in unison to drive the cell 

membrane to a threshold potential by which inducing the activation of VGSCs and 

contributing to the rapid upstroke observed in phase 0 of the AP.  Hence, these ionic 

channels mediate spontaneous depolarization and are of utmost importance to 

researches and clinicians alike.  

HL-1 Cardiac Myocytes 

While the use of primary cardiac myocytes is ideal, the practical aspects of the 

sacrificial harvesting of cardiac cells for experimental use can be complicated and time 

consuming.  It is well established that long-term cultures of primary cells tend to exhibit 

a progressive loss in phenotype and become overgrown by non-myocytes after only a 

few days in culture [2, 3].  Nonetheless, isolated embryonic and neonatal primary 

cardiomyocytes have been widely used as a model system to study cardiac muscle 

structure and function in vitro [4].  However, their use is somewhat limited as they lack 



many adult cardiomyocyte characteristics.  Given this, a growing demand for a stable 

cardiac cell line gave rise to the development of the HL-1 cell.   

 The HL-1 cell line was established from AT-1 cells, which are myocytes obtained 

from an atrial tumor in transgenic mice expressing the Simian virus 40 (SV40) where a 

large T antigen was targeted to the atrial natriuretic factor (ANF) promoter [5].  The AT-1 

cell line was an initial attempt to provide a suitable surrogate model for primary 

cardiomyocytes; however, the cell’s continued passage in culture is finite and therefore 

could not be recovered from frozen stocks [4, 5].  Nonetheless, the cells did maintain a 

differentiated cardiac phenotype and provided the template for to develop the HL-1.  

Cancerous AT-1 tissue was excised from syngeneic mice, trimmed of connective 

tissues, minced, and incubated under 0.125% trypsin.  Cells were obtained by 0.1% 

collagenase digestions and plated (15 x 106 cell/5ml).  A proprietary growth medium 

developed by Claycomb et al., induced cell growth and division and bore the HL-1 cell 

line.  Currently, the HL-1 is the only cell line available that continuously divides and 

spontaneously contracts while maintaining a differentiated adult cardiac phenotype 

through indefinite passages in culture [4, 5].  With increasing validity as a suitable cell 

culture shown through microscopic, immunohistochemical, electrophysiological, and 

pharmacological methods, the HL-1 cardiac myocyte has gained increasing popularity 

amongst researchers to assess normal cardiac function as well as pathophysiological 

conditions at the cellular and molecular levels.  About 30% of confluent HL-1 cells 

generate spontaneous action potentials and display oscillations of intracellular calcium 

([Ca2+]i), however, evidence about the electrophysiological properties of these cells is 



limited.  Therefore, our aim, in part, was to further elucidate the molecular components 

that initiate and propagate excitability within the HL-1 cell. 

Sarcolemmal Currents in Pacemaking 

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have 

been postulated to provide protection from the bradycardic effect of hyperpolarized 

myocardium following repolarization [10], but also may be key molecular players in the 

perpetuation of spontaneous AP rhythmicity.   The current derived from these channels 

is “funny” inasmuch as typical currents in cardiac tissue are activated by 

hyperpolarization rather than by depolarization.  In fact, this funny current, If, is a net 

inward current comprising a mixed inward Na+ and outward K+ current that is activated 

at membrane potentials between -50 to -60 mV in HL-1 cells [9].  Early hypotheses 

suggested If as the principle “pacemaker current” given its activation in the early stages 

of diastolic depolarization; however, this designation has been challenged as blockade 

of If seems to only extend cycle length, but does not cease pacemaking completely [8, 

11].  Interestingly, some cardiac preparations displaying automaticity do not express the 

biophysical properties of HCN channel presence (e.g., the bullfrog) [8, 12].  

Nonetheless, Sartiani et al., report: (1) not only the presence of If in the HL-1 cell, but 

also a strong correlate between If and spontaneous depolarization, noting that 

approximately 30% of the cultured cells display presence of the HCN 1 and HCN 2 

isoforms; and (2) If activation in the HL-1 cell occurs at membrane potentials less 

negative than the resting membrane potential.  This data suggests that HCN channels 

serve a functional role in the generation of the AP, but do not comprise pacemaking in 

its entirety. 



Of the ions involved in the working myocardium, Ca2+ serves a ubiquitous role.  

Carrying a +2 formal charge, Ca2+ ions rapidly alter the membrane potential while 

serving as direct activators of myofilaments in the cardiac contractile apparatus by 

binding to troponin receptors.  The notable plateau (phase 2) in the AP of ventricular 

cardiomyocytes reflects the extended contraction in the muscle fiber [15].  Given [Ca2+]i 

coincides with the AP and determines myocyte contractility, growing interest surrounds 

the mechanisms by which Ca2+ handling is orchestrated in cells as it relates to 

pacemaking.   

Voltage-gated Ca2+ channels (VGCCs) belong to the superfamily of membrane 

channels including the voltage-gated Na+ and K+ channels.  Following activation, 

VGCCs become selectively permeable to Ca2+ whilst constituting the greatest 

contribution of Ca2+ ions to the inner-membrane pool.   There are two major types of 

VGCCs; T-type and L-type channels with stimulation in the HL-1 cell occurring at -60mV 

and -40mV, respectively [13, 14].  L-type channel currents (ICa,L) activate with slow 

kinetics at voltages slightly more negative than the threshold potential and are attributed 

to the upstroke of the action potential, whereas T-type currents (ICa,T), which are 

predominately expressed in SAN cells, presumably are involved in early depolarization 

[13].   

Pacemaking further involves depolarizing, inward currents of the electrogenic 

Na+-Ca2+ exchange protein (NCX) [7, 8].  Initially, the inward current generated by NCX 

(INCX) was largely overlooked as an integral factor in pacemaking due to it being an 

exchange activity instead of a channel mediated current [8].  The presence of [Ca2+]I 

instantaneously activates NCX, which serves to extrude from the cell a single Ca2+ for 



three Na+ ions.  However, due to the fact that this exchanger is electrogenic in nature, 

the direction of transport can be reversed during the membrane potential nadir.  

Nonetheless, typical forward motion initiates a depolarizing current across the 

membrane and unlike many voltage-gated ion channels, NCX functions throughout the 

cardiac cycle [8].    

Store Operated Ca2+ Entry (SOCE) 

The sarcoplasmic reticulum (SR) constitutes the largest intracellular store of Ca2+ 

ions and its role in pacemaker function was initially noted from observations that 

blocking Ca2+ release via inhibition of the ryanodine receptors (RyRs) led to a 

progressive decrease in the rate of late diastolic depolarization [16].  RyRs function as 

“leaky pumps” that spontaneously and rhythmically generate local releases of Ca2+ 

(LCR’s) from the SR into the cytosol with peak concentrations of LCRs occurring just 

prior to threshold potential.  The presence of [Ca2+]i released from the SR functions to 

not only alter membrane potential, but also stimulates the RyRs to release more Ca2+ 

ions into the cytosol through a positive-feedback mechanism dubbed,   Ca2+ induced 

Ca2+ release (CICR). 

Following the AP upstroke, Ca2+ ions entering from VGCCs elicit a larger CICR 

from the SR in which remaining Ca2+ content is dumped into the cytosol.  This allows for 

a synchronization, albeit a depleted one, of SR Ca2+ content across SAN cells and 

prevents SR Ca2+ overload [8].  Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 

pumps mediate the re-uptake of SR Ca2+ and in time, RyRs will begin to produce LCRs 

once more.  Interestingly, LCRs generated by the RyRs are unimpeded in cell 



membranes that have been permeabilized, thus suggesting its perpetuation is 

independent of membrane-bound ion channels [8].   

Mounting evidence suggests the mitochondria play a fundamental role in Ca2+ 

buffering that modulates SR Ca2+ load and thus indirectly influences SOCE in SAN 

cells.  The mitochondrial Ca2+ uniporter (MCU) is predominately responsible for Ca2+ 

uptake, however, influx of Ca2+ ions into the mitochondrial lumen is still present in cells 

that have had MCU down-regulated suggesting that other mechanisms of Ca2+ entry are 

present [24].   In the mitochondria of rat liver and brain cells, Feng et al., describe the 

presence of a transient receptor potential (TRP) protein channel that functions to 

regulate mitochondrial Ca2+ (Ca2+
m) homeostasis [25].   

TRPM4 as a pacemaker component 

The existence of TRP channels was first noted in the photoreceptors of 

Drosophilia where TRP gene mutations displayed voltage response to light [17].  TRP 

channel properties are not fully described; however, other than channel architecture and 

overall amino acid sequence homology, no distinct feature defining the TRP family has 

yet been defined [18].  Mammalian TRP channels comprise six related protein sub-

families: TRPA, TRPC, TRPML, TRPM, TRPV, and TRPP and their importance in 

sensory transduction at the cellular and multicellular level is irrefutable across 

organismal hierarchy.  TRP channels in yeast are integral in the perception of and 

response to hypertonic environments [19].   Nematode TRP channels are utilized as 

chemosensory receptors for the detection of the chemical quality of a substance [20].  

Mice utilize a pheromone-sensing TRP channel in sex discrimination [21].  In the taste 

receptors of humans, TRP channels allow for the distinction of spicy, sweet, sour, and 



umami flavors [22].  Moreover, these channels allow for the discrimination of hot and 

cold substances [23].  

Single-channel electrophysiological recordings describe a Ca2+-activated non-

selective cation channel (NSCCa) in a variety of mammalian SAN cells that is voltage 

dependent, impermeable to Ca2+ ions, and has a channel conductance between 20 and 

30 pS [26].  Several studies have postulated the TRP sub-family member, melastatin 4 

(TRPM4) as being such a channel and its presence has been noted in mouse SAN cells 

[27].  TRPM4, designated TRPM4b (the active splice variant), appears to serve a 

functional role in allowing cells to depolarize in a Ca2+ dependent manner.   We report 

the novel expression of TRPM4 in the HL-1 mouse cardiac myocyte and postulate its 

role in pacemaker function from an intracellular location, possibly the mitochondria.    
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